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Unusual H-T phase diagram of CeRh2As2: The role of staggered noncentrosymmetricity
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Superconductivity in a crystalline lattice without inversion is subject to complex spin-orbit-coupling effects,
which can lead to mixed-parity pairing and an unusual magnetic response. In this study, the properties of a
layered superconductor with alternating Rashba spin-orbit coupling in the stacking of layers, hence (globally)
possessing a center of inversion, is analyzed in an applied magnetic field, using a generalized Ginzburg-Landau
model. The superconducting order parameter consists of an even- and an odd-parity pairing component which
exchange their roles as dominant pairing channel upon increasing the magnetic field. This leads to an unusual
kink feature in the upper critical field and a first-order phase transition within the mixed phase. We investigate
various signatures of this internal phase transition. The physics we discuss here could explain the recently found
H -T phase diagram of the heavy-fermion superconductor CeRh2As2.
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I. INTRODUCTION

The discovery of the heavy-fermion superconductor
CePt3Si [1] triggered much interest in superconductivity
in materials lacking an inversion center in their crystalline
structure. Among the most intriguing features of such non-
centrosymmetric superconductors we may mention the parity
mixing of Cooper-pair states [2–4], the helical supercon-
ducting phase induced by a magnetic field [1,5,6], and
the appearance of topological superconducting phases [7,8].
These properties emerge most spectacularly, if the super-
conductor is intrinsically prone to unconventional pairing as
expected for heavy-fermion compounds due to strong electron
correlation.

Parity mixing is generated by antisymmetric spin-orbit
coupling present in noncentrosymmetric crystals, with Rashba
spin-orbit coupling in systems which lack mirror symmetry
the best-known example. This type of spin-orbit coupling is
realized in a number of Ce-based heavy-fermion supercon-
ductors with tetragonal crystal symmetry, such as CeIrSi3

[9] and CeRhSi3 [10], as well as CePt3Si. The probably
most striking properties seen in both CeIrSi3 and CeRhSi3

is the enormous upper critical field for field directions per-
pendicular to the basal plane (lacking mirror symmetry),
exceeding the paramagnetic limit by far [11,12]. This indi-
cates also an extremely short coherence length which is not
unusual for heavy-fermion superconductors. The isostructural
La versions of these two compounds (replacing Ce by La),
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which superconduct with comparable critical temperature but
without heavy-fermion properties, have low upper critical
fields dominated by orbital depairing [4]. The interplay of
orbital and paramagnetic depairing has played an important
role in other Ce-based superconductors, too, most notably in
the centrosymmetric CeCoIn5, which aside from displaying
paramagnetic limiting behavior is also well known for its
low-temperature high-magnetic field phase, the so-called Q
phase, where superconductivity coexists with a spin density
wave state [13,14]. This indicates that the Maki parameter
αM = √

2Hc2(0)/Hp(0) is not small in this material, where
Hc2 and Hp denote the paramagnetic and orbital upper critical
field, respectively [15].

Recently, it has been noticed that centrosymmetric materi-
als may incorporate locally noncentrosymmetric units which
can influence properties of a superconductor profoundly, in
particular their behavior in a magnetic field [16,17]. Features
of this origin are found, for example, in superlattices such
as the regular stacks of superconducting CeCoIn5 alternating
with layers of YbCoIn5 [18,19]. Here, local noncentrosym-
metricity at the interfaces between Ce and Yb layers involves
antisymmetric spin-orbit coupling which apparently protects
Cooper pairs against paramagnetic depairing in this high-αM

system [20]. Moreover, it was suggested that a peculiar parity
mixing present in these superconductors [16] may give rise to
a magnetic field phase transition changing the character of the
pairing state [21].

The very recently discovered heavy-fermion supercon-
ductor CeRh2As2 belongs also to the class of locally
noncentrosymmetric superconductors [22]. While its tetrag-
onal crystal structure has an inversion center, it consists of
layers with alternating violation of inversion symmetry. The
upper critical field directed along the c axis (perpendicular
to the staggered layers) extrapolates to ∼10 T at zero tem-
peratures, which lies far beyond the paramagnetic limiting
field Hp ∼ 0.5 T for a critical temperature Tc � 0.4 K [22].
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The most intriguing aspect of this superconductor so far is
its behavior in the c-axis magnetic field. The upper critical
field shows a pronounced kink for a temperature T roughly
half of Tc. This anomaly strongly hints towards a switch in the
order-parameter symmetry upon increasing magnetic field.

Stimulated by this experimental finding, we investigate
here a possible scenario explaining this behavior based on a
model of a material with staggered Rashba spin-orbit coupling
[16]. This symmetry property can be easily implemented into
a generalized Ginzburg-Landau theory which is well suited
to discuss the superconducting order parameter in the mixed
phase. The basic idea of a field-induced phase transition has
been previously explored by Yanase and coworkers in the
context of the Ce/YbCoIn5 superlattices using a Bogoliubov–
de Gennes approach which ignored the presence of vortices
[20,21,23]. In these studies, a few superconducting layers
were considered whose two boundary layers constitute op-
posite noncentrosymmetric environments and, thus, Rashba
spin-orbit coupling of opposite sign. The subsequent exten-
sion to the mixed phase was performed by Möckli et al.
using a Ginzburg-Landau model [24]. In our investigation we
base our analysis of the infinite-layer system with staggered
Rashba spin-orbit coupling on this approach to analyze the
situation of CeRh2As2.

In the following, we first introduce the Ginzburg-Landau
model describing the effect of parity mixing by including an
even- and odd-parity order-parameter component. We show
that this allows us to discuss two phases, which we refer to
as A and B phase, which, in view of the crystalline inversion
center, can be considered as even or odd, respectively. In a
magnetic field along the crystalline c axis, we can reproduce
qualitatively the kink feature of the upper critical field and also
find an internal first-order phase transition within the mixed
phase. The mixed phase is described here in a scheme using
a cellular approximation of the vortex lattice unit cell [25].
Finally, we propose several ways to detect the internal phase
transition in experiments.

II. GINZBURG-LANDAU MODEL FREE ENERGY

A. Free-energy functional and pairing symmetries

Even though the crystal lattice of our system possesses
global inversion symmetry and a superconducting order
parameter can thus be classified as even or odd under
inversion, the unit cell of the superlattice includes two lo-
cally noncentrosymmetric subsystems stacked alternatingly
on top of each other. The lack of local inversion symmetry
gives rise to a staggered Rashba spin-orbit coupling, lead-
ing to the formation of Cooper pairs of mixed parity within
each layer [3,16,17]. Within the Ginzburg-Landau formalism,
this is accounted for by introducing even- and odd-parity
order-parameter components on each layer j, �e, j (r, ϕe, j ) =
ψe, j (r) exp(iϕe, j ) and �o, j (r, ϕo, j ) = ψo, j (r) exp(iϕo, j ), re-
spectively, with r the in-plane coordinate.

We write the free-energy functional as

F [�e, �o, A] =
∑

j

∫
d2r f ( j)(r), (1)

with A denoting the vector potential. The free-energy density
of the jth layer takes the form

f ( j)(r) = B(r)2

8π
+

∑
l=e,o

[
− al |�l, j (r)|2 + bl

2
|�l, j (r)|4

+ 1

2ml
|D‖�l, j (r)|2 + J̃l |�l, j+1(r) − �l, j (r)|2

]

+ Q̃

2
B2(r)|�e, j (r)|2 + f ( j)

eo (r) (2)

with B = ∇ × A the magnetic induction perpendicular to
the plane and the summation running over both the even
(l = e) and odd (l = o) pairing channels. The parameters
al = a0,l (Tc,l − T ), with Tc,l representing the bare critical
temperature of the respective pairing channel, and bl are phe-
nomenological constants. We choose both critical temperature
Tc,l � 0, indicating that the corresponding Cooper-pairing
channels have comparable attractive interactions, but with
Tc,e > Tc,o. The parameter ml represents the in-plane Cooper-
pair mass of the respective order-parameter component and
the covariant derivative D‖ = [−ih̄∇ + 2eA(r)/c]‖ is re-
stricted to the two in-plane coordinates. The last term in the
sum incorporates the coupling of the order parameters be-
tween neighboring layers with coupling strength J̃l , assuming
a quasi-two-dimensional electronic structure. Furthermore,
we included the paramagnetic depairing effect, which directly
affects the even-parity component and whose strength is de-
termined by the parameter Q̃ [4,21,26]. Note, however, that
due to the parity mixing f ( j)

eo discussed below, paramagnetic
depairing is effectively detrimental to both order-parameter
components. We assume the field to be equal for all layers.

To lowest order, the spin-orbit-coupling-induced parity
mixing between even and odd components in the jth layer
takes the form [27]

f ( j)
eo = ε̃ j

2
(�e, j�

∗
o, j + �∗

e, j�o, j )

= ε̃ j |�e, j ||�o, j | cos (ϕe, j − ϕo, j ), (3)

with ε̃ j the coupling strength on the jth layer, which, due
to the staggered nature of the spin-orbit coupling, possesses
alternating sign on neighboring layers, i.e., ε̃ j = (−1) j ε̃ with
ε̃ > 0. The free energy is constructed in a way to be invariant
under both time-reversal symmetry (TRS) T

�e, �o
T−→ �∗

e , �∗
o , (4a)

A
T−→ −A, (4b)

as well as local U(1) gauge transformations �

�e, �o
�−→ eiφ(x)�e, eiφ(x)�o (4c)

A
�−→ A + ∇φ(x). (4d)

At the onset of superconductivity, both order parameters
become nonzero, and the resulting state is invariant under
time-reversal operation. Furthermore, the relative phase of
the two order-parameter components is gauge invariant and
antisymmetric under time-reversal operation T , such that [27]

(ϕe, j − ϕo, j ) mod 2π = 0, π. (5)
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FIG. 1. Superconducting multilayer system motivated by
CeRh2As2 [22]. The lack of local inversion symmetry, illustrated
by the alternating orientation of the triangles, gives rise to Rashba
effects causing the formation of Cooper pairs of mixed parity within
each layer. The minimization of the interlayer coupling causes the
dominant order-parameter component to maintain its sign, whereas
the other is forced to adopt the alternating sign of the spin-orbit
coupling. The A and B order-parameter structures shown are the
solutions permitted by symmetry, where the latter phase is favored
at high magnetic fields.

To minimize the interlayer coupling, the dominant order-
parameter component maintains its sign across all layers,
whereas the subdominant alternates in sign on neighbor-
ing layers [20]. Thus, the allowed order-parameter structures
are either globally even under inversion, �e, j = �e, �o, j =
(−1) j�o, or globally odd, �e, j = (−1) j�e, �o, j = �o (see
Fig. 1). The global parity is established by an inversion center
lying between two layers and the corresponding parity op-
eration exchanges two layers as well as changes the sign of
the odd-parity order-parameter component. To avoid confu-
sion, we refer to the (globally) even order-parameter structure,
which is favored at low fields, as phase A and the odd, high-
field phase as phase B.

Finally, the phase difference ϕe, j − ϕo, j adapts on each
layer such that the overall free energy is minimal for the given
order-parameter structure, in particular,

f ( j)
eo = −ε̃ψe, jψo, j . (6)

In order to limit the number of free parameters, we as-
sume several coefficients in the free energy to be the same
for both order-parameter components, in particular, b = be =
bo, J̃ = J̃e = J̃o, and m = me = mo. Throughout this paper,
we adopt a dimensionless formulation of the free energy,
unless stated otherwise. As detailed in Refs. [24,25], we
measure lengths in units of the penetration depth λ(T ) =
{mc2b/[16πe2ae(T )]}1/2 and rescale the magnetic field by√

2Bc, with Bc the thermodynamic critical field. Because Bc =
�0/(2

√
2πλξ ), with the Ginzburg-Landau coherence length

ξ given as

ξ 2(T ) = h̄2

2mae(T )
, (7)

this is equivalent to rescaling the vector potential by
�0/[2πξ (T )], where �0 = hc/2e represents the flux quan-
tum. In this formulation, the superconducting flux quantum
is given by φ0 = 2π/κ0 and the dimensionless upper critical
field Bc2 (orbital depairing field) is equal to κ0, with κ0 =
λ/ξ the temperature-independent Ginzburg-Landau param-
eter. Lastly, we normalize the order-parameter components

by
√

ae(T )/b and denote them in dimensionless units by
l, j (ρ, ϕl, j ) = ηl, j (ρ) exp(iϕl, j ). In summary, we use

r �→ λ(T )ρ, (8)

A(r) �→ �0

2πξ (T )
A(ρ), (9)

�l, j (r) �→
√

ae(T )/bl, j (ρ). (10)

The dimensionless free-energy functional F is related to the
free energy F through

F [�e, �o, A] = a2
e

b
F[e, o,A]. (11)

We rewrite the free-energy density of Eq. (2) in dimension-
less form, and split it up into the following five parts:

f ( j) = f ( j)
b + f ( j)

m + f ( j)
J + f ( j)

p + f ( j)
eo , (12)

where the dimensionless basic free energy is given as

f ( j)
b (ρ) = −η2

e, j (ρ) − ao

ae
η2

o, j (ρ) + η4
e, j (ρ)

2
+ η4

o, j (ρ)

2

+ [∇ηe, j (ρ)]2

κ2
0

+ [∇ηo, j (ρ)]2

κ2
0

. (13)

The Ginzburg-Landau parameter κ0 is equal for both even
and odd components under the assumptions mentioned above.
The term quadratic in the triplet component retains an explicit
temperature dependence as the order parameter is normalized
by the singlet quantity ae = a0,e(Tc,e − T ).

Next, we write the free-energy density of the magnetic
orbital part as

f ( j)
m (ρ) = B2(ρ)

1 + 4πχn
+

(∇ϕe, j

κ0
− A(ρ)

)2

η2
e, j (ρ)

+
(∇ϕo, j

κ0
− A(ρ)

)2

η2
o, j (ρ)

= A2(ρ)
[
η2

e, j (ρ) + η2
o, j (ρ)

] + B2(ρ)

1 + 4πχn
, (14)

where B(ρ) = ∇ × A(ρ) is the dimensionless magnetic in-
duction and χn represents the normal-state susceptibility. Note
that in the last line we exploited the constant phase difference,
Eq. (5), leading to ∇ϕe, j = ∇ϕo, j and performed the gauge
transformation A → A + ∇ϕ/κ0 [24].

Finally, the interlayer coupling energy f ( j)
J , the param-

agnetic contribution f ( j)
p , and the parity mixing f ( j)

eo can be
written as

f ( j)
J (ρ) = J

(|ηe, j+1(ρ) − ηe, j (ρ)|2

+|ηo, j+1(ρ) − ηo, j (ρ)|2), (15)

f ( j)
p (ρ) = QχnB2η2

e, j (ρ), (16)

f ( j)
eo (ρ) = (−1) j+1εηe, j (ρ)ηo, j (ρ), (17)

with J , ε, and Q corresponding to the coupling constants J̃ , ε̃,
Q̃ in the dimensionless formulation. The interlayer coupling
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parameter has the unit of an energy (per area) and is therefore
rescaled in the following way:

a2
e

b
f ( j)
J (ρ) = J̃

∑
l

|ψl, j+1(r) − ψl, j (r)|2

= J̃

λ2

ae

b

∑
l

|ηl, j+1(ρ) − ηl, j (ρ)|2

=:
a2

e

b
J

∑
l

|ηl, j+1(ρ) − ηl, j (ρ)|2 (18)

and thus J = J̃/(aeλ
2) = 2J̃/(h̄κ0)2. For the same reasoning,

the spin-orbit-coupling strength transforms as ε = 2ε̃/(h̄κ0)2.
Lastly, the phenomenological constant Q is related to Q̃
through Q(T ) = Q̃ae/b, resulting in an explicit temperature
dependence of f ( j)

p in the dimensionless formulation. For sim-
plicity we denote Q(0) = Q.

In our formulation, the Maki parameter can be expressed
through the system parameters, the normal-state susceptibility
χn, and Ginzburg-Landau (GL) parameter

αM = κ0

√
8πχn(1 + 4πχn). (19)

Imposing the order-parameter structure for the A and B
phases, one can directly evaluate the sum over the layer index
j. Note that

fJ (ρ) = 4J

{
η2

o(ρ), A phase
η2

e (ρ), B phase
(20)

is the only term in the free energy that includes the order-
parameter phase difference between the layers.

In the remainder of the paper we choose the parameter
values κ0 = 100, αM = 20, ε = J = 1, a0,e = 1, a0,o = 0.4,
b = 1, Tc,o/Tc,e = 0.6, and Q = 0.1 × 4πae/b unless other-
wise stated.

B. Superconducting instability: Linearized GL equations

Before accounting for the spatial modulations of the order
parameter due to the flux-line lattice, we solve the linearized
GL equations to obtain the onset of superconductivity in a
magnetic field. For phase A, these equations read as

0 =
[
QχnB2 − 1 +

(
− i

κ0
∇ + A

)2]
e − ε

2
o, (21)

0 =
[

4J − ao

as
+

(
− i

κ0
∇ + A

)2]
o − εe, (22)

and for phase B

0 =
[
QχnB2 − 1 + 4J +

(
− i∇

κ0
+ A

)2]
e − εo, (23)

0 =
[
−ao

ae
+

(
− i

κ0
∇ + A

)2]
o − εe. (24)

For B = (0, 0,B), we choose the gauge A = (0,Bx, 0)
and use the ansatz  = eikyyu(x), such that we can solve(−iκ−1

0 ∇ + A
)2

e =: Ee, (25)

FIG. 2. B-T phase diagram obtained from the linearized coupled
GL equations. On the vertical axis, B is scaled with Bc2 and the
temperature axis is measured in units of the bare critical temperature
of the even component Tc,e. The outer phase boundaries drawn in
solid gray are in excellent agreement with the critical field found for
the full numerical treatment in Fig. 5. The dashed lines mark the
continuations of the crossing phase boundary lines with the A (blue)
and B (green) phase and do not represent physical phase transitions.
The red line corresponds to the critical field for the internal phase
transition between A and B phases as derived in Sec. II C.

giving

−u′′(x) + (Bκ0x − ky)2 = κ2
0 Ee, (26)

and leading to the Landau levels En = B(2n + 1)/κ0. The
lowest Landau level is E0 = B/κ0 and, thus, the critical field
for the A phase is determined by solving the equation

det

( B
κ0

+ QχnB2 − 1 −ε/2
−ε/2 B

κ0
+ 4J − ao

ae

)
= 0. (27)

An analogous equation is obtained for the B phase. The re-
sulting B-T phase diagram is shown in Fig. 2 and agrees well
with the upper critical field of the model developed in Sec. III.

C. Internal phase transition

As paramagnetic limiting only directly affects the singlet
component, the low-field phase A is paramagnetically limited.
On the other hand, the high-field phase B is dominated by
the triplet component, which is relatively immune to param-
agnetic pair breaking. As we consider systems with a large
Maki parameter, we expect that orbital depairing only plays a
subordinate role when discussing the transition from phase A
to B.

To gain an understanding of this internal phase transition,
we thus use a simplification of Eq. (2) that ignores the in-
plane spatial modulations of the order parameter as well as
the orbital depairing. For this analysis the terms second order
in the order parameters are sufficient. The free energy for both
phases is then written as

F = (−ae + QχnB2)ψ2
e − aoψ

2
o − εψeψo

+4J

{
ψ2

o , phase A
ψ2

e , phase B.
(28)
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FIG. 3. B-T phase diagram for the free energy including param-
agnetic depairing as given in Eq. (28). The field is measured in units
of the zero-temperature paramagnetic critical field for a monolayer
Bp = (1 + 1/4πχn)−1/2 [24]. The A and B phases are shaded in
blue and green, respectively. Note the dashed segment of the critical
field of the A phase does not coincide with the critical field of the
A-B transition (red line) described by Eq. (31). For this figure, we
chose Tc,o = 0 and Qχn = 2 × 10−3 to guarantee real solutions in
the whole temperature range and have an effective Maki parameter
αM ≈ 20.

Expressing the quadratic form through a symmetric matrix
and imposing its determinant to be zero, we obtain the critical
field for both phases

B2
c, A = ε2 + 4ae(4J − ao)

4Qχn(4J − ao)
, (29)

B2
c, B = −ε2 + 4ao(4J − ae)

4Qχnao
, (30)

the larger of which determines the field where superconduc-
tivity disappears (see Fig. 3).

To determine the internal phase transition from phase A
to phase B, their corresponding free energies are minimized
and compared. As shown in Appendix A, this leads to the
expression for the critical field of the internal phase transition
Bc,AB,

QχnB2
c,AB = ae − ao, (31)

which highlights that the paramagnetic limiting effect is de-
cisive in determining the internal transition by suppressing
the dominant even-parity low field in favor of a dominant
odd-parity high-field pairing. Despite the significant simplifi-
cations, Eq. (31) is in good agreement with the phase diagram,
including the effects of the vortex lattice in the mixed phase,
computed in Sec. III.

Using Eq. (29), we also obtain the critical temperature at
zero field

TBc, A=0 =
√

[4J + a0,o(Tc,e − Tc,o)]2 + a0,o

a0,e
ε2

2ao

+Tc,e + Tc,o

2
− 2J

a0,o
, (32)

which for finite ε is larger than Tc,e and converges to Tc,e for
ε → 0. Similarly, by equating (29) with (30) we obtain the
temperature at which the two critical fields meet:

TBc, A=Bc, B = Tc,o +
√

16J2 + ε2 − 4J

2a0,o

≈ Tc,o + ε2

16a0,oJ
. (33)

Equation (33) indicates that the spin-orbit coupling also in-
creases the temperature range in which the B phase can be
observed. Furthermore, it shows the importance of the inter-
play between spin-orbit coupling and the interlayer coupling
for the formation of the high-field B phase.

III. VORTEX LATTICE IN THE MIXED PHASE

A. Circular cell method

To analyze the situation for a regular flux-line lattice, we
employ the vortex cell method introduced by Brandt et al.
[25] and previously used for a trilayer system [24]. For this
purpose, we decompose the system in plane into a triangu-
lar lattice of hexagonal cells each containing one vortex in
the center. Following the Wigner-Seitz idea, we approximate
the cells by a circle of the same area Acell as the hexagon. The
free energy restricted to a single cell with the corresponding
boundary conditions then reads as

F [�e, �o, A] = 1

NAcell

∑
j

∫
cell

d2r f ( j)(r) (34)

with N the number of layers. This expression can be converted
into a dimensionless formulation as done before.

The cell approach is based on the trial function for the
vortex structure [28]

η2
l (ρ) = η2

l,∞
ρ2

ρ2 + ξ 2
c

, (35)

where l = e, o and ηe,∞, ηo,∞, and ξc are treated as variational
parameters for the even and odd bulk magnitude as well as the
vortex core size.

The trial functions, Eq. (35), reduce the system to a sin-
gle Ginzburg-Landau equation, obtained by the variational
derivative with respect to A, which reads as

∇2A
1 + 4πχn

= �2
∞

ρ2

ρ2 + ξ 2
�

A, (36)

where we defined

�2
∞ = η2

e,∞ + η2
o,∞

1 + χn(1 + 4πχn)Qη2
e,∞

, (37)

ξ 2
� = ξ 2

c

1 + χn(1 + 4πχn)Qη2
e,∞

. (38)

By taking the curl of Eq. (36), one obtains the differential
equation [29]

1

1 + 4πχn

1

ρ

d

dρ

[
1

�2∞

ρ2 + ξ 2
�

ρ

dB
dρ

]
= B, (39)

023179-5



SCHERTENLEIB, FISCHER, AND SIGRIST PHYSICAL REVIEW RESEARCH 3, 023179 (2021)

whose general solution is given in Ref. [25],

B =
√

η2
e,∞ + η2

o,∞
κ0ξc

c1K0(�∞P) + c2I0(�∞P)

1 + 4πχn
. (40)

Here, In and Kn are the nth-order modified Bessel functions
of first and second kind, respectively, and we define P2 =
ρ2
B + ξ 2

� with ρB being the radius of the vortex cell, i.e.,
Acell = πρ2

B = 2π/(κ0B̄) with B̄ the mean magnetic induc-
tion in a vortex core. The coefficients c1 and c2 are determined
through the boundary conditions of vanishing current density
at the cell boundary as well as the flux threading the unit
cell equaling a flux quantum φ0 (for χn = 0). The latter is
formalized by integrating the left side of Eq. (39),

φ0 = 2π

κ0
= 2π

∫ ρB

0
dρ ρB(ρ), (41)

which together with the first boundary condition leads to

− 1

κ0
= lim

ρ→0

[
1

�2∞

ρ2 + ξ 2
�

ρ

dB
dρ

]
. (42)

Using χn � 1, the coefficients c1 and c2 reduce to

c1 = I1(�∞P)

I1(�∞P)K1(�∞ξ�) − I1(�∞ξ�)K1(�∞P)
, (43)

c2 = K1(�∞P)

I1(�∞P)K1(�∞ξ�) − I1(�∞ξ�)K1(�∞P)
. (44)

With this analytic expression for the magnetic induction, we
can use the result by Hao and Clem for the magnetic part
Fm = B̄B(0) [30].

Next, we integrate the free-energy density within the cell
which leads to the analytical expressions for the different parts
of the free energy,

Fb = −Ck (B̄, ξc)
(
η2

e,∞ + ao

ae
η2

o,∞
)

+ B̄
(
1 + B̄κ0ξ

2
c

)
κ0

(
2 + B̄κ0ξ 2

c

)2 (η2
e,∞ + η2

o,∞)

+
[
Ck (B̄, ξc) − 1

2 + B̄κ0ξ 2
c

](
η4

e,∞ + η4
o,∞

)
, (45)

Fm = I1(�∞P)K0(�∞ξ�) + I0(�∞ξ�)K1(�∞P)

I1(�∞P)K1(�∞ξ�) − I1(�∞ξ�)K1(�∞P)

× B̄
1 + 4πχn

√
η2

e,∞ + η2
o,∞

κ0ξc
, (46)

FJ = 4Ck (B̄, ξc)J

{
η2

o,∞, phase A
η2

e,∞, phase B
(47)

Fp = Ck (B̄, ξc)QχnB̄2η2
e,∞, (48)

Feo = −Ck (B̄, ξc)εηe,∞ηo,∞, (49)

and we introduced

Ck (B̄, ξc) = 1 + B̄κ0ξ
2
c

2
ln

(
1 − 2

2 + B̄κ0ξ 2
c

)
. (50)

In the following, we minimize the the free energy numerically
using the Nelder-Mead algorithm with respect to the varia-
tional parameters ηe,∞, ηo,∞, and ξc.

FIG. 4. Numerical minimization of the variational parameters
ηe,∞, ηo,∞ (left) as well as the vortex-core size ξc (right). The mag-
netic induction on the horizontal axis is normalized by the orbital
upper orbital critical field Bc2 = κ0 and the vortex core size by
ξBc2 = 1/κ0, its value at Bc2. The parameters ηe,∞ and ηo,∞ are shown
for a Maki parameter αM = 14, while the core size ξc is additionally
shown for αM = 20. The initial increase in ηe,∞ is the result of a
numerical artifact. In both plots the internal phase transition is clearly
visible.

B. Results

We choose a large Ginzburg-Landau parameter of κ0 =
100, ensuring that the lower critical field Hc1 is very small
compared to the upper critical field. The numerical results
for the order-parameter magnitudes, as well as the vortex-
core size as a function of the field (at zero temperature), are
displayed in Fig. 4. The numerical results show that at low
fields, the singlet-dominated phase A is indeed favored. This
changes at sufficiently high fields, where the odd component
becomes competitive.

Figure 5 shows a typical B-T phase diagram, obtained
by reinstating the explicit temperature dependence. The two
outer phase boundaries are of second order, whereas the in-
ternal phase boundary is of first order. The inset shows the
comparison of this critical field Bc,AB with the one in Eq. (31)
derived from the simplified free energy. The excellent agree-
ment suggests that orbital depairing and the flux-line lattice

FIG. 5. B-T phase diagram with the solid black line showing
the second-order phase transition. The color map displays the am-

plitude of the superconducting order parameter � =
√

η2
e,∞ + η2

o,∞,

and the dashed black line marks the A-B transition. The inset shows
the comparison of the numerically determined critical field for the
A-B transition (red points) with the analytical approximation in
Eq. (31).
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FIG. 6. Minimal Maki parameter αM required for phase B to
form at T = 0 as a function of the spin-orbit-coupling strength ε for
different interlayer coupling strengths J . A strong spin-orbit coupling
is beneficial for phase B to form, whereas the interlayer coupling sta-
bilizes phase A. Here we used a0,o = 0.6 and Q = 0.15 × 4πae/b.

only play a minor role in determining the critical field for the
internal phase transition, which is dominated by the paramag-
netic limiting effect.

Although the expression of the critical field for the internal
phase transition, Eq. (31), does not explicitly contain the spin-
orbit or Josephson interlayer coupling constants ε and J , they
play a crucial role in the formation of this high-field phase.
This is illustrated in Fig. 6, where the minimal Maki parameter
required for phase B to form decreases with increasing spin-
orbit-coupling strength. The opposite applies to J , as a strong
interlayer coupling suppresses the admixed subdominant odd
order-parameter component in phase A, thereby diminishing
the effect of the spin-orbit-induced parity mixing. The same
qualitative behavior was previously found for a a trilayer
system [21,24].

A possible way to experimentally observe the A-B transi-
tion is by measuring the magnetization curve. To this end, we
calculate the dimensionless magnetic field H using

H = 1

2

∂F
∂B̄

. (51)

The analytic expression for H is included in Appendix B.
The magnetization and magnetic susceptibility can then be
extracted from 4πM = B − H and χ = M/H. A typical
magnetization and susceptibility curve is shown in Fig. 7
showing a jump at the A-B transition and thus providing an
experimental signature of the internal first-order phase transi-
tion.

We can approximately express the magnetization jump by
(see Appendix (B1))

�M =
√

Qχn

(
1 − ao

ae

)(
η2

e,∞ − η2
o,∞

)[
Ck (B̄c, ξc) − 1/2

]
.

(52)
Unlike the critical field for the internal phase transition,
Eq. (52) explicitly contains the variational parameters ψ∞,
η∞, and ξc and can, thus, not be directly evaluated. We observe
that the magnetization jump increases with growing J and ε.
Consequently, increasing the interlayer coupling strength J

FIG. 7. (a) Typical magnetization and (b) susceptibility curves.
Both curves show a jump at the internal first-order phase transition.
The relative jump in magnetization is on the order of 1% for typical
parameter values. (c) Absolute and (d) relative magnetization jump
�M as a function of Josephson coupling J , which in this plot is set
equal to the spin-orbit-coupling strength. The blue lines correspond
to the approximation in Eq. (52), whereas the red points are results
obtained from the numerical solution of the full model. The mag-
netization jump increases with growing J = ε. For the plots (a) and
(b) we used ao,0 = 0.8 and Tc,o/Tc,e = 0.7, whereas we used the usual
parameter values for plots (c) and (d).

and/or the spin-orbit coupling ε leads to a larger magnetiza-
tion jump as the relative importance of the orbital depairing
term shrinks. This behavior can be seen in Fig. 7, where we
compared the analytical approximation of Eq. (52) with the
full numerical solution.

Apart from the phase diagram and magnetization curve, a
further experimentally accessible quantity is the latent heat.
However, it must be noted that observing the A-B transition
by changing the temperature at constant magnetic field may
prove difficult for typical parameter values, as the critical field
B̄c only shows a weak temperature dependence. To obtain the
thermodynamic quantities, we must reintroduce the explicit
temperature dependence. As expected for a first-order transi-
tion, the entropy S = −∂T F is discontinuous at the internal
phase transition (see Fig. 8).

IV. DISCUSSION

A previous study by Yoshida et al. has investigated
noncentrosymmetric bilayer and trilayer systems within the
framework of Bogoliubov–de Gennes [21]. They similarly
find that at low fields, the sign of the singlet order parameter
remains constant due to interlayer coupling, whereas at
high fields, a phase forms in which the order parameter
adapts to the sign of the staggered Rashba spin-orbit
coupling. Furthermore, while the results for the trilayer
system show certain additional peculiar features due to the
centrosymmetric middle layer, the resulting phase diagram for
the bilayer system is qualitatively similar to Fig. 5. However,
the state they investigated neglected the in-plane spatial
modulations of the order parameter in the mixed phase. Thus,
important aspects of the internal phase transition, including
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FIG. 8. Entropy as a function of temperature at B/Bc2 = 0.187.
The entropy shows a discontinuity in accordance with the first-order
nature of the internal transition. Inset: order parameters ηe,∞ and
ηo,∞ as a function of temperature at constant field showcasing the
swapping of order parameters at Tc.

the magnetization jump and the role of the Maki parameter,
could not be thoroughly investigated.

The two anomalies at the internal phase boundary line,
the jump in the magnetization and the entropy (latent heat),
are not the only features which may be used to observe this
phase transition. Additionally, we expect that anomalies are
observable in the ac susceptibility as well as in ultrasound
velocity (a change in the elastic constants) for certain modes.
A further intriguing feature could result from the fact that in
the B phase, the odd-parity exceeds the even-parity compo-
nent. It has been proposed that in this case helical subgap edge
states would appear at the surfaces with in-plane normal vec-
tors [31,32]. Such helical states would be visible in in-plane
quasiparticle tunneling spectroscopy as zero-bias anomalies.
In the A phase with dominant even-parity component, such
helical edge states would be absent. Thus, we expect a clear
qualitative change of the quasiparticle I-V characteristics
when passing through the transition. Finally, the experimental
analysis of the magnetocaloric effect may allow to detect the
internal phase transition [33].

V. CONCLUSION

Staggered noncentrosymmetric superconductors with
Rashba spin-orbit coupling alternating in sign from layer to
layer involve an order parameter of mixed parity which can be
influenced by external magnetic fields. While an even-parity
spin-singlet pairing state may dominate over an odd-parity
spin-triplet state at low magnetic fields, paramagnetic limiting
effects may lead to a suppression of the former in favor of the
latter in a growing magnetic field. This may trigger a phase
transition to a phase with dominant odd-parity component
provided that the Maki parameter is sufficiently large, i.e., that
orbital depairing is weak due to a very short coherence length.

We suggest that such a situation is realized in the
recently found heavy-fermion superconductor CeRh2As2,
which shows an anomaly in the upper critical field which
exceeds the expected paramagnetic limiting field drastically
[22]. We show that aside from the kinklike anomaly of the

upper critical fields to the normal state, there is also an internal
phase transition within the mixed phase between the low-
field phase A with dominant even-parity and the high-field
phase B with dominant odd-parity pairing. This internal phase
boundary may be observed by various means as detailed in
the previous section. In particular, this phase boundary should
connect to the kink of the upper critical field. An intriguing
feature of the B phase is the fact that it may have subgap edge
states observable in quasiparticle tunneling spectroscopy.

We have not considered here features expected for inplane
magnetic fields. As discussed in Ref. [23], there may exist a
high-field superconducting phase, which has a spatially mod-
ulated order parameter similar to the helical phase [1,5,6].
Also in this case, the comparative strength of spin-orbit and
interlayer coupling is essential, while the Maki parameter does
not play an essential role.
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APPENDIX A: INTERNAL PHASE TRANSITION

At the internal phase transition in the B-T phase diagram,
the free energy in Eq. (28) is equal for both phases and
minimal with respect to the corresponding order parameters.
In this Appendix we denote the order-parameter values which
minimize the free energy of phase A, FA, as ψA,e, ψA,o, and
analogously use ψB,e, ψB,o for phase B. First, we calculate

0 = ψB,e
∂FA

∂ψA,e
− ψA,e

∂FB

∂ψB,e

= −ε(ψA,oψB,e − ψA,eψB,o) − 8JψA,eψB,e, (A1)

0 = ψB,o
∂FA

∂ψA,o
− ψA,o

∂FB

∂ψB,o

= −ε(ψA,eψB,o − ψA,oψB,e) + 8JψA,oψB,o. (A2)

By adding Eqs. (A1) and (A2) one obtains

ψA,eψB,e = ψA,oψB,o. (A3)

Using the extremal condition of FA with respect to ψA,e and
of FB with respect to ψB,o we obtain

−ae + QχnB2

−ao

ψA,e

ψB,o
= ψA,o

ψB,e
, (A4)

which together with Eq. (A3) yields the expression for the
critical field in Eq. (31):

QχnB2 = ae − ao. (A5)

Finally, we note that for equal interlayer coupling for the
even- and odd-parity order parameters, they simply swap
value at the internal phase transition. This can be obtained
by equating both the interlayer and spin-orbit free-energy
contributions for the two phases, underlining the key roles
these two terms play in the A-B transition.
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APPENDIX B: MAGNETIZATION

For better readability, we omitted the expression for the H field in the main text. The full analytic expression reads as

2H = −∂Ck

∂B̄

(
η2

e,∞ + ao

ae
η2

o,∞
)

+ 2 + 3B̄κ0ξ
2
c

κ0(2 + B̄κ0ξ 2
c )3

(η2
e,∞ + η2

o,∞) + [K1(�∞ξ�)I1(�∞P) − K1(�∞P)I1(�∞ξ�)]−2

(1 + 4πχn)B̄κ2
0 ξ 2

c P2

+
√

η2
e,∞ + η2

o,∞
κ0ξc(1 + 4πχn)

K0(�∞ξ�)I1(�∞P) + I0(�∞ξ�)K1(�∞P)

K1(�∞ξ�)I1(�∞P) − I1(�∞ξ�)K1(�∞P)
+ κ0ξ

2
c

2

[
2(3 + B̄κ0ξ

2
c )

(2 + B̄κ0ξ 2
c )2

+ ln

(
1 − 2

2 + B̄κ0ξ 2
c

)]

×(η4
e,∞ + η4

o,∞) + QχnB̄η2
e,∞

(
2Ck + B̄ ∂Ck

∂B̄

)
+ ∂Ck

∂B̄
εηe,∞ηo,∞ + 4J

∂Ck

∂B̄

{
η2

o,∞, phase A
η2

e,∞, phase B
(B1)

where the derivative of Ck is given as

∂Ck

∂B̄
= 1

2
κ0ξ

2
c

[
2

2 + B̄κ0ξ 2
c

+ ln

(
1 − 2

2 + B̄κ0ξ 2
c

)]
. (B2)

We can calculate the jump in magnetization at the internal transition where B̄ = B̄c in the case Je = Jo =: J . Then, as shown
in Appendix A the order parameters swap values at the first-order transition. Thus, only the terms originating from the magnetic
orbital part, �∞, ξ�, and P, change under the permutation ηe,∞ ↔ ηo,∞. Therefore, it is useful to split magnetization jump into
two parts

�M = �Mm + �M0, (B3)

where Mm is the magnetization jump arising from the orbital term and �M0 the remaining parts. The latter can be easily
calculated by exploiting the fact that the variational parameters ηe,∞ and ηo,∞ swap values at the A-B transition

2�H1 = −∂Ck

∂B̄

∣∣∣∣
B̄=Bc

(
η2

o,∞ + ao

ae
η2

e,∞ − η2
e,∞ − ao

ae
η2

o,∞
)

+ BcQχn

(
2Ck + Bc

∂Ck

∂B̄

∣∣∣∣
B̄=Bc

)(
η2

o,∞ − η2
e,∞

)
. (B4)

Using the critical field in Eq. (31) we obtain the contribution to the magnetization jump

�M0 = Ck (B̄c, ξc)

√
Qχn

(
1 − ao

ae

)(
η2

e,∞ − η2
o,∞

)
> 0. (B5)

For the orbital contribution �Mm we note that the term

[K1(�∞ξ�)I1(�∞P) − K1(�∞P)I1(�∞ξ�)]−2

(1 + 4πχn)B̄κ2
0 ξ 2

c P2
(B6)

has a strong dependence on the arguments of the modified Bessel functions as K1(x) diverges like 1/x near zero. The other
originating from the magnetic orbital part, written on the second line of Eq. (B1), is almost unaffected by the permutation of the
order parameters and thus neglected. Upon inspecting the definitions of P2, �2

∞, and ξ 2
� we observe that, as Qχn, ξ 2

c � 1, the
change in ξ� ≈ ξc is very small when ηe,∞ and ηo,∞ swap values. Therefore, we ignore the effect of the permutation ηe,∞ ↔ ηo,∞
on P and ξ�. Furthermore, we only account for the change in �∞ in the most singular term K1(x). Replacing the modified Bessel
function of the second kind with its asymptotic behavior near zero, K1(x) ≈ 1/x, the contribution to the magnetization jump can
be written as

�Mm ∝ 1

B̄κ2
0 ξ 2

c P2

[(
1

�∞ξ�

I1(�∞P) − 1

�∞P
I1(�∞ξ�)

)−2

−
(

1

�̃∞ξ�

I1(�∞P) − 1

�̃∞P
I1(�∞ξ�)

)−2
]
, (B7)

where we omitted the prefactor 1/2(1 + 4πχn) for compactness and with �̃∞ the same as �∞ apart from ψe,∞ and ηo,∞ being
permuted. Using I1(x) ≈ x/2 the term in the square brackets of Eq. (B7) simplifies to[(

P

2ξ�

− ξ�

2P

)−2

−
(

�∞P

2�̃∞ξ�

− �∞ξ�

2�̃∞P

)−2
]
. (B8)

Reinserting the definitions of P, �∞, and ξ� and setting B̄ = B̄c we obtain the total magnetization jump at the internal phase
transition

�M =
√

Qχn

(
1 − ao

ae

)(
η2

e,∞ − η2
o,∞

)[
Ck (B̄c, ξc) − 1/2

[1 + χn(1 + 4πχn)Qη2
e,∞][1 + χn(1 + 4πχn)Qη2

o,∞]

]
, (B9)

which for χn � 1 this expression is well approximated by

�M =
√

Qχn

(
1 − ao

ae

)(
η2

e,∞ − η2
o,∞

)[
Ck (B̄c, ξc) − 1

2

]
. (B10)
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