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In colloidal systems, Brownian motion emerges from the massive separation of time and length scales
associated with characteristic dynamics of the solute and solvent constituents. This separation of scales produces
several temporal regimes in the colloidal dynamics when combined with the effects of the interaction between the
particles, confinement conditions, and state variables, such as density and temperature. Some examples are the
short- and long-time regimes in two- and three-dimensional open systems and the diffusive and subdiffusive
regimes observed in the single-file (SF) dynamics along a straight line. In this paper, we address the way
in which a confining geometry induces new time scales. We report on the dynamics of interacting colloidal
particles moving along a circle by combining a heuristic theoretical analysis of the involved scales, Brownian
dynamics computer simulations, and video-microscopy experiments with paramagnetic colloids confined to
lithographic circular channels subjected to an external magnetic field. The systems display four temporal regimes
in the following order: one-dimensional free diffusion, SF subdiffusion, free-cluster rotational diffusion, and
the expected saturation due to the confinement. We also report analytical expressions for the mean-square
angular displacement and crossover times obtained from scaling arguments, which accurately reproduce both
experiments and simulations. Our generic approach can be used to predict the long-time dynamics of many other
confined physical systems.

DOI: 10.1103/PhysRevResearch.3.033246

I. INTRODUCTION

Diffusion is one of the most common mechanisms used
by nature to dissipate equilibrium density fluctuations, where
the Brownian motion of colloidal particles represents a fas-
cinating case [1]. It exhibits a rich dynamical scenario in an
extended time window due to the enormous separation of the
characteristic time and length scales of solute and solvent
constituents, combined with the effects of the interaction be-
tween the particles, the confinement conditions, and the state
variables such as density and temperature [2,3]. The way a
confining geometry affects the colloidal diffusion has received
much attention in the last decade [4,5]. However, from the
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experimental side, these effects are hard to study since they
cover eight or more orders of magnitude, from milliseconds to
several days [4,6,7]. This feature makes it difficult to stabilize
experimental setups over such a long time, and there are just
few simulation results due to their high demand for compu-
tational power, which has held back theoretical developments
as well.

The mean-square displacement [MSD or W (t ) in the fol-
lowing] of individual particles provides a good description of
Brownian motion in systems where the possibility of particles
finding a path among the other ones follows Gaussian diffu-
sion [2,3]. It also helps to describe the single-file diffusion
(SFD) of particles moving along a straight line without mutual
passage [8], a problem which is highly relevant in many sci-
entific fields including biophysics and materials science [7].
SFD of colloidal particles was directly observed experimen-
tally using paramagnetic or charged colloidal particles moving
along a circle [9,10], which found them to freely diffuse until
reaching a subdiffusive regime, like the case of open and
infinite straight lines [8].

During the last few decades, intensive research has been
done to understand the universal fingerprint of the SFD
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behavior [W (t ) ∼ √
t], where a plethora of theoretical explo-

rations has been taken out for this purpose (see Ref. [7] for
a review). However, since experiments and simulations have
finite size, effects were reported when investigating confined
systems characterized by a finite number of particles. Indeed,
using a Bethe ansatz [11], an exact analytical expression for
the tagged particle probability density function for hard-core
interacting colloids in a finite box was found by Lizana and
Ambjörnsson [12], revealing the existence of three tempo-
ral regimes: normal diffusion, SFD, and a saturation regime,
which we define here as the geometric regime (GR). Particles
interacting with a screened electrostatic potential confined in a
narrow box were found to exhibit good agreement with the ex-
pected scaling of SFD at intermediate times, whereas the GR
was found at large times [13]. Additionally, the asymptotic
behavior of the MSD was found to be DNt , where DN = D0/N
for a finite system of N colloids restricted to the line; due
to this characteristic, collective behavior emerges, where the
system behaves as a single particle with an effective mass Nm,
with D0 and m being the free-particle diffusion coefficient and
the mass of each colloid [14], respectively.

All the above mechanisms have one common feature: they
are caused by a geometrical and/or topological restriction.
The tagged particle, as well as all interacting particles, ex-
periences the effects of the geometry or topology imposed by
the environment. The geometry can be manifested in various
forms as the shape of the confinement (e.g., the parabolic
confinement), the bounded domain of the narrow channel, the
periodic structure of the substrate, the multilayer structure, or
the circular channel, among the many other forms one can find
in nature. Geometry and topology, combined with the nature
of the interaction between the particles, produce diverse types
of effects [15]. For instance, topological defects, as kinks and
antikinks, emerge when a colloidal monolayer is driven across
commensurate and incommensurate substrate potentials [16],
as well as in highly dense systems of repulsive colloids in a
narrow and periodic channel [17]. In some situations, curva-
ture effects arise in the free diffusion processes over curved
manifolds [18], where curvature becomes a fundamental phys-
ical quantity that acts just as an external field would on the
particles.

Recently, the original Ermak-McCammon (EM) algo-
rithm for Brownian Dynamics (BD) was extended to study
Brownian motion of interacting particles confined on curved
manifolds [4]. Particularly, the diffusion of a tagged particle
without hydrodynamic interactions can be approached using
the overdamped many-particle Langevin equation on an arbi-
trary plane curved file as follows [4]:

ζ
dsi

dt
=

∑
i �= j

F T
i j + ηi, (1)

where ζ is the friction coefficient, the subindexes labeled the
particles, si is the arc-length displacement, and F T

i j and ηi

are the interparticle force and the stochastic force projected
along the tangent direction at the ith particle position, respec-
tively. The stochastic force satisfies the fluctuation-dissipation
theorem (see details in Ref. [4]). As a consequence of the
tangent projection, all the dynamics occurs intrinsically along
the curved file. In this case, the geometry encodes strong non-

linear effects coupled to the interactions through the tangent
projection. Indeed, paramagnetic colloids distributed along an
ellipse were studied using Eq. (1), showing that curvature
gradients induce inhomogeneities in the distribution of the
particles along the file and providing evidence of metastable
states through the behavior of the self-diffusion [5]. Fur-
thermore, the preliminary example of paramagnetic particles
confined in a circular channel studied previously [4] provided
evidence of two temporal regimes beyond the subdiffusive
one not seen in experiments [9,10] nor even in theoretical
approaches for straight lines [8]. Thus, it becomes evident
that the colloid dynamics in a ring features a richer dynamical
scenario that has not been studied in detail and will allow
us to understand the role of the geometry on the dissipation
of the equilibrium density fluctuations, a topic that has been
overlooked so far.

Thus, by combining video-microscopy experiments per-
formed with paramagnetic colloidal particles confined to
lithographic circular microchannels subjected to an external
magnetic field with the EM algorithm for curved manifolds
implemented for the paramagnetic colloids confined to a cir-
cle, we unravel the rich dynamical behavior of interacting
colloidal systems that emerges due to the geometric con-
finement. Particularly, we focus on the angular distribution
function and the mean-square angular displacement (MSAD)
for several sets of the system parameters, namely, the number
of particles N , the radius of the circle R, and the strength of the
repulsive interaction between colloids �. We find that the col-
loidal dynamics displays a universal behavior characterized
by the following four temporal regimes: (1) free diffusion, (2)
SFD, (3) free-cluster diffusion, and (4) geometrical diffusion.
We provide accurate analytical expressions for the crossover
times between these temporal regimes, which are obtained
from scaling arguments, and derive accurate analytical rep-
resentations for the MSAD in terms of the crossover times.

In Sec. II, we present the experimental setups. In Sec. III,
we describe the implemented EM algorithm for curved man-
ifolds. In Sec. IV, some experimental and simulation results
for the structure and MSAD are shown. Sections V and VI
are dedicated to the time scales and scaling laws, respectively.
In Sec. VII, we report precise analytical expressions for the
MSAD. Finally, in Sec. VIII are some concluding remarks.

II. EXPERIMENTAL SETUP

We performed video-microscopy experiments with para-
magnetic colloidal particles confined to lithographic mi-
crogrooves in an external magnetic field following the
procedure outlined in Ref. [19] with an improved protocol
that will be discussed in the next paragraphs to ensure stability
for longer periods of time. The experimental results obtained
allow us to report the four temporal regimes and related time
scales predicted with BD simulations.

Circular channels were first drawn on a chromium
(Cr) mask using direct write laser lithography (λ =
405 nm, 5–7 mm2 min−1, DWL 66, Heidelberg Instruments
Mikrotechnik GmbH). A thin coverglass (∼120 μm) was
coated with a 2.8 μm layer of AZ-1512HS photoresist (Mi-
crochem, Newton, MA) by spinning it at 1000 rpm for 30 s
and subsequently curing it at 95 ◦C for 3 min. To improve
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adhesion, before the photoresist, the glass surface was coated
by a thin layer of TI Primer by spin coating for 20 s at
4000 rpm and baking for 2 min at 120 ◦C. The photoresist was
irradiated with ultraviolet (UV) light through the Cr mask for
3.4 s at a power of 21 mW cm−2 (UV-NIL, SUSS Microtech)
and then developed by submerging it for 45 s in a solution of
1 part of AZ400K developer in 4 parts water before washing
with water.

A colloidal suspension was prepared by mixing 1 μL of
superparamagnetic particles of diameter σ = 2.8 μm (Dyn-
abeads M-270, which consist of a polymer matrix embedded
with iron-oxide nanoparticles) with 1 mL of a 7 μM solution
of tetramethylammonium hydroxide (TMAH) in ultrapure
water (Synergy UV-3, Millipore) at a pH of 7.2. TMAH
allowed us to avoid the absorption of CO2 in water, which
produces carbonic acid that glues the particles to the surfaces;
this simple procedure enhanced the stability of the setup. A
sample was prepared by sandwiching a droplet of solution be-
tween the structures and a top coverslip, separated and sealed
with silicone vacuum grease (Dow Corning). The thickness of
the sample was ∼100 μm. Before placing the top coverslip,
the open sample was sonicated for 3 min to get rid of bubbles
created by the superhydrophobicity induced by the concentric
channels. The seal of the sample was essential to maintain
the chemical stability of particles during the long experiments
required to observe the different diffusion regimes. We have
observed that a properly sealed sample is stable for ∼2 weeks,
before the dispersing medium becomes too acidic and elec-
trostatic charges no longer are able to stabilize the particles
over the substrate. During these long times, the sample is
shielded from UV light to prevent further exposure of the
photoresist. Particles have a density of around twice that of
water (≈2 g mL−1), which is enough to keep them inside
the channels. The particles were suspended by electrostatic
interactions a few hundred nanometers above the surface.

Once a sample was prepared, it was placed in a custom-
made optical microscope equipped with a 100× oil immersion
objective (Nikon Plan Fluor, numerical aperture = 1.3, used
with Thorlabs MOIL-30, n = 1.518), a laser for optical trap-
ping (ML5-CW-P-TKS-OTS, Manlight, 5W, operated at 3W),
and a coil to apply a field along the axial direction (see
Fig. 1). The optical tweezers were used to move particles
between the ring microchannels. The laser was deflected
by an Acousto Optic Device (AOD AA Optoelectronics
DTSXY-400-1064, driven by a radiofrequency wave gener-
ator DDSPA2X-D431b-34 and a NI cDAQ card NI-9403),
which allowed fine control over the trap position and power.
The time sharing of laser light is especially important since
magnetic particles absorb light at this wavelength, and they
are prone to heating. We addressed this by keeping the power
coming into the microscope objective between 1 and 2 mW.
To have the power approximately constant when moving the
trap position, a telescope conjugated the plane of the AOD to
the back focal plane of the objective. The system was operated
by a custom-made graphical interface programed in LAB-
VIEW [20]. Observation was then done using a complementary
metal oxide semiconductor camera (Ximea MQ003MG-CM,
640 × 480 pixels, pixel size was 7.4 μm) working at a rate of
15 fps for short time scales and 1 fps for long time scales.
From the videos, the particle positions were extracted using

FIG. 1. Microscope image of colloidal particles confined by
gravity in a microchannel. Left: Channel radius R = 5 μm and 5
particles. Right: Channel radius R = 10 μm and 11 particles. The
widths of the channels are 2.5 μm at the bottom and 5 μm at the top,
with a depth of 2.8 μm. The channel radius is measured from the
center of the channel. Scale bar is 10 μm in both images.

the TRACKPY implementation of the Crocker-Grier algorithm
[21].

III. BROWNIAN DYNAMICS SIMULATIONS ON THE
CIRCLE AND SUPERPARAMAGNETIC POTENTIAL

We used the EM algorithm over curved manifolds devel-
oped in Ref. [4] to perform a systematical analysis of the
interacting diffusing particles on the circle S1.

According to Ref. [4], the many-particle Langevin Eq. (1)
on S1 without hydrodynamic interactions can be rewritten as
the following stochastic finite differences equation:

si(t + �t ) = si(t ) + βD0Fi · Ti�t + δri(�t ) · Ti, (2)

where si(t ) is the arc length of the circle that can be computed
using si(t ) = Rφi(t ), with φi(t ) being the angle measured
counterclockwise from the positive x axis in the Cartesian
plane at time t . The total force Fi = ∑N

i �= j=1 Fi j exerted on
the ith particle is the sum of the forces Fi j due to the inter-
actions with all the particles j �= i. In Eq. (2), δri(�t ) is a
Gaussian random displacement in the plane containing the
circle with zero mean 〈δri,α (�t )〉 = 0 and covariance ma-
trix 〈δri,α (�t )δr j,β (�t )〉 = 2D0δi jδαβ�t , with δri,α (�t ) (α =
1, 2) and 〈· · · 〉 denoting, respectively, the Cartesian com-
ponents of δri(�t ) and the ensemble averages. Here, β =
(kBT )−1 is the inverse of the thermal energy kBT , with kB

and T being the Boltzmann’s constant and the absolute tem-
perature, respectively. Additionally, the unit tangent vector
Ti = [− sin φi(t ), cos φi(t )] appearing in Eq. (2) reflects the
fact that the short-time dynamics occurs along the tangent
line at the angle φi(t ). According to those definitions, the arc-
length displacement �si(�t ) = si(t + �t ) − si(t ) is related
to the angular displacement �φi(�t ) = φi(t + �t ) − φi(t ) by
�si(�t ) = R�φi(�t ); hence, the angular displacement is the
sum between the deterministic part βD0Fi · Ti and the random
term δri(�t ) · Ti.

In both experiments and simulations, we studied a
two-dimensional colloidal dispersion composed of N para-
magnetic particles with a magnetic moment M, whose pair
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potential is given by [22]

βu(ri j ) = μ0

4πkBT

M2

r3
i j

= �

r∗3
i j

, (3)

where μ0 is the vacuum magnetic permeability. For weak
magnetic fields M(B) = χeffB holds, with χeff being the effec-
tive magnetic susceptibility of the colloids and B the external
magnetic field [22]. The experiments were carried out at
room temperature (T = 300 K) with a magnetic susceptibility
of χeff = (0.366 ± 0.0002) × 10−11 Am2/T. The right-hand
side term in Eq. (3) is the resulting dimensionless interaction
potential, where � is the total amplitude, and r∗

i j = ri j/σ is
the Euclidean distance between particles, expressed in terms
of the particle diameter σ . As a result of the confinement
and the finite size of the particles, the Euclidean distance
ri j = √

2R
√

1 − cos(φi − φ j ) is bounded from above and be-
low with maximum value ri j = 2R when φi − φ j = ±π and
minimum value ri j = σ when φi − φ j = ±2 sin−1(σ/2R), re-
spectively. Since the maximum angle between two particles
is π , the domain of the angular distribution function g(φ)
is [0, π ]. By using this feature, for instance, previous re-
sults [23,24] can be recovered for both dynamic and static
properties.

BD simulations were carried out as follows. Here, N col-
loidal particles were set in random initial positions along the
circle. Then the colloidal system evolved according to Eq. (2)
from its arbitrary initial nonequilibrium state to the equilib-
rium one when the energy of the system reached an average
constant value, where the system was considered to be in
equilibrium. The chosen time step for all the simulations was
�t∗ = �tD0/σ

2 = 10−5. After reaching thermal equilibrium
in 106 time steps, we used at least 5 × 1011 time steps to gather
statistics, taking configurations every 100 time steps. To get
good statistics at long times, we parallelized the BD code
to run 320 simulations of the same system, using a different
time seed in each case and averaging over all of them when
simulations are done.

IV. STRUCTURE AND MSAD: EXPERIMENTS VS
COMPUTER SIMULATIONS

To perform a one-to-one comparison between BD simu-
lations and experiments, we chose four sets of experimen-
tal parameters, namely, {N = 5, R = 5 μm, � = 1.07}, {N =
5, R = 5 μm, � = 4.26}, {N = 5, R = 5 μm, � = 9.59}, and
{N = 11, R = 10 μm, � = 23.78}. In each case, � was de-
termined using the experimental parameters provided in the
previous section. Also, different values for the magnitude of
the magnetic field {B[mT] = 0.27, 0.54, 0.8, 1.27} were used
in each set.

The angular distribution function g(φ), i.e., the probability
of finding a particle forming an angle φ with another particle,
is explicitly shown in Fig. 2. One can immediately notice that,
for all four sets of parameters, there is an excellent agreement
between experiments and simulations without using any free
parameter, thus highlighting the accuracy of the modified EM
algorithm in Eq. (2) to reproduce the trajectory of interacting
colloids on curved manifolds. Furthermore, as expected, we
also observe that g(φ) becomes highly structured and long-
range correlated when � and N increase. When � = 1.07, the

FIG. 2. Angular distribution function g(φ) for paramagnetic par-
ticles diffusing along a circle measured from video-microscopy
experiments (open symbols) and calculated using Brownian dynam-
ics (BD) simulations (solid lines) with the Ermak-McCammon (EM)
algorithm for curved manifolds in Eq. (2) for four sets of system
parameters, as indicated.

paramagnetic repulsion is not enough to prevent the particles
from colliding, as seen from the breaking of the pink line
when reaching the correlation hole. We do consider volume
exclusion in our simulations, but the effect is so slight that it
does not have implications for the diffusion of the particles.

In addition, in Fig. 3, the MSAD 〈[�φ(t )]2〉 is shown
for the same set of system parameters as the one used for
the calculations of the g(φ) displayed in Fig. 2. Just as in
a previous contribution [4], we note that 〈[�φ(t )]2〉 exhibits
systematically the following four temporal regimes: the short-
time diffusive regime (I), the subdiffusive intermediate time
regime (II), the second diffusive regime (III), and finally, the
geometrical saturation regime (IV). From the figure, we also
note an excellent agreement between experiments and BD
simulations at short and first intermediate times; however, at
the second intermediate time regime, one can notice small dif-
ferences that slightly increase with �. Overall, the agreement
is outstanding given that there are no free parameters in the
calculations. Afterwards, at the geometrical regime, a larger
difference is evident for N = 11 as a consequence of a lack of
statistics in the experiment, mainly because of the difficulty to
keep the measurement stable for very long times.

V. TIME SCALES FROM THE MSAD

Given the excellent agreement between experiments and
Brownian dynamics simulation results discussed previously,
we now proceed to explore additional sets of the system
parameters fixing in each case two of the following three
physical variables N, R∗ = R/σ, � and varying the remaining
one:

(1) {R∗ =10.5; � = 125; N = 1, 10, 15, 20, 25, 32},
(2) {N =26; �=125, R∗ =10.5, 13, 15.5, 18, 20.5, 30.5},

and
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FIG. 3. Mean-square angular displacement 〈[�φ(t )]2〉 from ex-
periments (open symbols) and Brownian dynamics (BD) simulations
(solid lines). For all sets of curves, we identify the following four
temporal regimes: the short-time diffusive regime (I), the subdiffu-
sive intermediate time regime (II), the second diffusive regime (III),
and the geometrical saturation regime (IV). The straight gray lines
are guides for the eye.

(3) {N = 10; R∗ = 10.5; � = 10, 102, 103, 104}.
Results for the MSAD are shown in Fig. 4. It turns out

that the four time regimes depicted in Fig. 3 are also observed
in the dynamical behavior of the MSAD of Fig. 4. To better
understand the dynamical behavior at each regime, we will
now classify all of them in terms of the characteristic transi-
tion times τi that define their beginning and end: short-time
regime t � τd , first intermediate time regime τd � t � τc,
second intermediate time regime τc � t � τG, and geomet-
rical regime t > τG, where τd , τc, and τG depend clearly on
the physical parameters N, R∗, and �. One of the main goals
of this contribution is to express the dependence of these
transition times on the aforementioned physical quantities.
We now explain the behavior of the MSAD in each of these
regimes.

According to the results shown in Fig. 4, at the short-time
regime, the MSAD displays a one-dimensional (1D) free-
particle-like behavior:

〈[�φ(t )]2〉 = 2
D0

R2
t . (4)

This behavior states that, at short times, the deterministic term
βD0Fi · Ti�t is negligible in comparison with the random
term δri(�t ) · Ti in the EM algorithm in Eq. (2). This im-
plies that, at short times, fluctuations play an essential role in
contrast to the interactions between the particles. Also, a 1D
Brownian motion is found since the circle is a 1D manifold,
which can be considered locally as a straight line.

In the first intermediate regime, the interactions between
the particles take place, and this results in a deviation of
the MSAD from the free-particle behavior to the dynamical
transition known as SFD:

〈[�φ(t )]2〉 = F
√

t

R2
, (5)

where F is the SF mobility, and the dependence
√

t is inferred
from the slope of the curve in Fig. 4. SFD occurs because
of the excluded mutual passage between the particles [7].
Consequently, this phenomenon appears also for any type of
repulsive interaction, even for the simplest hard-core ones, if
the particles are kept confined in the single line [7]. Recall that
the transition to the SFD occurs sooner as the particle density
increases, which is achieved when either N increases or R
decreases. According to the prediction reported in Ref. [8],
the coefficient F depends on the relative compressibility. In
our case, we will show below how F depends on the strength
of the interaction potential.

In the third regime, the curves of the MSAD are basically
parallel to the curve of the free-particle behavior, which in-
dicates that the MSAD is again proportional to time t . In
addition, it turns out that the proportionality coefficient is
2D0/N . Thus, the dynamical behavior at the second interme-
diate time regime can be expressed as follows:

〈[�φ(t )]2〉 = 2
D0

NR2
t . (6)

Noticeably, this result highlights the fact that the whole bunch
of particles confined in the circle behaves as if the system were
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FIG. 4. Mean-square angular displacement 〈[�φ(t )]2〉 obtained
with the Ermak-McCammon (EM) algorithm in Eq. (3) for param-
agnetic colloids diffusing along a circle (a) for different numbers of
particles, (b) varying the radius of the circle, and (c) changing the
strength of the interparticle repulsion, as indicated. The thin straight
lines are guides for the eyes, showing the short-time 2D0t/R2 and the
geometrical limit π 2/3 values.

just one particle in a fluid with an effective drag coefficient
ζN = Nζ , where ζ = kBT/D0 is the drag coefficient between
any of the colloids and the fluid. As a result, at this time
regime, a collective behavior emerges where the whole system
acts as one ring-shaped particle with an effective diffusion

coefficient DN = D0/N performing a rotational Brownian
motion. In other words, the particles organize in such a way
that they randomly move together as a cluster, and again,
the collective dynamics is independent from the interaction
potential. This phenomenon is a consequence of the finite size
of the system imposed by the topology of the circle, and it
does not have a counterpart for the case of open systems.
A similar situation appears in the case of the finite-sized
colloidal system confined in a line [14]. We expect this kind of
transition to be universally valid for any repulsive interaction
potential if the particles are constrained along a circle [25]. In
other words, we find a transition from the SFD to the cluster
file diffusion.

Finally, in the fourth time regime, the system reaches the
so-called GR, where particles have explored the positions of
the circle many times in such a way that any colloid has the
same probability to be found at any position on the circle,
independently of the interaction between the particles. This
result was previously reported in Ref. [4] and has an analytical
value:

〈[�φ(t )]2〉 = π2

3
. (7)

Thus, from the previous discussion and the dynamical be-
havior reported in Fig. 4, one can appreciate that the only
parameters undetermined are the SF mobility F and the tran-
sition times τd , τc, and τG that we determine in the following.

VI. CROSSOVER TIMES: SCALING LAWS

We now provide a deduction of the SF mobility and the
transition times τd , τc, and τG. First, let us notice that, from
the EM algorithm in Eq. (2), we can show that

〈[�si(τ )]2〉 = 〈[βD0τFi · Ti]
2〉 + 2D0τ, (8)

by squaring Eq. (2) and taking its average. The crossed prod-
uct does not appear in Eq. (8) since the deterministic term
βD0Fi · Tiτ and the tangent vector Ti in the random term both
depend on the previous time t with respect to t + τ . Clearly,
when interactions are absent, the last equation reproduces the
behavior of the MSAD at the short-time regime in Eq. (4). In
addition, when interparticle interactions are considered, the
first term of Eq. (8) becomes important. Indeed, this term
has the same order of magnitude of the second one when the
system reaches the SFD regime.

To determine the first transition time, first, let us carry out a
dimensional analysis, where we denote by [Q] the dimension
of the quantity Q. Hence, the deterministic term βD0Fi · Tiτ

in the EM algorithm in Eq. (2) has dimension of length.
Thus, let us denote by � a characteristic length to be inferred
from the simulation. Then � = βD0(Fi · Ti )τ , where τ is a
characteristic time associated with �. The tangent vector Ti

does not have any dimensions; thus, (Fi · Ti ) = U/�, where U
has units of energy. Combining all these terms, one gets the
following expression:

D0τ

σ 2
= C

(
�

σ

)2

(βU )−1. (9)

In this equation, there are three quantities to be determined,
namely, the characteristic length �, the value of U , and the
dimensionless constant C. As it was explained earlier, the

033246-6



SINGLE-FILE DYNAMICS OF COLLOIDS IN CIRCULAR … PHYSICAL REVIEW RESEARCH 3, 033246 (2021)

interaction term becomes relevant at the intermediate time
regime; therefore, the first and second transition times should
have the form shown in Eq. (9). The transition to SF behavior
occurs when a particle approaches another one, such that the
interaction becomes important and prevents mutual passage;
thus, this should occur at the angle φmax, which corresponds
to the first peak of g(φ) that gives the maximum probability
that two particles encounter each other. Additionally, it is
known that g(φ) carries information of the interaction poten-
tial. Therefore, one could infer that, for the transition times
in Eq. (9), U = u(rmax), where rmax = √

2R(1 − cos φmax)1/2.
Now to determine the value of �, we have performed per-
turbation theory on the EM algorithm in Eq. (2) and found
that, for the first transition time, it has the form D0τd/σ

2 =
Cth(R∗/N )2[βu(rmax)]−1, where the theoretical value for the
dimensionless constant is Cth ≈ 1.3 (see the Appendix). From
this analysis, it turns out that � = R/N , and according to the
simulation result displayed in Fig. 5, C ≈ 1. Thus, one has the
following mathematical expression for τd :

D0τd

σ 2
=

(
R∗

N

)2

[βu(rmax)]−1. (10)

This expression has an excellent agreement with both experi-
mental and simulation results, as it is shown on the top plot of
Fig. 5.

The deduction of the SF mobility F can be carried out
using τd , Eqs. (4) and (5). This can be obtained by equating
Eq. (4) with the free-particle diffusion and Eq. (5) with the
SFD at the first transition time τd , namely, 2D0τd = F

√
τd ,

that is,

F =
(

2R

N

)√
D0

βu(rmax)
. (11)

This expression is straightforward and reproduces correctly
both the experiments and simulations [see Figs. 5(a) and 6]. In
fact, from Fig. 6, one can see the remarkably good agreement
between the expressions in Eqs. (5) and (11) when compared
with the simulation results. As pointed out above, Kollmann
[8] derived an expression for F in terms of the compressibility
or the evaluation of the structure factor at q → 0. However,
in practice, that route needs the simulation of larger system
sizes and, consequently, demands a high computational cost,
thus making Eq. (11) more feasible to explain the transport of
particles when the SFD condition is reached.

Now using Eq. (5) with the value for F given by Eq. (11),
one can proceed to deduce the second transition time τc by
equating Eqs. (5) and (6). Hence, one now obtains that

D0τc

σ 2
= R∗2[βu(rmax)]−1. (12)

As it can also be seen in Fig. 5(b), the previous expression
for τc shows an excellent agreement between experiments and
simulation results. The last transition time τG can be easily
obtained by equating Eqs. (6) and (7), that is,

D0τG

σ 2
= N

6
(πR∗)2. (13)

FIG. 5. Transition times τd , τc, and τG for the crossover between
the different regimes for paramagnetic colloids diffusing along a
circle of radius R. In (a) and (b), the straight line is the linear
fit with slope a ≈ 0.99 ± 1.74 × 10−2. The line in (c) is the best
linear fit with slope a ≈ 1.0 ± 2.78 × 10−14. Both experimental and
simulation results displayed in Figs. 3 and 4 are included.
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FIG. 6. Mean-square angular displacement for six paramagnetic
colloidal systems obtained with the Ermak-McCammon (EM) al-
gorithm in Eq. (2). Bold lines represent Eq. (5) with the mobility
factor given by Eq. (11) evaluated using the physical parameters as
indicated.

Figure 5(c) shows clearly that the previous expression
describes remarkably well both experimental data and simu-
lation results. We obtained the experimental and simulation
points in Fig. 5 as follows: their vertical values from the
crosses between the respective linear fits (on a log-log scale)
of the different temporal regimes in Figs. 3 and 4 and their
horizontal values using the position of the first maxima of the
angular distribution functions shown in Fig. 2 in the expres-
sion for the interaction potential.

VII. ASYMPTOTIC BEHAVIOR

While we show the expression for the SF mobility in
Eq. (11), another immediate result is the availability of writing
the subdiffusive regime as a function of the first transition
time:

〈[�φ(t )]2〉 = F

R2

√
t = 2

D0

R2

√
τdt . (14)

By doing this, we notice that Eq. (14) is like the diffu-
sive behaviors described in Eqs. (4) and (6), which give
us the possibility to construct a relationship that connects
all the different time regimes in terms of the crossover
times: the first diffusive regime (〈[�φ(t )]2〉 ∼ t), the sub-
diffusive regime (〈[�φ(t )]2〉 ∼ √

t), the second diffusive
regime (〈[�φ(t )]2〉 ∼ t/N), and the geometrical regime
(〈[�φ(t )]2〉 = π2/3). To this end, we first propose an equa-
tion that describes both the first diffusive and the subdiffusive
regimes given by Eqs. (4) and (14), respectively. We then use
an exponential decay associated with the crossover time τd :

〈[�φ(t )]2〉 = 2
D0

R2
t
[
1 − exp

(
−τd

t

)]1/2
. (15)

This equation indeed displays the diffusive behavior at short
times, while at longer times, it will indefinitely describe the
subdiffusive one, recovering both time regimes.

FIG. 7. Comparison of the mean-square angular displacement
for the systems displayed in Figs. 3(a) and 3(b) (dotted lines, orange
and red for Brownian dynamics (BD) and black for experiments)
and Eq. (17) (continuous lines with the same color code) using the
crossover times reported in Fig. 5.

Analogously, for the second transition, we now propose
another exponential decay, but in this case, the transition is
from

√
t to t linked to the crossover time τc:

〈[�φ(t )]2〉 = 2
D0

R2
t

[
1 − exp

(− τd
t

)
1 − exp

(− τc
t

) ]1/2

. (16)

If the angle was not bound, this equation would describe
correctly the MSAD (data not shown). However, we have
used the bounds convention, i.e., φ ∈ [0, π ]. With this condi-
tion, the last transition time occurs when the MSAD reaches
a plateau, changing the linear dependence with time to a
constant value. This dynamical feature can be included in
Eq. (16) by considering a term that recovers the geometrical
time regime as follows:

〈[�φ(t )]2〉 = 2
D0

R2
t

[
1 − exp

(− τd
t

)
1 − exp

(− τc
t

) ]1/2

×
[

1 − exp

(
−τ 2

G

t2

)]1/2

. (17)

To test the accuracy of this equation, the crossover times
reported in Fig. 5 were used in such an expression, and
the resulting MSAD was compared with its corresponding
counterpart. In all cases, the agreement is rather good. For

033246-8



SINGLE-FILE DYNAMICS OF COLLOIDS IN CIRCULAR … PHYSICAL REVIEW RESEARCH 3, 033246 (2021)

illustrative purposes, in Fig. 7, we only show a comparison be-
tween the results reported in Figs. 3(a) and 3(b) and Eq. (17).

VIII. CONCLUDING REMARKS

In this paper, we have studied the dynamical behavior of
paramagnetic particles confined to move along a circle. Al-
though this system was already studied in Refs. [9,10], we
demonstrated here features in the particle dynamics when the
circle geometry is considered; those features are also corrob-
orated with experiments performed at very long times that
clearly reached the predicted geometrical time regime. This
paper highlights that small and closed systems exhibit a richer
dynamical behavior than the standard scenario of SFD along
a straight and infinite line, where the MSD behaves, at long
times, as ∼√

t .
Furthermore, we provided evidence on a firm ground of

the existence of four temporal regimes of the stochastic dy-
namics of a tagged particle confined along a circle. Although
these regimes have been previously studied only numerically
[4], here, we showed a complete picture of the phenomenon,
which includes experiments, simulations, and a predictive
analytical theory. These regimes are described in terms of
the MSAD, where good consistency was found between the
experimental measurement and the corresponding theoretical
prediction. The first and second temporal regimes correspond
to the usual transition from free-particle diffusion to the SF
behavior, respectively, since the particles cannot pass through
each other. However, after the SF regime, a new transition
to a diffusion type regime emerged with a reduced diffusion
coefficient given by D0/N . This phenomenon, not observed
in previous experiments [9,10], is an additional feature of the
supported manifold S1 since the compactness of the circle im-
plies the finite size of the system, as well as a collective state
where all particles behave as one ring-shaped particle with a
rotational Brownian motion. After this stage, the geometrical
regime appeared as a consequence of the finite length of the
circle.

Our results also allowed us to estimate expressions for the
three transition times between the temporal regimes, and an
expression for the SF mobility factor F . The first transition
time turned out to be inversely proportional to the square
value of the density, whereas the second transition time is
proportional to the radius square of the circle. However, both
transition times are inversely proportional to the value of the
interaction potential divided by the thermal energy βu(rmax),
where rmax corresponds to the position of the first peak of the
angular distribution function. In addition to that, we found
that the third transition time is independent of the interaction
potential and temperature and becomes proportional to the
square of the number of particles in the colloidal system.
Regarding the analytical structure of the transition times and
the behavior of the MSAD, we deduced the SF mobility F .
In this case, we found that F is inversely proportional to the
product between the particle density and the square root of
βu(rmax). In contrast to other expressions for the mobility
coefficient (for instance, the one in Ref. [8]), our expression
has a direct connection with the interaction potential, which
can also be used to probe directly the interaction between the

particles. We also provided an accurate analytical expression
that can easily reproduce either experiments or simulations in
terms of the transition times.

Our approach can be extended in various directions. For
instance, the EM algorithm implemented on the circle can
be used for other types of interaction potentials. In addition,
the full formulation of the EM algorithm on curved mani-
folds can be used to explore the behavior of the dynamics
of a tracer particle in different geometries, where curvature-
induced inhomogeneities are relevant. Recently, there has
been an important interest in the study of active particle
systems since they appear in a broad range of contexts; the
SFD of active colloids in confined geometries [26–28] could
be modeled with our approach including the active internal
degree of freedom in our EM algorithm on curved mani-
folds. Furthermore, by trapping paramagnetic particles along
a closed curve using optical tweezers, controlling the temper-
ature using a second laser beam [29], and allowing changes
from the external magnetic field as a thermodynamic variable,
it might be possible to build and design colloidal heat engines
with a few bodies [30], where our approach could be essential.
Finally, we could extend our findings by introducing the num-
ber density ρ = N/2πR, allowing us to rewrite the transition
times and the SF mobility in a more general description.
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APPENDIX: FIRST TRANSITION TIME τd FROM
PERTURBATION ANALYSIS

Here, we provide a perturbation analysis to determine an
expression for the first transition time τd . The key observation
is that, for a large value of the amplitude � and a large value
of the number of particles N , the value for the first peak of
the angular distribution function is approximately φmax ≈ 2π

N .
This feature allows us to introduce the hypothesis that, in this
situation, the particles in the system are localized around the
mechanical equilibrium positions with angles φ

eq
i = 2π

N (i −
1) for i = 1, . . . , N . In addition, it is not difficult to show that
the deterministic term gi := βD0Fi · Tiτ of the EM algorithm
[Eq. (2)] is given by

gi(φi j ) = σ
( τ

τ�

) N∑
j �=i

cos
(φi j

2

)
sin

(φi j

2

)
∣∣sin

(φi j

2

)∣∣5 , (A1)
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where τ� = 16R4/(3σ 2D0�). It is clear that the function gi be-
comes zero at equilibrium positions since the forces between
all the particles cancel out. Now we carry out the pertur-
bation φi j = φ

eq
i j + ηi j , where φ

eq
i j = 2π

N (i − j), and ηi j is a
fluctuation around the equilibrium configuration. The expan-
sion of gi in the first order of ηi j is

gi(φi j ) ≈ −
(

τ

2R∗τ�

) N∑
j �=i

Pi jηi j, (A2)

where the constants Pi j are given by Pi j = [1 +
3 cos2(φeq

i j /2)]/| sin(φeq
i j /2)|5. The fluctuation can be decom-

posed as ηi j = ηi − η j , with ηi = δr(τ ) · Ti(φ
eq
i ) satisfying

the fluctuation-dissipation theorem 〈ηiη j〉 = 2δi jD0τ .
Next, we compute the first term of Eq. (8), equivalent to

〈g2
i 〉, using 〈ηi jηik〉 = 2D0τ (1 + δ jk ) for i �= j and i �= k. Then

〈
g2

i

〉 = 2D0τ

(
τ

2R∗τ�

)2
[(∑

j �=i

Pi j

)2

+
∑
j �=i

P2
i j

]
. (A3)

For simplicity, let us take i = 1 for the tagged particle, and
j = 2 and j = N for the first neighboring particles. Thus, for

large N , one has (
∑

j Pi j )2 + ∑
j P2

i j � 96N10/π10. Using
this approximation, the MSAD turns out to be

〈[�si(τ )]2〉 ≈ 2D0τ

[
1 + 24

(
τN5

R∗τ�π5

)2
]
. (A4)

Now we choose for the interaction amplitude the value
� = βu(rmax)(r∗

max)3, where approximately r∗
max = 2πR∗/N

according to the observation performed at the beginning of
the Appendix. The first transition time occurs when the second
term inside the square parenthesis in Eq. (A4) is ∼1. There-
fore, one finds

D0τd

σ 2
= 2π2

3
√

24

(
R∗

N

)2

[βu(rmax)]−1. (A5)

The contribution of the next neighbors does not change the
value Cth = 2π2/(3

√
24) ≈ 1.3 significantly. Notwithstand-

ing, the factor Cth obtained with the perturbation theory
differs slightly from the simulation result, shown in Fig. 5,
the transition time has the correct structural dependence
( R∗

N )2[βu(rmax)]−1.
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