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Unified approach to data-driven quantum error mitigation
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Achieving near-term quantum advantage will require effective methods for mitigating hardware noise.
Data-driven approaches to error mitigation are promising, with popular examples including zero-noise extrap-
olation (ZNE) and Clifford data regression (CDR). Here, we propose a scalable error mitigation method that
conceptually unifies ZNE and CDR. Our approach, called variable-noise Clifford data regression (vnCDR),
significantly outperforms these individual methods in numerical benchmarks. vnCDR generates training data
first via near-Clifford circuits (which are classically simulable) and second by varying the noise levels in these
circuits. We employ a noise model obtained from IBM’s Ourense quantum computer to benchmark our method.
For the problem of estimating the energy of an 8-qubit Ising model system, vnCDR improves the absolute energy
error by a factor of 33 over the unmitigated results and by factors of 20 and 1.8 over ZNE and CDR, respectively.
For the problem of correcting observables from random quantum circuits with 64 qubits, vnCDR improves the
error by factors of 2.7 and 1.5 over ZNE and CDR, respectively.
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I. INTRODUCTION

Quantum computers are approaching the important mile-
stone of having a demonstrable advantage over classical
computers for practical applications, such as chemistry and
materials science [1]. Such a quantum advantage is expected
to be demonstrated with near-term devices that do not have
the number of qubits or the gate fidelities required to im-
plement full quantum error correction [2]. Nevertheless, the
noise of such devices remains a serious obstacle to practical
applications [3]. While near-term devices will not be able to
completely remove errors caused by device noise, it is often
possible to mitigate them.

Such so-called error mitigation (EM) techniques are sure
to be an essential part of demonstrating the utility of quantum
technologies, for example, for achieving chemical accuracy in
chemistry applications. To this end, many distinct EM meth-
ods have been proposed [4,5]. One approach is to optimize
quantum circuits using compiling and machine learning [6–8],
while another employs variational quantum algorithms [9–11]
to reduce circuit depth and potentially remove the effects
of incoherent noise [12–17]. More recently, quantum phase
estimation has been employed for error mitigation [18].
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Zero-noise extrapolation (ZNE) is a classical postprocess-
ing approach to EM that has received a significant amount of
attention [4]. ZNE combines observables evaluated at several
controlled noise levels through stretching gate times or insert-
ing identities [19–23], enabling extrapolation to the zero-noise
limit. Despite much success [24], this method is not without
its limitations. Due to the uncertainty of the extrapolation,
performance guarantees are difficult in general. In particu-
lar, ZNE struggles when a low-degree polynomial fit to the
noisy expectation values fails to match the behavior in the
zero-noise limit. For simple noise models or very low depth
circuits this extrapolation can be well behaved. However, in
real devices using less trivial circuits, the lowest error points
available are often too noisy for such fits to be helpful.

Recently, alternative mitigation methods have been devel-
oped that make use of learning from data sets constructed
using Clifford quantum circuit data [25,26]. These methods
are attractive based on their relative simplicity and scalability
due to the classically simulable nature of quantum circuits
composed mainly of Clifford gates (gates that map Pauli op-
erators to Pauli operators).

For example, the Clifford data regression (CDR) method
[26] first chooses a training set of near-Clifford quantum
circuits related to the circuit of interest. A scalable classi-
cal simulator of near-Clifford circuits and a noisy quantum
computer are used to compute the noise-free and noisy data,
respectively. Finally, the trained ansatz is used to predict the
noise-free observable for the quantum circuit of interest.

Both ZNE and CDR are data-driven approaches to er-
ror mitigation, but they use different types of data. ZNE
uses variable-noise data, while CDR uses variable Clifford
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FIG. 1. The variable-noise Clifford data Rregression (vnCDR)
method. The first step constructs a set of near-Clifford training cir-
cuits that are close, in some sense, to the circuit of interest. The
second step increases the size of the training set by adding variable
amounts of noise to the circuits generated in the first step. The third
step involves both classical simulation and quantum evaluation of
the training circuits to generate the noise-free and noisy training data,
respectively. The fourth step trains the parameters of an ansatz, which
we take as a hyperplane, to fit the training data. Finally, one uses
this fitted ansatz to predict the desired observable for the circuit of
interest.

circuit data. A natural question is whether combining these
approaches could lead to a unified technique that is more
powerful than the individual ones. In this paper, we propose a
method that answers this in the affirmative.

Our approach is called variable-noise Clifford data regres-
sion (vnCDR). vnCDR considers a collection of near-Clifford
training circuits like CDR, each evaluated at multiple noise
levels as in ZNE. One can think of this process either as
informing the extrapolation in ZNE about the zero-noise limit
for similar circuits or as adding relevant features to the regres-
sion model in CDR. In the latter view, this is philosophically
similar to data augmentation techniques that introduce artifi-
cial noise in machine learning [27]. The ansatz employed in
vnCDR is motivated by Richardson extrapolation and by not-
ing that it perfectly removes the effects of global depolarizing
noise (see Appendix A). We also comment that training on the
set of Clifford circuits is sufficient as the Clifford gates span
the space of single-qubit unitaries (see Appendix B). Figure 1
gives a schematic illustration of vnCDR.

Below we first provide background on ZNE and CDR, and
then we present our unified method. Using a noisy simulator

based on a gate set tomography of IBM’s Ourense quantum
computer, we compare the performance of ZNE, CDR, and
vnCDR for two tasks. The first task is estimating the energy of
an 8-qubit transverse Ising model with the quantum alternat-
ing operator ansatz (QAOA). Correcting circuits of this form
is relevant for both combinatorial optimization problems and
condensed matter studies [28,29]. Our second task involves
random quantum circuits for large qubit numbers (up to 64
qubits with six CNOT layers) and large circuit depth (up to 16
CNOT layers with 8 qubits). The lack of structure in these
random circuits makes them a difficult use case for these EM
methods, and they give us a notion of these methods’ utility in
more general settings.

For both use cases, vnCDR outperforms ZNE and CDR.
For the QAOA task we analyze the absolute energy error and
obtain with vnCDR a factor of 20 improvement over ZNE and
a factor of 1.8 improvement over CDR. For the random circuit
task we obtain, in the case of 64 qubits, factors of 2.7 and 1.5
improvement over ZNE and CDR, respectively, while for the
case of 16 layers we obtain factors of 2.3 and 1.3 improvement
over those methods.

II. BACKGROUND

A. Zero-noise extrapolation

ZNE [4] involves varying the noise level of a quantum cir-
cuit to infer the noise-free behavior. Assuming a dependence
on noise parameter ε, the correction is performed by taking
linear combinations of the noisy expectation values in such
a way that errors attributable to terms of order n or less are
canceled, where n is the number of additional noise levels
employed.

Following the presentation in Ref. [4], denote the noise-
free expectation by μ and consider the task of correcting the
expectation value obtained from a noisy quantum device with
noise characterized by parameter ε. First, one chooses a set of
noise levels C = {c0, c1, . . . , cn|c0 = 1, c j < c j+1} and runs
the device with amplified noise c jε to obtain an estimate μ̂ j

for all noise levels c j ∈ C. The final correction μ̂ can then be
computed as

μ̂ =
n∑

j=0

γ jμ̂ j, (1)

where the set of coefficients {γ j} are chosen to satisfy

n∑
j=0

γ j = 1,

n∑
j=0

γ jc
k
j = 0 ∀k ∈ {1, . . . , n}. (2)

This technique, known as Richardson extrapolation [4,30],
ensures that the error of the final estimate is of the order
O(εn+1).

Though ZNE was originally proposed in a context where
one can stretch gate times to achieve the various noise levels
c j , recent work has suggested a hardware-agnostic imple-
mentation based on identity insertions [19,20]. For example,
inserting two CNOT gates applied one after the other is an
identity matrix in the noise-free circuit evaluation but is likely
to affect the output in the noisy case. In the fixed iden-
tity insertion method (FIIM), the noise levels are taken to
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be the number of additional gates added in this manner, so
inserting two additional CNOT gates for every CNOT in the
original circuit results in noise levels c j = 1, 3, 5, . . . being
implemented.

As noted in Ref. [20], Richardson extrapolation is equiva-
lent to performing a polynomial interpolation on the various
noisy expectations, treating the noise levels c j as the indepen-
dent variable. To see this, note that for any solution {bk}n

k=0 to
the system of equations

μ̂ j = b0 +
n∑

k=1

bkck
j , j = 0, 1, . . . , n, (3)

it holds that

μ̂ =
n∑

j=0

γ j

(
b0 +

n∑
k=1

bkck
j

)

= b0

(
n∑

j=0

γ j

)
+

n∑
k=1

bk

(
n∑

j=0

γ jc
k
j

)

= b0. (4)

A unique solution exists to (3) for n + 1 distinct noise levels
c j when performing an order-n interpolation. (See, for exam-
ple, Ref. [31]). Alternatively, one can adopt a lower-degree
polynomial fit as done in our numerical experiments by com-
puting the least-squares solution to the resulting system of
equations. For example, if one wishes to perform a linear fit
on the data from n + 1 distinct noise levels, one may write

μ =

⎡
⎢⎢⎣

μ0

μ1
...

μn

⎤
⎥⎥⎦, X =

⎡
⎢⎢⎣

1 c0

1 c1
...

...

1 cn

⎤
⎥⎥⎦, b =

[
b0

b1

]
(5)

and express the system of equations as

μ = Xb. (6)

Taking the y intercept b0 of the least-squares solution,

b = (X T X )−1X T μ, (7)

yields the extrapolated expectation value.
Crucially, the value of the correction is completely deter-

mined by a fixed set of noisy expectations for any choice of
the noise amplification and extrapolation techniques above.
In particular, Eq. (1) enforces an nth-degree polynomial fit
when one has data points at n + 1 noise levels, which may
not provide a good approximation to the behavior near ε = 0
when the data points that are experimentally accessible all
reflect a fairly high amount of noise. While some authors have
also successfully used lower-degree polynomial fits, there is
evidence to suggest that the resulting corrections can still be
fairly inaccurate [5,19,26]. This motivates our proposal for a
method based on learning from efficiently simulable circuits,
avoiding some of the drawbacks of ZNE.

B. Clifford data regression

In CDR [26] the expectation values obtained from a
quantum device are corrected using a straightforward linear
regression based on examples from circuits composed mainly

of Clifford gates. These Clifford circuits are efficiently sim-
ulable and generated in such a way as to remain similar
to the original circuit of interest. Explicitly, the goal is to
learn a function which takes noisy expectations to their error-
mitigated values:

f (μ̂0) = a1μ̂0 + a2, (8)

where μ̂0 is the noisy expectation and a1, a2 are parameters
chosen optimally by least-squares regression on the Clifford
circuit data set, i.e., for a training set of m noisy Clifford cir-
cuit expectations {xi} and corresponding targets {yi} obtained
via classical simulation, one computes

(a1, a2) = argmin
(a1,a2 )

m∑
i=1

[yi − (a1xi + a2)]2. (9)

The form of the ansatz can be physically motivated using
a simplified noise model. Let ρ be the density matrix for the
state of a device which has undergone some noise-free evolu-
tion and consider a global depolarizing noise channel E which
acts on this state before a measurement of the observable X .
It then holds that

Tr(E (ρ)X ) = (1 − ε)Tr(ρX ) + εTr(X )

d
, (10)

where d is the dimension of the system and ε is a parameter
characterizing the noise. Identifying μ̂0 = Tr(E (ρ)X ) and

a1 = 1/(1 − ε), a2 = − ε

d (1 − ε)
Tr(X ), (11)

we see that the desired quantity Tr(ρX ) can be recovered
using Eq. (8).

When applied to a more realistic noise model obtained
from an IBM quantum device, empirical results suggest that
CDR yields significantly more scalable corrections than those
from ZNE [26], at least in the plausible setting of being
limited to coarse-grained noise amplification. In the following
sections, we improve upon the CDR method by incorporating
data obtained at variable noise rates, which leads to more
accurate predictions of the noise-free expectation values.

III. THE vnCDR METHOD

Let U be a quantum circuit, |0〉 be its initial state, and X
be an observable of interest. Consider the task of estimating
the expectation value μ = 〈0|U †XU |0〉 from measurements
of a noisy quantum device. The variable-noise Clifford data
regression (vnCDR) method is performed with the following
steps.

(1) Clifford data. Choose a set of circuits S = {Vi}m
i=1 based

on U , which will be used to form the training set T in step
(3). The circuits in S must be efficient to simulate classically,
which is ensured by constructing them primarily from Clifford
gates. The number of non-Clifford gates used is denoted by N .
Note that N is assumed to be a constant parameter here, so the
simulations are classically tractable.

(2) Noise data. Choose a set of noise levels C =
{c0, c1, . . . , cn}, where 1 = c0 < c1 < · · · < cn, which will be
used to form the training set T in step (3). If the noise is
characterized by a parameter ε, then running the device with
noise level c j means that the new parameter is c jε.
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(3) Training set. For each of the m circuits Vi in S and
n + 1 noise levels c j ∈ C, produce an estimate of the observ-
able expectation called xi, j . Also, for each of the m circuits,
compute yi = 〈0|V †

i XVi |0〉 using a classical simulation. The
training set T is then defined as T = {(xi, yi )}, where xi =
(xi,0, . . . , xi,n) is the vector of noisy estimates originating from
the ith circuit.

(4) Learning. Learn a function f : Rn → R that takes a
set of noisy estimates at the n + 1 different noise levels and
outputs an estimate for the noise-free value. Specifically, we
take the linear ansatz g : Rn × Rn → R,

g(x; a) = a · x. (12)

We use least-squares regression on the data set T to pick
optimal parameters a∗, i.e.,

a∗ = argmin
a

m∑
i=1

[yi − g(xi; a)]2, (13)

so that we expect f (x) = g(x; a∗) to output a good estimate
for the noise-free expected value given a vector of noisy ones.

(5) Correction. Use the estimate μ̂ = a∗ · μ, where μ =
(μ̂0, . . . , μ̂n) is composed of the n + 1 noisy expectations for
the original circuit.

Our method shares common features with both ZNE and
CDR. Specifically, the functional form of the ansatz we
choose resembles a Richardson extrapolation on the noisy
expected values as shown in Sec. II A. However, the method
differs in its approach to relating the noisy values to the final
estimate. Namely, in ZNE, the output is a fixed function of
the various μ̂ j , whereas vnCDR attempts to learn the best
candidate from a family of functions parametrized by a. In
a certain sense, vnCDR is thus choosing the best possible
extrapolation of the noisy data from the original circuit using
examples from Clifford circuits which are similar in structure.

The method can also be viewed as adding relevant variables
to the CDR method, before performing a multiple linear re-
gression on the new data set. This description comes with the
caveat that—in contrast to the CDR ansatz [see Eq. (8)]—the
new parametrization g(x; a) is a linear mapping without a
constant term. There are two motivations for this. Firstly, such
a parametrization corresponds well with the linear combina-
tion of noisy expectations that is utilized in the ZNE method
[Eq. (1)]. Secondly, restricting the class of functions we are
searching over to be linear awards us an intuitively desirable
property: If the function we arrive at achieves zero error on
all circuits composed of Clifford gates, then it will predict the
expectation values of arbitrary circuits with zero error. This
result boils down to the observation that Clifford gates span
the space of single-qubit unitaries. (See Appendix B for the
proof of this statement).

The form of the ansatz can be further motivated by con-
sidering the action of a global depolarizing channel [see
Eq. (10)]. We note that this simple model was proposed re-
cently to effectively describe dominant effects of the noise
in real devices [32,33]. The vnCDR ansatz can be shown to
completely mitigate the effect of such a channel on some
observable of interest (see Appendix A), similar to CDR.

IV. NUMERICAL RESULTS

A. Transverse-field Ising model

First, we consider a task of variational simulation of the
ground state of a one-dimensional (1D) transverse-field Ising
model using parametrized quantum circuits. The Hamiltonian
of the system is given by

H = −g
∑

j

σ
j

X −
∑
〈 j, j′〉

σ
j

Z σ
j′

Z , (14)

where σX , σZ are Pauli matrices and 〈 j, j′〉 are nearest-
neighbor sites on the lattice. We assume here open boundary
conditions. We consider the case of g = 2 corresponding to a
paramagnetic phase. We use the QAOA [28,29]

|ψ (β, γ )〉 =
∏

j=p,p−1,...,1

e−iβ j H2 e−iγ j H1 (|+〉)⊗Q, (15)

where β, γ are the rotation angles to be optimized, H1 =∑
〈 j, j′〉 σ

j
Z σ

j′
Z , H2 = ∑

j σ
j

X , |+〉 = 1√
2
(|0〉 + |1〉), and Q is the

number of qubits. A decomposition of (15) into a quantum
circuit is described in Appendix C.

We perform the optimization for Q = 8 qubits using a
circuit depth p = 4. We minimize the energy evaluated with
a noisy simulator using a MATLAB implementation of quasi-
Newton gradient descent. The noise model we employ is
obtained by gate set tomography of IBM’s Ourense quantum
computer and described in detail in Ref. [8]. Furthermore,
we assume perfect measurement as measurement errors can
be mitigated by specialized techniques [34,35]. To carry out
the benchmark of our method, we run 27 instances of the
optimization and correct the resulting observable expectations
using the ZNE, CDR, and vnCDR methods. The corrections
are realized on each of the 1- and 2-qubit terms which make up
the Hamiltonian from which we then estimate the ground-state
energy. The results are summarized in Fig. 2, showing that
vnCDR outperforms ZNE and CDR with a factor of 33 im-
provement of the mean absolute energy error while ZNE and
CDR give a factor of 1.7 and 19 improvement, respectively.

In the case of CDR and vnCDR, for each of the circuits we
construct training sets with 80 classically simulable circuits,
setting the number of non-Clifford gates to N = 16. We re-
mark that there are 60 non-Clifford gates in total for the circuit
of interest. For further information regarding the construction
of our training sets, see Sec. V B.

For the vnCDR and ZNE corrections, we computed the
expectation values using the set of noise levels C = {1, 3, 5}
and the fixed identity insertion noise amplification method
[20], which we elaborate upon in Sec. V A. The noise level
is defined as the ratio of CNOT gates in the modified circuits
compared with the original one. Note that this is a fairly
coarse-grained set of noise levels, which may explain why
the ZNE performance is quite poor. We also found that in-
cluding in C noise levels higher than 5 did not improve the
performance of the methods. For further details, see Secs. V A
and V C.

B. Random quantum circuits

Next we consider an implementation of the IBMQ-
hardware-efficient ansatz with random parameters; see
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FIG. 2. Correcting 27 local minima of the quantum Ising model
(14) energy minimization for Q = 8 qubits. As a variational ansatz
we use the QAOA (15) with p = 4 layers. We compare absolute er-
rors of the noisy and corrected energies for different error mitigation
methods. The results obtained are shown as a box plot, where boxes
show the interval between the first and the third quartile. The red
squares denote the mean values, while the central lines represent
the median values. The whiskers show the range of the data outside
the quartiles, and diamonds indicate outliers. The inset displays the
energies per qubit of the minima calculated by the QAOA energy
minimization.

Fig. 3. The ansatz consists of layers of alternating nearest-
neighbor CNOT gates decorated with general 1-qubit unitaries
U (α, β, γ ). We compute 1- and 2-qubit observables for 30
random instances and correct them with ZNE, CDR, and
vnCDR methods; see details in the caption of Fig. 4. We
analyze the scaling of the observables’ absolute error with
increasing Q = 8, 16, 32, 64 for p = 6 and the scaling with
increasing p = 4, 8, 12, 16 for Q = 8. To simulate large-Q
systems, we employ a matrix product operator (MPO) [36]
noisy simulator with the same noise model as in the case
of the Ising QAOA simulations. We discuss the simulator in

FIG. 3. An example of the IBMQ-hardware-efficient ansatz with
p = 2 layers for Q = 4 qubits. The layers, represented by gates
within the dashed contours, act on a random product state created
by general single-qubit unitaries U . The general unitary is de-
fined as U (θ, φ, λ) = RZ (φ + π )RX (π/2)RZ (θ + π )RX (π/2)RZ (λ),
where RZ (α) = e−iα/2σZ , RX (α) = e−iα/2σX . Each layer consists of
CNOT gates interleaved with the U gates. The CNOT structure alter-
nates between neighboring layers. We choose angles θ , φ, and λ

of each U gate randomly creating a random quantum circuit. Note
that RX (π/2), CNOT gates, and RZ (α) are native gates of the IBM
computers. Furthermore, CNOT gates and RX (π/2) are Clifford gates.

more detail in Appendix E. Here, to simplify presentation, we
show results obtained in the limit of infinite shot number. In
Appendix F we show that qualitatively the same results can
be obtained using finite shot numbers feasible with current
quantum computers.

The results are discussed in detail in Fig. 4. We find that the
vnCDR outperforms ZNE and CDR methods for all simulated
Q and p values. For the largest system size, Q = 64, vnCDR
gives a factor of 2.7 improvement of the mean error relative to
the noisy results, while ZNE and CDR give factors of 1.0 and
1.8 improvement. For the deepest p = 16 the factors are 2.4,
1.0, and 1.8, respectively.

For fixed p = 6 we observe that the unmitigated mean
absolute error does not grow with increasing Q in the limit
of large Q. Such behavior can be explained by the existence
of a threshold Q value for which the causal cones of the
observables [37] stop increasing with Q. The causal cone is
defined here as gates which affect the expectation value of
the observable. See Appendix D for an example of causal
cone construction. We take the causal cone into account when
forming vnCDR and CDR training sets; see details in Sec. V.
For such an implementation we find that the vnCDR and CDR
mitigated mean errors also do not increase with increasing
Q. We remark that our noise model does not include cross
talk, which in principle may result in a faster increase in the
number of gates in the noisy observables’ causal cones. We
leave investigation of the scaling in the presence of such noise
to future work. With increasing p we find that the quality of
the correction decreases for all methods. Nevertheless, even in
the case of the deepest circuits, p = 16, we obtain a significant
improvement when employing vnCDR.

To perform CDR and vnCDR for each observable of inter-
est in each random circuit, we construct a training set using
100 classically simulable circuits with N = 20 non-Clifford
gates. A detailed discussion of the method used to construct
the training sets is given in Sec. V B. We remark that in the
case of p = 6, Q = 64 circuits the largest number of non-
Clifford gates within the causal cone of an observable is 60,
while for Q = 8, p = 16 it is 312.

For the vnCDR and ZNE corrections, we increase the
noise level by identity insertions as in the case of the QAOA
Ising simulations. We find that in both cases it is beneficial
to include higher noise levels than in the Ising case: C =
{1, 3, 5, 7, 9}. We remark that the QAOA circuit having 16
layers of CNOT gates is deeper than most circuits considered
here. As ZNE is supposed to correctly capture noise effects for
sufficiently small noise this may explain why it is beneficial
to use higher noise levels in the case of random quantum
circuits. We leave systematic investigation of this effect to
future work. For a more detailed description of the ZNE and
vnCDR implementations, see Secs. V A and V C.

V. IMPLEMENTATION DETAILS

A. ZNE

We perform the noise amplification in our numerical ex-
periments using identity insertions after each application of a
CNOT gate [19,20]. We use the fixed identity insertion method
(FIIM) of Ref. [20], which adds pairs of CNOT gates after
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(a) (b)

(d)
(c)

FIG. 4. Correcting the IBMQ-hardware-efficient ansatz with random parameters. For each value of Q and p we analyze 30 random circuits
and correct σ 1

X , σ
Q/2
X , σ 1

Z σ 2
Z , and σ

Q/2
Z σ

Q/2+1
Z for each of them. We define an absolute error per circuit as the mean of the observables’ absolute

errors. The absolute corrected (noisy) observable error is defined as an absolute value of its difference with respect to the exact value. (a) The
scaling with Q of the mitigated and unmitigated absolute error per circuit for p = 6. In the left panel we show the mean values (solid lines),
while the right panel shows the maximal values (dashed lines). (b) Bar plot of the error for Q = 64 and p = 6. (c) The scaling with increasing
p for Q = 8. (d) The results for Q = 8, p = 16.

each CNOT gate of the original circuit. The noise level is
defined as the factor by which the number of CNOT gates in
the circuit increases. In the first example—the QAOA opti-
mization task—we employ noise levels C = {1, 3, 5}, whereas
for random circuits we achieved better results with a higher
maximum noise level, so we used the set C = {1, 3, 5, 7, 9}.
We obtained corrected values of the observables of interest
by an extrapolation using both a polynomial fit via Eq. (1)
and a linear fit to the data, as explained in Sec. II A. In
both the Ising case and the case of random quantum circuits,
we found that a linear fit performed better than a polyno-
mial regression for extrapolation, so we report those results
here.

B. CDR

To construct the training set for a circuit of interest,
we substitute most of the non-Clifford gates in the circuit
with Clifford gates, with two different substitution strategies,
which are explained below. Such a procedure ensures that
circuits in the training set are classically simulable and biased
towards the circuit of interest. Here, we consider circuits of
interest which are compiled for the IBMQ quantum comput-
ers. The compiled circuits are built from CNOT gates, RX (π/2)

pulses, and general σZ rotations RZ (β ) = e−iβ/2σZ with β ∈
[0, 2π ). The pulses and CNOT gates are Clifford gates, while
RZ (β ) is a Clifford gate only for β = nπ/2, where n is an
integer. Therefore we substitute most of the RZ gates by Sn,
where n = 0, 1, 2, 3 and S = eiπ/4σZ is the phase gate. In both
the Ising case and the case of random quantum circuits we find
that substantial error reduction can be obtained using training
sets built with approximately 100 near-Clifford circuits.

We consider two different substitution strategies. The first
one substitutes a randomly chosen non-Clifford RZ (β ) by
Sn minimizing d (β, n) = ||Rz(β ) − Sn||, where || · || is the
Frobenius norm. This procedure is repeated until N non-
Clifford rotations are left in the circuit. We find that this very
simple strategy works well for the Ising model enabling us to
obtain a factor of 33 improvement in calculating the energy.

In the more general and challenging case of random quan-
tum circuit simulations we find that better results can be
obtained with a more sophisticated substitution method. In
such a case, to construct a training set, we tailor our choice
of classically simulable circuits to an observable of interest,
substituting all non-Clifford gates outside its causal cone. By
the causal cone definition, such a replacement does not affect
its expectation value. See Appendix D for a discussion of
the causal cone construction. Taking into account the causal
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cone of the observable is especially important in the case
of local observables and large-Q shallow circuits because in
such a case the causal cone contains only a small fraction of
all non-Clifford gates of the circuit of interest. Furthermore,
for remaining non-Clifford rotations within the causal cone
of the observable of interest, we choose both which gate to
replace and what gate to replace it with (Sn) according to a
probability distribution p(βi, n) ∝ e−d (βi,n)2/σ 2

. Here, i num-
bers the remaining non-Clifford rotations in the causal cone.
We repeat the procedure until N non-Clifford rotations are
left in the causal cone of the observable of interest. Here,
we use σ = 0.5. Such a choice of the probability distribution
tends to leave gates which would be most severely distorted
by the replacement in the circuit, unchanged. At the same
time it produces more diverse training sets than a direct re-
placement by the closest power of S. We observe that in
the case of the random quantum circuits the correction is
more challenging as expectation values of the observable of
interest become more clustered around 0 with increasing p.
Furthermore, we observe that training sets created by the sim-
ple substitution method tend to have exact expectation values
clustered around 0 more strongly than expectation values of
the observable of interest. The more sophisticated procedure
generates training sets with more diverse exact expectation
values.

C. vnCDR

To construct a vnCDR training set, we choose the same
classically simulable circuits which are used for a CDR train-
ing set. We also use the same choice of noise levels as used in
the ZNE implementation, namely, C = {1, 3, 5} for the Ising
and C = {1, 3, 5, 7, 9} for the random quantum circuit mitiga-
tion. As in the case of ZNE we observe that including more
than five noise levels does not improve results for the Ising
case while it is beneficial for the case of random quantum
circuits.

VI. CONCLUSIONS

Data-driven error mitigation involves collecting data from
multiple different quantum circuits in order to inform the cor-
rection of errors in a particular circuit of interest. In this paper,
we conceptually unified two distinct, popular methods for
data-driven error mitigation: zero-noise extrapolation (ZNE)
and Clifford data regression (CDR). Our unified approach,
called variable-noise Clifford data regression (vnCDR), ap-
pears to be more powerful than the individual methods of ZNE
and CDR.

The vnCDR method generates training data from classi-
cally simulable near-Clifford circuits, whose noise levels are
varied (e.g., by identity insertions). The method then learns
how to correct observables on these training circuits. This
involves fitting a multidimensional ansatz, which we assume
is a hyperplane, to the training data. This enables a guided ex-
trapolation to the noiseless expectation value for the circuit of
interest, which dramatically improves the mitigation realized.
Rather than doing uninformed extrapolation as in ZNE, the
vnCDR method demonstrates that near-Clifford circuits pro-
vide an effective guide for the extrapolation process. The fitted

ansatz can be further motivated by considering the effect of a
global depolarizing channel on some observable of interest.
The effect of such a channel is completely removed using the
vnCDR ansatz.

We compared vnCDR with both ZNE and CDR on two
tasks: correcting the energy of an Ising transverse spin chain
and mitigating local observables of random quantum circuits.
For both of them we used a realistic noise model obtained by
gate set tomography of IBM’s Ourense quantum computer. On
each of these tasks, vnCDR outperforms both of these state-
of-the-art error mitigation methods. Compared with ZNE,
vnCDR was shown to tolerate the relatively high noise levels
obtained via fixed identity insertions.

Though preliminary scaling results are promising, further
testing on real quantum devices will help determine the num-
ber of non-Clifford gates and size of the training sets required
to attain accurate predictions. It will also help determine limi-
tations of the method while dealing with large and deep noisy
circuits, which are challenging for error mitigation methods.
Additionally, it would be interesting to apply the vnCDR
method using more sophisticated or fine-grained noise ampli-
fication schemes such as random identity insertions or pulse
stretching. This may enhance performance for the deep cir-
cuits necessary to obtain a quantum advantage. In this regime,
we envision that vnCDR could play an important role in yield-
ing quantum advantage for chemistry, materials science, and
other applications. Finally, we note that further testing is nec-
essary to determine the potential of our method for quantum
computing architectures with gate sets other than IBM’s gate
set.
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APPENDIX A: PERFECT MITIGATION OF GLOBAL
DEPOLARIZING NOISE

To motivate the form of the vnCDR ansatz, we consider
the action of a global depolarizing channel [see Eq. (10)].
Assuming that this channel acts in our circuit j different times,
the final state can be written as

ρ j = (1 − ε) jρ + [1 − (1 − ε) j]
1

d
, (A1)

where d is the dimension of the system and ε is a parameter
characterizing the noise. Considering the effect of the above
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channel on X leads to

X noisy
j = Tr(ρ jX ) (A2)

= (1 − ε) jμ + [1 − (1 − ε) j]
Tr(X )

d
, (A3)

where μ = Tr(ρX ). As previously discussed the vnCDR
ansatz combines evaluations of the observable of interest at
various noise levels:

μ̂ =
n∑

j=1

a∗
j X

noisy
j , (A4)

where the parameters a∗
j are chosen by fitting data produced

by near-Clifford circuits. The above expression can be ex-
panded:

μ̂ =
n∑

j=1

a∗
j

(
(1 − ε) jμ + [1 − (1 − ε) j]

Tr(X )

d

)
. (A5)

Therefore, for the vnCDR ansatz to completely mitigate the
effects of global depolarizing noise, such that μ̂ = μ, we
require

n∑
j=1

a∗
j (1 − ε) j = 1,

n∑
j=1

a∗
j [1 − (1 − ε) j] = 0, (A6)

or equivalently,

n∑
j=1

a∗
j = 1,

n∑
j=1

a∗
j [1 − (1 − ε) j] = 0. (A7)

The training circuit observables and the observable of interest
will behave the same way under such a noise channel. As
such, the fitted parameters a∗

j will obey the above relations
[Eq. (A7)]. Therefore vnCDR can be seen to perfectly mitigate
global depolarizing noise for two or more noise levels.

It is interesting to consider how this contrasts with the ZNE
implementation in this paper. We used linear extrapolation
to the zero-noise limit and least-squares fitting of the noisy
expectation values for the observable of interest. This extrap-
olation method is not expected to perfectly mitigate the effect
of global depolarizing noise. An exponential extrapolation
would be required in order to perfectly mitigate the effects
of this channel, and polynomial extrapolation is expected to
perform better than linear. However, for our simulations we
found that in general, a simple linear extrapolation gave better
results.

APPENDIX B: SUFFICIENCY OF THE CLIFFORD
TRAINING SET

Consider a quantum circuit acting on Q qubits which is
represented by a noise-free unitary channel U , and let ρ0 ∈
Cd×d be the initial state, where d = 2Q. Also suppose we have
some observable of interest X and a collection of channels
E0, E1, . . . , En representing n + 1 different noise levels. Run-
ning the circuit with the jth noise channel returns the value
Tr((E j ◦ U )(ρ0)X ) in expectation.

Additionally, for all j ∈ {0, . . . , n}, define μ j (V ) for some
unitary channel V in the following way:

μ̂ j (V ) = Tr((E j ◦ V )(ρ0)X ). (B1)

Define μ(V ) ∈ Rn+1 as

μ(V ) = (μ̂0(V ), μ̂1(V ), . . . , μ̂n(V )). (B2)

For a given circuit V , the vnCDR correction is then given
by f (μ(V )) = a · μ(V ), where a is some optimal set of pa-
rameters obtained by training the model. Our goal is to show
that if the vnCDR estimate f (μ(C)) is fully accurate for all
Clifford circuits C, then the output of f (μ(U )) is also accurate
for estimating the value Tr(U (ρ0)X ).

We begin by observing that the action of a non-Clifford
rotation gate can be decomposed into Clifford maps since
they span the space of single-qubit unitaries. Therefore we can
write

U =
∑

j1

α j1C j1 , (B3)

where C j1 is the unitary map resulting from replacing one
of the non-Clifford rotation gates in the circuit by the j1th
Clifford in the basis. Repeating this process recursively for
each of the k non-Clifford gates in the circuit, we obtain

U =
∑

j1, j2,..., jk

α j1α j2 · · · α jkC j1,..., jk . (B4)

Each of the unitary maps C j1,..., jk is now composed of Clifford
maps only. Furthermore, by the linearity of the trace, noise
channels, and function f , it holds that

f (μ(U )) =
∑

j1, j2,..., jk

α j1α j2 · · ·α jk f (μ(C j1,..., jk )) (B5)

and

Tr(U (ρ0)X ) =
∑

j1, j2,..., jk

α j1α j2 · · · α jk Tr(C j1,..., jk (ρ0)X ).

(B6)

Therefore suppose it holds for all Clifford unitaries C that the
loss of our correction is

|δ(C)| := | f (μ(C)) − Tr(C(ρ0)X )| = 0. (B7)

Then, since C j1,..., jk is a Clifford unitary for all j1, . . . , jk ,

|δ(U )| = | f (μ(U )) − Tr(U (ρ0)X )|

=
∣∣∣∣∣

∑
j1,..., jk

α j1 · · · α jk δ(C j1,..., jk )

∣∣∣∣∣
= 0. (B8)

In other words, we have achieved zero loss on all arbitrary
circuits if we obtain zero loss on training data composed of
all possible Clifford circuits. We note that a similar remark
is made in Ref. [25] to argue that Clifford circuits suffice for
their learning-based approach to quasiprobability representa-
tion (QPR) error mitigation. However, unlike in Ref. [25],
depending on the channels and initial state involved in the
error mitigation, there may not exist a set of parameters which
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FIG. 5. A layer of the QAOA for a 4-qubit system decomposed
into IBMQ natively supported gates. Gates within the dashed contour
represent e−iγ σ 1

Z σ 2
Z [38], while a U gate represents e−iβσX . To perform

the mitigation, we decompose the U gates as explained in Fig. 3.

achieves zero loss on all Clifford circuits. Hence the consider-
ations in this Appendix should serve as high-level motivation
for the linear form of the ansatz we employ, rather than a
rigorous demonstration of the practicality of Clifford-based
training sets.

APPENDIX C: THE QAOA DECOMPOSITION INTO A
QUANTUM CIRCUIT

In Fig. 5 we show a decomposition of the QAOA (15)
into a circuit which was used to perform the simulations in
Sec. IV A.

APPENDIX D: CAUSAL CONE

We define the causal cone of an observable of interest as
the set of gates which affects its expectation value [37]. In
the case of the shallow quantum circuits and 1- or 2-qubit
observables considered in Sec. IV B the causal cones contain
only a fraction of all gates in the circuit. Therefore, to correct
noisy expectation values of these observables, it is beneficial
to leave non-Clifford gates only within the causal cone, as we
have done when constructing the CDR and vnCDR training
sets while correcting observables from random quantum cir-
cuits. We show an example of the causal cone construction in
Fig. 6.

APPENDIX E: MATRIX PRODUCT OPERATOR
SIMULATION OF NOISY STATES

Many-body quantum states can be represented in terms
of interconnected tensors called tensor networks. Tensor
networks are the basis for many standard numerical and ana-
lytical techniques in condensed matter theory [39]. The matrix
product operator (MPO) is an example of a tensor network,
which corresponds to a 1D array of tensors. In general they
can describe any mixed state in the 1D many body Hilbert
space, with the dimensionality of the tensors scaling exponen-
tially with the system size. However, states with sufficiently
small entanglement can be efficiently represented as MPOs,
making them a convenient numerical tool. For a detailed in-
troduction of MPO methods we refer the reader to Ref. [40].

FIG. 6. A causal cone of a single-qubit observable is shown as
gates within the double-dashed contour. Here, we consider the case
of the hardware-efficient ansatz with Q = 8 and p = 2. Note that the
causal cone is shown for a noisy expectation value while assuming
that the Kraus matrices of a noise channel associated with a single- or
double-qubit gate act on the same qubits as the gate. This assumption
is true for our noise model. The causal cone for a noisy circuit
implementation contains the causal cone of the corresponding exact
expectation value.

Consider a Q-qubit density matrix,

ρ̂ =
1∑

i1, . . . , iQ = 0
i′1, . . . , i′Q = 0

c(i1···iQ )(i′1···i′Q ) |i1, . . . , iQ〉 〈i′1, . . . , i′Q| . (E1)

We can express c(i1···iQ )(i′1···i′Q ) as a product of matrices

W (1)i1i′1 ,W (2)i2i′2 , . . . ,W (Q)iQi′Q ,

c(i1···iQ )(i′1···i′Q ) =
χ−1∑

b1,...,bQ−1=0

W
(1)i1i′1

1,b1
W

(2)i2i′2
b1,b2

· · ·W (Q)iQi′Q
bQ−1 ,

(E2)

where χ is the bond dimension and b1, . . . , bQ−1 are bond in-
dices which characterize the entanglement in the state. Above,
for simplicity, we assume the same χ for each bond index,
but in principle χ can be different for each of them. For a
general quantum state represented in this form, one needs
to use χ = O(2n) [40]. Dropping the summation over the
dummy indices, we can write ρ̂ as a MPO

ρ̂ =
∑

i1, . . . , iQ
i′1, . . . , i′Q

W (1)i1i′1W (2)i2i′2 · · ·

· · ·W (Q)iQi′Q |i1, . . . , iQ〉 〈i′1, . . . , i′Q| . (E3)

In general this is not an efficient description of a quantum
state due to the exponential scaling of the bond dimen-
sion. However, for a restricted set of states an efficient
representation exists, namely, for states with sufficiently
small entanglement. Therefore, for this restricted class of
states, expectation values can be classically evaluated. To
be more specific, let us consider 〈X (1)

1 X (2)
2 · · · X (Q)

Q 〉, where

X (1)
1 , X (2)

2 , . . . , X (Q)
Q are single-qubit observables acting at
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FIG. 7. Correcting the IBMQ-hardware-efficient ansatz with random parameters. Various numbers of shots Ns were used to evaluate every
circuit involved in each mitigation method. For each value of Q and p we analyze 30 random circuits and correct 〈σ 1

X 〉, 〈σ Q/2
X 〉, 〈σ 1

Z σ 2
Z 〉, and

〈σ Q/2
Z σ

Q/2+1
Z 〉 for each of them. The circuits are the same as those analyzed in Fig. 4. The results from Fig. 4 correspond to the Ns = ∞ limit

and are shown alongside finite-Ns results. (a) The scaling with Q of the mitigated and unmitigated absolute error per circuit for p = 6. In the
left panel we show the mean values (solid lines), while the right panel shows the maximal values (dashed lines). (b) The scaling with increasing
p for Q = 8. The vnCDR method systematically outperforms the ZNE and CDR methods for Ns � 104 in the case of the shallow circuits and
Ns � 105 in the case of the deep circuits making it the method of choice for obtaining high-accuracy results.

qubits 1, 2, . . . , Q, respectively. Then〈
X (1)

1 X (2)
2 · · · X (Q)

Q

〉 = Y (1)Y (2) · · ·Y (Q), (E4)

where Y (1),Y (2), . . . ,Y (Q) are matrices obtained as

Y (1)
1 =

∑
i1,i′1

W (1)i1i′1 X
(1)i′1i1
1 , . . . . (E5)

Therefore the computational cost scales as O(χ2) enabling
classical computation for small enough χ .

In the case of our noise model, the initial noisy state cor-
responding to the exact state ρ̂ = |00 · · · 0〉〈00 · · · 0| can be
written as a MPO with χ = 1 using standard MPO techniques
[40]. Applying these techniques, one can verify that the action
of single-qubit gates does not increase χ , while the action
of 2-qubit noisy CNOT gates increases χ for bond indices
linking 2 qubits at which the CNOT gate acts by at most a
factor of 16. Therefore, in the case of our random quantum
circuit (RQC) simulation, maximal χ is bounded from above
by 16p/2. In practice we find that MPO representation can
be further compressed after each CNOT action using standard
MPO compression techniques [40] to discard W elements of
the order of numerical precision.

APPENDIX F: RESOURCE SCALING

In the main text we systematically benchmark the per-
formance of the ZNE, CDR, and vnCDR error mitigation
methods in the limit of an infinite number of shots. In the
case of real-world quantum devices, one is limited to a finite
shot number. Here, we analyze the performance of the method
in this case. We perform error mitigation of 〈σ 1

X 〉, 〈σ Q/2
X 〉,

〈σ 1
Z σ 2

Z 〉, and 〈σ Q/2
Z σ

Q/2+1
Z 〉 for RQC using Ns = 103, 104, 105

shots per circuit and compare the results obtained with those
evaluated with an infinite number of shots. To enable efficient
classical simulation, we consider here independent shots for
each observable.

We gather the results in Fig. 7 showing scaling of the
error with system size Q and circuit depth p for different shot
costs. We find that the improvement of vnCDR over ZNE and
CDR grows systematically with increasing Ns. We see that
small Ns = 103 is enough to see a systematic improvement
of vnCDR over ZNE for the shallow circuits. With Ns = 104

we see a systematic improvement of vnCDR over CDR for the
shallow circuits and a systematic improvement of vnCDR over
ZNE for the deep circuits. With Ns = 105 shots we also obtain
a systematic improvement of vnCDR over CDR for the deep
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circuits. We note that for setups in which vnCDR does not
outperform other methods, it gives results of a similar quality.
We observe that increasing Ns improves performance of the
methods only for sufficiently small Ns. In the case of ZNE the
results obtained with Ns = 103 are of quality similar to that of
the results obtained in the limit of Ns = ∞. For vnCDR and
CDR, Ns = 105 is needed to that end.

To give a full picture of the number of shots needed for
the different methods, one also needs to consider the number
of circuits required to mitigate the circuit of interest. ZNE
requires only the execution of the circuit of interest at various
noise levels. Assuming that n noise levels are needed with
Ns shots per circuit, the total shot cost for ZNE is n × Ns.
Both CDR and vnCDR require the execution of near-Clifford

training circuits as well as the circuit of interest. Assuming a
training set consisting of m circuits, each run using Ns shots,
the total shot cost for CDR is given as (m + 1) × Ns. vnCDR
requires that the Clifford training circuits and the circuit of
interest be implemented at various noise levels. With n noise
levels and m training circuits, each evaluated using Ns shots,
the total shot cost for vnCDR is (m + 1) × n × Ns. For our
RQC results, n = 5 and m = 100. Therefore the shot cost for
ZNE is given as 5 × Ns, that for CDR is 101 × Ns, and that
for vnCDR is 501 × Ns. Then, to see systematic improvement
over ZNE and CDR, we need 5 × 105 to 5 × 106 and 5 × 106

to 5 × 107 shots in total, respectively. These shot numbers can
be obtained with current devices, proving the usefulness of
vnCDR.
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