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Pseudochirality at exceptional rings of optical metasurfaces
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Non-Hermitian optical metasurfaces have recently attracted interest as a platform for controlling light in
amplitude, phase, and polarization. Here we predict that breaking parity-time symmetry in honeycomblike
active plasmonic metasurfaces can lead to nonunitary circular dichroism at oblique incidence. This extraordinary
chiroptical response is achieved through band folding that enables coupling of incident light to spin-polarized
flat bands surrounded by exceptional rings, formed at Dirac points of plasmonic lattice resonances. The reported
spin polarization differs from previously reported chiral and pseudochiral phenomena in that it solely emerges
from spatial distribution of gain and loss and at the same time it does not involve the inherent chirality of
isolated exceptional points, but instead it can be considered as a non-Hermitian counterpart of spin polarization
of K-point valleys. Our findings may become useful in designing and realizing novel polarization-controlling
optical elements and spin-polarized exceptional ring lasers.
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I. INTRODUCTION

Metasurfaces are two-dimensional arrays of resonant scat-
terers offering diverse light-shaping functions [1—4]. Recently,
non-Hermitian metasurfaces with spatially patterned gain
and/or loss have attracted significant interest, promising un-
precedented control of optical fields [5—13]. These capabilities
are mainly associated with exceptional points (EPs), where
two distinct complex eigenstates merge into one due to
breaking parity-time (P7) symmetry [14—17]. The most pe-
culiar property of non-Hermitian systems is their directional
response, which has been demonstrated as unidirectional
reflectivity [18,19], nonreciprocal transport [20], on-chip con-
trollable directional lasing in photonic crystal cavities [21]
and microring resonators [22], vortex beam generation [23],
chiral response [24], asymmetric mode switching [25], and
polarization state conversion [26]. Among the above exam-
ples, controlling the polarization of light is probably the
most natural function offered by non-Hermitian metasurfaces
[27-32] due to inherent chirality of photonic eigenstates in the
vicinity of EPs [33—40].

An emblematic model system for P7 -symmetry breaking
is the honeycomb lattice with gain and loss treated in the tight-
binding Hamiltonian model (i.e., lattice model with coupling
limited to nearest neighbors). Within this model lattices are
predicted to support exceptional rings (ERs): closed contours
of EPs in momentum space, created upon non-Hermitian per-
turbation at Dirac points [41-43]. The tight-binding model
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and concomitant ERs have been recreated in waveguide ar-
rays [44,45], to which tight-binding Hamiltonians are directly
applicable through the paraxial approximation (i.e., simplify-
ing the Helmholtz equation to a Schrodinger-like equation),
wherein the waveguide axis plays the role of time. The clos-
est nonparaxial realization would be a honeycomb lattice of
resonant scatterers with modulated loss and gain. In spite
of extensive work on such nonparaxial honeycomb Ilattices,
including photonic crystals and metasurfaces [46-54], the far-
field scattering response of K-point ERs in such systems has
not yet been investigated. An important factor may be that
tight-binding models, commonly employed for dense plas-
mon particle lattices, intrinsically cannot account for far fields
as such a description is electrostatic and intrinsically lacks
far-field input and output channels. However, the far-field
signatures of K-point ERs are of high significance, first, as a
possible telltale of non-Hermitian band topology [39] through
polarization properties of scattered light [40] and second,
due to potential applications of the flat bands inside ERs for
active light manipulation [7] and as alternative to band edge
distributed feedback lasing [55-57].

Here we provide a semianalytical yet fully electrodynamic
analysis of plasmonic honeycomb arrays with spatially de-
pendent gain. We use a lattice Green’s-function method to
examine the effective lattice polarizability, which includes
all near-field and far-field electrodynamic dipole-dipole in-
teractions up to all orders of scattering [58]. This effective
polarizability contains both the band structure and the opti-
cal scattering response of such non-Hermitian metasurfaces,
linking ERs in the band structure to a far-field chiroptical
polarization response.

We consider lattice geometries derived from the basic hon-
eycomb lattice presented in Fig. 1, with different magnitudes
of gain in sublattices A and B providing either partial or
complete compensation of plasmonic losses. In this scheme,
the metasurface building blocks consist of plasmonic cores

Published by the American Physical Society


https://orcid.org/0000-0003-3866-9394
https://orcid.org/0000-0003-1617-5748
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023185&domain=pdf&date_stamp=2021-06-04
https://doi.org/10.1103/PhysRevResearch.3.023185
https://creativecommons.org/licenses/by/4.0/

KOLKOWSKI, KOVAIOS, AND KOENDERINK

PHYSICAL REVIEW RESEARCH 3, 023185 (2021)

plasmonic core /—’D

/

FIG. 1. Non-Hermitian metasurface made of nanoparticles with
a plasmonic core and gain medium shell, which serves as a computa-
tionally feasible approximation of the usual experimental geometry
of a plasmonic nanoparticle array covered by a continuous gain
medium layer. The red polygon highlights the unit cell, with lattice
pitch @ = 160 nm. Nanoparticles in sublattice A (light blue) are
surrounded by shells with a larger gain coefficient (g4) compared
to those in sublattice B (gp, dark blue). The above basic honeycomb
geometry will be used as a starting point for modifications leading to
band folding presented further in this article.

gain medium shell

surrounded by gain medium shells embedded in a uniform
passive dielectric medium. Such a geometry is not practical in
terms of fabrication; however, it is straightforward to imple-
ment in computations. We use it as an approximation of the
traditional geometry of plasmon lattice lasers, i.e., plasmonic
nanoantenna arrays covered by continuous gain-doped films,
which are, by contrast, easy to fabricate but challenging to
model.

By properly modifying the basic honeycomb geome-
try to enable band folding, we achieve nonunitary circular
dichroism, i.e., a greater-than-one differential response to the
handedness of circular polarization (normalized by incident
light intensity). More importantly, the origin of this chiroptical
response is of nontrivial nature; it is not just ordinary pseu-
dochirality accompanied by amplification, but it originates
from the interaction of incoming light with spin-polarized flat
bands inside ERs, induced solely by the gain-loss pattern and
therefore regarded as a non-Hermitian counterpart of valley
pseudospin [59-65].

Although the intrinsic pseudospins of subsequent eigen-
states can be retrieved also in a simple tight-binding
Hamiltonian model extended to vectorial form (as we show
in Sec. II), we note that the rigorous Green’s-function method
used to obtain the main results of this paper (Secs. III and
IV) is fundamentally not a tight-binding method. The Green’s-
function method is a fully electrodynamic multiple scattering
method, which is neither limited to nearest-neighbor inter-
actions nor limited to the quasistatic approximation. This is
a crucial difference, as quasistatic approximations of plas-
monics have no consistent optical theorem, i.e., no consistent
description of extinction and far-field scattering [66,67]. Thus,
prediction of the lattice far-field chiroptical response requires
a rigorous electromagnetic modeling that includes the effect

of gain and loss on the polarizability of plasmonic scatterers.
This ingredient is also essential in predicting the band folding
efficiency, which determines the visibility of scattering signa-
tures of ERs. Our findings are of fundamental and practical
importance, as they demonstrate a different property of a
widely explored system and they offer different perspectives
on dynamically controlled polarization-converting metasur-
faces and a spin-polarized version of Dirac point/exceptional
ring lasers [68-71].

This paper is organized as follows. In Sec. II we present a
minimal model based on the vectorial tight-binding Hamilto-
nian (Sec. II A), which we use to predict the pseudospins of
eigenstates in both Hermitian and non-Hermitian honeycomb
lattices (Sec. II B) and to reveal their mutual connections (Sec.
I C). In Sec. III we briefly review a rigorous approach based
on effective polarizability and the lattice Green’s function
to investigate non-Hermitian collective plasmonic modes in
honeycomb metasurfaces with gain and loss (Sec. III A) and
we use this approach to demonstrate net ellipticity and net
gain in the flat bands inside ERs (Sec. III B). In Sec. IV we
present a method for calculating the far-field scattering ob-
servables (Sec. IV A) and we use this method to demonstrate
the effects of band folding upon distortion of lattice geometry
(Sec. IV B), accompanied by the pseudochiral response at ERs
(Sec. IV C). Finally, in Sec. V we provide a brief summary and
outlook, discussing the feasibility of experimental realization
of metasurfaces with patterned gain (Sec. V A) and their po-
tential in developing new kinds of lasers and active photonic
elements for polarization control (Sec. V B).

II. PSEUDOSPINS INSIDE EXCEPTIONAL RINGS IN THE
MINIMAL MODEL

A. Vectorial tight-binding model

We first introduce a minimal toy model that results in the
emergence of pseudospins inside ERs within the tight-binding
approximation. This is to provide a qualitative understand-
ing of the results of the full lattice Green’s-function model
presented in Sec. III. To obtain the tight-binding picture we
approximate the multiple scattering between plasmonic anten-
nas by the eigenvalue problem Hy, = w,¥,, where ¢, and
w, are the eigenfunctions and eigenvalues, respectively, and
H is the tight-binding lattice Hamiltonian. The honeycomb
lattice consists of two primitive sublattices, which we label A
and B. We further assume that the wave function at each lattice
site is a two-component vector associated with the in-plane
Cartesian directions x and y. Hence, the eigenvectors of a
minimal honeycomb unit cell are ¥, = (Vax, Yay, Vo, ¥ay ),{
and have well-defined pseudospins

— i Vax Yax *_- Vpx (o *
"= I(Wy)n ) (Wy>n I(W&)n ) <WB,V),,. M

If the nanoparticles are isotropic in the xy plane, the Hamilto-
nian can be expressed as

[(wa + iya) Qg
H= » . , 2
< QL I(wp + iyp) @
where I is the 2 x 2 identity operator, ws + iys and wpg + iyp
are the complex-valued resonance frequencies of individual
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lattice sites in subsequent sublattices, and 2,45 is the coupling
term
3

Qup = Q) explik - ,)G{r,}, 3)

where k| is the in-plane momentum, r, = rg, —I4 are
vectors connecting the nearest neighbors, 2 determines the
coupling strength, and G{r} is a normalized 2 x 2 matrix
which encodes the symmetry of interactions. We assume that
G{r} is determined by the electric point dipole Green’s func-
tion approximated to the near field and without retardation:

~I+—. @

1
I+—=V®V ~
G{r}“( VeV ) P
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k

B. Pseudospin texture in the momentum space

Figure 2 shows pseudospin textures, visualized here in
blue and red, that emerge at the Dirac points upon both
Hermitian and non-Hermitian perturbation. Due to the real-
eigenfrequency degeneracies in the P77 -broken phases inside
ERs [Fig. 2(a)], there is no clear imbalance between the
opposite pseudospins of gainy and lossy modes [Fig. 2(b)],
so they seemingly balance each other. One could expect
to observe these pseudospins only if one of the degenerate
modes is selectively excited or has a dominant contribution
to the scattered field. Such a scenario could be realized if
the non-Hermitian honeycomb particle array is brought to
lasing, leading to mode competition and eventual gain satu-
ration by the gainy mode. However, within the tight-binding
approximation it is impossible to go beyond the simple eigen-
frequency analysis presented here, i.e., to optical response.
The reason is that consistent scattering quantities require a rig-
orous polarizability and lattice Green’s-function method with
self-consistent account of radiation damping and all terms
in the Green’s function. We present such a model that takes
into account the influence of gain and loss on the spectral
bandwidth and on the magnitude of polarizability at resonance
in Sec. IIL.

In comparison to pseudospin textures in non-Hermitian
lattices, Fig. 2(c) shows the unperturbed Dirac cones of a
Hermitian honeycomb lattice, in which both sublattices are
resonant at the same frequency and with the same damping
factor. Figure 2(d) shows the effect of detuning of resonance
frequencies of two sublattices. The band edges (valleys) of
newly formed band gaps are dressed with pseudospins, with
opposite handedness at the upper and lower band edges [72].
In the next section, by tuning the model parameters, we will
reveal the connection between spin-polarized valleys and ERs.

C. Encircling one of the exceptional points

In Fig. 3 we encircle one of the EPs that belongs to the
ER, following a closed trajectory in parameter space (see the
figure caption for a detailed description), where one parameter
is k, and the other is the detuning of resonance frequencies of
two sublattices (Aw = wp — wy). After completing the loop,
the eigenstates are interchanged, revealing the Md&bius-strip
topology associated with each EP that belongs to an ER [52].
Such an isolated EP resulting from coalescence of eigenstates

(a) (b)
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FIG. 2. Band structures obtained by diagonalization of the tight-
binding Hamiltonian from Eq. (2) with coupling strength 2 = 0.23
and coupling symmetry defined by Eq. (4). The green hexagon
at the bottom of each plot indicates the first Brillouin zone and
its darker area corresponds to the part that is included in the k
range of eigenvalue plots. The pseudospin of each eigenmode is
encoded in the blue-gray-red color scale. (a) and (b) Plots of the
non-Hermitian counterpart of the valley pseudospin effect caused
by the detuning of imaginary resonance frequencies (w4 = wp = 1
and yp — y4 = 0.16). This leads to breaking of P77 symmetry at the
Dirac points, preserving their degeneracy in the real eigenfrequencies
(a), but splitting the imaginary eigenfrequencies (b) and dressing
them with pseudospins. For comparison, we show the band structures
of a Hermitian honeycomb lattice (ws = wp = 1 and y4 = y5 = 0),
with two bands forming Dirac cones (c) and the band gap opening
upon detuning of resonance frequencies between two sublattices
(wp — wa = 0.08), giving rise to valley pseudospins (d). In these
two plots (c) and (d), the imaginary eigenfrequency landscape is
completely flat and therefore it is not shown.

m and n can be described by a topological invariant v,,, de-
fined as

1
(1) = =5 yf V, arglon(s) — ()] - ds,  (5)
I

where I' is a closed trajectory in some two-dimensional pa-
rameter space s, in our case s = (k,, Aw). The above invariant
is a modified version of vorticity defined for isolated EPs
in momentum space s = k = (k,, k,) [39]. It follows from
Eq. (5) and Fig. 3 that each EP of an ER can be described
by a fractional topological charge v, = :i:% in the parameter
space s = (ky, Aw), where the plus or minus sign is fixed for
a given ER. A remarkable observation is that the eigenstates
preserve their pseudospins along the entire trajectory, except
the point of band gap closing in the middle between points S
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FIG. 3. (a) Complex eigenfrequencies (surface plots) and pseu-
dospins of their corresponding eigenvectors (blue-gray-red color
scale) in k,-Aw parameter space (where Aw = wp — w, is the de-
tuning of resonance frequencies of two sublattices) surrounding one
of the EPs from an ER, obtained from Eq. (2) with gain-loss con-
trast yp — ¥4 = 0.16. The black solid line shows an example closed
trajectory in this parameter space, leading to an interchange of eigen-
states upon encircling the EP [25,26,33]. The trajectory starts from
the lower-frequency state (green star) at point P, (k, = 7w /a, Aw =
—0.08); goes through points Q, (k, = 57 /4a, Aw = —0.08); R,
(ky = 57 /4a, Aw = 0.08); and S, (k, = 7 /a, Aw = 0.08) (follow-
ing the pink arrow); and then it is back to P, ending in the
higher-frequency state. (b) Evolution of the two eigenfrequencies in
the complex plane upon encircling the EP, following the trajectory
presented in (a).

and P, when the sublattice detuning is swept from positive
to negative at k, = w/a, i.e., outside the ER. In contrast,
band gap closing between points Q and R at k, = 57 /4a,
i.e., inside the ER, leads to reversing the real-frequency order-
ing of eigenstates without changing their pseudospins. This
allows us to consider pseudospins inside K-point ERs as non-
Hermitian counterparts of the K-point valley pseudospins.

III. SPIN-POLARIZED PLASMONIC LATTICE MODES
INSIDE EXCEPTIONAL RINGS

We will now turn to describing the pseudochiral properties
of photonic modes associated with ERs in a concrete physical
system, without the crude approximations of the tight-binding
method. The system at hand is a honeycomb array of core-
shell plasmonic nanoparticles with nonuniform gain, with
basic structure presented in Fig. 1. We start this section by

briefly introducing the formalism behind the optical response
of periodic metasurfaces, which is based on Ewald summa-
tion techniques and the full electromagnetic dyadic Green’s
function.

A. Theoretical model: Effective polarizability and lattice
Green’s function

Our calculations are based on a lattice Green’s-function
approach, in which metasurface scatterers are treated as elec-
trodynamic point dipole scatterers and interactions between
all scatterers are accounted for, with full inclusion of retar-
dation effects and to all orders of multiple scattering. The
main approximation is that higher-order multipole moments
of the scatterers are ignored. This approximation aside, the
method is well known to give an accurate and self-consistent
description of the multiple scattering response of clusters,
with a closed energy balance (in the absence of gain), also
for scatterers with cross sections as large as the unitary limit
(3/2m A2, the largest possible scattering cross section for any
dipolar scatterer). A general multiple scattering problem for
an ensemble of N electric point dipole scatterers can be for-
mulated as [73,74]

N
pi= o [EmC(ri) + Y G- r,)p,}, 6)
J=Li#j
where p; are the dipoles induced at subsequent scatters located
at positions r;, with polarizabilities «;, and G is the dyadic

Green’s function

ik|lr—r’|
Go(w,r—r/) — (Hk2+v®v)|r_—r’|7 (7)

with k = wn/c denoting the wave number in the embedding
medium and » its refractive index. For lattices having more
than one scatterer per unit cell, the position vectors can be
defined as

Y =Ty =1 + Rmnv (8)

where [ enumerates the scatterers inside the unit cell at the
origin (m, n = 0) and R,,,, = ma, + na, are the lattice vectors
defined in terms of basis vectors a; and a,. For the honey-
comb lattice, we set a; = a(1,0,0)", a, = a(%, V372,007,
and rg —ry = a(%, V3 /6, 0)". Under plane-wave illumina-
tion

Einc(r;) = Ege™™, 9)
Bloch’s theorem allows us to express the dipole moments as

Pimn = Pleik” Ron , (10)

where p; can be expressed as

N
Pr=o [Eoeik.rl + g7ép] + Z gll’pl':| ’ (1 1)

U'=1,I'#l

where G7 determines the coupling between scatterers of the
same sublattice across different unit cells

# _ 0, iK) Ry
Gg= = Z G (—R;y,)e™ (12)
m##0,n£0
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and Gy is responsible for the coupling between scatterers in
different sublattices [75]

G = Y GO(ry — 1y — Ry e R, (13)

m,n

Technical details on calculating the above lattice sums are
given in Appendix A.
The solution of Eq. (11) is

pi(w, ky) | O

P, k) = | pi(w. K)) | = (@, k)| Eoe®*™ |, (14)

py (o, k) Egek ™

where o is the effective lattice polarizability [52,58,75-79]
governed by

o (@, K)) = 07 (@) = Grau(@, Ky), (15)
where « is a block-diagonal matrix
o - 0 - 0
aw=|0 - o - 0 (16)
0o -~ 0 - ay

containing electric polarizabilities of subsequent scatterers in
one unit cell and Gy (w, K|p) is the lattice Green’s function

g# gll glN
G k)= |61 --- G* av |, an
gl'v1 Q;w .. g*

with diagonal blocks G* and off-diagonal blocks G;;. To be
consistent with the optical theorem, the polarizabilities o; of
individual scatterers must be corrected by a radiative damping
term [80]

_ _ 2ik*
o (@) = oy (@) = -1, (18)

where o, ; are static electric point dipole polarizabilities of
subsequent scatterers, which are obtained from an analytical
formula for a core-shell ellipsoid [81] (see Appendix B). We
consider a honeycomb lattice of pitch a = 160 nm, made of
ellipsoidal silver core/gain medium shell nanoparticles of as-
pect ratio ryy:r, = 2.431:1, total volume 1.25 x 107> m® per
nanoparticle, and volume fraction of the core equal to (%)3,
yielding core radius r,, ~ 28 nm and lateral shell thickness
approximately equal to 14 nm. Optical constants of silver are
based on Ref. [82], whereas the gain medium of the shell and
the passive embedding medium both have a refractive index
n = 1.5. The shell is imbued with Lorentzian gain [83-85]
with relative permittivity

8g=n2<1 T ) (19)

wg — ® + iy,

where k, = nw,/c is the wave number in the gain medium
at the gain peak. We assume a gain bandwidth /iy, = 0.4 eV,
spectral gain peak position liw, = 2.6 €V, and peak gain coef-
ficients g in the range 10°-10* cm™!, necessary to balance the
imaginary part of the electric permittivity of silver, ensuring
that ag,e in Eq. (15) provides amplification upon scattering.
We assume no amplification through propagation to avoid
summation of complex Green’s functions, although such am-
plification would normally contribute to Giyy (being in fact
the main amplification mechanism in plasmon lattice lasers),
possibly allowing much lower gain coefficients for achieving
the same non-Hermitian effects.

We include gain in our model by considering nanoparticles
with static polarizabilities o, having a negative imagi-
nary part, resulting from the negative imaginary part of &,
[Eq. (19)]. This is analogous to the case of absorbing scat-
terers, where Im{oeg,} 1S positive due to a positive imaginary
part of permittivity of the scatterer’s material. Therefore, we
account for radiation damping via Eq. (18), which is known to
hold for absorbing scatterers regardless of nonzero Im{og,}
[80]. However, rigorous treatment of amplified scattering re-
quires us to consider the energy balance that includes both
the pump and probe, and hence it becomes dependent on a
particular gain mechanism [86]. We leave aside a detailed
analysis of this aspect as it is beyond the main scope of this
work.

B. Net gain and net ellipticity of plasmonic lattice modes inside
exceptional rings

Evaluation of e+ using Eq. (15) provides access to far-field
scattering observables (transmission and reflection, which will
be addressed in Sec. IV) and certain properties of guided
modes. We focus on net extinction, defined as

o= T Y Il 20)
J

where a.fr ; are the eigenvalues of e, a is the lattice pitch,
and V is the total volume of the nanoparticles inside one unit
cell. This definition relates to the single-particle extinction
cross section oy = 4wk Im{a}/S normalized to a particle’s
cross-sectional area S. Generalized to lattices, net extinction
is a measure for the extinction cross section per unit cell (pos-
itive for net extinguishing and negative for net amplifying)
contributed by all the lattice eigenmodes. It can be evaluated
at any given point in k- space, also outside the light cone,
and it can be separated into contributions of subsequent eigen-
polarizabilities.

Figure 4(a) reveals the main features of the photonic band
structure of the metasurface presented in Fig. 1, displaying
the k,-w map of net extinction associated with the in-plane
polarized modes (we found that the out-of-plane polarized
modes are significantly blue detuned and do not couple with
the in-plane modes [52], and therefore we excluded them
from our model by setting o, ., = 0). Four in-plane polar-
ized modes are visible, corresponding to two dipoles per unit
cell, each with two degrees of freedom (x and y). Within
the light cone, the only visible features are the subradiant
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FIG. 4. (a) Frequency-momentum map of net extinction [defined in Eq. (20)] for active plasmonic metasurface schematically shown in
Fig. 1, with lattice pitch @ = 160 nm, g4 = 9000 cm~!, and gz = 5000 cm~!. The most important features of the photonic band structure
are pointed out. (b) Crosscut of the momentum space at fiw = 2.58675 eV, capturing the flat bands with net gain inside ERs (magenta
color) and highlighting the most likely location of two out of six ERs (yellow contours). (c)—(f) Frequency-momentum maps of net ellipticity
(blue-gray-red scale), additionally multiplied by log,, of the sum of induced dipole magnitudes in order to reveal the location of photonic bands.
Plots (c) and (d) are obtained for the non-Hermitian plasmonic metasurface and are analogous to (a) and (b). Plots (e) and (f) are calculated for
plasmonic metasurfaces with uniform gain g4 = gz = 7000 cm™". Plot () assumes identical sublattices, whereas plot (f) introduces a detuning
of their resonances by changing the aspect ratio of ellipsoids to 2.455 in sublattice A (higher aspect ratio equals redshifted resonant frequency
[87]) and to 2.407 in sublattice B (lower aspect ratio equals blueshifted resonant frequency). Momentum-dependent ellipticities at the K-point
ERs and valleys are clearly visible in (c), (d), and (f), while being absent in the unperturbed lattice in (e), which shows qualitative agreement

with the tight-binding model presented in Sec. II and Fig. 2.

(antisymmetric) modes, whereas the superradiant (symmetric)
modes provide the broad background. Beyond the light line
are guided modes. Very close to the light line, these modes
are very weakly guided, while towards the Brillouin zone edge
they become more strongly confined. We note that the intrin-
sically quasistatic tight-binding model fundamentally fails to
capture the superradiant/subradiant damping of the various
modes, as well as the polariton anticrossing of the plasmon
resonance with the light line, which gives rise to the weakly
guided modes. For larger wave vectors, well beyond the light
line, the modes of the full model are more akin to those of the
tight-binding model [66,67].

The main features of our interest are flat bands with net
gain (magenta color) at the intersections of guided modes

around the K points, k, = 47 /3a. These flat bands corre-
spond to the interiors of ERs, each bordered by a pair of
EPs in the momentum-space crosscut along k,. The fact that
these EPs form closed contours around K points is evident
from Fig. 4(b), showing the momentum-space distribution of
net extinction at a fixed frequency coinciding with the central
frequency of the flat bands. This plot clearly shows that each
of the net gain regions associated with flat bands has a limited
extent in the momentum space.

Pseudochiral properties of these modes can be revealed by
net ellipticity, defined as

_ PrR— DL

1} )
Pr+ PL

2y
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FIG. 5. Four regimes of P7T -symmetry breaking: (a), (e), (i), and (m) P7T unbroken; (b), (f), (j), and (n) PT broken below the lasing
threshold; and P T broken above the lasing threshold with (c), (g), (k), and (o) net gain and (d), (h), (1), and (p) net loss inside ERs. Subsequent
groups of panels show k,-w maps of (a)—(d) net ellipticity [analogous to Figs. 4(c), 4(e), and 4(f)] and (e)—(h) net extinction, accompanied by
(1)—(1) spectral dependence of the contributions to net extinction associated with sublattices A and B, and their sum, at a fixed k, = 47 /3a.
Optical ellipticity [defined in Eq. (21)] is encoded in the blue-gray-red color scale. (m)—(p) Corresponding traces of complex eigenfrequencies
with pseudospins encoded in the blue-gray-red color scale, obtained from a tight-binding Hamiltonian, with lattice sites resonant at w4 + iy

and wp + iyp (see Sec. II).

where pgr and p; represent the lattice response to spin-
polarized vector fields Eg and E;,

1 Er(rs) Er(rs)
br= W[“e“(Eﬁ(m)) - “e“<—lf:eR<r3)>H’
1 EL(rs) EL(rs)
PL= gy [ “eff<EL(rB>>‘ * "‘°ff(—EL(rB)> H

Er(r) = ™7™(1, —i,0)",

E.(r) =*7(1,i,0). (22)

In the above relations, pg and p; are obtained by averaging
the magnitudes of the dipole moments induced under sym-
metric and antisymmetric excitations, which is relevant for
a bipartite lattice [52]. Strong ellipticities of the bands indi-
cate chiroptical spin-polarized properties of the lattice modes.
Figures 4(c), 4(d), and 4(f) clearly show that momentum-
dependent nonzero net ellipticity is unambiguously present
in both non-Hermitian and gapped Hermitian cases. In the
non-Hermitian honeycomb metasurface, the most pronounced

ellipticity appears inside ERs [Figs. 4(c) and 4(d)], whereas
in the Hermitian metasurface with sublattice detuning, signif-
icant ellipticity can be observed at the valleys [Fig. 4(f)], with
good qualitative agreement with the tight-binding results in
Fig. 2(d). At the same time, the unperturbed Hermitian lattice
does not show net ellipticity at any point [Fig. 4(e)], in agree-
ment with the tight-binding model predictions in Fig. 2(c).
Figures 5(a)-5(1) demonstrate how the modes beyond
the light line evolve upon increasing gain-loss contrast, in
qualitative comparison to complex eigenfrequencies from a
tight-binding model [Figs. 5(m)-5(p)]. While for uniformly
distributed gain [Figs. 5(a), 5(e), and 5(m)] the intersecting
bands form Dirac points, a nonuniform distribution of gain
destroys the degeneracy in Im{w}, giving rise to flat bands
in Re{w} [Figs. 5(b)-5(d), 5(f)-5(h), and 5(n)-5(p)], a signa-
ture of PT-symmetry breaking. Net gain is acquired by the
flat bands [Figs. 5(g) and 5(k)] when one of the imaginary
eigenvalues crosses zero [Fig. 5(0)]. After it crosses and goes
into more deeply negative Im{w} [Fig. 5(p)], net loss results
[Figs. 5(h) and 5(1)]. In between the scenarios presented in
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FIG. 6. (a) Evolution of photonic bands and their ellipticities upon encircling one of the EPs from an ER, following a closed trajectory
analogous to that in Fig. 3, with subsequent points corresponding to different values of k, and aspect ratios A = r,,/r; of ellipsoidal nanopar-
ticles: Q, k, = 1.167 /a, A4 = 2.309, and Ap = 2.553; R, k, = 1.16m /a, Ay = 2.553, and Ap =2.309; S, k, = 1.027 /a, A, = 2.553,
and Az = 2.309; and P, k, = 1.027 /a, A4 = 2.309, and Az = 2.553. The gain-loss contrast is strongly increased (g4 = 11000 cm™~' and
gs = 3000 cm™") in order to expand the ER along k, such that one of its EPs is moved to k, < 1.167 /a and can be encircled by the above
trajectory. (b) The results of effective lattice polarizability calculations show excellent qualitative agreement with the rough tight-binding
Hamiltonian analog, in which y3 — y4 = 0.18 and the trajectory is the same in momentum space (k, from 1.027 /a to 1.167 /a), while w, and
wg are tuned in the range from 0.5 to 1.0. (c) and (d) Evolution of bands and their ellipticities along the same trajectory as in (a) and (b) but
for a Hermitian honeycomb lattice with uniformly distributed gain. As opposed to the non-Hermitian case in (a) and (b), in which the two
modes interchange in the middle between Q and R and preserve their ellipticities, in the Hermitian case the ordering of modes along the real
frequency axis remains the same: They anticross between Q and R and they swap their ellipticities.

Figs. 5(b), 5(f), 5(j), and 5(n) and Figs. 5(c), 5(g), 5(k), and
5(0), there is a point at which the imaginary part of effective
polarizability changes its sign. At resonance, this point leads
to divergence of |af|, which is a scattering anomaly that can
be classified as a laser [85,88]. Therefore, we will refer to
this point as the lasing threshold [84], although in practice the
actual lasing thresholds are strongly dependent on many addi-
tional factors such as coherence ranges and gain medium dy-
namics [89,90], which are not relevant to our simplified model
that assumes infinitely periodic time-harmonic systems.

The effect of PT-symmetry breaking on net extinction and
net ellipticity can be understood by analysis of the resonance
linewidth at the K point. Figured 5(1)-5(1) show crosscuts at
k, = 4m /3a along the w axis, separating the contributions of
sublattices A and B and showing their optical ellipticity (blue-
gray-red scale). In Fig. 5(i), both sublattices have equal gain,
which renders their eigenmodes identical in extinction and
bandwidth such that their opposite ellipticities balance each
other. Once sublattice A receives more gain than sublattice B,
the resonance of A becomes dominant over B in extinction
and polarizability. As a result, net extinction and net ellipticity
approach that of the dominant eigenstate [Figs. 5(j) and 5(k)].
Net ellipticity remains the same just below and just above the
lasing threshold [Figs. 5(b), 5(c), 5(f), 5(g), 5(j), and 5(k)], but
can be reversed by excessive gain [Figs. 5(d), 5(h), and 5(1)],
which overbroadens the gainy resonance A. Such a scenario,
as well as other scenarios with negative extinction, corre-
sponds to unstable solutions that in reality involve complex
dynamics of mode competition and gain saturation, which are
not included in our frequency-domain model. Therefore, in
our further considerations of the scattering response presented
in Sec. IV we will focus on the regimes below the lasing
threshold, similar to Figs. 5(b), 5(f), 5(j), and 5(n), returning
to a brief discussion on lasing at the end of this article.

The spin polarization of P7T -broken eigenstates revealed
in Figs. 5(b)-5(d) and 5(j)-5(1) is in good correspondence
with predictions of a tight-binding Hamiltonian model, as
presented in Figs. 5(n)-5(p). However, such eigenfrequency
analysis performed using a tight-binding model does not
account for the magnitude and linewidth of g, Which
are the essential factors that lead to nonzero net ellipticity
inside ERs in Figs. 5(b)-5(d) and 5()-5(1). This is because
spin-polarized flat bands in the P7-broken phase inside ERs
are frequency degenerate such that their ellipticities would
cancel each other in the absence of imbalance offered by o.y.
This is in contrast to gapped Hermitian lattices [Figs. 2(d) and
4(f)], where spin-polarized valleys are separated in frequency,
which by itself prevents the ellipticities of these modes from
balancing each other.

C. Topological structure of K-point exceptional rings

The tight-binding model is a straightforward tool for study-
ing the connection between ERs and topological band gaps,
which has been demonstrated in Fig. 3. Similar analysis can
be done using a.f, Which is presented in Fig. 6(a) (see the
caption for full details). The two spin-polarized modes ob-
tained from o are interchanged upon band gap closing inside
the ER (between points Q and R), just like in the analogous
tight-binding eigenfrequency analysis, which is presented in
Fig. 6(b) for qualitative comparison. This shows that the fea-
tures observed in k-w maps in Figs. 4(a)-4(d), 5(b)-5(d),
and 5(f)-5(h) are indeed associated with ERs, and each EP
that belongs to such ERs can be assigned a fractional topo-
logical charge according to Eq. (5) in the parameter space
of in-plane momentum and resonant frequency detuning. In
contrast, a Hermitian lattice with uniform gain does not show
mode swapping upon following the same closed trajectory, as

023185-8



PSEUDOCHIRALITY AT EXCEPTIONAL RINGS OF ...

PHYSICAL REVIEW RESEARCH 3, 023185 (2021)

b,
E ga =7500 cm™! . R Y Y &
gg=6000cm™! SB. .S S S O
hwy = 2.6 eV ®-9-9
. .®

2.54

|
° (]
\\‘1‘
0,
VI

1000 2.4

(d)

ga =8000 cm™*
g = 4000 cm™*
gc = 8000 cm™*

hwg = 2.53 eV

0.8
0.6
0.4
0.2

2.4

ky (m/a)

23 0

0
ky (m/a) T,R

ky (m/a)

FIG. 7. Band folding in non-Hermitian honeycomb metasurfaces. (a) Scheme of the metasurface with a virtually extended unit cell.
(b) Corresponding k- map of the net extinction, showing folded multiple copies of the original (unfolded) lattice modes visible in Fig. 4(a),
but with only positive values of oy, as in Fig. 5(f). (c) Zeroth-order transmissivity and reflectivity under illumination by a plane wave linearly
polarized at 45°, propagating from bottom (—z) to top (4z). The same scattering response would be obtained from calculations assuming the
minimal unit cell, as in Fig. 1. (d) Modified honeycomb lattice with additional nanoparticles forming a new sublattice C. (e) Net extinction
map showing new lattice resonances with flat bands associated with ERs (one of which is magnified in the inset). (f) These flat bands and
the neighboring dispersive modes become visible in transmission and reflection, with remarkable amplification at the newly formed ERs

(insets).

evident from Fig. 6(c), which is also in qualitative agreement
with the results of eigendecomposition of the analogous tight-
binding lattice Hamiltonian presented in Fig. 6(d).

The above examples demonstrate the suitability of the
lattice Green’s-function approach for non-Hermitian engi-
neering of band topology in concrete physical systems, such
as active plasmonic metasurfaces considered in this work.
In addition, properly implemented calculations based on ef-
fective lattice polarizability and lattice Green’s function are
capable of providing quantitative predictions of measurable
physical quantities such as scattering amplitudes, taking as
an input concrete values of physical parameters. Examples
of such implementation will be presented in the following
section.

IV. CIRCULAR DICHROISM IN SCATTERING FROM
EXCEPTIONAL RINGS

In this section we will demonstrate the effect of P7T-
symmetry breaking on the far-field scattering response of an
active plasmonic metasurface. In particular, we will show that
the incoming and outgoing plane waves can be coupled to ERs
by matching their in-plane momentum through band folding,
achieved by appropriate modification of the lattice geometry,
resulting in a differential scattering response to circularly
polarized light at oblique incidence. Before presenting these
results, we will briefly introduce the formulas for calculating
the far-field scattering amplitudes, based on the effective lat-
tice polarizability presented in Sec. III.

A. Calculating transmission and reflection from the effective
lattice polarizability

In scattering of incident plane waves from periodic meta-
surfaces, the wave vectors k;; of subsequent diffraction
orders /2 and 7i can be expressed as

_ k| + Ky
‘( k2—|k+Kﬁzﬁ|2>’ 23)

where Kj;; = /b +7ib, are reciprocal lattice vectors
(a; -b; = §;;). For propagating diffraction orders, i.e., for
Ik + K| < k, these wave vectors can be converted to scat-
tering angles 6 and ¢,

k*;lzk

N =t

x sin @ cos ¢
Kin =k(O,9)=k|F | =k| sinfsing |. 24)
Z cosd

After calculating acfr(w, k) using Eq. (15), the scattered
fields associated with diffraction orders /m and 71 can be ob-
tained from

2mik
Escat(ev ¢) == S

N
—M(0, )Y pi(w, ke T (25)
Z

=1
where § = |a; x ay| is the unit cell area, p;(w, k) are the
dipole moments calculated in Eq. (14), & is either 4+ or —
depending on scattering direction (forward vs backward), and
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the far-field matrix M(0, ¢) is [75,77]

1—% - -2
M@,¢)=| —yx 1-39 =57 |. (26)
-z -z 11—z

The transmissivity and the reflectivity are

Re[E*(0, ¢) x H(O, ¢)] - Z

T 9) = " RelEr (0, ¢) x Hue0, 9)] -2 .
RO, ¢) — Re[E!,, (7 — 0, ¢) x Hyeu(m — 0, ¢)] -2 @7
»#) = Re[E; (6, ¢) x Hine(0, ¢)] - 2 '
where
E 07 = Esca 95 Einc 95 5
0, 9) (0, ¢) + Einc(0, ¢) 8)

H(0, ¢) = Hyal(0, ¢) + Hinc (0, ¢),

with Ei,. and Hj,. the electric and magnetic fields of incident
plane waves [Eq. (9)].

B. K-point exceptional rings folded into the light cone

In subdiffractive honeycomb metasurfaces, ERs are lo-
cated outside the light cone, which makes them inaccessible
from the far field. Increasing the lattice pitch is the simplest
strategy that could bring them into the light cone by decreas-
ing |k;| of the K points. Unfortunately, radiative damping
of many overlapping diffraction orders would strongly dis-
tort the ERs. Here we implement another strategy, namely,
band folding [91], which is illustrated in Fig. 7. In the first
step, we artificially extend the unit cell, creating a super-
cell that covers four elementary cells and eight nanoparticles
[Fig. 7(a)], giving rise to additional modes [Fig. 7(b)], which
are just copies of the modes of original (unfolded) honeycomb
metasurface and show no additional scattering signatures
[Fig. 7(c)]. In the second step, we add one more nanoparticle
inside each supercell, creating effectively a new sublattice
C [Fig. 7(d)] which preserves threefold rotational symmetry
that protects the Dirac point degeneracies. Gain parameters
are adjusted to gc = g4 = 8000 cm™!, gg = 4000 cm~!, and
hwg = 2.53 eV. Sublattice C couples with the other two sub-
lattices, forming additional red-detuned ERs inside the light
cone [Fig. 7(e)], with visible signatures in transmission and
reflection [Fig. 7(f)]. Although net extinction remains posi-
tive, the metasurface shows a nonunitary scattering behavior
(T,R > 1) at the newly formed ERs (insets). To obtain sig-
nificant effects in far-field observables, we found that the
additional particles require polarizabilities as large as those
of the particles forming the initial lattice.

C. Nonunitary pseudochiral response at exceptional rings

Figure 8(a) shows the scattering signatures of folded Dirac
bands and ERs, simulated for various polarizations of incident
light. The optical response is perfectly mirror symmetric with
respect to k, = 0 under pure s- and pure p-polarized illumi-
nation, but gets slightly asymmetric under linear polarization
at 45°, evidencing coupling between in-plane Cartesian field
components. This asymmetry is greatly augmented in the
response to circular polarization and the pattern is mirror
reversed upon switching handedness from right (R) to left

hw =2.51362 eV
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FIG. 8. Zeroth-order transmissivity 7 and reflectivity R of the
metasurface shown in Fig. 7(d) calculated for various polarizations
of incident light, i.e., linear s (7; and R;), linear p (7, and R)),
linear at 45° (Tyso and Ryso), circular right-handed (7 and Rg),
and circular left-handed (7 and R;), (a) as a function of k, and w
and (b) as a function of incidence angle at a fixed photon energy
hw = 2.51362 eV. Peak values of amplified T and R are given in
(b) next to the corresponding data points in angular dependence.

(L), which is schematically illustrated in Fig. 9(a) and pre-
sented more quantitatively in the fixed-frequency crosscuts in
Fig. 8(b), with circular dichroism reaching Tz — 7 = +201
in transmission and Rg — R;, = £193 in reflection, where +
depends on the sign of k, and both T and R are normalized by
incident light intensity according to Eq. (27).

Such chiroptical effects at nonzero in-plane momentum,
known as pseudochirality [92-95], have been extensively
studied in passive systems [80,96,97]. As opposed to
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(a)

FIG. 9. (a) Illustration of the nonunitary pseudochiral circular dichroism at ERs below the lasing threshold. The incoming circularly
polarized probe propagates from bottom (—z) to top (+z) at an oblique incidence angle and undergoes handedness- and direction-dependent
amplification in transmission and reflection. (b) Extreme case of diverging circular dichroism at a scattering anomaly of the lasing threshold,
equivalent to pseudochiral spin-polarized lasing at ERs. (c) Illustration of the approximation in which core-shell nanoparticle arrays serve as
a model for traditional plasmon lattice lasers with metal nanoparticles embedded in a continuous gain medium layer under spatially varying

optical pump fields.

passive systems, in our case the circular dichroism can easily
exceed 1 due to amplification and can in principle reach
arbitrary magnitude when approaching the lasing threshold,
at which scattering coefficients diverge [85,88,98], turning
our system into a spin-polarized laser [Fig. 9(b)]. However,
nonunitary circular dichroism is by itself not very astonishing,
as it could be realized in ordinary pseudochiral systems upon
introduction of gain. The most remarkable fact is that the
pseudochiral response presented here is of nontrivial origin;
it emerges from the gain-loss pattern and from the resulting
ERs capable of interacting with incident and outgoing plane
waves. A nonunitary pseudochiral response could be accessed
experimentally in polarization-resolved pump-probe transient
scatterometry, which could serve as an elegant method for
investigation of gain-induced P7T -symmetry breaking. In the
future, they could be used for realization of dynamically con-
trolled polarization-converting metasurfaces.

V. OUTLOOK AND SUMMARY

A. Feasibility of experimental realization

Experimental realization of core-shell nanoparticle arrays
presented in Figs. 1, 7(a), and 7(d) is technologically chal-
lenging. We have considered this particular design as an
approximation of typical metasurface lasers made of plas-
monic nanoparticle arrays embedded in continuous gain
medium films illustrated in Fig. 9(c). Such geometries are
easily achievable by well-established lithography and spin-
coating techniques. Moreover, they are known to reach lasing
thresholds under moderate pump intensities and with gain
coefficients on the order of a few tens of cm™!, despite
the presence of lossy plasmonic scatterers. It is possible
because efficient amplification of multiply scattered modes
occurs upon propagation across the embedding gain medium.

In contrast, amplification upon scattering from a nanopar-
ticle covered by a gain medium shell is highly inefficient,
as it requires one to compensate for plasmonic losses in
the nanoparticle’s core. This is why in our calculations we
assumed gain coefficients as high as a few thousand cm™'.
Inspired by numerous successful demonstrations of plasmon
lattice lasers [50,55-57,91], we believe that the presence of
a continuous embedding gain medium would be a feasi-
ble route towards experimental realization of non-Hermitian
pseudochiral phenomena discussed in this work, on the pro-
viso that one can implement locally varying gain through, for
instance, a spatially varying optical pump field [Fig. 9(c)].
The proviso of spatially varying gain and loss is experi-
mentally not easily met due to the need for subwavelength
length scales in the gain-loss patterns. Here we propose
an elegant way to achieve that, hinging on the physics of
Dirac points. Oblique illumination of a honeycomb lattice by
circularly polarized light at a Dirac point enables selective
excitation of one of the two sublattices (either A or B). In
such a case, one may expect that the optical gain will be
localized in places where the gain medium is pumped most
effectively, i.e., in the vicinity of plasmonic nanoparticles that
belong to the sublattice that is more effectively excited by the
pump beam. Obviously, efficient excitation requires that such
Dirac points lie within the light cone, which we have already
achieved in the design presented in Fig. 7(d). Let us consider
plasmonic metasurface of similar geometry, but without the
gain medium shell, as illustrated in Fig. 10(a). Since the
pump does not experience gain, all modes are strongly blurred
in frequency; however, their symmetries and topologies are
robust against spectral broadening. We calculate the degree
of preferential excitation of sublattice A against sublattice B
under circularly polarized illumination and we present the
results as a k- map in Fig. 10(b). Interestingly, the difference
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FIG. 10. (a) Illustration of optical pumping scheme to achieve
selective excitation of sublattices by polarized illumination of the
metasurface embedded in a homogeneous gain medium, leading to
a gain contrast between sublattices A and B. Red and blue “clouds”
around nanoparticles indicate efficient excitation of either sublattice
A or B, respectively, which could create effective gain shells provid-
ing amplification of a lower-frequency probe beam. (b) Preferential
excitation of sublattice A versus sublattice B, quantified by the av-
erage magnitude of dipole moments induced in these sublattices by
right-handed circularly polarized light propagating from top (+z) to
bottom (—z). (c) Same as (b) but for linearly polarized excitation
at —45°. Surprisingly, the contrast is much greater compared to
circularly polarized pumping and in principle should allow for highly
selective excitation of one sublattice, creating a gain-loss contrast
effective in the frequency range of desired ER formation.

between average magnitudes of the dipole moments induced
in sublattices A and B is only moderate under circularly po-
larized illumination at the folded Dirac points, but becomes
very large under illumination that is linearly polarized at —45°
(equivalent to +45° for a beam propagating from bottom to
top), which is shown in Fig. 10(c). The highest contrast is not
associated with Dirac points designated to become ERs, as it
is observed at frequencies larger than the frequencies at which
ERs are expected to emerge. As a result, this scheme is highly
promising in terms of efficient pumping of a gain medium to

create gain-loss patterns resulting in ERs discussed in this
work. Apart from the above idea, there are probably many
other routes to pseudochiral ER scattering physics, possibly
including gain-free designs [14,99], which certainly deserve
further investigation.

B. Spin-polarized exceptional ring laser

Our theoretical predictions are accurate up to the lasing
threshold, where unstable solutions with negative extinction
start to emerge. Nevertheless, some results obtained in this
regime can be used to qualitatively predict the behavior of a
lasing system. Slightly above the lasing threshold [Figs. 5(c),
5(g), and 5(k)], the gain-induced changes in polarizability
inside ERs would contribute to mode competition, leading to
protection of net gain by the gain-loss contrast. Adding loss to
one sublattice would paradoxically improve the performance
of such a laser [100,101], even without adding an equivalent
amount of gain to the other sublattice. Such exceptional ring
lasers could serve as integrated coherent light sources, a non-
Hermitian counterpart of spin-momentum-locked topological
lasers [63—65]. As opposed to systems with pairs of isolated
EPs in momentum space, connected by flat bands in a form
of Fermi arcs [40], flat bands inside ERs span finite areas
across k, and k,, promising a much larger density of optical
states, which could serve as an alternative to band edge dis-
tributed feedback lasers. The folded version of ER lasing [the
design in Fig. 7(d)] would provide coherent spin-polarized
emission at off-normal angles [Fig. 9(b)], extending the family
of Dirac-point surface-emitting lasers [68—70]. Exceptional
ring lasers could be implemented also in nonplasmonic lat-
tices [102] with potentially lower gain coefficients. Rigorous
performance analysis [84,89] of various kinds of ER-based
lasing metasurfaces, including the possibility of single-mode
lasing [69,103] and the effect of gain saturation and dynamics
[64,86,90,104—-106], will be an exciting aspect of their further
exploration.

C. Conclusions

In conclusion, we have shown that breaking P77 symmetry
in active plasmonic metasurfaces can lead to a pseudochi-
ral optical response accompanied by strong amplification in
reflection and transmission, leading to nonunitary circular
dichroism. This has been demonstrated by calculating the
scattering observables of a modified honeycomb metasur-
face, in which band folding gives rise to ERs inside the
light cone, coupling their spin-polarized flat bands with far-
field radiation. By comparing results obtained by the lattice
Green’s-function method with those predicted by a simple
toy model based on a vectorial tight-binding Hamiltonian, we
show that the pseudospins of flat bands inside ERs are topo-
logically linked to pseudospins of valleys in gapped Hermitian
honeycomb lattices. Moreover, we show that net elliptic-
ity and pseudochiral optical response of these bands result
from the effect of gain and loss on their spectral linewidth
and polarizability magnitude. Such effects are not accounted
for in simple tight-binding Hamiltonian models. The above
results signify the usefulness of rigorous Green’s-function
methods, such as the one used in our work, for predicting the
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scattering response of active non-Hermitian metasurfaces. We
believe that our findings are applicable in designing active
polarization-converting and light-emitting devices, including
integrated or surface-emitting spin-polarized ER lasers with
robust operation protected by the gain-loss contrast.
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APPENDIX A: LATTICE SUM CALCULATIONS

The lattice sums can be decomposed into exponen-
tially converging reciprocal-space and real-space summations
[107,108], whose scalar forms are

eikPmn

KRy _ 7T k@5 (1)
+ YR O ), (AD
where p, = [t — Ryl v = (1), 2)7, and
F(kZ, |z|) + F (kZ, —|z|)
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F'(p, q) = " erfc <% n qn>. (A2)

Good convergence is achieved by setting n = /7 /a, where a
is the lattice pitch. In general, summations in Eq. (A1) should
run until |m|, |n|, |m|, |7i] < 5; however, we found that 4 is ac-
tually sufficient in all cases studied in this article. Evaluation
of Eq. (12) requires computing the complete sum that includes
the lattice origin and then subtracting the zeroth term, which
is calculated as the average of the G° obtained from Eq. (7)
by setting r' = Ry and at two symmetric offsets r = rog to

avoid singularity. Dyadic forms of the terms in Eq. (A1) are
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APPENDIX B: POLARIZABILITY OF A CORE-SHELL
ELLIPSOID

Static electric point dipole polarizability of a core-shell
ellipsoid is [81]

A, 0 0
Olstat = —— 0 Ay 0 s (Bl)
am\o 0 A,

where A are defined for each symmetry axis j = x, y, z,

—1 —1
B;' - BC;

Aj= 1 , (B2)
(B;Dj)~" + BLy, (1 — Ly ;)
where B is the volume fraction of the core and
& —¢
B, = 3— & ’
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with shell permittivity &, and core permittivity &3, embedded
in a medium of permittivity &, and with shell and core shape
factors L, ; and Ls j, respectively, expressed in terms of the
subsequent radii r; of the ellipsoid [87]

ds
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