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Vorticity-induced anomalous Hall effect in an electron fluid
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We develop a hydrodynamic theory for an electron system exhibiting the anomalous Hall effect, and show
that an additional anomalous Hall effect is induced by a vorticity generated near boundaries. We calculate the
momentum flux and force proportional to the electric field using linear response theory. The hydrodynamic
equation is obtained by replacing the local electric field with the electric current, focusing on a scale that
is sufficiently larger than the mean-free path. It is demonstrated that there is a coupling between a vorticity
of an electric current and a magnetization which generates a pressure from nonuniform vorticity. Taking into
account Hall viscosity and relaxation forces, a nonuniform flow near a boundary and an additional Hall force are
calculated. The additional anomalous Hall force is opposite to a conventional anomalous Hall force, resulting in
a sign reversal in thin systems. An antisymmetric viscosity turns out to arise from the side-jump process due to
the anomalous velocity.
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I. INTRODUCTION

Spin, a form of angular momentum, leads to various exotic
phenomena different from those of charge. A typical example
is spin-rotational coupling, where the angular momentum of
mechanical rotation couples directly to spin, inducing the
classical Einstein-de Haas effect. Spin-rotation coupling was
derived from the Dirac equation in a rotating frame in Ref. [1].
A spin-vorticity coupling to the vorticity of the electron flow,
ω = ∇ × je, where je is the electron current density, was de-
rived and spin current generation was discussed recently [2].
Spin vorticity coupling is natural from the view point of the
Faraday’s law, Ḃ = −∇ × E between electric and magnetic
fields, E and B, respectively. In fact, the right-hand side is pro-
portional to the vorticity of electric current, as local electric
current density is related in the linear response regime to the
electric field as je = σeE, where σe is the electric conductivity
and spin density is induced by a magnetic field.

Spin Hall effect, where spin density [3] and current [4] are
induced by an applied electric field, recently turned out to be
interpreted as due to the spin-vorticity coupling [5]. It was
shown there that the induced spin density s in the ballistic
regime is written as s = λsh(∇ × je ), where λsh is a constant
arising from the spin-orbit interaction, indicating an effective
spin-vorticity coupling of the form s · ω. (In the diffusive case,
the coupling exists but becomes nonlocal due to diffusion.)
As expected from the symmetry and Faraday’s law, λsh is
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proportional to the electron relaxation time τ , meaning that
relaxation is essential for the development of spin density.
The above studies indicate that spin-vorticity coupling, arising
as a natural consequence of the spin-orbit interaction, is a
fundamental coupling for various spintronics effects.

Spin-vorticity coupling suggests that there is also a
magnetization-vorticity coupling inducing a rotational mo-
tion due to a magnetization in ferromagnets. The aim of the
present paper is to demonstrate that such a coupling indeed
emerges as a result of an anomalous Hall (AH) effect. Vor-
ticity of electrons in solids has not been discussed in the
context of conventional electron transport properties focusing
on the spatially averaged responses. In mesoscopic systems
and interface/surface transports, in contrast, vorticity of flow
in the meso or macroscopic size would be crucially important.
Hydrodynamic description, which integrates out microscopic
features, become a powerful tool to take account of such
vortical effects. In fact, recent intense studies of electron
hydrodynamics, which is quickly growing into a mature field
of condensed matter physics today [6,7], has predicted and
demonstrated various unconventional transport phenomena
driven by vorticity or a velocity gradient, including negative
local resistance [8–11], anomalous viscous magnetotransport
[12–17], spin hydrodynamic generation [18], generalized vor-
tical effect [19,20], and chiral angular momentum generation
[21]. In this paper, we choose a hydrodynamic approach for
the analysis of the Ohmic fluid in AH systems and evaluate
the momentum flux density based on a microscopic linear
response theory, as done in Ref. [21]. Considering low tem-
peratures, the effects of magnons are neglected.

Spin is an axial vector breaking the time-reversal sym-
metry, and thus the hydrodynamic coefficients are modified
when an internal spin degrees of freedom is taken account
[22,23]. As for conventional fluid, spin corresponds to a
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rotation of each molecule, while it is the electron’s quantum
mechanical spin in the case of our electron fluid, but they are
equivalent from the viewpoint of symmetry. A hydrodynamic
equation taking account of spin explicitly was discussed on
a phenomenological basis by Snider and Lewchuk [23]. It
was argued that momentum flux density tensor, πi j , which
is even under both spatial inversion and time-reversal, may
have a term linear in spin, s, if there is an external mag-
netic field H (or magnetization M) or vorticity of fluid
ω = ∇ × je. The diagonal term of πi j describing pressure
therefore has a spin-vorticity coupling proportional to s · ω

argued later microscopically in Ref. [1,2]. Considering a fer-
romagnetic electron fluid, electron spin is polarized along the
magnetization M, i.e., s ∝ M, and thus the spin-vorticity cou-
pling identified in Ref. [23] reduces to a spin-magnetization
coupling M · ω when electron spin is traced out. Our mi-
croscopic study turns out to justify this phenomenological
argument and, moreover, it provides an explicit expres-
sion describing the magnitude of the magnetization-vorticity
coupling.

II. ANOMALOUS HALL ELECTRON FLUID

Electrons in solids are dense and are regarded as a contin-
uum medium or a fluid. Macroscopic or mesoscopic transport
properties of electron fluid are characterized by the forces act-
ing on the fluid. Besides external forces, such as the one due
to the electric field and the Lorentz force, there are viscosity
forces and relaxation forces induced by internal interactions
and scatterings [21,24]. The viscosity force arising from in-
homogeneity of fluid velocity is larger for longer relaxation
times (weaker relaxation), as the relaxation effects cut off
interaction effects that lead to viscosity. In most metals with
disorder, the steady electron transport is determined by a
relaxation force. The force is opposite to the fluid velocity
and is written as f r = −m j/τ , where m is the electron mass,
τ is the total relaxation time, and j is the current density
without the electron charge e (e j = je). Depending on the
relaxation time, therefore, electron fluids are classified into
two regimes, a viscous fluid and Ohmic fluid, where viscos-
ity and relaxation dominates, respectively. Most metals are
in the Ohmic regime, while viscous fluids have been real-
ized recently in extremely clean systems such as graphene
[7,9,17,25–27], GaAs quantum wells [28,29], 2D monovalent
layered metal PdCoO2 [15], and various semimetallic materi-
als including WP2 [16], WTe2 [30], MoP [31], Sb [32], and
ZrTe5 [33].

Here we study an electron fluid showing AH effect due to
a uniform magnetization M. The systems we have in mind
are ordinary ferromagnets such as Fe and Co, and thin metals
and semiconductors under an external magnetic field. Con-
sidering the Ohmic regime, we take account of a spin-orbit
interaction arising from impurities, on the same footing as the
studies of AH conductivity [34]. Calculating the momentum
flux density within the linear response theory, we show that
the AH liquid has a magnetization-vorticity coupling, M · ω,
besides an anomalous viscosity argued previously [13]. The
magnetization-vorticity coupling is a spin-polarized counter-
part of the spin-vorticity coupling. In terms of the force
density, the contribution reads λ̃∇(M̂ · ω) with a coefficient

λ̃. In the case of a thin film ferromagnet with an in-plane
magnetization with an applied electric field, this coupling
induces a voltage perpendicular to the magnetization and the
applied electric field. The direction of the output voltage is
opposite to the conventional bulk AH effect. The reduction of
Hall effect due to a Hall viscosity was reported in Ref. [13].
We also identify an AH force fAH(M̂ × j) ( fAH is a coefficient
and M̂ ≡ M/M), which is analogous to the Lorentz force.
The total force density acting on the AH fluid with uniform
and steady flow is therefore f = enE − m

τ
j + fAH(M̂ × j).

When an electric field E is perpendicular to the magneti-
zation, the steady flow realized is e j = σeE + σah(M̂ × E )
with σAH/σe = τ

m fAH to the lowest order in the spin-orbit
interaction.

The magnetization-vorticity coupling found here is in the
diagonal part of the momentum flux density, πi j , presenting
a potential for the electron, and thus does not generate angu-
lar momentum. In fact, the magnetization-vorticity coupling
induces a pressure f ω = λ̃∇(ω · M), and its contribution to
the orbital angular momentum vanishes, as

∫
d3r[r × ∇(ω ·

M)] = 0 if we use integral by parts. This is because the
coupling is between two angular momenta and thus linear
velocity does not generate angular momentum. In contrast,
in chiral systems, an angular momentum couples to a linear
momentum, resulting in an angular momentum generation by
a linear momentum [19,21].

Besides the magnetization-vorticity coupling, another
unique feature of the present system is the existence of the an-
tisymmetric components π a

i j (= −π a
ji) of the momentum flux

density, which is peculiar to the fluids with internal angular
momentum. It is written generally as π a

i j = εi jkak , where a is
a vector even in the space inversion (axial vector), because πi j

is even. Hence, from the symmetry viewpoint, π a
i j is expected

to arise from spin and vorticity as argued phenomenologically
[22,23,35]. We demonstrate that the present AH system in fact
has the antisymmetric components π a

i j arising from the side-
jump process due to the anomalous velocity. Our results are
consistent with phenomenological argument of Ref. [23]. Al-
though the side-jump process in disordered metals is smaller
than the skew-scattering contribution by a factor of (εF τ )−1/2,
where εF is the Fermi energy, the observation of the anti-
symmetric viscosity in an AH electron system is therefore
regarded as a confirmation of the existence of anomalous
velocity and the side-jump mechanism.

Moreover, the anomalous velocity of the quantum system
gives rise to an interesting possibility of different hydro-
dynamic equations depending on the descriptions based on
velocity or momentum. While they are proportional to each
other for classical particles, they are not when an anomalous
velocity exists due to interactions. In this paper, we con-
sider the hydrodynamic equation for momentum density, as
its time-derivative is a force, which is observable. The two
choices are, however, equivalent if calculated correctly.

III. FORMALISM

The model we consider is a conduction electron with a spin
polarization due to a uniform localized spin (magnetization) S
and spin-orbit interaction. The Hamiltonian for the electron is
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H ≡ HK + HM + Hso + Hi, where

HK =
∫

d3rc† −∇2

2m
c (1)

is the kinetic part, and

HM ≡ −
∑

k

c†
k(M · σ)ck (2)

is the exchange interaction to the magnetization, where M ≡
JS with J being a coupling constant. The spin-orbit interaction
is the one arising from random impurities, represented by a
Hamiltonian

Hso = λso

∫
d3rc†(r)[(∇ui(r) × p̂) · σ]c(r)

= iλso

∑
kk′

uk′−k(k′ × k) · c†
k′σck, (3)

where ui(r) = ui
∑

Ri
δ(r − Ri ) is an impurity potential,

where ui is the strength of the impurity potential, and Ri is
the position of ith impurity. uk′−k = ui

∑
Ri

e−i(k′−k)·Ri is the
Fourier transform of the impurity potential. The spin-orbit in-
teraction leads to a correction to the electric velocity operator
(anomalous velocity):

δv(r) = −iλso

∑
kk′q

uqei(k−k′+q)·rc†
k′ (q × σ )ck. (4)

Considering the diffusive (Ohmic) regime, an impurity scat-
tering Hamiltonian,

Hi =
∑
kk′

uk′−kc†
k′ck, (5)

is included. The elastic lifetime arising from the impurity
scattering, τe, is given by τ−1

e = 2πνu2
i ni, where ν and ni are

density of states and impurity concentration, respectively. We
treat it as spin independent to simplify the calculation.

We study the effects of the AH effect on the hydrodynamic
behaviors of the electron, taking account both the spin-orbit
interaction and an applied electric field to the linear order. A
hydrodynamic equation is derived by calculating the equation
of motion for the momentum density, p ≡ 〈c† p̂c〉 ( p̂ ≡ −i∇
is the momentum operator) by use of the Heisenberg equation
of motion, ṗ = i[H, c† p̂c]. The commutator with the kinetic
part is

i[HK , c† p̂ic] = −∇ jπ
0
i j, (6)

where the momentum flux density contribution is

π0
i j (r, t ) = −i

1

m
tr[ p̂i p̂ jG

<(r, t, r, t )], (7)

with G<(r, t, r′, t ′) = i〈c†(r′, t ′)c(r, t )〉 being the lesser
Green’s function and tr is the summation over spin. The spin-
orbit contribution is

i[Hso, c† p̂ic] = −∇ jπ
so
i j + f so

i , (8)

where the momentum flux density contribution from the spin-
orbit interaction is (see Appendix B)

π so
i j (r, t ) = λso

2
ε jkl (∇kui(r))

(∇r
i − ∇r′

i

)
× tr[σlG

<(r, t, r′, t )]|r′→r, (9)

where ε jkl is the Levi-Civita symbol. The term f so
i is a contri-

bution not written as a divergence, which is

f so
i (r, t ) = −λso

2
ε jkl (∇i∇ jui(r))

(∇r
k − ∇r′

k

)

× tr[σlG
<(r, t, r′, t )]|r′→r. (10)

The impurity contribution leads to a force:

f i
i = −i(∇iui )tr[G

<(r, t, r, t )]. (11)

The hydrodynamic equation of the present system is there-
fore\vskip3pt

ṗi = −∇ jπi j + f so
i + f i

i , (12)

where the momentum flux density is

πi j = π0
i j + π so

i j

= −itr[ p̂iv̂ jG
<(r, t, r, t )], (13)

where v̂ ≡ p̂
m + δ̂v is the total velocity operator and π0

i j is
the normal contribution without spin-orbit interaction. Since
v̂ includes δ̂v, πi j has antisymmetric components.

IV. DERIVATION OF HYDRODYNAMIC EQUATION

The momentum flux density πi j is calculated in the pres-
ence of a driving field, an applied static electric field E. In the
linear response theory, we have πi j = πi jkeEk , where πi jk is
the correlation function of p̂iv̂ j and v̂k . The calculation of the
response function is parallel to that of the AH conductivity
σxy in Ref. [34]. There are two processes, one arising from
the normal velocity p̂

m , the contribution historically called
skew-scattering contribution, and the other arising from the
anomalous velocity δ̂v, called the side-jump contribution. The
dominant contribution at dilute impurity concentration turns
out to be the skew scattering one containing impurity scat-
tering to the second order besides the spin-orbit interaction
[34], diagrammatically depicted in Fig. 1(a). The processes
with less impurity shown in Fig. 1(b) vanish as the factor
of k′ × k in the spin-orbit interaction changes signs for the
two conjugate processes. The skew-scattering contribution
is thus (ss denotes skew-scattering, and V is the system
volume)

π ss
i jk (q) = 1

2πV 3

iλsou3
i ni

m2

∑
kk′k′′

kik jk
′
k

[(
k′ − q

2

)
×

(
k − q

2

)]
l

× 2Retr
[
σlG

r
k+ q

2
Gr

k′+ q
2
Ga

k′− q
2
Ga

k− q
2
Gr

k′′
]
, (14)

where Gr
k ≡ [− k2

2m + M · σ + i
2τe

]−1 is the retarded Green’s
function with elastic lifetime τe and Ga

k ≡ (Gr
k)∗. We choose

M along the z axis and calculate the response function to
the lowest order in the external wave vector q. Summation
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FIG. 1. Feynman diagrams for the dominant contribution to the momentum flux density at the linear order in the spin-orbit interaction and
linear response to the applied field, denoted by × at the right end. Solid lines represent electron Green’s functions, where upper and lower lines
denote retarded and advanced Green’s functions, respectively, and k and k′ are the electron wave vectors. Complex conjugate processes (turned
upside down) are also taken into account. (a) The dominant contribution (skew scattering). The left vertex with kik j represents the vertex for
the momentum flux density and a vertex with λ denotes the spin-orbit interaction. (b) The contribution that vanishes when a complex conjugate
process (upside-down) is summed. (c), (d) The contributions arising from the anomalous velocity δv, called the side-jump contributions. The
process (c) gives rise to an antisymmetric component of the flux density. The contributions are smaller than the one in (a) by a factor of
(εF τe )−1/2.

over the wave vectors are carried out as
1

V

∑
k

Ga
k = iπν,

1

V

∑
k

kik jG
r
kGa

k = 2π

3
νkF

2τeδi j

1

V

∑
k

kik jkkGr
k+ q

2
Ga

k− q
2

= −i
2π

15m
νkF

4τ 2
e (δi jqk + δikq j + δ jkqi ), (15)

where ν and kF are the spin-dependent density of states and Fermi wave vector, respectively. The result is

π ss
i jk (q) = iλ(δi jεlkzql + εikzq j + ε jkzqi ), (16)

where the coefficient is (± denotes the direction of spin along the z axis)

λ ≡ 4π2

45

λsou3
i ni

m3

∑
±

(±)(ν±)3(kF±)6τ 3
e . (17)

The contribution vanishes if there is no spin polarization (M = 0).
The contributions arising from the anomalous velocity δv [the side-jump contributions, depicted in Figs. 1(c) and 1(d)] are

π
sj(c)
i jk (q) = −i

2πV 2

λsou2
i ni

2m
ε jlz

∑
kk′

(k′ + k + q)i

2

(
k + q

2

)
k
(k′ − k)l 2Retr

[
σzG

r
k′Gr

kGa
k+q

]
,

π
sj(d)
i jk (q) = −i

2πV 2

λsou2
i ni

2m
εklz

∑
kk′

(
k + q

2

)
i

(
k + q

2

)
j
(k′ − k)l2Retr

[
σzG

r
k′Gr

kGa
k+q

]
, (18)

which turn out to be

π
sj(c)
i jk (q) = iηsj

(
−2

3
ε jizqk + δikε jlzql + ε jkzql

)
,

π
sj(d)
i jk (q) = iηsj2(δi jεklzql − εikzq j − ε jkzqi ), (19)

where

ηsj ≡ π

15

λsou2
i ni

m2

∑
±

(±)(ν±)2k4
F±τ 2

e . (20)

The total side-jump contribution π
sj
i jk ≡ π

sj(c)
i jk + π

sj(d)
i jk is

π
sj
i jk (q) = iηsj

(
−2

3
ε jizqk + δikε jlzql + 2δi jεklzql − 2εikzq j − ε jkzqi

)
. (21)

The side-jump contribution has a unique contribution asymmetric with respect to i and j, although the magnitude proportional to
u2

i τ
2
e is smaller than the skew scattering one by a factor of (εF τe )−1/2 (noting that ui ∝ τ

−1/2
e ). The contribution to the spin-orbit

induced momentum flux density π so
i j = π ss

i j + π
sj
i j is therefore

1

e
π so

i j (r) = (λ − 2ηsj )δi j (∇ × E ) · M̂ − λ[∇i(M̂ × E ) j + ∇ j (M̂ × E )i]

+ 2

3
ηsjεi jz(∇ · E ) − ηsj

2
[∇i(M̂ × E ) j − ∇ j (M̂ × E )i]

− ηsj(M̂ × ∇) jEi, (22)
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FIG. 2. Feynman diagrams for force due to (a) the spin-orbit interaction and (b) the impurities at the linear order at the linear response to
the applied field.

where λ ≡ λ − 3ηsj/2 and M̂ ≡ M/|M| is chosen along z axis. Here we see that an antisymmetric viscosity with respect to i
and j arises from the side-jump process (ηsj). The last term of Eq. (22) does not contribute to the hydrodynamic equation as
∇ · (M̂ × ∇) = 0.

Force densities are similarly calculated. The linear response contribution to a uniform component of the spin-orbit induced
force density is f so

i = f so
im Em, where (diagrammatically shown in Fig. 2)

f so
im ≡ 1

2πV 3

λsou3
i ni

m

∑
kk′k′′

ε jkl (k
′ − k)i(k

′ − k) j (k
′ + k)kk′

m2Retr
[
σlG

r
kGr

k′′Gr
k′Ga

k′
]
. (23)

After summation over the wave vectors, we obtain f so
im =

−εimz fAH, with a coefficient

fAH = 2π2

9

λsou3
i ni

m

∑
±

(±)ν3
±k4

F±τe. (24)

The force thus is the AH force:

f so = −e fAH(E × M̂). (25)

The relaxation force due to the impurities turns out to be f i =
−enE, as was argued in Refs. [21,24].

Taking account of the normal viscosity π0
i j (calculated

in Appendix A) and relaxation force, Eqs. (12), (22), and
(25) describe the fluid as a response to the driving field E.
Conventional hydrodynamic equation, a relation between the
momentum density and local velocity or current, is obtained
by using e j = σeE + σAH(M̂ × E ), where σe and σAH are
the longitudinal and AH conductivities, respectively. At the
lowest order in the spin-orbit interaction, the hydrodynamic
equation of the present system reads

ṗ = η̃0(2∇(∇ · j) + ∇2 j) − λ̃[∇[∇ · ( j × M̂)] + ∇2( j × M̂)] − λω∇(ω · M̂)

+ η̃sj

[
2

3
(M̂ × ∇)(∇ · j) + 1

2
[∇ × [∇ × (M̂ × j)]]

]
− f̃AH( j × M̂) − ne2

σe
j + enE, (26)

where ω ≡ ∇ × j is the vortex density, λ̃ = e2λ/σe, η̃sj ≡
e2ηsj/σe, λω ≡ λ̃ − 1

2 η̃sj, η̃0 ≡ e2η0/σe, and f̃AH ≡ e2 fAH/σe.
The term λ̃ is the AH viscosity force arising from a nondis-
sipative component of the viscosity tensor when the fluid’s
time-reversal symmetry is broken, which has been intensely
discussed for systems under a magnetic field [13,17,36–38].
On the other hand, the term λω is the pressure induced by the
vorticity-magnetization coupling, which can also be regarded
as an AH contribution to the volume viscosity. The term η̃sj

represents an asymmetric viscosity force arising from π a
i j .

Such a term requires some axial vector such as spin and
vorticity to be finite, which, in the present, corresponds to
the magnetization vector M. Our result indicates an antisym-
metric components of the viscosity provides evidence of a
side-jump process due to the anomalous velocity.

Using an axial vector a, the antisymmetric components
of momentum flux density are written as π a

i j = εi jkak . As
read from Eq. (26), the axial vector linear in the spin-orbit

interaction, which arises from M̂,

a = −4

3
η̃sj(∇ · j)M̂ + η̃sj[∇(M̂ · j) + (M̂ · ∇) j]. (27)

In the contributions to a without M̂, there is a term propor-
tional to ∇ × j, which corresponds to a rotational viscosity
[22,23,35].

V. VORTICITY-INDUCED ANOMALOUS HALL EFFECT

Vorticity of flow is usually neglected in bulk transport
phenomena in solids as the effect affects only near surfaces or
interfaces. In thin film or wires in contrast, the effect would
dominate hydrodynamic transport. In the general theory of
fluid, the fluid velocity at the interfaces with the container
of fluid vanishes and the velocity grows away from the
interface. The velocity gradient means the existence of vor-
ticity, ω = ∇ × j, near the surfaces and interfaces. Our result,
Eq. (26), indicates that such surface vortices when coupled to
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FIG. 3. Schematic picture of the vorticity-induced anomalous
Hall effect in a thin film with thickness d with an in-plane magneti-
zation (chosen along the z axis). Applied electric field E along the x
direction induces an inhomogeneous fluid velocity v in the thickness
direction, resulting in positive and negative vorticities ω close to the
upper and lower plane, respectively. The gradient of the vorticity
induces a Hall motive force fω perpendicular to the film, which is
in the opposite direction of the conventional anomalous Hall force
fAH.

magnetization or magnetic field induces a Hall force or volt-
age. A suitable setting for observing this effect is a thin film
ferromagnet with an in-plane magnetization (Fig. 3). We ap-
ply an electric field E perpendicular to the magnetization. In
the steady state, the velocity profile in the thickness direction
(shown in Fig. 3) calculated from Eq. (26) is [here we ignore
higher order of (εF τ )−1]

jx(y) = σe

e
E

[
1 − cosh(y/l )

cosh(d/2l )

]
, (28)

where the length scale of the profile l is determined by the
viscosity and the electron mean-free path as l ≡

√
σeη̃0/(ne2).

The velocity variation results in a vorticity, ω = ∇ × j, posi-
tive near the upper plane and negative in the lower plane. The
vorticity-magnetization coupling energy ω · M̂ has a gradient
in the perpendicular direction, resulting in a vorticity-induced
motive force density f ω ≡ λ̃∇(ω · M̂). Taking account of the
elastic lifetime τe, the steady perpendicular current density
induced by the vorticity is jω = fωτe/m. The vorticity due to
the current density jx along the electric field is approximated
as ω = |∇ × j| 
 jx/l near the surface considering a system
thickness d � l . The gradient of the vorticity is of the order of
ω/d = jx/(dl ). The vorticity-induced current density is there-
fore jω = σωE , where σω ≡ λτe

mdl is the vorticity-induced AH
conductivity. In the present model, the order of magnitudes
of the coefficient λ and the AH conductivity are related by
λ 
 (εF τe )σAH, and thus

σω 
 σAH
l

d
. (29)

As the present hydrodynamic approach is justified in the
regime d � l , the vorticity-induced Hall effect is at most
the same order of magnitude as the conventional AH effect
for a thin film of d ∼ l . Nevertheless, the present vorticity
mechanism is a different origin of the Hall effect and could
be useful for surface sensitive detection of transport.

The profile of the total Hall electric field calculated from
Eq. (26) is [here we ignore the higher order of (εF τ )−1]

EHall(y) = −
[

fAH

n
−

(
2

λ

η0
+ fAH

n

)
cosh(y/l )

cosh(d/2l )

]
E , (30)

where we included Hall viscosity for generality. The Hall
voltage is

VHall =
∫ d/2

−d/2
EHall(y)dy

= −
[

fAH

n
− 2l

d

(
2

λ

η0
+ fah

n

)
tanh(d/2l )

]
Ed. (31)

Here, the first term in the bracket is the conventional one,
which is dominant in the bulk limit (d → ∞), whereas the
others are the corrections due to the vorticity or velocity
gradient, which become important in mesoscopic systems
(d ∼ l). Equation (30) indicates that the bulk and vorticity
contributions of the AH effect have opposite signs, result-
ing in a negative Hall electric field near the boundaries as
shown in Fig. 4(a). In the bulk limit, d → ∞, the total
Hall voltage [Eq. (31)] reduces to the conventional contri-
bution fAH

n Ed , while vorticity-induced negative contribution
dominates in thin systems with d ∼ l resulting in VHall 

−3 λ

η0
Ed [Fig. 4(b)]. The sign change of the Hall voltage

by changing the thickness would be useful for experimen-
tal identification of the vorticity-induced AH effect. The
magnitudes of the two contributions are of the same order
in our model; λ/η0 
 fAH/n 
 (εso/εF)(M/εF), where εso ≡
λsouik2

F is the energy scale of the spin-orbit interaction. In
general, λ/η0 and fah/n seems to behave independently and
could have different orders of magnitude, depending on the
details of the systems. However, in our calculations, it is
suggested that they always have the same order of magnitude
without any fine-tuning. This means that, in many metallic
ferromagnets such as Fe and Co, which exhibit the AH ef-
fect, it is possible to observe the sign change of the AH
voltage by changing the sample thickness to the mean-free
path.

Strictly speaking, our results are only applicable to the
metallic ferromagnets in the Ohmic regime, but it is ex-
pected from the symmetry viewpoint that they are also
relevant to the AH systems in the hydrodynamic regime.
This conjecture is also supported by the phenomenologi-
cal arguments in Ref. [23]. One of the possible candidates
in the hydrodynamic regime is a 2D monovalent layered
metal PdCoO2, which is a nonmagnetic metal in bulk but
has been observed to show a surface-magnetization-driven
AH effect in ultrathin films [39,40]. In addition, graphene,
which is one of the most studied systems in the context
of electron hydrodynamics and whose Hall viscosity has
already been observed through the nonlocal transport [17],
is also considered as an ideal stage to observe the anoma-
lous hydrodynamic flow originating from some magnetic
orders. It is well-known that the AH effect arises due to
the proximity-induced ferromagnetism when it is coupled to
magnetic substrates [41–44] or magnetic nanoparticles [45].
These materials will be intriguing platforms to investigate
the hydrodynamic electron transport physics discussed in this
paper.

VI. CONCLUSION

We have derived a hydrodynamic equation for AH electron
fluid in the Ohmic regime and found a vorticity-magnetization
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FIG. 4. (a) Spatial distribution of Hall electric field [Eq. (30)]. (b) System thickness dependence of the total Hall voltage [Eq. (31)], plotted
for different value for λ/η0.

coupling contribution in the momentum flux density. The
coupling induces a vorticity-induced additional AH effect
in the opposite direction as the conventional AH effect,
suggesting a sign reversal of AH voltage in thin systems.
Furthermore, we can also consider nonlocal measurements
in the so-called vicinity geometry [8,46] as another possi-
ble setup to detect the effect of the vorticity-magnetization
coupling and the Hall viscosity. Actually, in the geometry,
viscous effects in the nonlocal transport, including Hall vis-
cosity effects, has already been observed in several materials
[9,17,47,48].

For vorticity to arise, the existence of a boundary is gener-
ally essential, as the vorticity is parity invariant, while linear
driving field is odd. A inversion symmetry breaking due to the
boundary is thus necessary.

Spin chirality χ has been pointed out to be an another
origin of the AH effect. The study of the perturbative regime
in Ref. [49] is straightforwardly extended to the calculation of
the momentum flux density, resulting in a coupling χ · ω.
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APPENDIX A: NORMAL VISCOSITY OF OHMIC FLUID

Here we calculate the normal viscosity constant in the
present Ohmic fluid for consistency. The normal contribution
to the momentum flux density is

π
(0)
i j (r, t ) ≡ −i

1

m
tr[ p̂i p̂ jG

<(r, t, r, t )], (A1)

where the Green’s function here is without the spin-orbit
interaction. Taking account of the static external electric
field, described by a gauge field A as E = −Ȧ, to the lin-
ear order, it reads in the Fourier representation π

(0)
i j (q,�) =∫

d3r
∫

dtπ (0)
i j (r, t )e−iq·rei�t ,

π
(0)
i j (q) = i

e

m2

1

V

∑
k

∫
dω

2π
lim
�→0

kik jkk[Gk+ q
2 ,ω+�Gk− q

2 ,ω]<Ak (q,�) ≡ π
(0)
i jk (q)eEk (q), (A2)

where ω and k, � and q denote the angular frequency and wave vector of electron and external field, respectively. Here we
neglect the diffusive contribution as it affects only the nonequilibrium state. The response function is

π
(0)
i jk (q) ≡ 1

m2

1

V

∑
k

∫
dω

2π
lim
�→0

1

�
kik jkk[Gk+ q

2 ,ω+�Gk− q
2 ,ω]<. (A3)

The lesser component is decomposed into the retarded and advanced Green’s functions as

[Gk+ q
2 ,ω+�Gk− q

2 ,ω]< = ( fω − fω+�)Gr
k+ q

2 ,ω+�
Ga

k− q
2 ,ω

− fωGr
k+ q

2 ,ω+�
Gr

k− q
2 ,ω

+ fω+�Ga
k+ q

2 ,ω+�
Ga

k− q
2 ,ω

, (A4)

where fω = [eβω + 1]−1 is the Fermi distribution function. Expanding the expression with respect to �, we obtain

[Gk+ q
2 ,ω+�Gk− q

2 ,ω]< = fω
[
Ga

k+ q
2 ,ω

Ga
k− q

2 ,ω
− Gr

k+ q
2 ,ω

Gr
k− q

2 ,ω

]

+ � f ′
ω

[
−Gr

k+ q
2 ,ω

Ga
k− q

2 ,ω
+ 1

2

(
Ga

k+ q
2 ,ω

Ga
k− q

2 ,ω
+ Gr

k+ q
2 ,ω

Gr
k− q

2 ,ω

)]

+ �

2
fω

[ − Ga
k+ q

2 ,ω

↔
∂ω Ga

k− q
2 ,ω

+ Gr
k+ q

2 ,ω

↔
∂ω Gr

k− q
2 ,ω

]
. (A5)
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The contribution of the order of �0 turns out to cancel the contribution from the anomalous velocity δv. The last term of the
right-hand side of Eq. (A5) is smaller than the main contribution, the second term, by a factor of (εF τe )−1 and is neglected. The
response function is, therefore, using f ′(ω) = −δ(ω) at low temperatures,

π
(0)
i jk (q) ≡ 1

m2

1

V

∑
k

∫
dω

2π
f ′(ω)kik jkk

[
−Gr

k+ q
2 ,ω

Ga
k− q

2 ,ω
+ 1

2

(
Ga

k+ q
2 ,ω

Ga
k− q

2 ,ω
+ Gr

k+ q
2 ,ω

Gr
k− q

2 ,ω

)]

= − 1

2π

1

m2

1

V

∑
k

kik jkk

[
−Gr

k+ q
2 ,ω

Ga
k− q

2 ,ω
+ 1

2

(
Ga

k+ q
2 ,ω

Ga
k− q

2 ,ω
+ Gr

k+ q
2 ,ω

Gr
k− q

2 ,ω

)]
, (A6)

where Gk ≡ Gk,ω=0. Expanding with respect to q and using
rotational symmetry in k, we obtain

π
(0)
i jk (q) = −1

4πV

iql

m3τe

∑
k

kik jkkkl

∣∣Gr
k

∣∣4

= −η0i[δi jqk + δikq j + δ jkqi], (A7)

where η0 ≡ νkF
4τ 2

e
15m3 is a normal viscosity constant. Using ν ∼

εF , it is η0 
 l2
e , where le ≡ kF

m τe is the elastic mean-free path.
Including the external field,

π
(0)
i j = −eη0[δi j∇ · E + ∇iE j + ∇ jEi], (A8)

the contribution to the time-derivative of momentum density
is

−∇ jπ
(0)
i j = eη0[2∇(∇ · E ) + ∇2E]. (A9)

APPENDIX B: ANOMALOUS HALL FORCE OPERATOR

This section shows the derivation of the AH force op-
erator f so

i and the momentum flux operator from spin-orbit

interaction π so
i j . The commutator in Eq. (8) is

i[Hso, c† p̂ıc] = −i

4
λso

∫
d3r′ε jkl∇′

jui(r′)[c†(r′)σl∇′
kc(r′)

− H.c., c†∇ic − H.c.]

= −i

4
λso

∫
d3r′ε jkl∇′

jui(r′)[{c†(r′)σl

× ∇′
kδ(r′ − r)∇ic − c†σl∇iδ(r′ − r) ∇′

kc(r′)}
− H.c. + {−c†(r′)σl∇i∇′

kδ(r′ − r)c

+ ∇ic
†σlδ(r′ − r)∇′

kc(r′)} − H.c.]. (B1)

Writing derivatives of the δ functions with respect to r (∇) by
derivatives with respect to r′ (∇′) and using integral by parts,
we obtain

i[Hso, c† p̂ıc] = i

2
λsoε jkl [∇k{∇ jui(c

†σl∇ic − H.c.)}
+ ∇i∇ jui(c

†σl∇kc − H.c.)], (B2)

namely,

π so
i j = i

2
λsoε jkl∇kui(c

†σl∇ic − H.c.) (B3)

f so
i = i

2
λsoε jkl∇i∇ jui(c

†σl∇kc − H.c.). (B4)
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