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We theoretically study the lattice distortion induced first- and second-order topological phase transition in
rectangular FeSexTe1−x monolayer. When compressing the lattice constant in one direction, our first-principles
calculation shows that the FeSexTe1−x undergoes a band inversion at � point in a wide doping range, say
x ∈ (0.0, 0.7), which indicates the first-order topological phase transition of its electronic band structure.
Meanwhile, because the unidirectional pressure breaks C4 symmetry, the topological edge states along the (100)
and (010) directions have different Dirac energy. Given the high-temperature superconductivity of FeSexTe1−x

monolayer, we found that the C4 symmetry breaking is essential to support Majorana corner states in either
presence or absence of time-reversal symmetry. Especially in the case of breaking time-reversal symmetry, we
can obtain a single Majorana zero mode at each corner without concerning the details of the superconducting
pairing symmetries and applied Zeeman form, which can potentially bring advantages in the experimental
implementation.
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I. INTRODUCTION

The hybrid of superconductivity and topological band
structure can provide an experimentally accessible plat-
form to obtain the Majorana zero modes (MZMs) [1].
In the early studies [1–7], this hybrid is achieved in the
superconductor/topological insulator heterostructure due to
the superconducting proximity effect. The proximity-induced
superconducting gap is sensitive to the interface of the het-
erostructure and normally one order of magnitude smaller
than the gap in the mother superconductor, which brings var-
ious difficulties in the experimental verification of MZMs.
Thus, it is essential to realize the MZMs in a large-gap su-
perconductor without a complex heterostructure. On the other
hand, iron-based superconductor was originally discovered
as the first fully gapped high-Tc superconductor, which has
multibands at the Fermi level [8–14]. Recent studies show that
the existence of multibands at the Fermi level is helpful for
the coexistence of high-Tc superconductivity and topological
band structure in one material without the complex het-
erostructure [15–18]. For example, following the theoretical
prediction [19,20], the zero-bias conductance peak has been
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observed at the surface vertex core [16,21–23]. Meanwhile,
the theoretical studies of high-order topological superconduc-
tors [24–48] provide new insight to realize the MZMs directly
from two-dimensional and three-dimensional systems without
breaking the uniformity of the bulk Hamiltonian. Thus, the
implementation of the high-order topological superconductors
in iron-based superconductors can provide a promising ap-
proach to achieve the MZMs in one large-gap superconductor
and avoiding complex heterostructure.

In this paper, we theoretically propose to implement
a first-order topological band structure and a second-
order topological superconductor in a monolayer rectangular
FeSexTe1−x/SrTiO3(110), as shown in Fig. 1. Our first-
principles calculations show that when the in-plane lattice
constant in one direction is reduced, the electronic band struc-
ture of the monolayer FeSexTe1−x can achieve a strong TI
phase within a wide range of composition x values. This
results in the first-order topological phase transition (TPT) of
the inverted band structures with one pair of helical edge states
at each edge. As the FeSexTe1−x/SrTiO3(110) monolayer has
been experimentally observed to be a high-Tc superconductor
[49], we further study its topological property in the pres-
ence of the superconductivity. Note that the symmetry of the
system is broken down to D2h due to reducing the lattice
constant in one direction, the edge states along (100) and
(010) direction have different electronic Dirac energies. When
applying either only the superconducting potential or together
with the in-plane magnetic field, the edge states along the two
directions are naturally in different gapped phases. Thus the
C4 symmetry breaking is very helpful for the implementation
of Majorana corner states in both time-reversal invariant and
breaking monolayer FeSexTe1−x. In particular, our results for
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FIG. 1. Experimental set up of FeSexTe1−x/SrTiO3 (110) mono-
layer. The red points indicate the existence of Majorana corner states.

D class monolayer rectangular FeSexTe1−x/SrTiO3 do not
depend on the exact superconducting pairing symmetries (s-
wave pairing, s± pairing) and the details of the Zeeman form,
and are robust against disorders, which give the rectangle
monolayer FeSexTe1−x/SrTiO3 great advantages in experi-
mentally achieving MZMs.

This paper is organized as follows. In Sec. II, we study
the first-order topological phase transition of the electronic
band structures. In Sec. II A, we perform our first-principles
calculations to confirm the topological band inversion assisted
by the lattice distortion. In Sec. II, according to our first-
principles calculations, we construct the model Hamiltonian,
which is used to obtain the edge Hamiltonian and study the
edge states. In Sec. III, based on the first-order topological
phase transition of the electronic band structure, we study the
second-order topological phase transition of the DIII and D
classes in Sec. III(a) and Sec .III(b), respectively. In Sec. IV,
we discuss the experimental reality for our model and give the
conclusion.

II. LATTICE DISTORTION INDUCED FIRST-ORDER TPT

A. The first-principles calculations of the band structure

The first-principles calculations based on density-
functional theory [50,51] (DFT) are performed to study the
topological band structure of the monolayer FeSexTe1−x with
C4 symmetry breaking. The system initially has square lattice
with lattice constant a0 = 3.905 Å, which is the same with
the (001) monolayer FeSexTe1−x/SrTiO3 [18]. Without losing
the generality, we consider compressing the lattice constant in
[100] direction, quantified by the ratio ε = (a0 − ax )/a0 with
ax the lattice constant along x direction after compression.
In this case, the states at the � point are classified as the D2h

representations. Near Fermi level, we consider four orbital
states, the odd parity B1u states contributed by Se(Te) pz

orbital and the even parity Ag, B2g, and B3g states mainly
coming from Fe dx2−y2 , dxz, and dyz orbitals, respectively. We
distinguish the parities by green and blue dots in Fig. 2(a).
Note that the dxz and dyz orbitals are not degenerate anymore
due to the C4 symmetry breaking. We first choose the typical
composition value x = 0.45 [16] for which the monolayer
FeSexTe1−x/SrTiO3 with C4 symmetry is in topological
trivial phase [18]. The calculated band structures for ε = 2%
and ε = 6% are plotted in Figs. 2(a) and 2(b), respectively, in
which red and black curves correspond to the band spectrum
with and without spin-orbital coupling (SOC). For ε = 2%

FIG. 2. (a) Band structure of FeSe0.45Te0.55 with the lattice dis-
tortion ε = 2%. (b) Band structure of FeSe0.45Te0.55 with the lattice
distortion ε = 6%. (c) The band gap �b of FeSexTe1−x monolayer as
the function of distortion ε with x = 1 (red lines) and x = 0.45 (blue
lines). (d) The band gap �b of FeSexTe1−x monolayer as a function
of Te concentration 1 − x with ε = 6%.

shown in Fig. 2(a), there is no band inversion so that the
system is in topological trivial phase and has a positive band
gap at � point �b = E (B1u) − E (B2g) > 0. For the bands of
ε = 6% shown in Fig. 2(b), band inversion happens between
the odd parity state B1u and even parity state B2g at � point,
and has a negative �b < 0. When SOC is excluded [see the
black bands in Fig. 2(b)], this band inversion leads to a linear
band crossing between B1u and B2g states only along � − Y
due to the C4 symmetry breaking. When considering SOC,
the linear crossing is opened, resulting in a topologically
nontrivial band gap so that the system falls into a 2D TI phase
around � point. Our first-principles calculations (Appendix B)
show that the size of the SOC-induced gap is the same order
as that in 3D FeSeTe [17,20]. Thus the anisotropic lattice
distortion, by increasing the compress ratio, induces the
first order TPT. In Fig. 2(c), we plot the band gap �b as a
function of the compress ratio ε increasing from 0 to 10%,
for different compositions x = 1 (red square for FeSe) and
x = 0.45 (blue triangle for FeSe0.45Te0.55), respectively. The
calculated results show that both systems are in the trivial
phase for ε = 0 [18]. With increasing the compression, the
band gap �b undergoes a sign change at the critical value
εc = 9% and εc = 4% [indicated by red and blue dashed lines
in Fig. 2(c)], for FeSe and FeSe0.45Te0.55, respectively. As
reported by Ref. [49], high-Tc superconductivity has already
been observed in FeSe/SrTiO3(110) with the rectangular
lattice [49]. The SrTiO3(110) has the lattice constants
a = 3.905 Å and b = √

2a. This lattice mismatch makes three
unit cells of FeSe grow on the top of two STO(110) unit cells,
which reduces the FeSe lattice constant in [100] direction to
2
3

√
2a ≈ 0.94a, corresponding to ε = 6% in our calculations.

This growth technique should also be applied to FeSexTe1−x

monolayer. Therefore considering the experimental reality, we
take ε = 6% and plot the band gap �b as a function of the Te
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FIG. 3. The energy bands for (a) the monolayer FeSe on 5 layers
of SrTiO3 (110) substrate and (b) the free-standing rectangular FeSe
monolayer. The red and blue curves in (a) are the bands from SrTiO3

and FeSe, respectively. In both figures, the Fermi level is set at 0 eV
as the gray dashes.

composition in Fig. 2(d). In order to see the influence of STO
on FeSe, we perform more realistic calculations by putting the
monolayer FeSe on 5 layers of STO(110) substrate, where the
distance is set as 2 Å, very similar to the previous study [52].
The calculated band structures are plotted in Fig. 3(a), which
shows that the electronic states from SrTiO3 (red curves)
are almost decoupled with those from FeSe (blue curves). In
Fig. 3(b), we also plot the energy bands of the free-standing
rectangular FeSe monolayer without SrTiO3 substrate.
Comparing the FeSe bands in the two figures shows that there
is little difference between them. Therefore, the substrate
SrTiO3(110) has little effect on FeSe monolayer except for
distorting the FeSe lattice constant. These results strongly
suggest that both the superconductivity and topological band
structures could coexist in the rectangular lattice FeSexTe1−x

for 0.3 < x < 0.7 [18,49,53].

B. The model Hamiltonian and the edge theory

To further investigate the topological edge states, we con-
struct an eight-bands k · p effective model Hamiltonian with
D2h symmetry. The basis of the rectangular FeSeTe monolayer
from the bonding and antibonding states are taken as

|P±
α 〉 = 1√

2
(|SeA, pα〉 ∓ |SeB, pα〉), (1)

|D±
β 〉 = 1√

2
(|FeA, dβ〉 ± |FeB, dβ〉), (2)

where A and B are the two sublattices of Fe and Se(Te) atoms,
α = (x, y, z) and β = (xz, yz, xy, x2 − y2, z2) are the 4p and
3d orbitals of Se and Fe, respectively. The superscript +(–)
indicates the even (odd) parity of the states. According to
the DFT calculations, the states around the Fermi surface at
� point mainly comes from |D+

yz〉, |D+
x2−y2〉, |D+

xz〉 and |P−
z 〉.

Because of the C4 symmetry breaking, the effective Hamil-
tonian at � point has the point group symmetry D2h, whose
generators include inversion I , rotations around z-axis R2z

and y-axis R2y. This provides the constraint on the electronic
Hamiltonian

RHe(k)R−1 = He(Rk), (3)

where R denotes the symmetry operators in D2h group. This
leads the electronic Hamiltonian, up to the second-order of k

FIG. 4. (a) Fitting the band dispersions (black) for ε = 6% with
eight bands k · p Hamiltonian He(blue dash). (b) Band dispersions of
kx (black) and ky (red) for eight bands model He. (c) Fitting the band
dispersions (black) with projected four bands Hamiltonian Heff (red
curves). (d) Band dispersions of kx (black) and ky (red) for projected
four bands Hamiltonian Heff .

around � point is obtained as He = H0(k) + Hsoc. Here

H0 =

⎛
⎜⎝

M1(k) 0 βkxky iγ ky

0 M2(k) 0 0
βkxky 0 M3(k) iδkx

−iγ ky 0 −iδkx M4(k)

⎞
⎟⎠ (4)

is the Hamiltonian without spin-orbit coupling (SOC), with
Mi(k) = Ei + Mixk2

x + Miyk2
y (i = 1, 2, 3, 4), Ei the energy of

the ith doubly degenerated band at � point, Mix and Miy

the in-plane hopping of band i, γ , and δ the interband hop-
ping magnitude. C4 symmetry breaking makes Mix �= Miy

and γ �= δ.

Hsoc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 iλ1 0 0 −iλ3 0 0
0 0 0 0 iλ3 0 λ2 0

−iλ1 0 0 0 0 −λ2 0 0
0 0 0 0 0 0 0 0
0 −iλ3 0 0 0 0 −iλ1 0

iλ3 0 −λ2 0 0 0 0 0
0 λ2 0 0 iλ1 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the spin-orbit Hamiltonian in the basis (|↑〉, |↓〉) ⊗ (|D+
yz〉,

|D+
x2−y2〉, |D+

xz〉 and |P−
z 〉), with λ1, λ2, and λ3 are the SOC

amplitudes. The fitting parameters of the 8-bands effective
model with DFT calculations are shown in Table I.

In Fig. 4(a), we show that with the fitting parameters,
our model can describe the band dispersion near � point
well. With these parameters, in Fig. 4(b) we plot the band
dispersions for the system in the slab geometry with the
open boundary along y (black curves) and x (red curves),
respectively. The Dirac points of these two edges have dif-
ferent energies with Eu = 0.36 eV (upper Dirac point) and
El = 0.31 eV (lower Dirac point). This results in the Dirac
energy difference δED, about 50 meV, which is consistent with
the first-principles calculations (Appendix B).
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TABLE I. Fitting parameters of eight bands model Hamiltonian.

E1/eV E2/eV E3/eV E4/eV β(eV Å2) M1x (eV Å2) M1y(eV Å2) M2x (eV Å2) M2y(eV Å2)

0.048 0.115 0.42 0.168 1.05 −1.9 −3.6 −1.6 −2.6

λ1/eV λ2/eV λ3/eV δ(eV Å) γ (eV Å) M3x (eV Å2) M3y(eV Å2) M4x (eV Å2) M4y(eV Å2)

0.024 0.017 0.014 2.1 1.95 −2.9 −4.4 3.4 4.1

The anisotropy of the electronic Dirac point energies is
due to the C4 symmetry breaking by lattice distortion. As this
is essential for realizing the second-order topological phase
transition, we construct the edge theory to study the effect
of the lattice distortion on the edge states. As shown in
Fig. 2(b), the band inversion happens between |P−

z 〉 and |D+
xz〉

at � point. These two bands cross along � − Y while the
other bands are far away from the crossing point. So we can
project the original eight bands model into these two orbitals
to obtain a simplified four bands Hamiltonian. For the conve-
nience of the projection, we switch the basis order to (|D+

xz,↑〉,
|P−

z ,↑〉, |D+
xz,↓〉, |P−

z ,↓〉, |D+
yz,↑〉, |D+

x2−y2 ,↑〉, |D+
yz,↓〉,

|D+
x2−y2 ,↓〉) so that the eight bands full Hamiltonian takes the

form [54]

He(k) ≡ εI + H0 + Hnon,

H0 =
(

Hπ − ε 0
0 Hσ − ε

)
, Hnon =

(
0 Hc

H†
c 0

)
,

where Hπ , Hσ and Hc are 4 × 4 matrices. The eigenvalues
of Hπ are around energy ε where the eigenvalues of Hσ are
away from ε. Up to second order, the projected four bands
Hamiltonian Heff can be written as

Heff � Hπ − Hc(Hσ − ε)−1H†
c . (5)

Then we obtain

Heff =

⎛
⎜⎝

M3 + δ1 iηkx + γ ky 0 0
−iηkx + γ ∗ky M4 + δ2 0 0

0 0 M3 + δ1 iηkx − γ ∗ky

0 0 −iηkx − γ ky M4 + δ2

⎞
⎟⎠, (6)

where δ1, δ2, and γ is given by

δ1 = (M1 − ε)λ2
2 − 2λ1λ2λ3 + (M2 − ε)

(
β2k2

x k2
y + λ2

1

)
λ2

3 − (M1 − ε)(M2 − ε)
,

δ2 = α2(M2 − ε)k2
y

λ2
3 − (M1 − ε)(M2 − ε)

,

γ = α(M2 − ε)(−iβkxky − λ1) + αλ2λ3

(M1 − ε)(M2 − ε) − λ2
3

. (7)

If we expand δ1, δ2, and γ up to first order of k, the
Hamiltonian takes the form

Heff = D(k)s0σ0 + B(k)s0σz − ηkxs0σy + αkyszσx, (8)

where D(k) = Ed + Dxk2
x + Dyk2

y and B(k) = Eb + Bxk2
x +

Byk2
y . The parameters in Heff can be obtained by fitting with

the DFT calculations as shown in Fig. 4(c). The red fitting
curves have good agreement with the DFT calculations of
|P−

z 〉 and |D+
xz〉 bands(the two highest bands at � point). The

fitting parameters are given in Table II. According to the
effective Hamiltonian, we can also calculate the edge states
in (100) and (010) directions, see Fig. 4(d). The energy dif-
ference of the two Dirac points is nearly 48 meV, which
is consistent with the results obtained from the eight bands
model. This indicates that the different Dirac energies of the
two edges are directly the consequence of the C4 symmetry
breaking. To see how the lattice distortion leads to the dif-
ferent Dirac point energies [Figs. 4(b) and 4(d)], we make an
edge theory according to the four bands model.

We label the four edges of a rectangular as I, II, III, and
IV [Fig. 5(a)], and consider edge II first. For the edge II, the
Hamiltonian is decomposed as Heff = Hm + Hp, with

Hm(kx,−i∂y) = (Eb − By∂
2
y )s0σz + Ed s0σ0 − iα∂yszσx,

Hp(kx,−i∂y) = −Dy∂
2
y s0σ0 − ηkxs0σy. (9)

The purpose of this decomposition is to solve Hm to ob-
tain the two degenerate eigenfunctions of the edge states at
kx = 0, then treat Hp as the perturbation to obtain the linear
dispersion terms. So the high-order k2

x terms have been omit-
ted. We solve the equation Hmψα (y) = Eαψα (y) where α =
1, 2 denote the two degenerate eigenstates at the same edge
with the boundary condition ψα (0) = ψα (∞) = 0. The de-
generate eigenenergy Eα = Ed and the eigenfunctions take the
form

ψα (y) = Ny sin(κ1y)e−κ2yeikxxχ̃α, (10)

TABLE II. Fitting parameters of four bands model Hamiltonian.

Ed/eV Eb/eV α(eV Å) η(eV Å)

0.294 0.126 0.2 1.8

Dx (eV Å2) Dy(eV Å2) Bx (eV Å2) By(eV Å2)

0.25 4.25 −3.25 −9.25
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FIG. 5. (a) A rectangular with four edges which are labeled as
I, II, III, and IV. (b) Band dispersions along x (black) and y (red)
in Nambu space; (c) superconducting gap amplitudes at x (black)
and y (red) edge �g as a function of �s1/�s0. (d) The amplitude of
minimal energy of x edge (labeled by color) as a function of �s1/�s0

and magnetic field M̃. (e) The density plot of the MZMs with TR
symmetry. The inset plot the several lowest eigenenergies.

with the normalization constant Ny = 2
√

κ2(κ2
1 + κ2

2 )/κ2
1 and

the two parameters κ1 and κ2 given by

κ1 =
√

−Eb

By
− α2

4B2
y

, κ2 = α

2By
. (11)

χ̃α are eigenvectors satisfying szσyχ̃α = −χ̃α . Here we choose

χ̃1 = |σy = −1〉 ⊗ |↑〉, χ̃2 = |σy = +1〉 ⊗ |↓〉. (12)

The first- and the second-order perturbation Hamiltonian takes
the form

H (1)
α,α′ = 〈ψα|Hp|ψα′ 〉, (13)

H (2)
α,α′ =

∑
l

〈ψα|Hp|ψl〉〈ψl |Hp|ψα′ 〉
Eα − El

, (14)

where |ψl〉 denotes bulk states with energy El and
|Eα − El | � Eb. According to Eqs.(9) and (10), we have

Hp|ψα(α′ )〉 =
(

± ηkx − DyEb

By

)
|ψα(α′ )〉 + 2Dyκ1κ2|φα(α′ )〉,

(15)

where |φα〉 = Ny cos(κ1y)e−κ2yeikxxχ̃α , which is orthogonal to
|ψα〉. Therefore, the first and second terms on the right-hand
side of Eq. (15) contribute to the first- and second-order
perturbation as

H (1) = −DyEb

By
s̃0 + ηkxs̃z, H (2) ≈ −4(Dyκ1κ2)2

Eb
s̃0. (16)

Here we choose Pauli matrices s̃ to label edge states subspace.
According to the Table II, we have −DyEb

By
≈ 0.058 eV and

− 4(Dyκ1κ2 )2

Eb
≈ −0.002 eV. This indicates that H (1) dominates

the perturbation Hamiltonian and H (2) can be omitted. So the
effective Hamiltonian of edge II takes the form

HII(kx ) =
(

Ed − DyEb

By

)
s̃0 + ηkxs̃z. (17)

By analogy, the effective Hamiltonian of the four edges are

HI(ky) = MIs̃0 − αkys̃z, HII(kx ) = MII s̃0 + ηkxs̃z,

HIII(ky) = MIIIs̃0 + αkys̃z, HIV(kx ) = MIVs̃0 − ηkxs̃z,

(18)

where MI = MIII = Ed − DxEb
Bx

, MII = MIV = Ed − DyEb

By
. This

clearly shows that the energy difference of Dirac points δED =
Eb( Dx

Bx
− Dy

By
) comes from the C4 symmetry breaking. Taking

into the fitting parameters (Table II), we find that δED =
48 meV, which is consistent with numerical results of the eight
bands model [Fig. 4(b)].

III. LATTICE DISTORTION INDUCED
SECOND-ORDER TPT

To include the superconductivity, it is convenient to first
write the electronic Hamiltonian in Nambu space as

Hn(k) = (H0 + Hsoc)τz, (19)

with τz the Pauli matrix acting on the particle-hole basis. In
this case, each edge has two Dirac points near the Fermi level
because the degree of freedom of the system is doubled. Note
that as C4 symmetry is broken by lattice distortion, the edge
states should be considered separately for x and y edge. For
simplicity, we consider the chemical potential μ = Eu, that is,
at the Dirac point of the x edge [black curves in Fig. 4(b)].
When the superconducting gap is absent, the number of Dirac
points at kx = 0 is doubled and the edge states are four-
fold degenerates due to both time-reversal and charge U(1)
symmetries. Along y direction [red curves in Fig. 4(b)], the
electronic Dirac point at El is far below the chemical potential
so that near the Fermi level there are two separated Dirac
points, each of which is two-fold degenerate and protected
solely by the charge U(1) symmetry.

A. High-order TSC in DIII class

The pairing symmetry of the monolayer FeSe still has
many debates in various studies which give plain s-wave
pairing [55–59], s±-wave pairing [60–64], and d-wave pairing
[65–69]. Recent studies show that when the TI breaks C4

symmetry, both s±-wave pairing and d-wave pairing can lead
to a pair of MZMs at each corner while plain s-wave pairing
cannot [38,40]. Here, we do not intend to distinguish these
pairing symmetries but show that the rectangular monolayer
FeSexTe1−x can potentially be high-order time-reversal invari-
ant TSC if it has s±-wave pairing. In this case, the Hamiltonian
takes the form

Hsc(k) = Hn(k) + �(k)τx, (20)

with �(k) = �s0 − �s1( cos(kx ) + cos(ky)). As the charge
U(1) symmetries are broken so that the degeneracy at the
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Dirac points along x and y edges are lifted, which results
in two gaps �x

0 and �
y
0 [Fig. 5(b)]. By projecting the su-

perconducting gap into the eigenfunctions of the edge state
in Eq. (10), the effective gap of the two edges takes the
form �x

0 = (2 + Eb

2B̃y
)�s1 − �s0 and �

y
0 = (2 + Eb

2B̃x
)�s1 −

�s0 [40]. Since the break of C4 symmetry makes B̃y �= B̃x

where B̃y = By

b2 , B̃x = Bx
a2 , a and b are lattice constants with

the values of Bx and By given in Table II, MZMs can exist in
the range

1

2 + Eb

2B̃y

<
�s1

�s0
<

1

2 + Eb

2B̃x

[regime II in Fig. 5(c)], which is consistent with the results
of Ref. [40]. In the regime of �x

0�
y
0 < 0, each corner has a

Kramers pair of MZMs [Fig. 5(e)]. The size of the topologi-
cal regime is 1.5%�s0 around �s1/�s0 = 0.5 for s±-pairing
symmetry according to our fitting parameters.

B. High-order TSC in D class

When applying a magnetic field induced Zeeman term Msx

with s the Pauli matrix acting on spin space, the time-reversal
symmetry is broken and the gaps for x and y edges behave in
very different manners. Without loss of generality, we firstly
consider the edge in x direction. Note that the g factor for
the edge states maybe different from the bulk, we use M̃ to
denote the effective Zeeman field strength through projecting
Msx to the edge states (Appendix C). As the superconduct-
ing gap and the Zeeman term commute and the system has
mirror x symmetry, isx, for kx = 0 and M̃ = 0, the four edge
eigenstates can be characterized by the Pauli matrix τx and sx

as |τx = 1〉 ⊗ |sx = ±1〉 and |τx = −1〉 ⊗ |sx = ±1〉 with two
gaps �x

1 = � + M̃ for τx ⊗ sx = 1 and �x
2 = |� − M̃| for

τx ⊗ σx = −1 [Fig 6(a)]. When M̃ is increased from M̃ < �

to M̃ > �, the gap of the edge states along the x direction
will undergo the closing and reopening at the transition point
M̃
�

= 1 [black curves in Fig. 6(b)]. This leads to a band
inversion between |τx = −1〉 ⊗ |sx = +1〉 and |τx = 1〉 ⊗
|sx = −1〉 with the eigenvalues ±(�x

0 − M̃ ). Meanwhile, the
other two eigenstates with eigenvalues ±(�x

0 + M̃ ) has no
band inversion. Therefore, the eigenvalues of the supercon-
ducting matrix τx for the two eigenstates below Fermi level
are changed from νx

1 = νx
2 = −1 to νx

1 = −νx
2 = 1. Along y

direction, the gap amplitudes are almost independent of the
Zeeman term [red curves in Fig. 6(b)] and have �

y
1 = �

y
2 ≈

�
y
0 for M̃ � δED (Appendix C). We thus can define a Z2

topological invariant (−1)ν = sgn(νx
1ν

x
2 ), which changes from

0 to 1, indicating a second-order topological phase transition.
We further calculate the eigenvalues of the system for

ν = 0, 1. We found that for ν = 1 [Fig. 6(c)] there are four
MZMs, localized at the four corners, which are absent for
ν = 0. In Fig. 5(d), we show that there is always a Zeeman
effect induced gap close, which is independent of the ratio
�s1/�s0. This means the implementation of Majorana cor-
ner state in D class monolayer FeSexTe1−x is not sensitive
to the superconducting pairing symmetries. Without loss of
generality, we take �s1 = 0 in the rest of this paper. So far,
the chemical potential is taken μ = Eu. We further calculate
the lowest eigenenergy of the closed system as a function of

FIG. 6. (a) Band dispersions along x (black) and y (red) in
Nambu space with a magnetic field. (b) The gap of the edge states
along the x (black) and y (red) direction and as a function of magnetic
field. (c) The density plot of the MZMs with a magnetic field, which
breaks TR symmetry. The inset plot the several lowest eigenenergies.
(d) Phase diagram with chemical potential and magnetic field. The
blue color indicates the existence of Majorana corner states.

chemical potential and magnetic field M [Fig. 6(d)]. The color
plot of the eigenenergy shows an obvious phase boundary
between zero (blue) and finite (red) values. We also calculate
the critical magnetic field [black curve in Fig. 6(d)], where the
gap of the edge state along x direction is closed, as a function
of chemical potential. The phase boundary matches the critical
magnetic field well. This means the Majorana corner states of
D class in our work are not sensitive to the chemical potential
as long as it does not close the edge states gap. It is noted that
the protection of the Majorana Kramers pairs requires time-
reversal symmetry, and thus their braiding operation has some
symmetry restrictions [70]. While the single MZM at each
corner is protected only by particle-hole symmetry, therefore
their braiding operation has no symmetry restriction and is
more robust. The topological invariant ν defined through the
edge state Hamiltonian is consistent with the Pfaffian calcu-
lation when the system takes the periodic boundary condition
along x direction and the open boundary condition along y
direction. The magnetic field is only applied to the lower
half-plane [Fig. 7(a)]. The system can be considered as quasi-
1D with many transverse modes with Hamiltonian taking the
form Hsc(kx, y). The topology of this superconducting slab
geometry can be characterized by the topological invariant
ν0 = sgn( Pf[H(kx=0,y)]

Pf[H(kx=π,y)] ) with ±1 correspond to the even and
odd numbers of 1D topological superconducting chain in the
system. We then plot ν0 as a function of the Zeeman splitting
energy M̃ in Fig. 7(b) which shows a sudden drop from 1 to
–1 at the edge state gap closing point M̃

�
= 1 and characters

the phase transition. Both ν and ν0 changes when M̃
�

= 1, so
these two topological invariants are equivalent. As the system
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FIG. 7. (a) A slab with magnetic field applied in the half of the
system (blue region). The red points indicate the existence of the
Majorana zero modes. (b) Topological invariant ν0 as a function of
the magnetic field. (c) The density distribution and energy of MZMs
when the shape of the corner is not perfect.

with the magnetic field along x direction has mirror symmetry,
we can also define the edge state Wannier function, whose
center is quantized 0 or 1/2 due to the mirror symmetry. In
the Appendix D, we show the change of the quantization of
the edge state Wannier center also happens at M̃

�
= 1.

IV. DISCUSSION AND CONCLUSION

Considering the experimental reality, the d orbitals of the
iron-based superconductors may have a very complicated g
factor, resulting in orbital dependent Zeeman term other than
Mσ0sx. However, the various Zeeman terms can always lead
to the transition from ν = 0 to ν = 1, while the details are
given in Appendix F. Therefore, our results are independent
of the special Zeeman forms. The edges of the iron-based
superconductor may not be perfectly along x or y directions,
and the corner maybe not sharp, which, however, does not
affect the robustness of the Majorana corner state due to its
protection only from particle-hole symmetry. In Fig. 7(c), the
four eigenfunctions with the lowest eigenvalues are plotted in
the system whose two neighbor edges have an angle of 105◦
with smooth corners. These states localize at the four corners
with perfect zero energy, which indicates the robustness of the
MZMs under the imperfect edges and corners. In conclusion,
the C4 symmetry breaking by the lattice distortion in mono-
layer FeSexTe1−x can lead to the first-order topological phase
transition in the wide composition range x ∈ (0, 0.7),which
has a large overlap with the composition range of the high-Tc

monolayer FeSexTe1−x [53,71–73]. This rectangular mono-
layer FeSexTe1−x is also a promising candidate to realize
Majorana corner states.

ACKNOWLEDGMENTS

We would like to thank Chao-Xing Liu, Chen Fang,
Ling-Yuan Kong, and Yi Zhou for fruitful discussions. G.X.
acknowledges the support of the Ministry of Science and
Technology of China (Grant No. 2018YFA0307000), and the
National Natural Science Foundation of China (Grant No.
11874022). X.L. acknowledges the Ministry of Science and
Technology of China (Grant No. 2016YFA0401003) and the
National Natural Science Foundation of China (Grants No.
11674114 and No. 12074133).

FIG. 8. (a) Energy and momentum dependence of LDOS for
monolayer FeSe(Te) on the (100) edge. The higher LDOS is rep-
resented by brighter color. (b) LDOS for monolayer FeSe(Te) on the
(010) edge. (c) Energy spectrum for (100) edge. (d) Energy spectrum
for (010) edge.

APPENDIX A: DFT CALCULATIONS METHOD

Our first-principles calculations are implemented in the
framework of generalized gradient approximation with the
Perdew-Burke-Ernzerhof functional using the Vienna ab initio
simulation package (VASP) [74]. The lattice constant a =
3.6707 Å, b = 3.9050 Å, and the heights of Se/Te are relaxed
among all the calculations, and all the self-consistent calcula-
tions are carried out on 15 × 15 × 2 k-point mesh. The cutoff
energy (ENCUT) of the wave function is set to be 268 eV
in our cases. To ensure the decoupling between neighboring
slabs, we set the vacuum layer to be 15 Å. Besides, we adopt
virtual crystal approximation to make the substitution proper.
We also perform a series of SOC band calculations with differ-
ent exchange-correlation functions such as LDA, PW91, and
PBE and obtain a similar energy gap, which indicates that our
result is independent of the exchange-correlation functions.
Our previous calculations of the topological band gap in 3D
bulk Fe(Se,Te) with the same methods [20] give a similar
energy scale, which has been confirmed by other theoretical
calculations [14,73] and experiments [17,21].

APPENDIX B: EDGES STATES OBTAINED
FROM DFT CALCULATIONS

Maximally localized Wannier functions (MLWFs) [75] for
the 3d orbitals of Fe and the 4p orbitals of Se are generated
from monolayer calculations. We calculate the edge states
iteratively by constructing the tight-binding (TB) Hamiltoni-
ans of semi-infinite sample [76,77]. Besides, iterative Green’s
function is necessary for obtaining the surface state spectrum,
and we use the open-source software package WANNIERTOOLS

[78] to fulfill our work. The (100) and (010) edge local density
of states (LDOS) of FeSe(Te) are shown in Figs. 8(a) and
8(b), respectively. To see it more clearly, we also calculate the
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FIG. 9. Left panel: Wilson loop as a function of the magnetic
field. Right panel: the inset for the region of the black dash lines.

spectrums of the two edges [Figs. 8(c) and 8(d)]. The Dirac
points of the two edges are shown in the red dash lines. The
energy difference of the two Dirac points δED is 35 meV,
which is slightly different from that in the main text. How-
ever, this will not affect our results because δED is still very
large compared with the superconductivity and the applied
magnetic field. As shown in Fig. 8(c), the Dirac point is not
very clear as it is very close to the bulk states. To verify its
existence, we make a parity analysis, given in the inset of
Fig. 8(c). The difference of the parity between � point and the
other three time-reversal invariant points confirm the existence
of the Dirac point at � point for (100) edge.

APPENDIX C: EFFECTIVE GAP OF EDGES WITH
MAGNETIC FIELD AND SUPERCONDUCTIVITY

In this section, we consider how the magnetic field and su-
perconductivity affect the gap of the two perpendicular edges
[for example, edge II and edge III in Fig. 5(a)]. If we tune
the chemical potential near the Dirac point of edge II, say
μ = MII , according to Eq.(18), the BdG Hamiltonian of edge
II and III with superconductivity and magnetic field takes the
form

HII
BdG = ηkxτzs̃z + �τxs̃0 + M̃τ0s̃x,

HIII
BdG = δEDτzs̃0 + αkyτzs̃z + �τxs̃0 + M̃τ0s̃x, (C1)

where M̃ and � are the magnetic field and pairing strength.
Then we can obtain the eigenvalues by diagonalizing the
Hamiltonian of the two edges. For edge II, we have

EII = ±
√

�2 + η2k2
x ± 2�M̃. (C2)

The gap of the edge II is determined by the rela-
tion |M̃ − �|. While for edge III, the gap is given

by

√
�2 − 2(δED)2(

√
1 + �2M̃2

(δED )4 + M̃2

(δED )2 − 1) + M̃2. In our

cases, δED � �, M̃, so the gap ≈ �. This indicates that the
second-order phase transition of the system is only determined
by the edge in (100) direction, as discussed in the main text.
In the eight-bands model, the magnetic filed term Msx is
not equivalent to M̃s̃x in Eq. (C1). The latter refers to the
Zeeman splitting of edge states, which can be obtained from
the projection. In our cases, we have M ≈ 3M̃.

APPENDIX D: CALCULATION OF WANNIER CENTER

Note that our model Hamiltonian in Eq. (20) of the main
text has mirror symmetry. The applied magnetic field along
x direction preserves the mirror symmetry for x direction.
This can reflect in the Wilson loop calculations in the slab
geometry (Fig. 9), which gives the Wannier wave function
center of Majorana modes, referred to as Majorana Wannier
center. Now we consider the system takes periodic along
the x direction and the open boundary condition along the
y direction. So according to the Hamiltonian Hsc(kx, y), we
calculate the logarithm of the Wilson loop of the negative
energy band as a function of the Zeeman splitting M̃ with
fixing superconductivity �, as shown in Fig. 9. The inset
shows a sudden appearance of ±1/2 when Zeeman splitting
reaches a critical value M̃ = �, which is the transition point
of the topological invariant ν0. The Wilson loop in Fig. 9 dis-
tributes symmetrically around 1/2 because our Hamiltonian
has mirror symmetry. However, Majorana corner states in our
system still exist when the Mirror symmetry is weakly broken
[Fig. 7(c) in the main text], because it is also protected by
particle-hole symmetry.

APPENDIX E: PARAMETERS USED TO CALCULATE
MAJORANA CORNER STATES

As discussed in the main text, we use the different pa-
rameters from that in Table I for the calculation of Fig. 5(e),
Figs. 6(c), 6(d), and Figs. 7(b)–7(d). These figures reveal
the existence of the Majorana corner states, so we need to
calculate the eigenvalues of the system with a finite size.
However, if we use the parameters in Table I, it is impossible
to obtain the Majorana corner states with nearly zero energies
because of the calculation ability. To decrease the coherent
length of the system, we use the parameters shown in Table III.
Although the parameters are not realistic, we emphasize that
it will not affect our results. We calculate the edge states by
using the parameters in Table III, as shown in Fig. 10(a). The

TABLE III. Parameters for calculations of Majorana corner states in class D and DIII. For class DIII, only the adjusted parameters are
listed in the bracket, while the other unlisted parameters are the same as those in class D.

class D (class DIII)

E1/eV E2/eV E3/eV E4/eV β(eV Å2) M1x (eV Å2) M1y(eV Å2) M2x (eV Å2) M2y(eV Å2)

0.07 0.2 0.19 (0.45) 0.15 2.44 −1.75 −3.51 −2.02 −1.07

λ1/eV λ2/eV λ3/eV δ(eV Å) γ (eV Å) M3x (eV Å2) M3y(eV Å2) M4x (eV Å2) M4y(eV Å2)

0.52 0.35 0.45 1.87 1.02 −2.96 (–1.61) −0.91 (–3.94) 3.10 4.88 (9.46)
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FIG. 10. (a) Edge states in (100) (black lines) and (010)(red
lines) directions obtained from the parameters in Table III. (b) Phase
diagram obtained from the realistic parameters (Table I).

properties of the two edges are qualitatively consistent with
those obtained from the realistic parameters.

As shown in Fig. 6(d) in the main text, Majorana corner
states will exist as long as the magnetic field is larger than
the critical value, which does not depend on the specific
parameters used in the calculation. With this consideration,
we calculate the critical magnetic field Bc, where the gap of
the edge state along x direction is closed, as a function of
chemical potential with the realistic parameters (Table I) and
obtain the phase diagram as shown in Fig. 10(b). The critical
temperature of the monolayer FeSe(Te) is around 10–15 meV
[53], while the proximity-induced superconducting gap at the
edges is normally one order smaller. So we choose supercon-
ducting gap � to be 1 meV and find that minimal critical
value of the magnetic energy relating to 3 meV, corresponding
to a magnetic field of 26 T assuming the g factor g0 = 2.
Fortunately, this magnetic field is well below the in-plane
critical magnetic field of monolayer FeSe(Te), which is about
45 T [79].

APPENDIX F: EFFECT OF THE MAGNETIC
FIELD TERMS

In the main text, all the calculations are performed with the
magnetic field in (100) direction. Here we will show that our
results do not depend on the specific direction of the in-plane
magnetic field. At first, we calculate the critical magnetic field

FIG. 11. (a) The critical magnetic field Bc as a function of the
direction of the in-plane magnetic field. (b) Majorana corner states
with magnetic field along y direction (θ = 90◦). (c) Majorana corner
states for the Zeeman term including both the spin and angular
momentums couplings as shown in Eq. (F1).

Bc, where the gap of the edge state along x direction is closed,
as a function of the angle θ of the in-plane magnetic field, as
shown in Fig. 11(a). The critical value Bc hardly depends on θ .
Then we calculate the eigenvalues of the system with θ = 90◦
[Fig. 11(b)] and find that four Majorana corner states exist at
the corners, which indicates that our results do not rely on the
direction of the magnetic field. The angular momentums of the
states may also affect the Zeeman coupling. Then the Zeeman
terms of the Hamiltonian takes the form [48]

Hz = μB(gsS + glL) · B. (F1)

In the basis (|yz〉, |x2 − y2〉, |xz〉, |z〉), Lx, Ly, and Lz are given
by

Lx =

⎛
⎜⎝

0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, Ly =

⎛
⎜⎝

0 0 0 0
0 0 i 0
0 −i 0 0
0 0 0 0

⎞
⎟⎠,

Lz =

⎛
⎜⎝

0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0

⎞
⎟⎠. (F2)

We calculate the eigenvalues of the system with Zeeman terms
in Eq. (F1), as shown in Fig. 11(a). This leads the Majorana
corner states can exist independently with the in-plane mag-
netic field direction [Fig. 11(b)] and the specific Zeeman terms
[Fig. 11(c)].
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