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Non-equilibrium quadratic measurement-feedback squeezing in a micromechanical resonator
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Measurement and feedback control of thermomechanical motion in a micromechanical resonator has been
actively studied to achieve extremely high sensing performance by controlling the stochastic thermal noise.
Although linear measurement-feedback control in the phase space results in the feedback cooling, extending
them to the nonlinear regime, i.e., utilizing quadratic of higher-order dynamic variables in both measurement and
control, can further functionalize its operations. Here, we demonstrate fully quadratic measurement-feedback
protocol in a micromechanical resonator by driving the second-order nonlinearity and directly measuring
quadratic variables referred as Schwinger angular momentum. Our measurement-feedback protocol enables us
to achieve a noise reduction at the level of −5.1 ± 0.2 dB over the –3-dB limitation in the continuous parametric
driving. We unveil that this strong noise reduction originates in the effective cooling effect by investigating en-
tropy production rates. These results would be further extended to investigating general performance of nonlinear
information thermodynamic machines, in which the higher-order moments (e.g., variance and correlations) can
be controlled with avoiding the nonlinear instability, thanks to the existence of information flows.
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I. INTRODUCTION

Measurement-feedback control of fluctuation in meso-
scopic systems has attracted large interest to investigate
stochastic dynamics under measurement and feedback. The
presences of a measurement-feedback controller modifies the
balance of entropy flows (i.e., the second law in the total sys-
tem), and allows us to extract finite work to effectively heat up
or cool down the system [1]. Such stochastic thermodynamics
under the measurement and feedback have been investigated
in various types of mesoscopic systems with artificial systems
as well as natural biological ones [2]. In particular, microme-
chanical systems, such as an optically trapped nanoparticles
[3–5] and micro/nanomechanical resonators [6–9], have been
widely used to investigate the stochastic thermodynamics be-
cause fluctuation of their displacement (or velocity) can be
precisely detected and controlled to implement measurement-
feedback protocols.

So far, the linear measurement-feedback protocols, which
consists of measurement and feedback of linear variables,
have been demonstrated in micromechanical resonators to
reduce the effective temperature in random motion [10–12].
The cooling mechanism in their linear measurement-feedback
control has been unveiled in both theory [13,14] and ex-
periment [15] in terms of entropy production. This linear
feedback cooling has been embedded in the noise squeez-
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ing schemes [16,17], which resulted in the stronger noise
reduction than the no-cooling case. As a natural but im-
portant extension to general stochastic dynamics, bringing
nonlinear variables to the measurement and feedback can
further investigate and functionalize its thermodynamic costs
in information flows generalized by the map from the lin-
ear phase space to the nonlinear variable space. Although
micro/nanomechanical resonators have been individually
used to investigate both nonlinear control [18–20] and non-
linear measurement [21–23], combining them to develop a
nonlinear measurement-feedback protocol has not been re-
ported yet.

In this paper, we propose and demonstrate continuous
measurement-feedback control of a micromechanical res-
onator based on a quadratic variable, which is referred as
“Schwinger angular momentum” because it is the quadratic
form defined in the angular-momentum representation of
bosons [24]. Because the Schwinger angular momentum holds
quadratic and symmetric properties with SU(1,1) Lie algebra,
we develop a continuous measurement-feedback protocol by
combining parametric nonlinearity and measurement nonlin-
earity. The measurement nonlinearity enables us to directly
readout the component of Schwinger angular momentum via
nonlinear optomechanical transduction. The parametric non-
linearity enables us to drive the Schwinger angular momentum
and squeeze the noise deviation (i.e., noise compression along
a quadrature and noise amplification along an orthogonal
one). In contrast to the randomly pulsed parametric driving
without measurement, our continuous measurement-feedback
protocol enables us to achieve a non-equilibrium steady state
(NESS) with strong noise squeezing at the level of −5.1 ±
0.2 dB. This is because the quadratic measurement-feedback
protocol involves a net cooling effect so that it avoids the
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FIG. 1. (a) Conceptual illustration of the phase space spanned by
q and p, and the Schwinger angular-momentum space spanned by
Kx , Ky, and Kz. The color map shows correspondence between the
phase space and the Schwinger angular-momentum space. The blue
vectors show the force field of the parametric squeezing with Heff .
[(b),(c)] Schematic of probability distribution of thermal equilibrium
(green) and steady state with continuous squeezing (red) in the phase
space and the Schwinger angular-momentum space, respectively.

divergence in parametric squeezing, which limits the level at
–3 dB. This net cooling effect is unveiled by investigating
the entropy production rates in our measurement-feedback
protocols with a coarse-grained model.

II. PROTOCOL

The basic idea is to map the dynamic variables represented
by (q, p) in the rotating-frame phase space into the Schwinger
angular-momentum space spanned by the following three
components:

Kx = qp

2
, Ky = q2 − p2

4
, Kz = q2 + p2

4
, (1)

where these components satisfy K2
x + K2

y − K2
z = 0 (i.e., the

dynamics is constrained on a hyperboloid) [see Fig. 1(a)]. In
addition to the geometrical property, they also satisfy a Lie
algebra in SU(1,1) group such that

{Kx, Ky} = −Kz, {Ky, Kz} = Kx, {Kz, Kx} = Ky, (2)

where {A, B} denotes the Poisson bracket defined by {A, B} ≡
∂A/∂q∂B/∂ p − ∂A/∂ p∂B/∂q. Since the relation {Kx, Ky} =
−Kz only contains a negative sign compared with the
other two, the effective Hamiltonian, Heff = −G0Ky, leads a
pseudorotation around the Ky axis in the Schwinger angular-
momentum space [see arrows in Fig. 1(a)]. Importantly, this
pseudorotation Hamiltonian is obtained by driving the twice

of mechanical frequency via parametric nonlinearity (see
Appendix A). Thus, the parametric driving induces such a
pseudorotation dynamics given by

K̇x = G0Kz, K̇z = G0Kx, K̇y = 0. (3)

Apparently, the general solutions of Kx and Kz are given by
hyperbolic sine and cosine functions of time, which describes
the dynamics of the parametric squeezing under the continu-
ous driving [18].

The above formulation is valid to describe the stochastic
dynamics of mechanical resonators with a probability den-
sity function P (q, p) in its phase space and P (Kx, Ky, Kz ) in
the Schwinger angular-momentum space. In the phase-space
description, the parametric squeezing with Heff amplifies the
deviation along a diagonal quadrature, q+ ≡ (q + p)/

√
2, and

reduces the deviation along its orthogonal portion, q− ≡ (q −
p)/

√
2 direction [see Fig. 1(b)]. On the other hand, in the

Schwinger angular-momentum description, the pseudorota-
tion with Heff around the Ky axis leads to a biased probability
distribution along the Kz + Kx direction [see Fig. 1(c)]. Im-
portantly, this pseudorotation can be decomposed into noise
compression along Kz − Kx and noise expansion along Kz +
Kx. By taking into account that

〈Kz ± Kx〉 = σ (q±)2/2, (4)

with the standard deviation of q±, σ (q±), compression (ex-
pansion) along the Kz − Kx (Kz + Kx) is regarded as the noise
reduction (amplification) in the phase space. The divergence,
which intrinsically limits the noise reduction level at –3 dB
[18], appears as an infinite large noise amplification (i.e., noise
expansion along Kz + Kx direction in the pseudorotation)
when the drive strength G0 is equivalent to the mechanical
damping factor �.

Because the divergent contribution in parametric drive can
be distinguished with the sign of Kx, to avoid the divergence,
our measurement-feedback protocol is derived as a switching
operation of the parametric drive with respect to this sign.
Switching on the parametric drive (i.e., G0 takes a nonzero
value) only when Kx < 0 leads a suppression of the proba-
bility density function in the Schwinger angular-momentum
space. On the other hand, switching it off (G0 = 0) when
Kx > 0 can avoid the divergence in parametric driving. To
read out the sign of Kx to construct a feedback loop, we
can utilize nonlinear optomechanical transduction in which
higher harmonic signals are generated thanks to a dispersive
modulation of optical phase via mechanical motion [21–23].
In particular, the sine and cosine parts in the second-order
harmonics are regarded as Kx and Ky, respectively. To achieve
steady-state squeezing, our measurement-feedback protocol
is continuously repeated with Kx directly measured via non-
linear optomechanical transduction and the parametric drive
switched on or off with respect to the sign of measured Kx

[see Fig. 2(a)].
Although the parametric squeezing under the continuous

driving heats up the system (see Appendix B), we can expect
that avoiding the heating part of pseudorotation [i.e., Kx > 0
in Fig. 1(c)] in Schwinger angular-momentum space with
our measurement-feedback protocol effectively induces a net
cooling effect. To unveil this net cooling effect hidden in
our protocol, we take into account entropy production in our
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FIG. 2. (a) Schematic of the measurement-feedback protocol in
the Schwinger angular-momentum space. Initially, the sign of Kx is
measured via nonlinear optomechanical transduction (i). Then, only
if Kx < 0, the parametric drive is switched on (ii). By repeating these
two processes, we achieve a non-equilibrium steady state (NESS)
that is partially distributed around only Kx > 0 (iii). (b) Conceptual
illustration of net cooling via measurement-feedback protocol. In ad-
dition to the entropy production in the thermal bath with its rate Ṡbath,
there exists entropy production called “entropy pumping” with the
rate Ṡpump due to the existence of the feedback controller. The vectors
describe the actual directions of both fluxes when the measurement-
feedback protocol succeeds, where Ṡbath � 0 and Ṡpump � 0 in our
definition.

setup, which consists of a system (a mechanical resonator),
a heat bath, and a feedback controller [see Fig. 2(b)] by a
coarse-graining methods, where the degree of feedback mem-
ory is coarse-grained [13,14,25]. The total entropy production
rate consists of two contributions: the entropy production in
the thermal bath Ṡbath, and the entropy production thanks to
the existence of the feedback controller Ṡpump. The former
corresponds to the heat flux between the system and the heat
bath, and the latter corresponds to the entropy flow pumped
from the feedback controller. They can be expressed in terms
of the Schwinger angular momentum as follows:

〈Ṡbath〉 ≈ 2�2�

kBT

(
〈Kz〉 − kBT

2�2

)
, (5)

〈Ṡpump〉 ≈
√

1

2π

G̃0�

σM

〈
Kz exp

(
− K2

x

2σ 2
M

)〉
, (6)

where 〈·〉 denotes the stochastic average, and G̃0 = G0/�

is the effective driving strength as a dimensionless quantity.
The detailed derivation of Eqs. (5) and (6) are shown in
both Appendices C and D, where the path-integral formal-
ism [13,25,26] and probability-current formalism [14,27,28]

are utilized, respectively. The entropy production in the ther-
mal bath is given by the shift of the vertical component
of Schwinger angular momentum Kz from its value in the
equilibrium because Kz directly corresponds to the oscillation
energy (phonon number) in the resonator. On the other hand,
the entropy pumping rate is given by a function of Kx, Kz,
and the measurement noise characterized by its deviation of
σM . Because of Kz � 0, 〈Ṡpump〉 � 0 always holds, which
indicates that the entropy pumping operates to pull the entropy
from the system. These three contributions satisfy the second-
law-like inequality

〈Ṡbath〉 + 〈Ṡpump〉 � 0. (7)

This inequality implies that 〈Ṡbath〉 may take a negative
value in contrast to the case of no-feedback operation where
〈Ṡbath〉 � 0 holds. Note that 〈Ṡbath〉 � 0 holds when the heat
flux flows out from the system to the heat bath, and 〈Ṡpump〉 �
0 holds when the feedback controller pumps out the entropy
from the system. Thus, this inequality implies that the system
may operate as a cooler by pumping the heat flux from the heat
bath to the feedback controller. Although it is hard to directly
define the effective temperature of system due to its non-
Gaussian distribution in the NESS, we can define the heating
regime with 〈Ṡbath〉 > 0, where the heat flux flows out from
the system to the bath, and the cooling regime with 〈Ṡbath〉 <

0, where the heat flux flows in the system from the bath.

III. EXPERIMENT

A. Setup

Our measurement-feedback protocol was implemented
on a measurement-feedback loop with a micromechanical
resonator [see Fig. 3(a)]. A doubly-clamped silicon ni-
tride mechanical resonator (150-μm-long, 5-μm-wide, and
525-nm-thick) was fabricated via thermal chemical vapor de-
position, and placed in a vacuum environment (∼10−4 Pa).
The resonator showed a high quality factor of 3.0 × 104

in its fundamental flexural mode at the frequency of � =
2π × 510 kHz at room temperature. Linear quadratures (q
and p) and a component of Schwinger angular momentum
(KM

x ) in its mechanical motion were extracted from a laser
Doppler interferometer (LDI). Here, we denote the directly
measured Schwinger angular-momentum component with KM

x
to distinguish it from the one, KP

x = qp/2, calculated via
postprocessing with the measured q and p. The output of
LDI was connected to lock-in amplifiers with a reference
frequency of � for the linear quadratures and that of 2�

for the Schwinger angular-momentum components. Note that
we induced additional white noise via an piezoelectric sheet
attached on the resonator substrate to improve the signal-to-
noise ratio for KM

x (the effective temperature was estimated to
be Teff ≈ 105 K). By once connecting the output from LDI to
a spectrum analyzer, spectrum at 2�, which reflects the signal
of KM

x , was observed as well as that at � [see Fig. 3(b)]. The
linewidth at 2� becomes twice of that at � because KM

x is
the quadratic variable in q and p. The measured component
KM

x was used to switch on (off) the parametric pump with an
oscillation frequency of 2� when the component KM

x is neg-
ative (positive) with a radio-frequency switch. To pump the
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FIG. 3. (a) Schematic of experimental setup with a high-Q sili-
con nitride doubly-clamped beam. A radio-frequency (rf) oscillator
with twice of the mechanical frequency was connected to an rf switch
for the parametric driving. This switching operation was determined
with respect to the measurement outcome of KM

x from a laser Doppler
interferometer (LDI). The mechanical excitation was done by the
parametric drive signal from the rf oscillator and white noise signal
via a piezoelectric signals. Here, note that this interferometer also
yields temporal data of the phase quadratures q and p recorded on
the oscilloscope. (b) Frequency spectra at � (measurement of phase
quadratures) and 2� (measurement of Schwinger angular momenta).
(c) Typical temporal sequence of our measurement-feedback proto-
col. The parametric drive signal with 2� frequency (red curve) was
sent to the piezoelectric sheet only if the measurement outcome (the
signal of KM

x ) took negative values. The inset shows the enlarged data
which explicitly indicate the period of 1/(2�).

mechanical resonator along the Ky direction, the phase of the
parametric pump was 90-degrees shifted from that for the ref-
erence signal to the lock-in amplifier for measuring KM

x . The
parametric pump was feedback to the mechanical resonator
via the piezoelectric sheet. A typical temporal response in this
measurement-feedback loop is shown in Fig. 3(c) where the
parametric pump (red curve) with 2� was turned on when
KM

x (green plot) was negative. Note that the time constant of
the lock-in amplifier was fixed at τL = 100 μsec to achieve
all information on mechanical motion with the mechanical
lifetime τM = 59 msec.

B. Noise reduction level and NESS in Schwinger
angular-momentum space

An initial equilibrium probability distribution was ob-
served without any feedback drive as an equally-distributed
Gaussian distribution. To verify how our protocol affects
the probability distribution, we demonstrated both random
pumping (i.e., the parametric drive was randomly switched
on or off) and our measurement-feedback protocol, and
evaluated noise reduction and amplification levels in their
non-equilibrium steady states. Here, the noise reduction level

FIG. 4. [(a),(c)] Probability density functions in the phase space
with the random protocol and our measurement-feedback proto-
col, respectively. [(b),(d)] The maximum and minimum standard
deviations of these distributions are evaluated with respect to the
parametric drive amplitudes The vertical error-bar corresponds to the
standard deviation in ten trials.

ξred is defined as minθσ (qθ,NESS)/σ (qINIT), where σ (·) is
the standard deviation, qINIT is the quadrature in the ini-
tial equilibrium, and qθ = q cos θ + p sin θ is the quadrature
with an arbitrary angle θ . The noise amplification level ξamp

is defined as the deviation along the orthogonal part, i.e.,
minθσ (q̄θ,NESS)/σ (qINIT), where q̄θ = −q sin θ + p cos θ . In
the case of the random pumping [see Fig. 4(a)], a squeezed
Gaussian distribution with ξred � ξamp was achieved in the
same way as in standard noise squeezing. However, the
noise reduction level was limited to about –3 dB around
the drive voltage of 150 mV [see Fig. 4(b)]. Drive voltages
larger than 150 mV induced parametric instability where
both ξred and ξamp increased. On the other hand, once our
measurement-feedback protocol was demonstrated, a non-
equilibrium steady state with ξred � ξamp was observed with
a non-Gaussian probability distribution [see Fig. 4(c)]. This
non-Gaussianity directly reflects the non-Gaussian properties
of our quadratic variables [29]. Moreover, the noise reduction
level finally reached −5.1 ± 0.2 dB over the –3-dB limit,
whereas the noise amplification level was suppressed at 1.7 ±
0.2 dB [see Fig. 4(d)]. Importantly, our feedback protocol
has an intrinsic lower bound about the noise reduction level.
Although it is hard to analytically derive the bound due to the
nonlinearity in its dynamics, this bound is confirmed in the
numerical calculation shown in Appendix E.

Because we attempt to perform fully quadratic
measurement-feedback protocol on the Schwinger angular-
momentum space, the NESS in that space is totally different
between our measurement-feedback protocol and the random
protocol. In contrast to KM

x , we use the data set of q and p
to evaluate Schwinger angular momentum KP

i (i = x, y, z)
via the postprocessing to reconstruct the probability density
function in the Schwinger angular-momentum space. Note
that KP

i has a more accurate value than KM
i because the

signal-to-noise ratio in � is better than that in 2�, although
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FIG. 5. Probability density functions with the random protocol with the drive amplitudes of (a) 0 mV, (b) 150 mV, and (c) 400 mV, and
with the feedback protocol in the drive amplitude of (d) 0 mV, (e) 150 mV, and (f) 400 mV. Note that the axes scales are totally different
between the two protocols.

KP
i was only available in the postprocessing without

any fast feedback processor. Thus, we used KM
x in the

measurement-feedback control and KP
x in the analysis to,

for instance, calculate the stochastic average of Kx. Figure 5
shows marginal probability density functions in the space
spanned by KP

x and KP
z for both the random protocol and

our measurement-feedback protocol. Apparently, the initial
equilibrium state was isotropically distributed [see Figs. 5(a)
and 5(d)]. On the other hand, the non-equilibrium steady
states in the random protocol [see Figs. 5(b) and 5(c)] and
our measurement-feedback protocol [see Figs. 5(e) and 5(f)]
show biased distributions along Kx > 0 directions due to
the pseudorotation in parametric squeezing. We emphasize
that the axes scales are totally different between the random
protocol and our measurement-feedback protocol. Although
the distribution is broadened in the random protocol because
the parametric drive is blindly injected, the distribution in
our protocol in the positive Kx side is almost completely kept
thanks to the switch-off operation.

C. Net cooling effect and entropy production rates

To unveil the net cooling effect hidden in our measurement-
feedback experiment, we evaluate the entropy production rate
from the heat bath, Ṡbath, and the entropy pumping rate Ṡpump

from the theoretical formulation in Eqs. (5) and (6). Note that
the stochastic averages in Eqs. (5) and (6) are determined by
using KP

i . Ṡbath is experimentally determined by

〈Ṡbath〉 = �

〈
KP

z

〉 − 〈
KP

z

〉
0〈

KP
z

〉
0

, (8)

where 〈·〉0 denotes the stochastic average in the initial equilib-
rium state. In the same manner, we can obtain

〈Ṡpump〉 =
√

1

2π

�G̃0

σM

〈
KP

z exp

[
−

(
KP

x

)2

2σ 2
M

]〉
. (9)

To estimate the entropy production rates, the effective drive
strength G̃0 and measurement noise deviation σM are required.
The G̃0 was estimated from the noise reduction level in the
random protocol shown in Fig. 4(b) (yellow circles). From
the divergence condition G̃0 = 2 in the random protocol,
at which the noise reduction level changes from decreas-
ing to increasing, we can determine G̃0/Vdrive = 10.4 V−1.
The σM was estimated to be 0.52 ± 0.07 from both KM

x and
KP

x by assuming the Gaussian noise in measurement (see
Appendix F).

The entropy production rates normalized by the mechan-
ical damping rate � are shown in Fig. 6(a). With increasing
driving strength G̃0, the entropy pumping rate Ṡpump naturally
increases with positive values. On the other hand, the entropy
production rate in the thermal bath Ṡbath decreases with neg-
ative values. This indicates that our measurement-feedback
protocol successfully induces a net cooling effects where the
system pulls the heat from the thermal bath to the feedback
controller [see Fig. 6(b)]. Thus, this net cooling effect avoids
heating due to the parametric driving, and results in stronger
squeezing in its NESS because it allows us to inject stronger
parametric driving over the limitation due to the divergence.
Moreover, we can confirm the second-law-like inequality
〈Ṡbath〉 + 〈Ṡpump〉 � 0 from the experimental results. The total
entropy production rate 〈
̇〉 ≡ 〈Ṡbath〉 + 〈Ṡpump〉 apparently
increases with increasing G̃0. This is because the smaller G̃0

purely induces the parametric squeezing with the net cooling
[see Fig. 6(b)], while the larger G̃0 intrinsically induces an
additional heating in its pseudorotation despite successful op-
eration of the protocol [see Fig. 6(c)].

It is intuitive that entropy production rates between our
measurement-feedback protocol and the random protocol can
be continuously related with respect to the measurement noise
deviation σM (i.e., σM → ∞ corresponds to the random pro-
tocol). Thus, we numerically evaluate the entropy production
rates 〈Ṡbath〉 and 〈Ṡpump〉 with different σM = {10−1, 100, 101}
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FIG. 6. (a) Entropy production rate (EPR) normalized by the
mechanical damping rate � in our measurement-feedback protocol.
The red diamonds show the entropy production rates in the thermal
bath 〈Ṡbath〉/� and the blue dots show that in the feedback controller
〈Ṡpump〉/� (i.e., entropy pumping rate). The blue shaded area corre-
sponds to the cooling regime where the system operates as a cooler
(conceptual image is shown in the inset). The error bars show the
standard deviation in ten trials. [(b),(c)] Schematic of pseudorotation
with (b) smaller G0 and (c) larger G0 in the Schwinger angular-
momentum space. Numerically evaluated entropy production rates
of (d) 〈Ṡbath〉/� and (e) 〈Ṡpump〉/�. The dots, diamonds, and squares
correspond to the noise deviation of σM = 10−1, 100, and 101, respec-
tively. The error bars show the standard deviation within fifty trials.
The solid and dotted lines in (d) correspond to the entropy production
rates via the continuous and random driving, respectively. The blue
shaded area in (d) corresponds to the cooling regime.

[see Figs. 6(c) and 6(d)] and compare them with the analytical
expression of 〈Ṡbath〉 in continuous and random driving (see
Appendix G). As the measurement noise deviation increases,
the slope of increment of 〈Ṡbath〉 become steep while the
slope of increment of 〈Ṡpump〉 becomes gentle. This is because
the measurement error induces the heating from parametric
driving with the pseudorotation in Kx � 0, which decreases
the influence of measurement and feedback (it becomes
close to the random protocol). We emphasize again that
our measurement-feedback scheme yields a noise-squeezed
NESS in the cooling regime, whereas the conventional para-
metric scheme (continuous or random) yields it in the heating
regime.

IV. DISCUSSION

Our proof-of-principle experiment for the continuous mea-
surement feedback control with Schwinger angular momen-
tum was performed with additional white noise to improve
the signal-to-noise ratio in the quadratic measurement in the

Doppler interferometer. The quadratic measurement can be
extended to pure thermal fluctuation in mechanical resonators
with Doppler interferometry by increasing the mechanical Q
factor and decreasing effective mass in the mechanical modes
[23]. Although the mechanical Q factor simply contributes
to the signal-to-noise ratio as

√
Q dependence, the inverse

of effective mass linearly contributes to it. Thus, mechanical
resonators with small effective mass (e.g., graphene drum
resonators [30,31]) are suitable for performing our protocol
with pure thermal motion with the Doppler interferometry.
As an alternative approach, cavity optomechanical coupling
in the unresolved sideband regime is also available for mea-
suring higher-order harmonics in mechanical modes, and has
been demonstrated for observing them in pure thermal motion
[21,22]. Furthermore, extension to more higher-order vari-
ables and intermodal variables would open the way to more
functionally control in the nonlinear measurement-feedback
frameworks.

It is important to emphasize that experimental verification
of the second-law-like inequality with the entropy pumping
rate has been demonstrated only in linear measurement-
feedback schemes [15]. In contrast, we investigated entropy
production under fully quadratic measurement-feedback con-
trol of stochastic dynamics with a certain symmetry (i.e.,
certain geometry of variable space). Such a nonlinear non-
equilibrium thermodynamic operation can be extended to the
multimodal (e.g., two-mode mixing [32,33] and two-mode
squeezing [34,35]) and the higher order (e.g., Duffing non-
linearity [36]) nonlinear operations by combining with an
appropriate nonlinear measurement. Utilizing such rich in-
trinsic and external (measurement) nonlinearity in mechanical
resonators might further promote the experimental verifica-
tion of various types of thermodynamic limitations [37,38] in
nonlinear information thermodynamic machines.

V. CONCLUSION

In conclusion, we have demonstrated fully quadratic
measurement-feedback control based on Schwinger angular
momentum using a high-Q silicon nitride mechanical res-
onator by Doppler interferometry. A strong noise reduction
level −5.1 ± 0.2 dB was achieved by suppressing the heating
effect in parametric drive by well manipulating the prob-
ability distribution in Schwinger angular-momentum space.
Furthermore, we have unveiled that our quadratic protocol
enables us to perform the noise reduction in the cooling
regime, where the parametric instability is completely re-
moved, by investigating the entropy production rates. This
nonlinear measurement-feedback control framework can be
extended to investigating the general performance of various
types of nonlinear information thermodynamic machine in the
higher-order and multimodal nonlinear regime.
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APPENDIX A: DYNAMICS IN THE ROTATING FRAME
WITH PARAMETRIC SQUEEZING

The dynamics of displacement X in a mechanical resonator
with parametric force Fp is given by

Ẍ + �Ẋ + (�2 + Fp)X = Fth, (A1)

where � is the damping factor, � is the mechanical an-
gular frequency, and the Langevin force Fth is given by
〈Fth(t )Fth(t ′)〉 = 2kBT �δ(t − t ′). To induce the parametric
squeezing, the parametric force has a double period of me-
chanical oscillation, i.e., Fp = −2G0� cos 2�t with the drive
strength of G0. The dynamics in rotating phase space spanned
by linear quadratures q and p (X = q cos �t + p sin �t) is
approximated by z̈ � �ż (z = q, p) and �/� � 1, that is the
linear quadrature in a high-Q mode more slowly varies than
the mechanical frequency as follows:

− �(2q̇ + �q) sin �t + �(2 ṗ + �p) cos �t

− G0�[q(cos �t + cos 3�t ) + p(sin 3�t − sin �t )] = Fth.

(A2)

To take into account the rotating term with �, the
Langevin force is split as Fth = − fq sin �t − fp cos �t where
〈 fz(t ) fz(t ′)〉 = 2kBT �δ(t − t ′) is satisfied. This leads to the
Langevin equations for each quadrature with the parametric
squeezing as follows:

q̇ = −�

2
q + G0

2
p +

√
β̃�ξq, (A3)

ṗ = −�

2
p + G0

2
q +

√
β̃�ξp, (A4)

where β̃ ≡ kBT/2�2. Note that the effective rotating-framed
Hamiltonian is given by Heff = G0(p2 − q2)/4.

APPENDIX B: HEATING EFFECT IN PARAMETRIC
SQUEEZING

Heating in continuous parametric squeezing can be simply
seen in the change in the Shannon entropy between the initial
and final equilibrium states, which is given by

HS = 1

2
ln

|
 f |
|
i| , (B1)

where |
i| and |
 f | are determinants of covariant matrices in
the initial equilibrium state and final squeezed state, respec-
tively. From Langevin equations for continuous parametric
squeezing Eqs. (A3) and (A4), the determinant of the covari-
ant matrix in the final squeezed state is given by

|
 f | = 16β̃�(
�2 − G2

0

)2 . (B2)

This leads to

HS = ln
1

1 − G2
0/�

2
. (B3)

Since the Shannon entropy monotonically increases in the
stable squeezing regime G0 < �, the system (i.e., mechanical
resonator) is totally heated up due to the parametric squeezing.

APPENDIX C: ENTROPY PRODUCTION IN OUR
PROTOCOL BY MEANS OF PATH INTEGRAL

Total entropy production 
, which is always non-negative,
is defined by the Kullback-Leibler divergence between the
forward probability distribution and the inverse probability
distribution as


 = ln
Pfwd

Pinv
� 0. (C1)

In the case of the continuous measurement-feedback control,
entropy production has been investigated in a coarse-grained
dynamics, where the memory degree of freedom in measure-
ment is coarse-grained in its equation of motion [13,14,25].
The inverse probability in the coarse-grained dynamics was
defined as a probability with “conjugate” dynamics, in which
the time-reversal parity of feedback cooling forces is defined
to be positive [13,25]. From the path-integral formalism, the
entropy production in the non-equilibrium steady state (i.e.,
change in the Shannon entropy is zero) is expressed by


 =
∫

dsṠbath(s) +
∫

dsṠpump(s), (C2)

where Ṡbath and Ṡpump are the entropy production rates in
thermal bath and controller. The latter has been referred to
as “entropy pumping” [13,25], which gives second-law like
inequality including the influence of information extraction as

Ṡbath � −Ṡpump. (C3)

To derive the actual expression of entropy production in our
quadratic measurement feedback, we start from the Langevin
equation in the laboratory frame with the displacement X ,
the momentum P, and the state of feedback memory M as
follows:

Ẋ = P, (C4)

Ṗ + A(X, P, M, t ) = Fth. (C5)

The term of the equation of motion A(X, P, t ) is given by

A(X, P, M, t ) = �P + �2X − 2G0� f (M ) cos 2�tX, (C6)

where � is the damping rate, and � is the angular frequency
of the mechanical resonator. Note that we set the effective
mass to be unity in the following discussion for simplicity
(replacing kB by kB/meff provides us the exact expressions
with the effective mass of mechanical resonator meff ). The
Langevin force Fth satisfies 〈Fth(t ′)Fth(t )〉 = 2kBT �δ(t − t ′)
with the Boltzmann constant kB and the temperature of the
environment T . The protocol of measurement and feedback
is expressed by the feedback function f (M ) with the memory
value M. In our protocol, the feedback function is given by
a Heaviside function θ (·) as f (M ) = θ (M ). Analytical diffi-
culty in the discontinuity of the Heaviside function is avoided
by taking into account the finite measurement noise, which
is assumed as Gaussian white noise. Thus, the conditional
probability without feedback delay,

P (M|M(X, P)) = 1√
2πσ 2

M

exp

[
− (M(X, P) − M )2

2σ 2
M

]

(C7)
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is suitable for modeling our measurement-feedback loop,
where M(X, P) is the target variable in the measurement,
and σM is the standard deviation of the Gaussian noise. By
multiplying Eq. (C7) with Eq. (C5) and integrating both sides
with respect to M, a coarse-grained dynamics is represented
as follows:

Ṗ + A(X, P, t ) =Fth, (C8)

A(X, P, t )

= �P + �2X − G0�erfc

(M(X, P)√
2σM

)
cos 2�tX. (C9)

where erfc(·) is a complementary error function reflecting the
switching operation with finite measurement noise.

From the Fokker-Planck equation,

∂tP =LP (C10)

with an operator

L ≡ ∂PA(X, P, t ) + kBT ∂2
P − ∂X (P/m), (C11)

we achieve the forward transition probability in stochastic
path from the initial condition (X0, P0, t0) as

P (X, P, t |X0, P0, t0)

= B exp

[
− 1

4kBT �

∫ t

t0

ds(Ṗ(s) + A(X (s), P(s), s))2
]

× exp

[
1

2

∫ t

t0

ds
∂A(X, P, t )

∂P

]
, (C12)

where B is a constant. The first exponential term corresponds
to the Onsager-Machlup function, and the second term is de-
rived from the Ito formula [26]. Thus, the conjugate dynamics
is given by

P∗(X0, P0, t |X, P, t0)

= B exp

[
− 1

4kBT �

∫ t

t0

ds(Ṗ(s) + A∗(X (s), P(s), s))2
]

× exp

[
1

2

∫ t

t0

ds

(
∂A(X, P, t )

∂P

)∗]
, (C13)

where ∗ denotes a time-reversal operation. Because the en-
tropy production is given by the ratio between Eqs. (C12) and
(C13), the time-reversal parity of A(X, P, t ) is crucial. From
Eq. (C8), A(X, P, t ) is given by

A(X, P, t ) = �P + �2X − G0�erfc

(M(X, P)√
2σM

)
cos 2�tX

= �P + �2X − G0�

[
1 − erf

(M(X, P)√
2σM

)]

× cos 2�tX, (C14)

where the complementary error function is decomposed to
a constant and an odd function (error function). This de-
composition is crucial for calculating its conjugate dynamics

as

A∗(X, P, t ) =�P∗ + �2X ∗

− G0�

[
1 − tPerf

(M∗(X, P)√
2σM

)]
cos 2�tX ∗,

= − �P + �2X

− G0�

[
1 − erf

(M(X, P)√
2σM

)]
cos 2�tX.

(C15)

Here, tp = {−1, 1} is determined by the time-reversal parity
of the target variable M(X, P), where tp = 1 (−1) when the
M∗(X, P) = M(X, P) [M∗(X, P) = −M(X, P)]. Thus, re-
gardless of the time-reversal parity of the target variable, the
feedback force is treated as a reversible force in the conjugate
dynamics [13]. By using this probability in the conjugate
dynamics,

exp[
] = P (X, P, t |X0, P0, t0)

P∗(X0, P0, t |X, P, t0)

= exp

[
− 1

kBT

∫
dsP ◦

(
Ṗ + �2X

− G0�

[
1 − erf

(M(X, P)√
2σM

)]
cos 2�tX

)]

× exp

[
2G0�√
2πσM

∫
ds exp

[
−

(M(X, P)√
2σM

)2]

× ∂M(X, P)

∂P
◦ X cos 2�t

]
, (C16)

where ◦ explicitly denotes Stratonovich integral. The first
exponential term corresponds to the entropy production in the
thermal bath, and the second exponential term corresponds
to the entropy production in the controller. The entropy pro-
duction rate, which is directly achieved by taking the time
derivative in Eq. (C16) can be expressed as follows:


̇ = Ṡbath + Ṡpump, (C17)

Ṡbath = − 1

kBT
P ◦ (−�P + Fth ), (C18)

Ṡpump = − 2G0�√
2πσM

exp

[
−

(M(X, P)√
2σM

)2]

× ∂M(X, P)

∂P
◦ X cos 2�t . (C19)

Because the target variable corresponds to Kx, which is given
in the rotating frame, we perform the rotating wave approx-
imation to linearize the transformation from the laboratory
frame (X, P) to the rotating frame (q, p) as

X = q cos �t + p sin �t, (C20)

P/� ≈ − q sin �t + p cos �t . (C21)
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Thus, the momentum derivative of the target variable in
Eq. (C19) is evaluated by

∂M(X, P)

∂P
≈ ∂q

∂P

∂M(q, p)

∂q
+ ∂ p

∂P

∂M(q, p)

∂ p

= 1

2�
(q cos �t − p sin �t ). (C22)

By using the following approximation,

P2 ≈ 2�2Kz, (C23)

(q cos �t − p sin �t )X cos 2�t/(2�) ≈ Kz/2, (C24)

we obtain the expressions of stochastic average of entropy
production,

〈Ṡbath〉 ≈ 2�2�

kBT

(
〈Kz〉 − kBT

2�2

)
, (C25)

〈Ṡpump〉 ≈
√

1

2π

G̃0�

σM

〈
Kz exp

(
− K2

x

2σ 2
M

)〉
. (C26)

APPENDIX D: ENTROPY PRODUCTION IN OUR
PROTOCOL FROM PROBABILITY CURRENTS

Although the path-integral formalism shown in
Appendix C provides us a complete expression of entropy
production with exact physical meaning, attempting to
calculate it via the another simple formalism directly from
the coarse-grained Fokker-Planck equation via probability
currents [14,27,28] is worthwhile to confirm our formula
in Eqs. (C25) and (C26). The Fokker-Planck equation is
re-expressed by probability currents Jz (z = X, P) as

∂tP = −
∑

z

∂zJz, (D1)

JX = − PP, (D2)

JP = − �PP − �2XP

+ G0�

[
1 − erf

(M(X, P)√
2σM

)]
cos 2�tXP

− kBT �∂PP . (D3)

Here, we split the momentum current JP into two in terms of
the time-reversal parity, the same as discussed in Appendix C,
in which the feedback force is regarded as a reversible force,

J rev
P = − �2XP,

+ G0�

[
1 − erf

(M(X, P)√
2σM

)
cos 2�tX

]
P, (D4)

J irr
P = [−�P − kBT �∂P]P . (D5)

Introducing Shannon entropy 〈S〉 ≡ − ∫
dXdPPlnP

using a relationship ∂t 〈S〉 = − ∫
dXdP(∂tP )lnP =

− ∫
dXdP(∂tP )(1 + lnP ),

∂〈S〉
∂t

=
∫

dXdP

(∑
z

∂zJz

)
(lnP + 1)

= −
∫

dXdP
∑

z

Jz∂zP
P . (D6)

Here, the second equation is derived by using a partial integral
and removing the boundary integral because the probability
density function on the boundary is assumed to take zero. Note
that

∫
dXdP

Jx∂XP
P = −

∫
dXdPP∂X (−P) = 0. (D7)

Moreover, by using the relationship ∂PP = − 1
kBT �

(J irr
P + �P)

from Eq. (D5), it reduces to

∂〈S〉
∂t

= 1

kBT �

∫
dXdP

1

P
[(

J irr
P

)2 + �PJ irr
P P

]
−

∫
dXdP

1

P J rev
P ∂PP

= 〈Ṡtot〉 − 〈Ṡbath〉 − 〈Ṡpump〉. (D8)

The first term in Eq. (D8) corresponds to the non-negative
entropy production,

〈Ṡtot〉 ≡ 1

kBT �

∫
dXdP

(
J irr

P

)2

P � 0, (D9)

which obviously posses the second-law-like inequality,

∂〈S〉
∂t

+ 〈Ṡbath〉 + 〈Ṡpump〉 � 0. (D10)

The second term in Eq. (D8) corresponds to the entropy pro-
duction rate due to the existence of irreversible currents. It can
be expanded to

〈Ṡbath〉 ≡ 1

kBT �

∫
dXdP�P ◦ (�P + kBT �∂P )P,

= 1

kBT �
(�2〈P2〉 − kBT �2),

≈ 2�2�

kBT

(
〈Kz〉 − kBT

2�2

)
, (D11)

where G̃0 ≡ G0/� is notated. The approximation in Eq. (D11)
is equivalent to that in Eqs. (C25) and (C26). Apparently,
we can confirm that Eq. (D11) completely corresponds to the
entropy production in the thermal bath, Eq. (C25), derived in
the path-integral formalism.

The third term in Eq. (D8) is regarded as the entropy
production rate thanks to the presence of measurement and
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FIG. 7. (a) Numerically calculated probability density function
under error free protocol with σM = 10−10 and G0/� = 14 where the
color map corresponds to the probability density. The non-Gaussian
distribution, which is similar to the experimental result [see Fig. 4(c)]
is achieved. (b) Numerically calculated noise reduction (blue dots)
and amplification (green diamond) level with respect to G0/�. The
noise reduction level is converged to a lower bound about –6 dB with
increasing the parametric gain.

feedback, i.e., the entropy pumping rate, simplified as

〈Ṡpump〉 =
∫

dXdP
1

P J rev
P ∂PP,

= G0� cos 2�t

〈
∂P

[
erf

(M(X, P)√
2σM

)
◦ X

]〉
,

≈
√

1

2π

G̃0�

σM

〈
Kz exp

(
− K2

x

2σ 2
M

)〉
. (D12)

This expression is also equivalent to that in Eq. (C26) derived
in the path-integral formalism.

APPENDIX E: NUMERICAL RESULTS IN THE
NON-EQUILIBRIUM STEADY STATE

To clarify the steady-state distribution in the ideal case, we
numerically solve the coarse-grained Langevin equation in the
rotating frame:

q̇ = − �

2
q + G0

4
erfc

(
Kx√
2σM

)
p +

√
β̃�ξq (E1)

ṗ = − �

2
p + G0

4
erfc

(
Kx√
2σM

)
q +

√
β̃�ξp (E2)

where σM = 10−10 to discuss the error free case (the notation
is the same defined in Appendix A). Figure 7 shows the prob-
ability density function of the NESS with G0/� = 14 where
the noise reduction level of –5.5 ± 0.2 dB is achieved over
the –3-dB limit. Apparently, the probability density function
retains the non-Gaussian distribution as well as that exper-
imentally obtained. With increasing G0, the noise reduction
level is converged around –6 dB, the noise amplification level
gradually increases. This shows good agreements achieved in
the experiment [see Fig. 4(d)].

Although we confirm that our theoretical model with no
feedback delay shows good agreement to the experimental re-
sults, here we briefly discuss the contribution of the feedback
delay. There exists two contributions: One is the measure-
ment error due to the phase shift, and another one is the
non-Markovian effect. The former, measurement error due
to the phase shift, occurs because the measurement quantity
is changed to Kx cos 2�τ + Ky sin 2�τ with the finite delay
τ from the ideal case of Kx. Because of the orthogonal-

ity between Kx and Ky, the term of Ky sin 2�τ makes the
measurement error for the pseudorotation around Ky in our
protocol. For instance, the large delay with 2�τ = π/2 brings
the operation in random where the noise reduction level is lim-
ited at –3 dB. The latter, non-Markovian effect, could appear
in the further large delay (e.g., 2�τ = 2π ), which induces the
breakdown of the feedback cooling in linear measurement and
feedback [15].

APPENDIX F: ESTIMATION OF σM

To estimate a noise deviation in the measurement σM , an
observation is modelled by

KM
x = a(Kx + σMξM ), (F1)

where a shows an arbitrary coefficient in measurement, and
ξ shows a Markovian noise with 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). Be-
cause the true value of Kx can be approximated by KP

x , which
is the postprocessed value, σM can be determined by

σM =
√〈(

KM
x

)2〉
a2

− 〈(
KP

x

)2〉
(F2)

a =
〈
KM

x KP
x

〉
〈(

KP
x

)2〉 (F3)

from the experimental data without any driving (i.e., 〈KM
x 〉 =

〈KP
x 〉 = 0). As a result, σM is determined to be 0.52 ± 0.07.

APPENDIX G: ENTROPY PRODUCTION IN CONTINUOUS
DRIVING AND RANDOM DRIVING

In the case of continuous driving [i.e., the feedback func-
tion becomes unity, f (m) = 1], the expression of entropy
production is straightforwardly derived because it only con-
tains the contribution of the entropy production in the thermal
bath, ṠC

bath. Thus, 〈ṠC
bath〉 is achieved with the same definition

given in Eq. (C25). In the same manner, the entropy produc-
tion with the random protocol, in which the feedback function
is given by f (m) = ξR with the random integer ξR ≡ {0, 1} can
be formulated by taking into account the contribution from the
thermal bath 〈ṠR

bath〉. Because entropy production is defined as
the ratio between the forward and backward probability, we
consider the minimum entropy production as that under the
random switching. In other words, the force by the random
switching is regarded as reversible in its conjugate dynamics,
and as a result the total entropy production just consists of the
entropy production in thermal bath [13,25]. Consequently, this
means 〈ṠR

bath〉 can be calculated from Eq. (C25). 〈ṠC
bath〉 and

〈ṠR
bath〉 can be analytically calculated by solving the following

Langevin equation in the rotating frame:

〈K̇x〉 = −�〈Kx〉 + αG0〈Kz〉, (G1)

〈K̇z〉 = −�〈Kz〉 + αG0〈Kx〉 + �K0, (G2)

where K0 ≡ kBT/2�2, and α is a factor defined by α = 1
or α = 1/2 in case of continuous driving or random driving,
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respectively. The steady-state solutions are given by

〈Kz〉 = K0

1 − α2G̃2
0

, 〈Kx〉 = αG̃0K0

1 − α2G̃2
0

. (G3)

By substituting them into Eq. (C25), the entropy production rates under the random protocol are analytically expressed as
follows:

〈
ṠC

bath

〉 = �G̃2
0

1 − G̃2
0

, (G4)

〈
ṠR

bath

〉 = �G̃2
0/4

1 − G̃2
0/4

(G5)

It is obvious that the entropy production in continuous driving (random driving) holds a divergence at G̃0 = 1 (G̃0 = 2).
This divergence occurs because the thermal bath cannot absorb the heat from the parametric driving due to G0 � � (or
G̃0/2 � �).
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