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We study Z, topologically ordered states enriched by translational symmetry by employing a recently
developed two-dimensional (2D) bosonization approach that implements an exact Z, charge-flux attachment
in the lattice. Such states can display “weak symmetry breaking” of translations, in which both the Hamiltonian
and ground state remain fully translational invariant but the symmetry is “broken” by its anyon quasiparticles, in
the sense that its action maps them into a different superselection sector. We demonstrate that this phenomenon
occurs when the fermionic spinons form a weak topological superconductor in the form of a 2D stack of
one-dimensional Kitaev wires, leading to the amusing property that there is no local operator that can transport
the -flux quasiparticle across a single Kitaev wire of fermonic spinons without paying an energy gap in spite
of the vacuum remaining fully translational invariant. We explain why this phenomenon occurs hand in hand
with other previously identified peculiar features such as ground-state degeneracy dependence on the size of
the torus and the appearance of dangling boundary Majorana modes in certain Z, topologically ordered states.
Moreover, by extending the Z, charge-flux attachment to open lattices and cylinders, we construct a plethora of
exactly solvable models providing an exact description of their dispersive Majorana gapless boundary modes. We
also review the Z x (Z,)? classification of 2D BdG Hamiltonians (class D) enriched by translational symmetry
and provide arguments on its robust stability against interactions and self-averaging disorder that preserve

translational symmetry.
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I. INTRODUCTION

The toric code (TC) [1] is a simple example of an exactly
solvable model of Z, topologically ordered states [2,3]. But
more than providing a single clear example of these remark-
able states, it offers a new set of building blocks to construct a
plethora of other states [4]. These building blocks are its non-
trivial quasiparticles e, m, and €. e and m are hard-core bosons
and ¢ is a fermion, and they all see each other as semions (“w
fluxes”). One can describe any state of the physical Hilbert
space in a basis in which one keeps track of the occupations
of only two of these particles since one of them can always be
viewed as the bound state of the other two [4,5].

Importantly, these particles are nonlocal: they can only be
created in pairs at the open ends of certain operator strings.
Therefore, any physical state must respect the parity con-
servation of these particles. These parity symmetries are a
kind of “tautology,” in an analogous sense to how an open
string always necessarily has two ends. Therefore, these sym-
metries can never be broken explicitly by any terms added
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to the Hamiltonian. Remarkably, however, since these parity
symmetries are global, they can be broken spontaneously.
This occurs, for example, by adding a finite density of one
of the bosonic particles (say m) to the TC vacuum and hav-
ing it form a Bose-Einstein condensate [2,3]. Such phases
in which the unbreakable parity symmetry is spontaneously
broken correspond to trivial short-ranged entangled phases.
This is intimately related to the long-range phase rigidity of
this condensate, leading to energetically costly long-ranged
distortions for inserting the anyon that is seen as a 7 flux by
the condensate. On the other hand, when a finite density of the
bosonic anyons are added to the TC vacuum but instead they
form an “atomic insulator” state in which they are localized at
sites without spontaneously breaking their parity symmetry,
the resulting state is still Z, topologically ordered, although
it can display a projective symmetry implementation of the
translation group [6,7].

However, adding the ¢ fermions onto the TC vacuum af-
fords much more flexibility in constructing nontrivial states. If
e particles are kept dynamically immobile, these constructions
can be viewed as a form of Z, charge-flux attachment imple-
menting a type of local two-dimensional (2D) Jordan-Wigner
transformation [4,5,8—17]. In this case, and in contrast to the
bosonic case, any local fermion Hamiltonian always respects
parity. Therefore the state lacks any form of long-range parity-
phase rigidity, and distant immobile anyons (e particles) that
are seen as a 7w fluxes by the fermions can be inserted with
a finite-energy cost. In fact, the celebrated Kitaev honeycomb
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FIG. 1. Depiction of Z, topologically ordered state with weak
symmetry breaking along the y direction, where the ¢ particles form
a stack of Kitaev wires along the x direction. Solid lines depict the
ground-state pairing of ¢ Majorana modes (black dots). There are
dangling modes at the boundary. The e particles on vertices (small
cross) can hop along the x direction (dashed line), but there is no
local operator that hops them in the y direction across a single wire
without paying the Bogoliubov fermion gap in spite of this being a
symmetry.

model [18] can be viewed as a special case of this construction
[5], and deconfinement of the 7 fluxes in these states with
a finite density of ¢ fermions remains even when they form
a gapless Fermi sea [4] akin to an orthogonal metal [19].
For other studies of local boson-fermion mappings, see also
Refs. [18,20-24].

Even though the fermion parity symmetry cannot be bro-
ken spontaneously in the proper sense, the one-dimensional
(1D) topological phase of a Kitaev wire has certain features
resembling spontaneous parity symmetry breaking [25]. In
this study, we will demonstrate how states containing such
Kitaev wires of the emergent ¢ fermions underlie a remarkable
phenomenon dubbed “weak symmetry breaking” in the case
of translational symmetry in Z, topologically ordered states
[18]. A state weakly breaking translational symmetry is one in
which its ground state is exactly translationally invariant, but
the symmetry is in a sense broken by its anyon quasiparticles.
To be precise, it is the situation in which the symmetry action
on its anyon quasiparticles cannot be implemented locally
and maps them between different superselection sectors [26];
this phenomenon was also referred to as “unconventional”
symmetry implementation in Ref. [27]. The reason for the
appearance of weak symmetry breaking in stacks of Kitaev
wires of ¢ fermions is related to the fact that such wires
display a “locking” of fermion parity and boundary conditions
twist, namely, their ground state has an odd (even) number
of fermions for periodic (antiperiodic) boundary conditions.
As a consequence, if a 7 flux crosses a Kitaev wire, it will
swap the boundary condition of the wire, and such operations
would necessarily excite a single Bogoliubov fermion above
the gap, as depicted in Fig. 1. However, it is impossible to
remove such a single fermion by any local operation because
local operations can only add or remove fermions in pairs.
Therefore, the w flux cannot be transported to any site in
which it crosses an odd number of e-fermion wires even

though such sites are related by translational symmetry (see
Fig. 1). As a consequence, these states will display two types
of fluxes belonging to two superselection sectors.

Our work builds on a series of several key previous stud-
ies. These anomalies of the implementation of translational
symmetry have been investigated by a series of works in the
past [18,28-34], where it was emphasized that Z, topolog-
ically ordered states can have a size-dependent ground-state
degeneracy (GSD) in the torus different from 4, and display
features such as edge dangling Majorana modes protected by
translational symmetry. The Wen plaquette model was the first
and seminal example of such states [28]. We will combine
this understanding with the recently completed classification
of 2D topologically superconductors enriched by transla-
tional symmetry [30,32,35-47], exploiting the exact lattice Z,
charge-flux attachment [5], to develop an overarching picture
of the interplay of translational symmetry and Z, topological
order. In particular, we will be able to specify when a state
will have a projective symmetry implementation and when the
symmetry will be weakly broken for any topological paired
state of ¢ fermions with translational symmetry. We will then
link the appearance of dangling boundary Majorana modes
with the existence of stacks of Kitaev wires and the bulk
weak symmetry breaking of translations of fluxes. In doing
so, we will extend the constructions of Refs. [4,5] to lattices
with fully open boundaries and cylinders and provide exactly
solvable models for the bulk and edge excitations. We note
that, because translational symmetry swaps the superselection
sectors of the anyons in states with weak symmetry breaking,
this phenomenon is beyond the projective symmetry group
construction [6,7], and also beyond the considerations of
Ref. [38]. Also, since translational symmetry is not exactly
onsite, it is also beyond the considerations of Ref. [39]. We
also note in passing that a related form of weak symmetry
breaking of translations in fractional quantum Hall states has
been recently studied in Ref. [48].

Since our paper is quite lengthy, we have provided a suc-
cinct summary of main results in Sec. VII, which can be
read in an essentially independent way of the main body
of the paper. The remainder of the paper is organized as
follows. In Sec. III we extend this construction to lattices
with open boundaries. In Sec. IV we review the classification
and bulk-boundary correspondence of 2D BdG Hamiltoni-
ans with translational symmetry. In Sec. V we apply this
machinery to develop a theory of the lattice-size-dependent
ground-state degeneracy, the dangling Majorana modes, and
the weak symmetry breaking of translations of Z, topolog-
ically ordered states. In Sec. VI we write and analyze an
exactly solvable model that interpolates from the TC to the
Kitaev honeycomb model and realizes many examples of the
aforementioned properties of translationally symmetric Z,
topologically ordered states. Several technical aspects and
alternative derivations are presented in Appendices A—G.

II. REPRESENTATION OF PARTICLES IN TORIC CODE

In this work we would like to advance the point of view that
the TC Hamiltonian provides an exact rewriting of a Hilbert
space of local degrees of freedom in terms of nonlocal degrees
of freedom. These local or physical degrees of freedom are
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FIG. 2. (a) Representation of I'y, I'}, and U, ., defined on vertex
v and plaquette p. Here spins reside in the links of the square lattice,
and those participating in these operators are shown as solid black
lines. (b), (c) Definitions of L and R plaquettes for the mapping,
Eq. (6).

spin %, or equivalently hard-core bosons, residing in the links
of a square lattice. In its traditional formulation, the non-local
or unphysical degrees of freedom can be viewed also as spin %
residing in the vertices and the plaquettes. More specifically,
the states of such nonlocal degrees of freedom are labeled by
the £1 eigenvalues of operators Gy and G}/, defined on each
vertex v and plaquette p:

G, = X3XaXiXo, G} =Z3ZsZsZy; (D

where the convention is depicted in Fig. 2. When placed in a
torus such operators satisfy a global constraint:

[[ei=1 J]c =1 )
P v

where the product is taken over all plaquettes and vertices
in the lattice. More specifically, we say that when G{ = —1
(G;” = —1) an e (m) hard-core bosonic particle resides in
the corresponding vertex (plaquette). In order to account for
the above constraint of Eq. (2) in the torus, we take these
nonlocal hard-core bosonic particles to satisfy separate global
Z, number parity conservation symmetries, and we would
only interpret parity-even subspaces as physical, and discard
all the states with a total odd number of hard-core bosons
as unphysical. The nonlocality of these bosonic degrees of
freedom stems from the fact that any Hamiltonian which is
local in the underlying local physical spins degrees of free-
dom maps onto a Hamiltonian in which the e and m bosons
experience a nonlocal mutual semionic statistical interaction
[1,18]. Hamiltonians in which one of the boson species is held
immobile while the other is allowed to hop and pair fluctuate
on top of the TC vacuum are examples of classic bosonic Z;
lattice gauge theories [2]. Each subspace of such Hamiltonians
is labeled by the static location of the immobile particles,
while the remaining mobile particles can be viewed as ordi-
nary hard-core bosons moving in a background configuration
of static 7r fluxes [4].

More recently, a different rewriting of the microscopic
Hilbert space in terms of other nonlocal degrees of freedom
has been introduced in Ref. [5]. For related ideas and elab-
orations, see also Refs. [4,8-14,16]. The idea behind this
construction is to exploit the property that the bound state of
the e and m particles, denoted by &, has fermionic exchange
statistics relative to itself, and therefore can be used to intro-
duce a nonlocal degree of freedom that is a fermion rather than
hard-core boson. Therefore, rather than using e and m as a

basis, we can alternatively represent exactly the entire Hilbert
space associated with any local spin Hamiltonian by intro-
ducing an ¢ spinless complex fermion (two Majorana modes)
residing in the plaquettes, and an e hard-core boson residing
at the vertices [4] (see Fig. 1). In this new representation, the
operator that used to measure the parity of the m boson is now
taken to measure parity of the ¢ fermion:

I = Z375Z6Zs. 3)

Therefore, we say that an ¢ fermion resides in the plaquette p
if I') = —1. On the other hand, the operator measuring the
parity of the e boson is now replaced by a new composite
operator, which requires a pairing convention for plaquettes
and vertices, which we do so following the convention of
Ref. [5], by pairing each vertex with its northeast plaquette,
as depicted in Fig. 2, and the e parity is defined as

Fg = X3X4X1X2 X Z3Z§Z()Z4. (4)

Similarly, we say that an e hard-core boson resides in a
vertex v if I'; = —1. The current rewriting allows to repre-
sent the local Hamiltonians of the microscopic spins in terms
of Hamiltonians for the & fermion and the e boson which
experience a nonlocal mutual semionic interaction. If the e
particles are held immobile by enforcing that all operators in
the Hamiltonian commute with the local e-particle number,
I'¢ for all vertices of the lattice, the resulting theory can be
viewed as a modified Z, lattice gauge theory, whose gauge-
invariant subspaces correspond to those of ordinary fermion
Hamiltonians subjected to nondynamical static background
m magnetic flux tubes at the vertices that contain an e bo-
son [4]. In particular, the subspace without flux (I'y = 1 for
all vertices) can be viewed as an ordinary fermionic Hilbert
space, and thus the restriction to this subspace is a system-
atic form of local higher-dimensional bosonization of fermion
models [5].

Before describing finite-size geometries, we will review
this fermionic representation in the infinite plane following
the convention from Ref. [5]. We define two elementary ¢
pair-creation operators as follows:

Ux,p = X575, Up,y = X¢Z4, )

that create a pair of ¢ particles on plaquette p and its nearest
neighbor to its east and north, as shown in Fig. 2. Together
with I'?, they form a complete algebraic basis of spatially local
operators out of which any operator that commutes with all
I's from Eq. (4) can be obtained by multiplying and adding
these. These operators can therefore be mapped exactly to a
complete set of parity-even fermionic operators in a way that
preserves space locality. To do so we introduce two Majorana
fermion operators in every plaquette, y, and yIQ, and map
their bilinear products onto operators acting on the underlying
physical spins as follows (see Fig. 3):

Uy = ivevg. T, — —ivpy,. (6)

Directionality L, R follows the same convention as in Ref. [5].
The above representation is exact in the subspace where there
are no e particles, namely, for I' = 1 on every vertex v, but
can be easily extended to cases where there are static e par-
ticles [4]. y, y’ are related to the e-particle complex fermion
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(a) (b)

FIG. 3. Majorana representation of (a) horizontal, (b) vertical ¢
hopping in Eq. (6).

operator a by
y'=—i(a—d). )

We reiterate that this mapping (6) preserves spatial locality in
the dual fermionic theory, namely, that local spin operators
that commute with Eq. (4) are mapped into local fermion
operators and it is, therefore, a two-dimensional version of the
Jordan-Wigner transformation which preserves locality.

y:a—{—aT,

A. Torus geometry

We will now generalize the construction of Ref. [5] to a
finite-size torus with side length L, and L, (the lattice con-
stants are taken unity). We begin by describing how to recover
the full dimensionality of the underlying Hilbert space of
physical spins, which is 2>/<[+, in terms of the dual fermionic
¢ and the static bosonic e degrees of freedoms. Since the e
particles are held immobile by enforcing that every operator in
the Hamiltonian commutes with I'Y from Eq. (4), the Hilbert
space decomposes into a direct sum of decoupled subspaces
with specific values I'¢ = £1. In the torus there are 2501
such independent values since the I'{, operators also satisfy a

parity constraint:
[[ri=1 8)
v

Notice that if we take the product of I'{ over all the ver-
tices contained inside a simply connected region in the torus,
one obtains a closed-loop operator that acts only on spins
at the boundary of such region, which can be viewed as a
Z, lattice version of the Gauss-Ostrogradsky’s divergence
theorem. Clearly, such boundary operator must commute with
any Hamiltonian since the Hamiltonian commutes with every
I'. However, notice that when such region is not simply
connected but wraps around either the x or y directions of the
torus, there are two disconnected loop operators that make up
the boundary of the region and which wind completely around
either of the directions of the torus, as depicted in Fig. 4. We
call these two operators along the x, y directions T ,, and write
them explicitly as

T, =—-][x2z ©)

where the convention for taking the product is depicted in
Fig. 4, and we have added a global minus sign for future
notational convenience. Notice that the T, , operators cannot

(a) (b)
Z
X
Z
Z A Z Z X
TU
X X X X Z '
X
T,
T A
X

FIG. 4. (a) Representation of the t’"Hooft operator 7, along the x
direction. (b) Visual representation of the t"Hooft operator 7, along
the y direction. The lattice size is L, = L, = 4.

be expressed in terms of the I'; and therefore they are alge-
braically independent. Importantly, any local Hamiltonian that
commutes with every I'; must also commute with 7 ,. The
spectrum of these operators is 7, , = %1, they also commute
[T, T,] = 0, and therefore we have 2/+LF1 decoupled sectors
of the Hilbert space labeled by {I'¢, T, T, }.

Each of these 25[x*! subspaces labeled by {T'¢, T, T}
can be mapped exactly into the parity-even subspace of a
fermionic model with static background 7 fluxes. This parity-
even restriction appears in the torus because of the constraint
of the operator I'}:

[[rs=1 (10)

Therefore, in analogy to the bosonic case, we only interpret
the parity-even subspaces of the fermions as physical and
discard all of the states with a total odd number of fermions
as unphysical. Since there are L,L, plaquettes, this leads to a
degeneracy 25+b~! for each of these parity-even fermion sub-
spaces. As we see, then the total dimensionality of the Hilbert
space is recovered from the 2+L*! subspaces labeled by
{I'¢, T, T, }, each containing only even numbers of ¢ fermions.

Now, however, the representation from Eq. (6) only applies
to the sector in which I') = 1, and T, = T, = 1, and needs to
be modified in other sectors. To show this, we will describe the
correspondence between the representation of these operators
and the four sectors with arbitrary values of {7, T;}, but re-
stricted to I'; = 1; the representation of sectors with I # 1 is
discussed in Ref. [4]. To do this, notice that the T , operators
can be written as a string of products of the Uy, U, and I';
operators as follows:

1_[ (FzUx’”) =T, l—[ (FEUy,n) = Ty, (11)

neyx neyy

where the product is taken along horizontal and vertical paths
Yx,y from east to west and south to north, respectively. As
an example, the convention for y, in the strings is shown in
Fig. 5. These string operators in Eq. (11) can be viewed as
the operators associated with the transport of fermions around
the noncontractible loops of the torus oriented along x and y
directions. Substituting Eq. (6) in the right-hand side of both
equalities in Eq. (11) gives T, , = 1. Therefore, the subspace
with T, =T, = 1 corresponds to fermions having periodic
boundary conditions along both directions. The subspaces
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n-+1 n

FIG. 5. Transport of fermion across a given row given by
Eq. (11), with the order of product n shown explicitly.

with T, = —1 (T, = —1) can be represented as fermions hav-
ing antiperiodic boundary conditions along the x (y) direction.
For example, if 7, = —1 and T, = 1, we can represent the

Ux,p, Uy,p, and T in the same Way as was done in Eq. (6)
except that we introduce a “branch cut” directed along the y
direction, as depicted in Fig. 6 and those U, , that intersect
such branch cut acquire an extra —1 factor relative to the
representation in Eq. (6), and are given by

Uy, — —iyy'. (12)

Equation (11) then gives 7, = —1. Analogous choices are
made for other values of {T, T,}.

Thus, in summary, Ty, is the operator that determines
whether the fermion has antiperiodic boundary conditions
along the x and y directions of the torus, and the repre-
sentations from Eq. (6) need to be adjusted by adding an
appropriate minus sign along a branch cut of the torus.
Clearly, there is a freedom in the representation for choosing
the precise shape of the branch cut and other gauges where the
vector potential is spread over more bonds are also possible.
In Appendix A, the mapping in Eq. (6) is constructed more
explicitly using a 2D analog of Jordan-Wigner transformation.
There the relation of T, to boundary conditions (12) is also
obtained straightforwardly.

P1 —— D2

FIG. 6. Twist of the horizontal boundary as a branch cut shown
by the bold black line. Fermion transport across the branch cut has
an additional factor of —1 in Eq. (6). For example, U, ,, is mapped
into —iy,, v,,-

(a) (b)
b2
U1

b1
v

FIG. 7. (a) G} and G}, operators on a boundary in an open lattice.
They become three-spin operators on vy, p;. On the lower left vertex
v, and upper right plaquette p,, G; and G have only two spins.
(b) Creation operators for a single e and m on vertex v and plaquette
D, respectively, by extending the corresponding Z and X lines from
the left and right boundaries. The lattice size is L, = L, = 4.

III. TORIC CODE AND Z, CHARGE-FLUX ATTACHMENT
WITH OPEN BOUNDARIES

In this section we will discuss the detailed implementa-
tion of the bosonization construction in lattices with open
boundaries. The idea is to first generalize the TC model to
a lattice with open boundaries. Provided that the lattice has
as many vertices as plaquettes, the Z, charge-flux attachment
described in Sec. II proceeds then naturally. Open lattices
are interesting because they will allow us to explicitly study
boundary modes in exactly solvable models that we will
describe in Sec. IV. They are also interesting because the
open boundary removes the global parity constraints on the
number of nonlocal e, m, ¢ particles. This is because particles
appear at the end of string operators but, unlike the torus
where the string always has two ends, in open boundaries
one can formally view one end of the string to lie outside of
the system leaving a single unpaired nonlocal excitation in its
bulk. For related discussion of TC with open boundaries see,
e.g., Refs. [8,49].

A. Open boundaries

Our open rectangular lattice is constructed by removing the
links along upper and right edges of the rectangular lattice,
as shown in Fig. 7. The number of links, and consequently
of physical local spins, in the lattice is still 2L,L,, and its
Hilbert space dimension 2?/+'». The number of vertices and
plaquettes in the lattice is still L,L,, respectively. The vertex
and plaquette operators are defined as

G =[x ¢cr=[]z (13)

lev lep

where [ are the links connected to a given vertex v or sur-
rounding a given plaquette p. Notice that the vertex operators
G¢ acting on the left and bottom edges contain only three
links, and the one in the bottom left corner contains only two
links, as shown in Fig. 7. Similarly, the plaquette operators
acting over the top and right edges contain three links and
the one in the upper right corner contains 2 links, as shown
in Fig. 7. However, the local algebraic properties of these
operators are the same as in those in the usual torus geom-
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etry, namely, they are fully commutative among themselves
and they have spectrum +1. However, one important global
distinction with the torus is that these operators are completely
independent from each other, and in particular they do not sat-
isfy any global parity constraint analogous to that in Eq. (2).
We provide a rigorous proof of this in Appendix B. As a
consequence, the corresponding TC Hamiltonian, given by

n=a 3 (5E) v ey (F52) a9
v P

has a unique ground state and there is a gap min(A,, A,,)
to all excitations (assuming A, , > 0). This is in agreement
with the known property of the ordinary TC topological order,
namely, that it is not forced to have accompanying gapless
boundary modes (see, e.g., Ref. [50]).

Importantly, in this geometry the ¢ and m particles can
be created as isolated particles by a string that extends up
the boundary without any accompanying boundary energy
cost. In the case of e particles, for example, a string of Z
operators can be extended from the location of the e particle
towards the right edge or the upper edge, and in the case of
the m particles, a string of X operators it can be extended
from the desired plaquette towards the bottom or left edge, as
depicted in Fig. 7. In other words, there are 2L, L, independent
labels associated with G7, G that can be used to uniquely

label the full 22+ -dimensional Hilbert space. Therefore, we
can view e and m as hard-core bosons without any global
parity constraint. If we hold one of these species static, say
e, by enforcing the commutativity of the Hamiltonian with its
local particle-number operator G¢, then the remaining Hilbert
spaces can be exactly mapped into Hilbert spaces of hard-core
bosons coupled to static w fluxes located at the vertices that
contain e particles, without any global parity constraints.

We will now extend Z, charge-flux attachment in Ref. [5]
to open lattices. We begin by describing the modified parity
operators that measure the presence of the ¢ and e particles.
We again view the e particles as residing in the vertices and the
¢ particles in the plaquettes. Notice that our lattice has been
chosen so that there is a unique plaquette to the northeast of
any given vertex, and thus we can follow the same convention
of northeast pairing of vertices and plaquettes from the torus
defined in Sec. II. The operators measuring the parity of the e
and ¢ particles are

[ =G, X GRgey, T, =Gy, a3

P

where NE (v) is the plaquette northeast of the vertex v. To
map onto pure fermionic models we freeze the dynamics of e
particles (7 fluxes) as before, by demanding that the Hamilto-
nian commutes with every I'¢ for all vertices v. This leads to
operators in the bulk which are analogous to those we had in
the torus, but forbids certain boundary operators. Namely, we
define Uy and Uy in an identical way to how they are defined
in Fig. 2 and Eq. (5).

However, if one of the links making up the U, , is absent in
our new lattice with removed boundaries (see Fig. 7), then the
corresponding operator U, , will not commute with some I'
and thus it is not allowed. The remaining allowed operators
can be represented exactly as Majorana fermion bilinears as
before. Specifically, we introduce two Majorana modes y, y’

(a) (b)

Le(y) Lun(y) Le(n)

FIG. 8. (a) The twist of boundary conditions for e and m particles
along the y direction in a cylinder. The bold links along paths L.(y)
and L, (y) are multiplied by Z and X, respectively, in Eq. (16).
(b) The twist of boundary conditions 7 from Eq. (9) for ¢ particles
along the y direction in a cylinder. L.(n) are along the nth column
and T, along this path satisfies Eq. (17).

on every plaquette and we associate the operators in the same
way as in Eq. (6). Such representation from Eq. (6) would
describe the sector I'{ = 1 which has no e particles (7 fluxes).
The sectors with e particles can be represented by introducing
strings that connect to the e particles and twisting the sign of
the representation of U, when the fermions hop along such
cuts to account for the localized v fluxes [4].

We emphasize that in the current lattice the particle num-
bers of ¢ particles on plaquettes, (1 —I'})/2, and the particle
numbers of the e particle at vertices, (1 — I'?)/2, form a com-
plete set of labels of all the 22+L states in the Hilbert space,
because there are no global parity constraints on ¢ and e in the
open lattice, in analogy to the bosonic representation in terms
of the parity hard-core bosons m and e, discussed at the begin-
ning of this section. Consequently, we can also create isolated
¢ fermions in this geometry by extending the string operators
to the boundaries. This allows for a detailed and explicit lattice
representation of all operators within any given sector with
fixed I'Y, including the single Majorana mode operator. We
note, however, that the operators with odd fermion parity
are necessarily accompanied by nonlocal strings, whereas the
nonlocal strings disappear from the bilinear operators defined
in Eq. (6), and thus these are the only ones that one must
include in physical Hamiltonians or other local operators that
are obtained by products of these. Details of the representation
of single-fermion operator in terms of spin operators in this
lattice are presented in Appendix C.

B. Cylindrical geometry

The cylinder geometry has an interesting blend of topolog-
ical features from the torus and open lattice geometries. To
construct it, we choose the system to be periodic along the y
direction and open along the x direction by removing the links
in the right edge, as shown in Fig. 8.

Operators on the boundary plaquettes with links removed
are modified in the same way as the open lattice case. This
means G, and G} are three-spin operators on the left and right
edges, respectively. As in the case of the open lattice, these
operators are still completely independent and do not satisfy
any global parity constraint, and the e and m particles can
still be created as single isolated particles by extending their
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string towards right and left the open edges of the cylinder,
respectively. Therefore, the corresponding TC Hamiltonian
from Eq. (14) has a unique ground state in the cylinder and
a gap to all excitations. Notice that the closed-loop electric
and magnetic string operators along the periodic y direction
are not independent operators from the local G; and G}/, but

are related by
Mx= I &

leL,(y) veleft of L,, (y)

I1 z [T o (16)

leL(y) peright of L,(y)

Here, L,,(y) and L,(y) are closed loops around the periodic y
direction associated with transport of m and e particles and the
convention for the above relations is depicted in Fig. 8.

Now, since every vertex has a unique northeast plaquette
we can follow the same convention for the Z, charge-flux
attachment of the previous section, by enforcing that all terms
in the Hamiltonian commute with the new e-particle parity
operator I'y = G} Gy,,- This leads to an effective fermionic
representation for the various subspaces of the Hilbert space
in terms of ¢ fermions, whose parity is measured again by
I, = G}. And we follow the same convention for representa-
tion of operators in terms of the two Majorana modes y, ¥’ on
every plaquette as the one described in the previous sections.
There are no global constraints on the parity of ¢ particles
and a single-particle creation operator can be defined. But,
it always involves a nonlocal loop operator, and therefore
can be discarded from appearing in physical Hamiltonians,
which will only contain again operators within the fermion
parity-even subalgebra and thus can be completely generated
by from the local spin operators I'}, Uy, , Uy, .

One particularly amusing aspect of the cylinder geometry
is that, even though there are no global parity constraints on
the ¢ particles, it is still possible to twist boundary conditions
along the periodic y direction. At first glance, one might
think that this will induce a mismatch between the size of
the dual fermionic Hilbert space and that of the underlying
spin Hilbert space since the locations of ¢ fermions and =&
fluxes are enough to label all the states in the physical Hilbert
and exhaust its dimensionality, and thus one might think the
extra twist of boundary conditions along the y direction will
double the size of the dual fermionic Hilbert space relative
to the underlying spin space. There is, however, a nontrivial
constraint between the local e and ¢ parity operators in the
fermionic operators and the operator that transports fermions
over a closed loop around the y-periodic direction of the cylin-
der 7,. Namely, by adopting the same definition we had in
the torus in Eq. (9) for the operator T, that performs transport
over the periodic direction, we encounter that this operator
satisfies the following constraint with products of local parity
operators of e and ¢ particles:

Ty:_< I 1“5)( I1 r;), (17)
left of Ly (n) peElattice

where L.(n) is a vertical closed loop around the periodic y
direction at the nth column of the lattice. The schematic of

FIG. 9. String operator that changes ¢ parity at plaquette p. The
operator intersects T, and changes the vertical boundary condition
for ¢ fermions. This is due to the dependence of ¢ particle number
and vertical twist T in Eq. (17).

the definition of these operators is depicted in Fig. 8. The
first product of I'! operators can be understood intuitively by
noting that it measures the extra induced twist of boundary
conditions by the presence of static e particles (r fluxes),
within the convention that e particles are added from the
right open edge of the cylinder, and that each one induces
a —1 twist of the amplitude of the hopping in the vertical
y direction, as depicted in Fig. 7. The second product of
I}, is very interesting as it implies that the the boundary
conditions along the y direction are not independent of the
global parity of the fermions. In particular, in the case of
no static e particles (I'; =1 for all v), the constraint im-
plies that for a total odd (even) number of & fermions in the
cylinder one must necessarily choose periodic (antiperiodic)
boundary conditions along its y direction. In other words,
the dual Hilbert spaces with, e.g., periodic y-boundary con-
ditions and an even number of fermions must be discarded as
unphysical.

There is a simple intuitive picture behind this amusing con-
straint, which is illustrated in Fig. 9. From Fig. 9 one can see
that this constraint arises from the fact that operators that raise
the e-fermion number by one without adding e particles must
have electric and magnetic strings extending to opposite open
edges of the cylinder, and therefore they intersect 7, an odd
number of times leading to these operators to anticommute,
and thus to the property that the boundary conditions and the
global fermion parity cannot be changed independently but
must obey the constraint in Eq. (17). This point is further
discussed in Appendix C. The above discussion implies that
in order to properly dualize the subspaces with static e par-
ticles (commutativity with every I'Y) as ordinary fermionic
models of ¢ particles, one must impose a global fermion parity
conservation, namely, that the Hamiltonian commutes with
I1 pelamcer;, in order to have a definite fermionic boundary
condition along the periodic y direction.
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IV. TOPOLOGICAL SUPERCONDUCTORS WITH
TRANSLATIONAL SYMMETRY

The exact fermionic representations of spin Hamiltonians
in terms of fermionic models described in previous sections
provides a boundless tool to build new phases of matter on top
of the toric code vacuum. Naturally a simple class of phases
is that in which ¢ fermions have an effective noninteracting
fermion bilinear Hamiltonian. The only “unbreakable symme-
try” that these ¢ fermions are required to have is their global
parity. Therefore, the natural free-fermion states that one is
led to consider are those described by Bogoliubov—de Gennes
(BdG) type Hamiltonians. In two dimensions and in the ab-
sence of any symmetry, these are Hamiltonians belonging to
class D and in the topological classification of free-particle
systems are labeled by the integer spectral Chern number
C € Z, which counts the number of right-moving minus the
number of left-moving Majorana modes at the edge [35]. The
Z, topologically ordered states that one would construct on
top of the toric code vacuum by having the ¢ fermions form a
topological superconductor state with Chern number C were
those considered by Kitaev in his seminal paper [18], where
he demonstrated that the bulk topological properties of the
anyons in such phases, as encoded in the data of their fusion
modular tensor category, only depend on C mod 16. In spite
of this, any two states with different C can still be regarded as
topologically distinct phases since they cannot be connected
adiabatically while preserving their bulk gap.

In this study we would like to extend these considerations
to the case in which the topological order is enriched only
by the discrete lattice translational symmetry. We will restrict
to cases in which the e particles (r fluxes) are absent, which
means that we will only consider the phases in which the
translational symmetry is implemented nonprojectively on the
¢ fermions. In the perspective of the projective symmetry
group of Refs. [6,7], these correspond to states where the &
fermions experience zero flux per unit cell. Another set of
translational-invariant states are those in which there is one
e particle (v flux) in every vertex, which can be studied by
similar methods to those we develop, but we will not consider
this case here. However, as we will see in Sec. VD, some
of the phases that we will consider still feature a nontriv-
ial projective representation of the translational symmetry of
e particles. Therefore, we are naturally led to consider the
symmetry-protected topological phases of free fermions in
class D enriched by translational symmetry. The remainder of
this section is essentially a review of results in the literature of
classification of BAG Hamiltonians with particular emphasis
on the aspects that are relevant for our analysis. We note in
passing that even though our analysis is restricted to only BdG
Hamiltonians with discrete translational symmetries, it can
be naturally extended to other symmetries, which is naturally
aided by recent progress on completing the full classification
of crystalline topological BdG Hamiltonians [44-47].

A. Z x (Z,)? classification of translationally
invariant 2D BdG Hamiltonians

We assume the fermion bilinear Hamiltonian has an ordi-
nary commutative discrete translational symmetry group with
generators {,, 7,}. This requires that fermion pairing terms
respect translational symmetry and therefore Cooper pairs

carry zero momentum. We can therefore label BdG fermion
eigenmodes by crystal momenta (ky, k,). In crystal momen-
tum basis, the BAG Hamiltonian pairs states of momenta k
and —k. There are four special momenta residing at the center
and corners of the Brillouin zone that satisfy k = —k mod 27,
namely, {(0, 0), (0, 7), (;r, 0), (7, w)}. They are special be-
cause the fermion modes at these momenta are “paired with
themselves.” Therefore, for these points the BAG Hamiltonian
can be viewed effectively as a zero-dimensional (0D) single-
site Hamiltonian. 0D BdG Hamiltonians (class D) are in turn
classified by a ¢ € Z, index [35], which simply measures
the parity of the fermion-number operator (Np) at the site,
¢ = Npmod?2. Namely, ¢ = 0 corresponds to states with an
even number of fermions on the site, which are adiabatically
connected to the trivial empty vacuum with no fermions, and
¢ =1 corresponds to states with odd fermions on the site,
which are connected adiabatically to the state with only one
fermion. As a consequence, topological superconductors with
translational symmetry in 2D have four topologically invari-
ant Z, indices (also referred to as Pfaffian indicators) [45],
which measure the fermion-number parity at the four special
momenta in the Brillouin zone [30,32,45]. We will repre-
sent these four parity indices with a 2 x 2 matrix ¢;;, where

the indices i, j denote the special momenta k;;, arranged as
follows:
0,00 O,7)\ _ (ki ki e
((n,O) (ﬂ,n)) = <k21 k) S = Ckp)-(18)

These topological parity indices are not all independent from
the spectral Chern number C € Z, but satisfy the following
constraint [36,37]:

2
(=1)° = [T, (19)

i,j=1

Therefore, once the Chern number C is specified, only three
of the parity labels are independent, and we have a Z x (Z,)?
classification of translationally invariant topological super-
conductors in 2D.

To illustrate this more concretely, let us consider a BdG
Hamiltonian with a single complex fermion mode ag on every
unit cell (spinless fermions with a single site per unit cell)
labeled by the vector R in the Bravais lattice. These systems
are sufficient to realize representatives of all the topologically
nontrivial phases and the exactly solvable models that we will
discuss in Sec. VI are of this kind. In crystal momentum basis
a,t =N"1/2 DR exp(—ik.R)a;, the BAG Hamiltonian has the

form
_ i ek) A(k) _( %
H= Xk: v/ <A*(k) _8(_k)>\11k, Wy = (ff_k>' (20)

The pairing function is antisymmetric A(k) = —A(—k),
and therefore at the special momenta satisfying k;; = —k;j,
the BdG Hamiltonian is diagonal and the sign of e(k;;)
determines the topological parity index ;;. Namely, the com-
plex fermion mode at k;; is occupied if e(k;;) <O and
empty if e(k;;) > 0. The topological index ¢;; is therefore
simply given by the zero-temperature Fermi-Dirac occupa-
tion function at such momenta [30,32], which explicitly
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Periodic B.C. Anti—periodic B.C.
L even L even
L odd L odd

FIG. 10. Visual representation of quantization of momenta for
periodic and antiperiodic boundary conditions and given lattice size
L. We show here odd L = 3 and even L = 4.

reads as
Gij = 1—0[e(k;;)]. 21

These ¢;; parity indices determine also the global fermion-
number parity of the ground state when placed on a finite-
size torus [30,32], in a way that generalizes the classic result
of Read and Green on 2D topological paired states [51]. To
see this we consider a finite torus with a number of L, , € Z
Bravais unit cells along the x and y directions, whose crystal
momenta belong to a discrete lattice:

(kx,ky)=2n|:nX+q>X/(2n) ny+d>y/(27'[)i|’ el

L, ’ L,
(22)

Here we imagine that the system can have periodic or an-
tiperiodic boundary conditions along the two directions of
the torus leading to twists of boundary conditions labeled by
®, , € {0, 7}. Crucially, some of the special crystal momenta
might not be allowed in a given finite-size torus depending
on the parity of the total number of unit cells L, , mod 2 and
the boundary condition twist. This is illustrated in Fig. 10
where crystal momenta are depicted as discrete angles in a
circle. It is useful to construct a matrix A(k;;) of “allowed”
momenta, namely, a function which equals 1 when a special
crystal momentum point k;; is allowed and 0 when it is not in

TABLE I. A matrix for all lattice size and boundary conditions.

(P-P) (AP-P) (P-AP) (AP-AP)
co () 00 Y ¢
o () ) Y €Y
o (o o G @

a given system:

Alkij) = X (ky i)Y (kyij),

q)x L kx cDx
Xtk)=|1-——)+(-1)>—=|[1—-— —(Ly;mod2) |,
i b4 T

(23)
where Y (k,) is obtained from X (k,) by exchanging all of the

“x” by “y” labels in the expression above. Therefore, the total
fermion particle-number parity of a ground state in a finite
torus can be simply obtained by adding the topological parity
index ¢;; that counts the parity of fermion occupation at the
special momentum k;;, weighed by the function A(k;;) that
equals 1 if the corresponding special momentum is allowed
and O otherwise and it is explicitly given by the following
formula:

2
Nymod2 = (Z A(k,,);,-,) mod2 = Tr(A” ¢) mod 2.
i,j=1

(24)
In the second equality, ¢;; and A(k;;) are viewed as matrices
with momenta index i, j arranged as described in Eq. (18).
Table I lists the A matrices for the various twist and parities
of the number of lattice sites. This matrix notation should
simplify the bookkeeping of determining when a BdG topo-
logical phase has an odd number of fermions in a finite torus,
by simply taking the sum of the component-by-component
product of the ¢ and A matrices and determining if it is even
or odd from Eq. (24).

B. Lower-dimensional stacking and
bulk-boundary correspondence

Let us now discuss the real-space picture of this finer
topological classification of 2D translationally invariant BdG
Hamiltonians and its manifestations in terms of gapless
boundary modes in open lattices. Interestingly, some but
not all of the states with nontrivial Z x (Z,)> labels have
boundary gapless modes. These parity labels are indeed an
example of “weak topological” indices, in an analogous
sense to those in time-reversal-invariant topological insula-
tors [52,53], namely, they characterize stacking patterns of
lower-dimensional topological phases [36,37,45], and have
therefore a very transparent real-space interpretation. In or-
der to understand such real-space interpretation of these
indices in 2D, it is useful to understand the classification of
lower-dimensional BAG Hamiltonians with translational sym-
metry, which we shall review next.
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Topological superconductors without symmetry (class D)
in OD and 1D both have Z, topological classifications [35].
In OD, the state with trivial ¢ = 0 Z, index has an even
number of fermions in the site, while the nontrivial state
¢ =1 has an odd number of fermions in the site. In 1D, the
trivial state with K = 0 Z; index is connected adiabatically
to the trivial vacuum with zero fermions per site, while the
nontrivial state with K = 1 Z, index has an odd number of
unpaired Majorana modes at each end of the wire, and its
classic realization is the Kitaev wire model [25]. With trans-
lational symmetry in 1D there appear two additional weak Z,
invariants ¢ (k;) € {0, 1}, measuring the fermion parity at the
two special momenta k; € {0, 7w} analogously to the 2D case
discussed above. These weak parity invariants are constrained
by the strong 1D topological index K, as follows [45]:

2
(—Df =], (25)
i=1

Therefore, 1D BdG superconductors (class D) with lattice
translations can be fully classified by two independent Z, x
Z, labels (&o, &), and there are, therefore, a total of four
topologically distinct phases. The two states (0,0) and (1,1)
with trivial strong label (K = 0) are adiabatically connected to
the “stacks” of OD phases, and are therefore “weak” topolog-
ical states. Specifically, the trivial (0,0) phase is adiabatically
connected to the trivial vacuum with no fermions per site,
while the (1,1) phase is adiabatically connected to the stack
of OD sites with one fermion per site. This can be seen simply
by noting that an insulator with a fully occupied band with
one fermion per site would have occupied both special 1D
momenta k; € {0, r}. Therefore, these states are “atomic in-
sulators” (AI) [45], and clearly have no dangling gapless edge
Majorana modes. We note that, because of the above, in the
classification convention of Ref. [45], the state (1,1) is viewed
as a “trivial” state because it has a trivial “atomic insulator
limit.” However, for our purposes it is important to keep track
of this phase as a nontrivial topologically distinct phase from
(0,0) because they cannot be connected adiabatically without
closing the bulk gap. In fact, this distinction is robust beyond
noninteracting BAG Hamiltonians because the (1,1) ground
state has a global odd number of fermions in 1D chains
with an odd number of sites regardless of twist of boundary
conditions and an even number of fermions in lattices with
an even number of sites, in sharp contrast to the (0,0) state
which always has even number of fermions regardless of
twist and parity of the number of lattice sites. This will be
particularly important in our case because states with an odd
number of fermions must be discarded as unphysical when
the fermions are emergent and are microscopically forced to
be created only in pairs from a topologically ordered ground
state in the torus, as it is the case of the ¢ fermions previously
discussed in Sec. II. This is in fact the underlying cause of the
anomalous ground-state degeneracy in the torus of certain Z,
topologically ordered states discussed in Refs. [28-30,32,33],
which we will review in the forthcoming sections.

The states with labels (1,0) and (0,1) are strong 1D topolog-
ical superconductors (K = 1 Kitaev-wire-type states) which
are obtained from the trivial state (0,0) via a phase transition
by closing the gap either at k = 0 or 7, respectively. They both

feature an odd number of dangling Majorana modes at each
edge, and can be distinguished by their global fermion parity
in finite periodic chains with L € Z sites subjected to peri-
odic (& = 0) and antiperiodic (¥ = ) boundary conditions.
Specifically, the following formula, which is the 1D analog of
Eq. (24), gives the number of fermions in a periodic chain:

2
Nymod2 = (Z A(kg;(k,-)) mod2 =A - ¢. (26)
i=1
A(k;) = X (k;) and the function X(k;) is the same as in
Eq. (23). This formula predicts that the state (1,0) will have
an odd (even) number of fermions in its ground state under
periodic (antiperiodic) boundary conditions regardless of the
number L of lattice sites. On the other hand, (0,1) will have an
odd number of fermions for chains with L even and periodic
boundary conditions and L odd and antiperiodic boundary
conditions, and otherwise it will have an even number of
fermions.

Armed with the above results in 0D and 1D, we are
now in a position to understand the real-space picture of the
7 x (Zy)? topological classification of BAG superconducting
phases with translational symmetry in 2D. First notice that if
we construct a 2D BdG system out of stacks of decoupled 1D
wires which extend along the x (y) direction, then the parity
index matrix ¢;; will be independent of its i component (j
component). This implies that the following phases will be
adiabatically connected to 0D atomic insulators (Al;) with an
even (i =0) and odd (i = 1) number of fermions per site,
respectively:

AIO . Cij = (8 8), AI] . é‘ij = (} i) (27)

Neither of the atomic insulators Al; has dangling Majorana
modes at the boundaries. Aly has always an even number of
fermions in its ground state regardless of the parity of the
torus size or the twist of boundary conditions, whereas Al
has a fermion parity that equals the parity of the number
of sites in the lattice L,L, mod2 independent of the twist
of boundary conditions. Similarly, the following phases are
adiabatically connected to decoupled stacks of Kitaev wires
(KW, ;) aligned along the o directions (« € {x, y}) and with
a 1D parity index ¢ atk = 7 (¢ € {0, 1}):

1 1 0O 0
KW, o: &= <0 0); KW,i: ¢ = (1 1); (28a)

1 0 0 1
Kwyy() . ;ij = <1 O), KW»] . {,’j = <0 1) (28b)

When placed on a lattice with open boundaries, KW, , phases
will have an odd number of dangling Majorana modes per ex-
posed unit cell along the open boundaries that are orthogonal
to the o direction and an even number of Majorana modes
per exposed unit cell for boundaries parallel to the « direction
of the wires, provided the translational symmetry along the
boundary is preserved.

There are two other weak topological phases that are adi-
abatically connected to decoupled 1D Kitaev wires, and are
those in which the ¢;; parity index depends only on the sum of
i+ jmod2. These can be viewed as decoupled Kitaev wires
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that are oriented along the diagonal direction, namely, the
fermion modes in a unit cell labeled by coordinates (R,, Ry)
only couple to fermions in the unit cells given by (Rx +
n, Ry 4+ n), with n € Z. Because of this, we will denote these
“diagonal” Kitaev-wire phases by KW, . where ¢ € {0, 1}
is the 1D parity index of the wires, and they have topological
2D parity indices given by

1 0 0 1
wa+y,0 : é‘tj = (O 1)’ wa+y,l : {l] = (1 0)

(29)
When placed on a lattice with open boundaries, the KW,
phases will have an odd number of dangling Majorana modes
per exposed unit cell in all of the boundaries for which the
boundary translational symmetry is preserved. The phases
in Egs. (27)—(29) exhaust all of the 2D weak topological
phases that are adiabatically connected to stacks of lower-
dimensional topological phases. In particular, notice that other
“slopes” for stacking of wires do not lead to new topological
phases. For example, if we stack Kitaev wires with a slope
(x> @), qx,y € Z, by coupling fermion modes y at the unit
cell (Ry, Ry) only with fermion modes y’ in the unit cell (R, +
qxn, Ry + gqyn), with n € Z, one can show that this state will
be topologically equivalent to a state with a different slope
(4, qy) provided that g, , = ¢,y mod 2. This follows from the
fact that these two phases have (k) o< cos(gk, + gyk,) and
e(k) o< cos(q.k, + ¢ky), and they have the same topological
indices given by Eq. (21) evaluated at k., = 0,7 due to
2m periodicity of the cosine function. Therefore, we see that
the Al,, KW, ., KW, ., KW, phases, which respectively
have slopes (0, 0), (1,0), (0, 1), (1, 1), cover all the possi-
ble slopes of wire stacking modulo 2.

The weak topological superconducting phases form a mod-
ular additive group, where the physical interpretation of
addition is aligning the phases “on top of each other,” as in
a bilayer system while preserving the translational symmetry.
The topological parity matrices &;; of a decoupled bilayer
are the sum of the topological parity matrices of each layer
modulo 2. Because of this we can specify a “complete basis”
of phases out of which all others can be obtained by layer
addition. This basis would only have three phases, which
we could choose for example to be KW, o, KW, o, Al;, and
the three Z,-valued coefficients (0 and 1) that specify any
other phase in this basis can be taken as the (Z,)* topolog-
ical labels in the Z x (Z;)? classification. Then to complete
the basis to generate all of the possible 2D BdG supercon-
ducting phases by layer addition, we simply need to specify
two nontrivial states with nonzero Chern numbers C = +1,
which we can choose to be the simplest chiral topological
superconductors, denoted by x¢, and describe them by a parity

matrix:
1 0

This x¢ topological superconductor has spectral Chern num-
ber C = £1. They can be obtained from the trivial vacuum
Al by closing the gap at the special momenta (0,0) and they
are a lattice version of the celebrated p 4 ip spinless super-
conductor described by Read and Green [51] with a chiral

gapless Majorana boundary mode, and an odd number of
fermions in the torus for periodic boundary conditions along
x and y directions, and even number otherwise. Therefore,
(xc,» KWy 0, KW, Al ) form a complete basis for layer addi-
tion for all topological BdG states with translation in 2D, and
we can specify any state by a unique vector (C, ¢k, , Lk, Zal) €
(Z, Zs, 7, 7).

C. Robustness of Z x (Z,)? classification
against interactions and disorder

Our discussion of the Z x (Z,)* classification 2D
translational-invariant topological superconductors has so far
been restricted to noninteracting fermion bilinear Hamil-
tonians and, therefore, a natural question is whether this
classification is stable against fermion interactions. In fact,
it is known that certain symmetry-protected topological su-
perconducting phases are not stable against interactions, such
as 1D superconductors with T2 = 41 time reversal (1D BDI
class), whose noninteracting Z classification collapses down
to Zg under interactions [54-57], as well as other exam-
ples [27,40—43,58,59]. There is, however, a simple argument
that indicates the Z x (Z,)? classification 2D topological su-
perconductors is fully stable against interactions. First, the
spectral Chern number C is expected to be stable against
interactions. Second, we can provide an alternative definition
of the topological parity matrix at special momenta ¢;; from
Eqg. (21), in terms of many-body properties without reference
to the single-particle BAG spectrum. This can be done by
noting from Table I that when the system is placed in a
torus in which both L, and L, are odd, the topological parity
index ¢;; can be defined as the parity of the many-fermion
ground state, Ny mod 2, under twists of boundary conditions
N¢(®y, y)mod?2 as follows:

N0, )

_ (N;0,0)
bij = Ny(r, )

Ny (. 0) ) mod2, L, odd. 31
Since the many-body fermion parity of the ground state will
not change by adding interactions, unless a bulk-gap closing
phase transition is induced, the topological parity matrix ¢;;
will remain quantized to have {0, 1} entries and the Z x (Z,)*
classification of translational-invariant superconductors is ex-
pected to remain stable upon adding fermion interactions.

The above recasting of the topological parity matrix also
indicates that the Z x (Z,) classification of translational-
invariant superconductors is stable in the presence of self-
averaging disorder that respects translational symmetry. To
see this, we appeal again to the fact that disorder is not ex-
pected to change the many-body fermion parity of a gapped
state unless a bulk phase transition occurs. This is an impor-
tant point because the label of these states as weak topological
phases might create the wrong impression that the states
would be delicate or fragile. This robustness of weak topolog-
ical labels against disorder has been emphasized previously in
the case of time-reversal-invariant weak topological insulators
[60,61] and topological superconductors with other symme-
tries [62].
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V. TRANSLATIONALLY SYMMETRIC Z,
TOPOLOGICALLY ORDERED STATES

A. Anomalous GSD in tori

As we have seen 2D translationally invariant topological
superconductors can have ground states with an odd fermion
number in the torus. As first identified in Refs. [28-30,32,33],
when such paired fermions are the ¢ fermions that emerge
in a Z, topologically ordered state, where the periodic and
antiperiodic boundary conditions are realized dynamically by
the Hamiltonian, this leads to an “anomaly” in the number of
degenerate topological ground states in the torus. Specifically,
as discussed in Sec. II, only states with a global even num-
ber of fermions are physical and states with an odd number
of fermions must be discarded. Therefore, this leads to the
following formula for the ground-state degeneracy of a Z;
topologically ordered state where fermions form a translation-
ally invariant paired state of the kind described in Sec. I'V:

GSD=4—| Y (TrA"¢)mod2 |. (32)

®,,®,

Here the sum is over the twist of BCs, &, , € {0, 7}, for a
phase described by a topological parity matrix ¢ and for a
torus with a given number of L, , unit cells along the x and y
directions. The A matrices are given by Eq. (23) and are tab-
ulated in Table I. Notice that the difference of GSD between
two states with different ¢ can in some cases be understood as
a manifestation of different bulk topological order but in some
others it cannot. For example, as shown by Kitaev [18], the
bulk topological order of the superconductor depends on the
spectral Chern number C mod 16, and states with even C are
expected to have a fourfold GSD, while C odd are expected to
have threefold GSD. The situation when translational symme-
try is enforced is, however, more subtle and the GSD of states
with either C even or odd can display anomalous ground-state
degeneracy that depends on the parity of L, , as dictated by
Eq. (32) and shown in Refs. [28-30,32,33]. This will also
be explicitly demonstrated with an exactly solvable model
in Sec. VL. In fact, the only states with even C that have a
consistent pattern of GSD = 4 independent of L, , are those
with a completely trivial topological parity matrix ¢;; =0
which are adiabatically connected to the TC vacuum in the
case of C = 0. On the other hand, the only states with odd
C with a consistent pattern of GSD = 3 independent of L, ,
are those with a single nontrivial parity index ¢;; = 1 and all
others ¢;; = 0, which are obtained from the those with ;; =0
by a single band inversion of the & fermions at a single special
momenta k;;, as discussed in the previous section.

B. Bulk-edge correspondence

Another manifestation of the nontrivial weak topological
invariants ¢;; is the presence of dangling Majorana modes
in open boundaries. Examples of this were presented in
Refs. [28-30,32,33], but with our discussion it is possible
to have a simple and systematic criterion for the appearance
of dangling Majorana modes. Specifically, states where the ¢
fermions form 2D stacks of Kitaev wires will display an odd
number of Majorana modes in exposed unit cells at some of

the boundaries when translational symmetry along the bound-
ary is preserved. In particular, in the basis for the topological
indices described in the previous section, (C, ¢k, Ck,, {a1) €
(Z, 7, 7>, 7Z5), then we have that states with Kitaev-wire
nature will have nonzero values of ({x,, ¢k, ), and will display
an odd number of dangling Majorana modes in the corre-
sponding boundaries. For example, (¢, ¢k,) = (1,0) is a
state with Kitaev wires oriented along the x direction and thus
will have dangling Majorana modes along the exposed bound-
aries that are parallel to the y direction. The Wen plaquette
model [28], which was the first example to be discovered of
these anomalous states, is in fact topologically described by
(¢k,» ¢k,) = (1, 1), which means that it contains Kitaev wires
oriented along the diagonal and therefore displays dangling
Majorana modes along both the x and y directions.

C. Ideal fixed-point Hamiltonians

In this section we will construct ideal commuting projector
Hamiltonians for all the phases with zero Chern number,
namely, those with (C, ¢k,, ¢k, §ar) = (0, &k, . Sk, Sar)- Tt is
rigorously known that for phases with a U(1) symmetry, so
that the Chern number implies a nonzero Hall conductivity, it
is impossible to construct local commuting projector Hamilto-
nians [63]. Presumably, this remains true in general whenever
the spectral Chern number C is nonzero, regardless of whether
the system has a U(1) symmetry. Note, however, that this
clearly does not imply that one cannot construct exactly solv-
able models of phases with nonzero C, as demonstrated by
the Kitaev honeycomb model [18], and as we will also il-
lustrate in Sec. VI. The commuting projector Hamiltonians
will, however, prove useful in illustrating the phenomenon
of “weak breaking of translational symmetry” [18] associ-
ated with phases with nontrivial topological parity indices
(¢k.» ¢k, ¢a1) that we will discuss in Sec. V D. Each of these
phases can in turn be obtained as the ground state of a com-
muting projector Hamiltonian of the form

H=-A Y T{=A Y G, (33)
v P

Here, I' is the parity of the e particle, defined in Eq. (4),
and C, are Z,-valued operators (C; = 1) that act on a finite
number of spins in the vicinity of plaquette p, and all operators
in the Hamiltonian commute with each other:

[C,.Cy1=0, [C,,T] =0. (34)

The operator C,, depends on the phase in question, labeled by
parity indices (¢k,, {k,. {a1), and we choose it so that under
the fermion duality it maps onto a Majorana fermion bilinear
of the form C), <> iy1()¥y(,) in the sector with no e particles
(I't =1), and onto the corresponding fermion bilinear with
twisted phases in the sectors with e particles and nontrivial
twists of boundary conditions, as described in Sec. III. The
Hamiltonians of Eq. (33) will realize different phases depend-
ing on the sign of A,, and these are listed in Table II. The
detailed analysis to construct these operators in the case of
the phases with diagonal stacking of Kitaev wires (KW,
phases) is presented Appendix D. The pattern of Majorana
pairing for each of these ideal Hamiltonians is illustrated in
Figs. 12 and 17, which makes clear the interpretation of a
given phase as atomic insulator or a stack of Kitaev wires,
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TABLE II. C, for different phases for the ideal fixed-point
Hamiltonian in Eq. (33). E(p) and NE(p) are plaquettes to the east
and northeast of plaquette p. Examples for the phases in which there
is no entry under the “Examples” column are realized by the ideal
Hamiltonian described in Sec. VI.

Phases C, signA, Examples
Al r; + Toric code [1]
Al re —

KW..0 U +

KW, ; Usp _

KWy,() U,\‘,p +

KW, , Uy, _

KWiiy0 TRepUre@Usp +

KWty LUy e Us,p — ‘Wen model [28]

and it is also straightforward to visualize which phases will
have dangling Majorana modes in their boundaries.

D. Weak breaking of translational symmetry

One of the most remarkable consequences of the nontriv-
ial weak topological superconductivity of the & particles is
the concomitant appearance of a phenomenon called weak
symmetry breaking in Ref. [18]. The idea is that, in cer-
tain topological phases, the action of a symmetry group can
nontrivially exchange different anyon kinds (superselection
sectors) [26]. In the case of translational symmetry that we
are studying, this manifests, for example, by a translation
that maps an e particle into an m particle, as it occurs in
the Wen plaquette model [28]. The underlying mechanism for
why this phenomenon appears hand in hand with the GSD
anomalies and the dangling Majorana modes has not been
described before, but as we will see, it is intimately tied to the
formation of stacks of Kitaev-wire states by the ¢ fermions.
We will now discuss a systematic connection between patterns
of weak symmetry breaking and the underlying topological
indices (C, k., Lk, ta) € Z x (Z)*. To do so, we will ex-
ploit the ideal commuting projector fixed-point Hamiltonians
from Sec. V C, but with the implicit idea that the results would
carry over as universal properties of the phases they belong
to. We recall from Sec. IIT A that we have enforced a local
conservation law of an operator that measures the presence
of the e particles added on top of the TC vacuum, given in
Eq. (4). Let us consider a single e particle placed in a vertex
v in an infinite lattice. The presence of this particle requires
to twist the boundary conditions for the & fermions hopping
across a line that extends from the vertex containing the e
particle towards infinity. Now, the pair-creation or transport
operator of such e particle between two nearby vertices v,
and vy, 7,7, , will generally depend on the specific state the
¢ fermions are in, but it must satisfy the following criteria:

(1) It should only create two e particles on v; and v;.
Namely, it should only anticommute with the e-particle par-
ities in the two vertices in question, I‘il, I‘f;z, and commute
with the e-particle parities elsewhere.

(2) It should be local. Namely, it only acts on physical
spins within a certain finite radius of v;, v, (for nonideal
Hamiltonians away from the commuting projector fixed point,

it would have exponentially decaying overlap with distant spin
operators).

(3) It should commute with the C, term of the ideal
fixed-point Hamiltonian in Eq. (33). This is because when it
transports an e particle initially located at v; to the vertex v»,
both initial and final states should have the same energy in
order for it to have the interpretation of an e-particle transport
operator. (For nonideal Hamiltonians away from the commut-
ing projector fixed point, this should remain true in the limit
of an infinite transitionally invariant lattice when the string of
the single e particle extends to infinity).

Let us describe these transport operators first in the sim-
plest phases, which are the atomic insulators Aly and Alj;.
The ideal fixed-point Hamiltonian for Al is equivalent to the
one of the usual toric code [1], and for Al, it is that of the
TC but with opposite sign for the plaquette operator shown in
Table II. Thus, the e-particle pair-creation operators between
two neighboring vertices vy and vy, 77, , are simply given by

T, = Zv1 vy (35)

Viv2

where Z,,,, operates on the link connecting the two vertices.
Notice that the operator that transports the e particle over
the smallest allowed closed loop (one plaquette) is simply
G}, and is algebraically dependent on the operators appear-
ing in the ideal fixed-point Hamiltonian. This is a general
property of any ideal fixed-point Hamiltonian since con-
tractible closed-loop transport operators must commute with
the Hamiltonian, and therefore they cannot be algebraically
independent of those appearing in the commuting projector
Hamiltonian since these provide a complete algebraic basis
all local operators that commute with the Hamiltonian. Thus,
we see that the two vacua Aly and Al; are eigenstates of the
closed-loop transport operator of e particles, but with opposite
eigenvalues 1 and —1, respectively, reflecting the fact that the
e particles experience a background  flux per plaquette in the
Al phase containing one ¢ fermion per plaquette. Therefore,
in the case of atomic insulator phases (Al;), there is no weak
symmetry breaking of translations, but instead there appears a
projective representation of the translational symmetry group
[6] of e particles in the Al; phase, analogous to magnetic
translations with 7 flux per unit cell.

However, the situation changes considerably in the phases
that have stacks of Kitaev wires of ¢ fermions. To construct
the transport operators in these cases, we begin by noticing
that these phases generally break the Cy4 rotational symmetry
and, therefore, we expect the translation operators along the
x and y directions to differ. We will illustrate this explicitly
for the KW, ., phases but similar considerations apply to the
other phases that can be viewed as stacks of Kitaev wires. It
is easy to verify that for the KW, , phase with Kitaev wires
running along the x direction, the e-particle pair-creation op-
erator remains the same as in the ordinary TC (Al phase), for
neighboring vertices along the x direction. This is because the
flux pair creation connecting nearest-neighbor vertices does
not intersect the bonds that pair Majorana modes in the given
phase, as depicted in Fig. 11. In other words, moving the
flux along the direction of the wires commutes with operators
describing fermion hopping and pair fluctuation since it does
not introduce branch cuts along the bonds belonging to wires
according to the principles described in Secs. II and III.
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FIG. 11. Emergent anyonic statistics of e particles for KW, ,
phases. As shown in Eq. (37), a closed-loop transport operator
(dashed line) between odd-odd or even-even rows measures the e
parity of vertices contained. e on odd and even rows are effective ¢’
(i.e., on vertices v;_4) and m’ (vs) of the toric code. Note hopping
between adjacent rows will cut the Majorana bond (dotted line) odd
times. The solid black line corresponds to hopping two rows given
by Eq. (36).

On the other hand, the operator that pair creates e particles
in the TC vacuum for nearest-neighbor vertices along the y
direction, which is orthogonal to the wires, does not commute
with the C,, term in Hamiltonian of Eq. (33) for the KW, ,, and
therefore violates the principle (3) of e-particle pair creation or
transport operators. In fact, there is a fundamental obstruction
to constructing an operator satisfying all of the three criteria
that would transport a flux between nearest-neighbor vertices
that intersect one of the wires in the corresponding KW, ,
phase. To see this, let us consider placing the system in a
torus. Notice that if we hop a flux that initially resides say
in vertex v to the neighboring vertex v + y, then, in the final
configuration, the C,, operator of the bond that is intersected
by such flux hopping would be mapped into a fermion bilinear
with an extra minus, according to principles described in
Secs. II and III and illustrated as solid black line in Fig. 11.
This implies that the intersected Kitaev wire would change
boundary conditions under such flux hopping. However, the
ground state of a Kitaev wire with periodic boundary condi-
tions has an even number of fermions, whereas the ground
state with antiperiodic boundary conditions has an odd num-
ber of fermions. Therefore, the flux hopping would change the
total e-fermion parity of the system by 1, which is not allowed
in the torus. Therefore, from the above argument, we conclude
that the only way to hop the flux across a single Kitaev wire
would require the creation of one Bogoliubov fermion added
on top of the vacuum with an energy cost of A,, and thus
would violate principle (3). In open boundary conditions it
is possible to hop the flux across a single Kitaev wire, at
the expense of adding a single ¢ fermion (see Sec. III for
discussion on single-fermion creation in open lattices), which

would allow to satisfy criterion (3), but would violate the
criterion (2), since the single-fermion creation is necessarily
nonlocal. We are thus led to the remarkable constraint that
it is impossible to hop or pair create fluxes along neighboring
vertices in the y direction for KW, ., while satisfying the three
criteria above.

It is, however, possible to pair create (or hop) e particles
that are second-nearest-neighbor vertices along the y direction
for KW, ., while satisfying all the three criteria as illustrated
in Fig. 11. The operators accomplishing this for the KW, ,
phase are given by

T, ., =i2yZ3X, = i(Z12,23) x (X2Z)y), (36)

viv2

shown visually as a solid black line in Fig. 11. In the last
equality of Eq. (36), we have written the transport operator as
a product of the “bare” e-transport operator in the TC (product
of Z’s) and a vertical Majorana pair-creation operator [U,,,
from Eq. (5)]. The reason this is possible is that when hopping
an e particle across two Kitaev wires, one twists the boundary
condition of both neighboring wires, and, therefore, if one
would use the bare hopping operators of e particles from the
TC vacuum, one would have two Bogoliubov fermions added
to each of these wires in the two bonds that are intersected
by such hopping. These Bogoliubov fermions, however, can
be destroyed locally by a Majorana bilinear operator that
connects the adjacent wires, restoring both wires back to their
ground states with the twisted boundary conditions that are
induced by the e-particle hopping.

From the operators that produce the smallest allowed hop-
pings of e particles in the KW, . (KW, ) phases, given in
Eqg. (36), it is possible to then construct the operator that
moves the e particles around the smallest allowed closed loop
(depicted in Fig. 11). This operator can be interpreted as
creating two pairs of particles in neighboring vertices and then
annihilating one pair after completing the smallest allowed
closed-loop transport of e particles. Therefore, this operator
must commute with the ideal fixed-point Hamiltonian from
Eq. (33) of the corresponding phase. For the KW, . phases
the closed-loop transport operator is given explicitly by

1_[ vavj = Fiscplcpz’ CP = Ux.p’ (37)

where the path is shown as the dashed line in Fig. 11. Notice
the appearance of I'y_in Eq. (37). This implies that the closed
transport of e particles in the smallest allowed loop for the
phase KW, , equals the identity in the ground state, but there
is a nontrivial semionic statistic among e particles that belong
to the vertices that are separated by a single Kitaev wire and
that cannot be connected by any local e-particle transport
operator. Therefore, we are led to the remarkable conclusion
that the e particles in these two kinds of vertices are distinct
anyons with mutual semionic statistics that belong to two
different superselection sectors.

All of the above conclusions apply as well to the phases
KW, . and KW, ., which can be viewed as having stacking
of Kitaev wires along vertical and diagonal directions. In
the case of KW, phases, the vertices that can be con-
nected belong to the two sublattices of the square lattice.
Details of the transport operators in this case are presented in
Appendix D.
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FIG. 12. (a) Visual representation of Eq. (39) as a distorted “honeycomb” lattice. (b) Equivalence of Eq. (40) to a Kitaev honeycomb
model. " and y are defined on left and right sides of each plaquette. Couplings between y’, y in Eq. (40) are illustrated by solid lines for
fermion parity I"*; dotted lines for horizontal hopping U, ; dashed lines for vertical hopping U,.

Let us then summarize the picture that emerges from the
above considerations for the phases that can be viewed as
stacks of Kitaev wires of ¢ fermions. The e particles in these
phases are separated into two superselection sectors. e parti-
cles in vertices separated by crossing an even (odd) number of
Kitaev wires belong to same (different) superselection sector.
The above is the phenomenon of weak symmetry breaking,
as introduced in Ref. [18]. These two kinds of e particles of
different superselection sectors have the same bulk topologi-
cal properties of the e and m particles of an ordinary TC. In
other words, even when we force the original ¢ fermions of the
toric code to not appear at low energies [say by taking A, to
be large and positive in Eq. (33)], there is an emergent anyon
statistics of the fluxes in such background of gapped fermionic
matter, forced upon them by the topology of the underlying
Kitaev wires.

VI. MODEL

The results in Sec. II allow us to construct a large class
of exactly solvable spin models of Z, topologically ordered
states, one for each free-fermion Hamiltonian. In this section
we will illustrate this in a specific model [Eq. (38) below],
which will realize 14 out of the 16 classes of states with
nontrivial parity indices given in Sec. [V. Moreover, the model
contains 6 out of the 8 topological phases of the ideal fixed-
point Hamiltonian; see Sec. V C. As we will see, some of these
phases will feature anomalous GSD that depends on the size
of the torus, and some will feature dangling Majorana modes
in open boundaries, in line with the considerations of Sec. IV,
and we will be able to provide exact solutions for both their
bulk and boundary spectrum.

We choose the Hamiltonian to be

H=H+V,
Hy = —A, Z Fi - Z (thx,[, + hyUy,p + th;),
v )4
1)
V= % [Uy*"(F; + Ffwm)]’ 3, A, > 0. (38)
p

N(p) is the plaquette to the north of p. This Hamiltonian
conserves the local parity of e particles at each vertex, mea-
sured by I'Y. We will be interested in excitations belonging

to the sector without e particles, which energetically can
be enforced to be the ground-state sector by assuming that
A, > |hy .|, |8]. Therefore, this Hamiltonian can be exactly
mapped into a dual local fermionic Hamiltonian even in ge-
ometries with open boundaries such as the cylinder or the
open lattice described in Sec. II, via Egs. (6) and (12).

As we will see, the Hamiltonian from Eq. (38) maps ex-
actly into a free-fermion bilinear Hamiltonian for any values
of its parameters and it is therefore generally exactly solvable.
For hy =hy, =8 =0 and h; > 0, this model is equivalent
to the toric code [1]. Additionally, for § = 0, this model is
equivalent to the Kitaev honeycomb model in the sector with
no fluxes, I') = 1, for all v [18]. More precisely, the following
operators are unitarily equivalent to two-spin operators in
Kitaev’s honeycomb model in all sectors regardless of I'f,
which we show visually in Fig. 12:

U,

1 U, ,,T¢ U,

:XZZlv U, X270 pr o YP2

v, = X325,

=Y3Ys.

(39)
It follows that, after a unitary transformation on points 2, 5,
and by viewing the lattice as a honeycomb, as depicted in
Fig. 12, we recover x, y, and 7 links of the Kitaev honeycomb
model. I'} is then mapped to the plaquette operator W), to its
northeast. Unless otherwise noted, throughout this work we
will view the geometry of this model as that of a square lattice
rather than a honeycomb.

In Sec. VIA we consider the Hamiltonian on an infinite
lattice and study the general phase diagram in the parameter
space of (hy/|h;|, hy/|h;|]) and § > 0. Its properties in a finite
torus and in open lattices will be discussed in Secs. VIB
and VIC, demonstrating its anomalous GSD and its gapless
boundary Majorana modes.

A. Infinite lattice

On an infinite square lattice, the Hamiltonian from Eq. (38)
can be mapped directly into a sum of fermion bilinears. Sub-
stituting Eqgs. (6) and (7) into Eq. (38) leads to

— i i i
H=— § :(hxai,jai~j+1 + hya; jaiv1,; — hea; jai
i
+ hai jai 41 + hyai jaiv, ;) — i E aji jai+1,; + H.e.
i

(40)
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FIG. 13. Phase diagrams for (a) 4, > 0 and (b) h, < 0, respectively. The 2-tuple (k,, k,) near each critical line is the momenta of gap

closing at that critical line.

Here, i, j are row and column indices of a given plaquette.
Notice that the pairing terms in Eq. (40) respect translational
symmetry and, therefore, Eq. (40) has the form of a mean-field
BCS fermion bilinear Hamiltonian with zero center-of-mass
momentum for Cooper pairs. We split each of the complex
fermions operators at a given site into two Majorana operators
using Eq. (7):

a=3(y+iy), d =30 —iy). 4D
The Hamiltonian in Eq. (40) can be visualized by regarding
each y, ¥y’ as Majorana fermion modes residing on plaquettes
of the square lattice, and viewing h,, hy, h, as bond-dependent
Majorana pairing terms in the lattice, as depicted in Fig. 12.
As mentioned before, this model is equivalent to Kitaev hon-
eycomb model [18], although the fermionic duality described
in Sec. II allows one to solve the Hamiltonian without ex-
plicitly enlarging the local Hilbert space, and this is why
there are only two Majorana modes per plaquette, which are
sufficient to exhaust all the local degrees of freedom in the
sector with no flux. Also, we have added an explicit energy
cost A, to gap the Z, fluxes (e particles) to make sure they
are not part of the ground-state sector of interest. The phase
diagram is equivalent to the one in Ref. [18] for the case
6 =0, and it is shown in Fig. 13. The gapless phases are
B)_4, B|_, while the other phases are gapped. In particular,
phases By, Aly, KW, o, KW, o are B, A,, A,, A; in the Kitaev
model. With a finite §, V acts as second-nearest-neighbor
hopping i§(yy — y'y’) along the vertical direction only. It
is similar, but not identical, to the perturbation induced by
the magnetic field in Ref. [18], which couples all the second-
nearest neighbors, but it produces essentially the same effect
in that V gaps all gapless phases without shifting the phase
boundaries. For the remainder, in order to ensure that all the
phases are gapped so that they can be classified within the
scheme described in the previous section, we will fix § > 0
unless otherwise stated. This also allows to associate a Chern
number to each phase; see Appendix G.

Let us compute the BdG spectrum of this Hamilto-
nian. Going over to momentum space using the con-

vention of the square lattice (which differs from the
honeycomb) a;; = > Gk exp(ik.r;;), Eq. (40) becomes
Eq. (20) with e(k) = —2(h,cosk, + hycosk, —h;) and
A(k) = 26 sink, — 2i(h, sink, — hy sink,). The lattice con-
stant is set to unity. The dispersion of Bogoliubov fermions is

E(k) = £[4(hy cos ky + hycosky, — h.)* + |AGK)[*]7. (42)

From the above dispersion, one can show that all of the phases
are in fact separated by a critical line at which the Bogoliubov
spectrum becomes gapless at some special momentum in the
BZ of the square lattice. Therefore, one can obtain the phase
diagram by solving for E(k) = 0 and the phases are shown
in Fig. 13. The critical lines separating different phases are
labeled by the “high-symmetry” momentum points ko where
the dispersion is gapless. As outlined in Sec. IV, these phases
are classified by the four parity labels at these momenta,
and the Chern number subject to constraint (19). We note
that the model includes 6 out of the 8 phases in Sec. VC
with trivial Chern number (C = 0), which can be viewed as
lower-dimensional stacks of ¢-fermion wires, since the lattice
Hamiltonian in Eq. (38) approaches the corresponding ideal
fixed-point Hamiltonians in certain limits of the parameter
space. A model for the two remaining phases that are not
realized by this model, namely, KW, . phases is constructed
in Appendix D.

When we also include the phases with finite Chern num-
ber, the current model realizes a total of 14 topologically
distinct phases, when they are viewed as topological phases
enriched by translational symmetry. Some of these phases
can be distinguished by the topological characteristics of its
bulk excitations without any regard to symmetry, in the same
spirit of the Kitaev 16-fold classification, namely, they can
be distinguished by the spectral Chern number C of the BAdG
spectrum [18]. In our model, the Chern numbers of these 14
phases are

C =0: Alp, Al;, KW, o, KW, 1, KW, 0, KW, 1;
C=1: B],Bz,Bg,Bﬁl;

C =—1:B;, By, B),B). (43)
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Details of calculations are given in Appendix G. From above
one might naively think that since phases such as Al (toric
code) and KW, o have the same Chern number C = 0, the
gap closing along the line i, = h;, h, = 0 might be accidental
and could be removed by adding a perturbation, so that the
ground states in region Al could be deformed adiabatically
into those in region KW, . In fact, some of these phases can in
a sense be recast exactly as toric code models in certain limits
in infinite lattices or in periodic lattices with an even number
of Kitaev wires, as shown in Appendix E. However, these
phases can be distinguished by the topological parity indices
described in Sec. IV and, therefore, provided the underlying
translational symmetry is preserved, they are necessarily sep-
arated by an intermediate gapless critical phase.

Let us now determine the matrix of fermion parity at
special momenta ¢;;, discussed in Sec. IV, for these phases.
Following Eq. (21), the parity can be simply determined by
sign of the diagonal part of the BdG Hamiltonian for a single
orbital model, which for the Hamiltonian from Eq. (40) reads
as

e(k) = —2(h, cos k. + hycosk, — h). 44)

Direct calculations show that the topological parity matri-
ces ¢;; in the convention of Eq. (18), for the phases with
C =0 listed in Eq. (43) are given by the matrices listed in
Egs. (27)—(29), and this is why we have labeled them accord-
ingly. In fact, these phases realize the fixed-point ground states
of commuting projector Hamiltonians discussed in Sec. VC
in the appropriate limits. For the KW, , phases the fixed
point is realized by setting hy =h, =6 =0 and ¢ =0 (1)
corresponds to i, > 0 (h, < 0). Similarly, Al,, and KW, ,
fixed points are realized by setting hy = hy =38 =0 and h, =
h, = § = 0, respectively, and ¢ is determined by the sign of
the remaining nonzero A, or A, term.

For the phases with C = +£1 listed in Eq. (43), we can
similarly compute the parity indices and obtain

0 (10 w0
B; : <8 é), By : <8 (1)>,
B : (} ?) B) : G (1)>
B : <(1) }) Bj: <(1) })

These can be viewed as phases that are topologically equiva-
lent to “layer addition” of the elementary phase with nontrivial
Chern number y¢ from Eq. (30) and the phases that can be
viewed as stacks of 1D wires. The two cases which are not
realized in our model are the two KW, , phases which
are in the same class of the Wen plaquette model [28], and
correspond to weak topological superconducting phases with
diagonal stacking of Majorana wires. We describe exactly
solvable models for these in Appendix D.

B. Torus

Let us consider placing the Hamiltonian in Eq. (38) on a
square torus with L, , along the x, y directions. Remarkably,
the GSD may depend on L., L, being even or odd, as first
pointed out in the example identified by Wen in Ref. [28]. For
example, for KW, , phases, the GSD degeneracy is 2 for L,
odd but 4 for L, even. And for KW, ., the GSD degeneracy is
2 for L, odd but 4 for L, even. Such GSD can be computed
from Eq. (32). In Appendix A, this computation of GSD is
performed by mapping the system to a dual bosonic Hilbert
space. Another method for performing this computation by
directly counting constraints in the underlying spin degrees of
freedom is also presented in Appendix F.

We will now approach these phenomena by using the
fermionic representation described in previous sections and
discuss the subtle interplay of the lattice size and the GSD
in the torus geometry for the phases characterized by the
aforementioned Z, topological parity matrices; see Eq. (32).
As is discussed in Sec. II, in the torus geometry only states
with an even number of fermions are physical, and therefore
the physical GSD of a given phase depends on lattice size and
fermion boundary conditions. As one moves from phase Al
(the toric code vacuum), which has no fermions in the ground
state, the ground state e-fermion parity changes upon crossing
a critical line if the k( at which the BdG gap closes is actually
allowed for a given system size and boundary conditions. This
GSD for any given phase can be computed explicitly using the
formula from Eq. (32).

Consider, for example, phases B; and KW, . As we start
from Al (toric code), the phase transition onto B occurs by
closing the BAG gap at k = (0, 0), and therefore the ground
state in phase B; is forbidden for periodic boundary condi-
tions along x and y directions since ko = (0, 0) is allowed
for any L, ,. Since phase B; has Chern number C =1, it
can be viewed to be topologically equivalent to the weak
pairing phase of a 2D p 4+ ip spinless superfluid. The fact
that these states have an odd number of fermions in the torus
for periodic boundary conditions was first identified by Read
and Green in their seminal work in Ref. [51]. Phase KW, o,
however, is a paired state which has Chern number C = 0,
but it still displays a nontrivial pattern of GSD depending on
the system size. To see this, notice that in passing from B; to
KW, o, the gap closes at ko = (0, 7). However, ko = (0, 7)
is only part of the momentum lattice for periodic boundary
conditions for L, even. Therefore, for periodic boundary and
lattices with L, odd, the corresponding ground state of phase
KW, o has still the same parity as phase B, namely, an odd
number of fermions, in spite of having a trivial Chern number.
Similarly, for periodic and antiperiodic boundary conditions
along x and y directions, ko = (0, 0) is always forbidden and
ko = (0, ) is allowed for L, odd. To have even total fermion
parity for phase KW, o, L, must be even in both cases. For
antiperiodic boundary condition along the x direction, both
ko = (0,0), (0, ) are not allowed since ko, = 0 is not ad-
mitted, and phase KW, ¢ always has an allowed parity-even
ground state. This agrees with the alternative counting proce-
dures presented in the underlying spin Hilbert space presented
in Appendix F that only antiperiodic boundary conditions for
fermions along the y direction are allowed for L, odd.
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C. Open and cylindrical lattices

We now consider open and cylindrical lattices to illustrate
that topologically nontrivial phases in Sec. VIB feature gap-
less edge modes. The existence of chiral edge modes is not
surprising for the B phases since they have a nonzero C = +1
spectral Chern number, and therefore have a robust protected
chiral Majorana edge mode. As we will see, some of the
phases with C = 0 in Eq. (43) have gapless edge modes that
are not fully chiral, but still protected in the sense of the finer
topological classification of their bulk based on the Z, parity
indices described in Sec. VI B.

In open and cylindrical lattices, there are no global con-
straints relating any of the elementary operators that make up
the Hamiltonian in Eq. (38). In the special limit in which the
Hamiltonian reduces to the ideal commuting projector fixed
point and the bulk has strictly flat bands with no dispersion,
the existence of edge modes can be elucidated via a counting
of degrees of freedom in the underlying spin Hilbert space for
all of the phases that have zero Chern number in Eq. (43). For
example, in the special case of the phase KW, ¢ whose fixed-
point Hamiltonian is realized for i, = h, = 6 = 0 (which can
be viewed as taking the limit h, > hy, h;, § in the phase di-
agram of Fig. 13) and open boundary conditions along the
x direction, the two terms appearing in the Hamiltonian of
Eq. (38), I'* and Uy, are commutative. There are L,L, indepen-
dent I'* operators and (L, — 1)L, independent U, operators
since there is no hopping at the last column, as shown in Fig. 7.
Since I'* and U, are Z, valued operators with eigenvalues +1,
the number of subspaces of the Hilbert that can be labeled by
distinct eigenvalues of these operators is then 22555 How-
ever, the total dimensionality of the underlying spin Hilbert
space is 22/+I» and therefore each of these subspaces must be
2L degenerate. In the fermionic representation it is easy to see
that this degeneracy stems from isolated dangling Majorana
modes along the vertical edges with /2 degrees of freedom
per exposed plaquette on each of the open boundaries. This
fact can be seen by going over to the dual fermionic Hilbert
space. In the fermion representation, U, , pairs Majorana
modes y, ¥’ across plaquettes (see Fig. 12). The zero-energy
states are associated with the Majorana modes that remain
unpaired in the exposed plaquettes at the open boundaries.
They have zero energy since they commute with the fermionic

B1/KW,,

Hamiltonian. For example, for A, = 0, these states are located
along the vertical edges and are y,; , on the first column and
yL..» on the last along a given row n. These are the zero-edge
Majorana dangling modes mentioned above.

Now, one of the great powers of the fermionic representa-
tion that we have developed for open and cylindrical lattices in
Secs. IIT A and III B is that it allows to obtain the exact eigen-
states in these geometries even away from the ideal fixed-point
limit that leads to flat bands. In such cases, the dangling
Majorana modes that we just described are allowed to couple
to form a nontrivially dispersing edge mode. For convenience,
we will present results only for the cylinder geometry, which
can be more easily visualized since one direction remains fully
translationally invariant, and thus quasi-1D dispersions can be
plotted, although calculations in an open finite lattice are eas-
ily doable as well following the construction from Sec. IIT A.
Assuming periodic boundary conditions along the y direc-
tion, we partially Fourier transform the Majorana fermions
along the y direction and calculate the exact band structure
of Eq. (38) for a large system size. The results are shown
in Fig. 14 for L, =100, h, =1, hy=1 and h, =1, 3, 2.
We see that, starting from phase Aly, as each critical line is
crossed, the spectrum acquires two Majorana modes with the
corresponding y component of momentum k.

We now comment on the robustness of KW phases on an
open lattice in relation to results obtained in the torus. As
is shown in Sec. VI A, for L, (L) odd, bulk orders of KW,
phases (KW,) on a Torus are stable with respect to perturba-
tions and cannot be deformed adiabatically into phase Al due
to their distinct GSDs. On an open lattice, the stability of these
phases manifests in the robustness of gapless Majorana modes
with respect to local perturbations, and the same conclusion as
in the torus case holds. This can be seen, for example, in the
case of the KW, phase which can be viewed as a stack of L,
Kitaev wires of ¢ fermions oriented in the x direction. In the
case of L, odd, it is impossible to gap all the Majorana modes
since there are an odd number of them in each edge, and there
will always be an exact zero mode localized in each boundary
of the cylinder.

VII. SUMMARY AND OUTLOOK

In this work we have provided a unifying description of the
interplay of topological order and translational symmetry in

-3
0 #/2 7w 3n/2 2«

FIG. 14. Edge modes in a cylinder with the y direction periodic and L, = 100. 2, = 0.5h,, § = 0.2h;,and h, > 0. (a)-(c) h, = 1, 1.5, 2h,.
(a) hy = h; and (c) h, = 2h, belong to phases B; and KW, . (b) &, = 1.5k, is at the critical line between phases B; and KW, . In Fig. 13,
their locations in the phase diagram are marked with triangle, square, and circle, respectively. The gapless mode acquires the k, momentum
of each critical line as one crosses from phase Al into other regions in the phase diagram. The small splitting of zero modes at k, = 7 is a

finite-size effect.
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fractionalized states of matter with emergent Z, gauge fields.
We do this by exploiting the toric code as a convenient vacuum
to construct states. Specifically, by enforcing a local symmetry
which freezes the motion of isolated e and m particles, but
allows the fluctuations of their fermionic bound state, the &
particle, the underlying spin Hilbert separates into subspaces
of ¢ fermions coupled to nondynamical background gauge
fields. As recently emphasized in Ref. [5], this construction
can be viewed as a form of two-dimensional Jordan-Wigner
transformation or a type of charge-flux attachment that pre-
serves spatial locality. We have elucidated this construction
in geometries with fully open boundaries and cylinders, and
extended it to the torus.

This formalism allows to construct a relatively simple
unifying picture of a series of amusing properties of Z, topo-
logically ordered states enriched by translational symmetry
[28-30,32,33], including their anomalous GSD dependence
on the size of the torus and the appearance of dangling Ma-
jorana modes at the boundaries of open lattices even in states
whose bulk topological order is identical to the toric code.
This formalism has also allowed us to unravel the intimate
connection between such anomalies of Z, topological ordered
states and the phenomenon of “weak symmetry breaking”
[18]. Weak symmetry breaking is a remarkable phenomenon
in which the vacuum of a phase of matter remains invariant
under a symmetry of the Hamiltonian, but the symmetry is in
a sense broken by its quasiparticles. This is only possible if
the quasiparticles are nonlocal anyons and, more precisely, it
is the phenomenon in which the symmetry action on certain
anyons switches them into a distinct anyon type belonging
to a different superselection sector, and therefore cannot be
implemented by any local physical operation.

These phenomena in translationally invariant Z, topolog-
ically ordered states are intimately related to the topological
classification of translational-invariant BdG Hamiltonians
[30,32,36,37]. Such 2D fermionic paired states with trans-
lational symmetry (class D plus lattice translations) can be
classified by their Chern number and three other Z, topologi-
cal parity indices (also known as Pfaffian indicators), namely,
each phase can be labeled by a vector (C, ¢k, , Ck,, {a1), where
C € Z and ¢ = {0, 1}. These indices have a natural physical
interpretation: C is the well-known Chern number “strong”
index counting the chirality of edge Majorana modes, and
all the ¢ indices are “weak” indices accounting if the phase
contains stacks of lower-dimensional topological supercon-
ducting phases. k. ({k,) = 1 corresponds to having a stack
of Kitaev wires oriented in the x (y) direction, and Za; = 1
corresponds to having a filled atomic insulator band with one
fermion per unit cell. We have also provided an argument for
why all of these weak topological indices are robust against
fermion interactions and self-averaging disorder that respect
translational symmetry. Although in the literature of BdG
Hamiltonians the phases with sy = 1 are often viewed as
trivial, for our purposes it is crucial to keep track of this index
since in the case of Z; topologically ordered states on a torus,
one must discard states with an odd number of fermions as
unphysical, thus leading to anomalous GSD dependence on
the size of the torus for states with sy = 1. More gener-
ally, whenever at least one of the indices (C, k., Ck,, {a1) €
(Z, 7y, Zs, Z>) is odd, the system will have a GSD that is

not 4 in certain tori, and this can occur even when C = 0 in
spite of the bulk topological properties of its anyons remaining
the same of the toric code. Equation (32) provides a general
formula to compute the GSD in any system size for these
states.

The phenomenon of weak breaking of translational sym-
metry in Z, topologically ordered states in two dimensions
occurs when the ¢ fermions form a paired state which contains
a stack of Kitaev wires, namely, when either of the indices
(¢k.> ¢k,) is nonzero. Moreover, since these states are made
from stacks of Kitaev wires they feature dangling Majorana
modes that will generally hybridize into a 1D boundary gap-
less Majorana spectrum protected by translational symmetry
in the edge. The reason such phases display weak symme-
try breaking of translations in the bulk stems from the fact
that even though the e particles are dynamically frozen, the
operator that transports them to neighboring vertices needs
to be modified in the presence of the nontrivial background
state of the ¢ fermions. Specifically, because the e particle
is viewed as a source m flux by the ¢ fermions, it carries a
“string” that twists the sign of fermion hopping. Therefore,
when the 7 flux hops across a Kitaev wire, it effectively
flips its boundary conditions from periodic to antiperiodic (or
vice versa depending on the original boundary condition of
the wire). Since the fermion parity of a Kitaev wire in its
nontrivial phase depends on the boundary conditions’ twists,
such hop will necessarily create a Bogoliubov fermion and
therefore cannot be a symmetry as it would change the energy
of the state. More importantly, there is no way to restore the
system back into its ground state in any local manner because
it will require the destruction of a single & fermion. Therefore,
the e particles cannot hop locally to any neighboring vertex if
such hop requires crossing an odd number of e-fermion Kitaev
wires. However, when the e particle hops to a second-neighbor
vertex by crossing two Kitaev wires, the ground state can
be restored by an interwire ¢ pair-creation operator, which
is local. As a result, the e particles break into two distinct
superselection sectors residing in two sublattices of vertices
with nontrivial mutual semionic statistics when the & fermions
form a stack of Kitaev wires.

One of the advantages of employing the exact Z, flux-
attachment description is that it provides an exact one-to-one
rewriting of the physical states of the Hamiltonian without the
need to locally enlarge the Hilbert space as it is often done
in parton descriptions. More precisely, the Z, flux attachment
only has global unphysical parity symmetries in the torus, but
no unphysical symmetries in the fully open lattice or in the
cylinder. In practice, the unphysical parity symmetries in the
torus can be dealt with easily by simply restricting to states
with an even number of ¢ fermions and even number of e
particles. Using this construction we have written a model that
interpolates from the toric code [1] to the Kitaev honeycomb
model [18] and that realizes a variety of the nontrivial phases
described above. In addition, our extension of this technique
to the open and cylindrical lattices allowed us to compute
explicitly their edge spectrum even away from the ideal fixed-
point commuting projector Hamiltonians. This is ultimately
possible thanks to the local symmetry (gauge structure) that
freezes the motion of isolated e and m particles and only
allows fluctuations of the & fermions, thus providing a ma-
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chinery allowing to construct exactly solvable models for any
free-fermion Hamiltonian. Although we have focused only
on enforcing lattice translational symmetry, this machinery is
naturally suited to study the interplay of Z, topological order
and symmetry in many other cases.
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APPENDIX A: 2D JORDAN-WIGNER TRANSFORMATION
OF MAJORANA FERMIONS IN EQ. (6)

In this Appendix, we provide an alternative derivation of
the fermion mapping (6), which takes into account directly
the dependence of boundary condition on topological oper-
ators discussed in Sec. II A. In this construction, we will
introduce an intermediate dual Hilbert space with bosonic
degrees of freedom. And, subsequently, we will map these
dual bosonic degrees of freedom into the fermionic ones that
are discussed throughout the main text, via a mapping that
resembles the more conventional Jordan-Wigner transforma-
tion. For simplicity, we will restrict to the subspace containing
no e particles and the torus geometry.

We take the dual bosonic degrees of freedom to reside in
the plaquettes and their occupation to coincide with that of
the e-fermion occupation number. Namely, if we denote by
N =0, 1 the local occupation of the dual bosons at a given
plaquette, by o the dual boson parity, and by t the x-like Pauli
matrix that swaps the boson parity, we have

oIN) = (=DYIN), o1 =—70.

(AD)

In this Appendix we will restrict our discussion here to the
representation of the subspace physical Hilbert space in which
the e-particle configuration has been fixed with I'S = 1 from
Eq. (4). Thus, the task is to find a representation of the ele-
mentary operators that commute with I'j, namely, I') and Uy
in Egs. (3) and (5), respectively.

As the next step, we express these operators in the in-
termediate Hilbert space in terms of 7 and o defined in
Eq. (A1). The mappings for these operators must satisfy the
same commutation relations as those in the underlying spin
Hilbert space. First, the fermion parity operators I'} in Eq. (3)
are mapped by definition into

I — 0 (A2)
The global constraint in Eq. (10) then becomes
[] ov=1 (A3)

peElattice

The transport operator Uy, in Eq. (5) creates a pair of
fermions on plaquette p and the plaquette to its right. Thus, it
anticommutes with I'® on these two plaquettes. To satisfy the
correct commutation relations, we choose the second duality
mapping to be

Ux,p — TnkTnk+1> (A4)

where p = (n, k), and n designates rows and k columns.

(a) (b)

FIG. 15. (a) Visual representation of U, in Eq. (A5) in the dual
space. Shaded plaquettes indicate those that enter into the products
in Eq. (AS5). (b) Visual representation of “stringing” of the lattice
in Eq. (A13) for given y, ¥’ on plaquette p. The shaded plaquettes
indicate those that enter into the products in Eq. (A13).

So far it seems that the mappings above are identical with
the usual bosonic duality in Z, lattice gauge theories [4].
The difference arises for the mapping of vertical translation
operators Uy, , in Eq. (5). This is because U, , anticommutes
with U, on plaquettes to its north and east, whereas in the
bosonic duality all U, and U, commute. Therefore, U, cannot
be simply mapped into 7;7; but must contain additional terms.
Here we choose for later convenience

Uy = TukTut1k (l_[ Un,i) (H Un+1,i) . (AS)

i<k i>k

The product of o is taken over all plaquettes to the left of
(n, k) and to the right of (n + 1, k), and is visually represented
in Fig. 15. From this expression, one can verify that these
operators satisfy the same commutation relations as those
defined in terms of the underlying spins in Eq. (6).

So far we have not taken into account that the torus ge-
ometry imposes global parity constraints for I'{ and I'® in
Egs. (8) and (10). The parity constraint in Eq. (A3) reduces the
intermediate dual Hilbert space dimension to 2-1>~1, but the
underlying spin Hilbert still has 2 *! degrees of freedom
after specifying the eigenvalues of all L,L, — 1 independent
I’} operators (see a similar argument at the beginning of
Sec. IT A). This apparent mismatch of dimensionality origi-
nates from the fact that we have not yet accounted for the four
topological degrees of freedom associated with 7, and 7, in
Eq. (9). This can also be seen from the fact that 7 , are related
to Uy, and I'* operators by Eq. (11), which would contradict,
for example, the identity from Eq. (A4) that [ | U, taken over
arow would be unity in the intermediate Hilbert space. As we
shall show below, this can be resolved by a small modification
of the bosonic duality mappings for hopping across certain
branch cuts of the lattice, as discussed in the main text sur-
rounding Eq. (12) (see also Fig. 6) and also further discussed
in Ref. [4].

Therefore, in order to be able to represent the different
possible values of {7, T,}, we introduce additional dual Z,
valued operators 6,, each one associated with the nth row of
the lattice. These operators allow to represent the horizontal
hopping operator associated with crossing the vertical branch
cut (see Fig. 6) by modifying the last horizontal hopping of
each row:

(A6)

Uy = Ty, Tn1 0.
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¥, is chosen to commute with themselves and with all other
dual operators. Then, we have

]_[ U, — ,.

rown

(A7)

Up to this point we have enlarged the dual Hilbert space by a
large number of states because we have introduced one 6, for
every row. However, these operators are not independent. To
see this, we rewrite Eq. (9) as

T, =—- 1_[ Ux,p l_[ re,

PETOW n PEIOW n

(A8)

which gives another constraint for dual bosonic operators:

T, > =90, M= [] o (A9)

pErow n

Equation (A9) holds for each row separately. However, since
T, is row independent, ¥, is related to ¥ on other rows by

BT, = Ol (A10)

From Eq. (A10) one can see that only one of the ¥, oper-
ators is independent. Therefore, 7 is taken into account by
introducing ¢, without any further enlargement of the Hilbert
space..

For vertical hopping, we introduce a Z, operator ¢ for the
last vertical hopping on each column analogous to ¥,:

Uy = T ikTik (l_[ Ug,i) (l_[ 01,i>§0k~

i<k i>k

(A11)

Multiplying U, across a column using Egs. (A5) and (All)
and substituting Eq. (A3) gives

Iy =~ l_[ Uy.p 1_[ L) =—e

pecolumn k pecolumn k

(A12)

Equation (A12) then relates 7, to ¢;. By a similar reasoning
to that above, we can see that there is only one independent
¢ and, therefore, a one-to-one correspondence with values
of 7.

Equation (AS5) has the advantage of admitting a definition
of Majorana fermions in Eq. (6) as a natural extension of
Jordan-Wigner transformation in 1D. Similarly to the 1D case,
y, y' are nonlocal and contain a string of o operators in the
following way: on a given plaquette (n, k), the string goes
through all rows above row n from left to right and, on row
n, goes to the column k from the left; see Fig. 15. Explicit
definitions are

Yk = i( 1_[ 0i,j> (1_[ Un,i)an,kfn,ka
i>n,j i<k
/ —
yn,k - 0i,j On,i | Tnk-
i>n,j i<k

y and y’ satisfy the fermion anticommutation relations and,
substituting Eq. (A13) into Egs. (A4) and (AS), we recover
Eq. (6) first obtained in Ref. [5].

Equation (A13) also gives directly the relation between
{T:, T;} and the fermion boundary conditions along x and
y directions. In the fermionic Hilbert space, periodic and

(A13)

antiperiodic boundary conditions can be represented by an
additional £1 in Majorana fermion hopping across the lattice
branch cut:

U, — +iyy’ (Al4)

[see Eq. (12)]. Using Eq. (A13), hopping across the branch cut
along the x axis gives

:l:iyn,Lx J/,Zl = FT,L T l_[Gn,k~ (AIS)

k
Comparing with Egs. (A6) and (A9), we obtain ¢, = FII,
and T, = £1 for periodic and antiperiodic boundary condi-
tions, respectively. Similarly, for hopping across the branch
cut along the y axis,

TV, k= FTLATLA (1_[ O’Lv,i> (H ‘71")’ (A16)

i<k i>k
where we have used Eq. (A3). Comparing Eq. (A16) with
Egs. (A11) and (A12), we see that 7, = —¢; = %1 for pe-
riodic and antiperiodic boundary conditions. Thus, we have
rederived the relation between 7., and the corresponding
fermion boundary conditions, which is obtained in Sec. I A
using another method.

Finally, as a consistency check, we show that the dual
bosonic mappings in Egs. (A2), (A4), (AS), and (A6) repro-
duce the ground-state degeneracy of the model considered in
Sec. VI. As an example, we study Eq. (38) in the intermedi-
ate Hilbert space at h; = hy =0, h, > 0, and compare with
results in Sec. VIB. We first consider the torus. Multiplying
Eq. (A9) over all rows and using Eq. (A3) gives

(_ 1, )L". = 1_[ V.

neall rows

(A17)

In the ground state, U, = 1 and 9, = 1. Equation (A17) gives
(-T)b =1 (A18)

For even L,, this relation is trivial and both 7, values are
allowed: the ground state is fourfold degenerate labeled by
T:, T,. For odd Ly, Eq. (A17) forbids 7; = 1 (periodic bound-
ary condition) and Eq. (A9) gives IT, = 1 on each row. The
ground state is thus only twofold degenerate labeled by T;.
For h, < 0, U, = —1 and Eq. (A17) becomes

(=T)" = (=D, (A19)

So for L, even, both T; values are allowed and for L, odd,
T, = %1 for L, odd or even. The dependence of GSD on Ly is
the same as for i, > 0, which agrees with Sec. VIB.

In the case of open boundary along the y axis only, Eq. (A9)
still holds, so that parities on each chain are still related. But
without the parity constraint in Eq. (A3) there is no restriction
on the value of IT,, hence, T, and the difference between L,
odd and even disappears.

APPENDIX B: INDEPENDENCE OF PARITY OPERATORS
IN TC IN AN OPEN LATTICE

In this Appendix we prove that, in an open lattice, there
are no global constraints for G¢ and G;”, whereas on a torus
constraints in Eq. (2) exist.
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Z

FIG. 16. Majorana fermion creation operator y, in an open lat-
tice. The lattice size is L, = L, = 4.

Global constraints for Z, operators G; and G can be
written in the following form:
G;, = R (G, G)),

v Gl]?l = F2(Gi’ G;n)’ (Bl)
where v; and p,; are given vertex and plaquette in the lattice.
F, and F, are functions of G} and G;’} on all other vertices
and plaquettes. If there is an operator that anticommutes with
Gy, or G} but commutes with all other Gj and G, then it
would contradict the existence of constraint (B1) and global
constraints cannot exist. However, such operators are just
single-particle creation operators for e and m particles intro-
duced in Sec. IIT A. Therefore, the existence of single-particle
creation operators that commute with all other parities and
only anticommute with the parity of the plaquette or vertex
of interest implies that a constraint such as that in Eq. (B1)
cannot exist in open lattices or cylinders.

APPENDIX C: FERMION CREATION OPERATORS
IN OPEN AND CYLINDRICAL LATTICES

In open and cylindrical lattices with finite size, the
fermionic even-parity constraint (10) no longer holds, and
single ¢ particles can be created. In this Appendix, we describe
how to construct single Majorana fermion operators on these
lattices in the underlying spin Hilbert space.

We first consider the open lattice. It is sufficient that the
operator is found for a single Majorana fermion on a given
site since other Majorana operators can be obtained by mul-
tiplying it with parity and pair-creation operators in Eq. (6).
Such an operator for the bottom left plaquette n of the open
lattice is shown in Fig. 16 as a product of a single X and a Z
line along bottom of the lattice. The operator has the following
physical meaning: because of open boundaries, the X creates
a single m particle at plaquette n while the Z line creates an e
particle on the southeast edge, which is then transported along
the lower edge to the SW vertex of n and forms an ¢ particle.
This operator is mapped into y, in the fermion Hilbert space: it
anticommutes with I';, Uy, , but commutes with all other local
fermion operators and I'j and, from the mapping (6), it follows
that it creates a single ¥’ on the plaquette n. We note that y

or y’ operators can be constructed similarly for all plaquettes
along west and south edges, which differ from the one above
by appropriate product of Uy, I'}, and I'y. In fact, it can be
shown that the string operator in Fig. 16 is mapped to 7, in the
notation of Appendix A, and y, y’ thus defined correspond to
a different Jordan-Wigner convention than in Appendix A.
On a cylinder, an analogous operator can be defined as
the same product of X on the west edge and a Z line which
transports a single e across the lattice. However, due to the
periodicity along the y direction, the Z line anticommutes with
U, along the path, in addition to anticommuting with I';, U, ,,.
This nonlocality is a result of the dependence of boundary
conditions along the y direction on particle configurations in
the lattice, as given by Eq. (17). Creating a single fermion cor-
responds to a change of boundary conditions which changes
the sign of U, along a horizontal branch cut given by the Z line
above. Thus, the operator swaps boundary conditions. We em-
phasize that these operators do not map into single Majorana
fermions since they clearly commute between themselves.

APPENDIX D: FIXED-POINT MODEL WITH A DIAGONAL
STACKING OF MAJORANA FERMIONS

As mentioned in Sec. IV, KW,,, . denotes the class of
states that are topologically equivalent to stacking 1D Kitaev
wires along the diagonal direction. The ideal or fixed-point
Hamiltonian associated with this phase can be realized by
choosing the corresponding C, in Table II for the ideal
Hamiltonian (33):

H=-A, Z Iy —A Z TN Us e Ur.p:
v P

(D1

where E (p) and NE (p) are plaquettes to the east and northeast

of plaquette p. Substituting Eq. (6), Eq. (D1) is mapped into

the following fermionic Hamiltonian:
H=—iAY vy

The pairing of Majorana modes is depicted by curved dotted
lines in Fig. 17. The BdG spectrum for Eq. (D2) has the same
form as Eq. (20) with

e(k) = =2A, cos(ky + k),
A(k) = =2iA, sin(k, + ky).

(D2)

(D3)

Parity topological matrices ¢;; for A, > 0 (<0) coincide with
KW, 1,0 phase (KW, | phase).

We now show that there is weak breaking of translational
symmetry in these phases: the e particles split into two sectors
of effective anyons ¢’ and m’ in the ground state, and lattice
translations along both directions permute them. For example,
in Fig. 17, when e resides in vertices v;_4 become ¢’ while
on vs it becomes m'. This is similar to the Wen’s plaquette
model [28]. To show this, we proceed analogously to Sec. V
by finding the modified e-translation operators in the ground-
state subspace of KW, .. Such an operator must commute
with the corresponding Majorana bilinear terms in Eq. (D1).
They can be found only for translations between diagonals of
a square. For example, in Fig. 17, translations between vy, v,
and v, v3 are

Tvgzvl =212, Tvivz = i(£223) x (X3Z4). (D4
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FIG. 17. Couplings between Majorana modes y’, y in Eq. (D2)
are illustrated visually as dotted lines in phases KW, .. The e
particles residing in vertices belonging to two sublattices acquire
mutual semionic statistics. They become ¢’ (v;_4) or m’ (vs) along
the diagonal of the square unit cell but have anyonic statistics with
respect to their nearest neighbor.

The factor i imposes (Tlf3 Uz)”r = Tve3 vy Equation (D4) can be
understood intuitively similarly to the horizontal stacking case
in Sec. V. We draw Majorana pairings with curved lines in the
form in Fig. 17. When e is transported from v, through vs to
vy, it cuts through the same Majorana bond twice, therefore
does not change the fermion parity associated with such a pair
of Majorana modes. However, going from v, through vs to vs,
it cuts through two different bonds, annihilating two Majorana
fermions, which are then created by the pair creation operator
X3Z,. The loop translation operator on the ground state |0)
along the dashed line in Fig. 17 now gives

Tvivl Tl}iv4TUezv3 Tve|U2|O> = F55|O>’ (DS)
where we used the ground-state identity
:I:l";,E(p)Uy,E(p)UxﬂO) =10) for KW, and KW,;,

respectively. This demonstrates how the e particles in
one sublattice pick up a —1 sign when they are transported in
a loop that encloses an odd number of e particles in the other
sublattice.

APPENDIX E: RECASTING THE KW, ,
AS AN ORDINARY TORIC CODE

In this Appendix we show that the ideal fixed-point Hamil-
tonians associated with the KW, . (KW, ) phases described
in Sec. IV can be recast as an ordinary TC in an infinite lattice
or for L, (L,) even.

For this purpose, we first consider the ideal fixed-point
Hamiltonian for phase KW, ., which corresponds to h, =
8 =0 in Eq. (38), and projects it into the following sub-
space satisfied by the ground states of KW, ; and KW, g,
respectively:

Uep=F1, hy SO. (E1)

To demonstrate our statement at the beginning of this Ap-
pendix, we will show that the ideal fixed-point Hamiltonian
projecting to the subspace of Eq. (E1) becomes the TC for L,
even. Physically, Eq. (E1) corresponds to the limit

0 <A < |hyl. (E2)

The inequality (E2) means a large superconducting gap for
¢ fermions, and the low-energy subspace of Eq. (E1) has no
¢ particles. However, as we shall see, the e particles on top
of this nontrivial superconducting vacuum are split into two
groups of anyons (¢’ and m’) which can be identified with
those of TC, while I'! becomes accordingly either G¢ or G"
defined in Eq. (1).

In the subspace given by Eq. (El1), we can choose a
new basis such that the horizontal and vertical links in U, ,
are simultaneously diagonal with respect to Z and X. For
hy <0, Z and X have opposite (the same) eigenvalues, and
can be treated as one degree of freedom defined on the
plaquette p. Thus, in the notation of Fig. 2, we have the

mapping

Zz —> o0, Xs — Fol, h sO. (E3)

p

o, is the third Pauli matrix acting on the plaquette p with the
eigenvalue of Z3. A simultaneous operation of X3 and Zs on
horizontal and vertical links of p anticommutes with Z3 or X5
yet commutes with U, ,, so the ground-state identity (E1) is
still satisfied. As a result, we have another mapping within the
subspace:

X3Z5 — o,

p (E4)

I'; then becomes a four-plaquette operator I'; defined on the
plaquette to the northeast of v. For h, < 0 (both KW, ¢ and
KW, | phases), 1"; has the same form. For example, in Fig. 18,

e [ 4
I'; > oy050505.

(E5)

To make more explicit the connection with the ordinary TC,
it is more convenient to define a new lattice in which Eq. (ES)
has the explicit form of G¢ and G operators in TC. We
join, for all I'] on odd rows, the centers of plaquettes and
treat them as the midpoints of links of the new lattice. For
example, in Fig. 18 this is done for I'§ by joining plaquettes
2,3 and 1, 4. Then, Ff, becomes the G¢ and G operators in
TC on odd rows and even rows (I'§ and I'§ in Fig. 18). For
an infinite lattice or L, even, the separation of e into e and
m'’ is consistent. However, for L, odd this construction breaks
down, as can be seen by the following. We designate e from
the first row as ¢’ and then e from the second row as m’ and so
on. Repeating this procedure through the entire lattice, we see
that, upon returning to the first row from the L,th row, the e on
the first row should become m’ instead of ¢’ in contradiction
to the initial designation.

Thus, the Hamiltonian (38) in the subspace given by
Eq. (El) is equivalent to the TC at low energies for an
infinite lattice or L, is even. This means that, for a fi-
nite lattice with L, even, the usual toric code constraints

apply:
[] =1 [ ro=1

peodd rows pEeven rows

(E6)

023120-23



PENG RAO AND INTI SODEMANN

PHYSICAL REVIEW RESEARCH 3, 023120 (2021)

5 /

a4

2 3

£/

FIG. 18. New lattice in the subspace of U, = %1 by treating the
right and lower links of a given plaquette as one degree of freedom
at the center. I'¢ becomes on odd rows G¢ and GZ" on even rows in
the TC.

In particular, the ground state of the ideal fixed-point Hamil-
tonian of KW, phases is always in the subspace of Eq. (E1).
Since, as discussed above, for odd L,, only the constraint
in Eq. (2) applies, the ground state is twofold degener-
ate for L, odd and fourfold degenerate for L, even, which
agrees with the conclusion in Sec. VI. The above results
can also be obtained by counting degrees of freedom of
the Hamiltonian in Eq. (38). The derivation is given in
Appendix F.

We note that a translation along the y direction
by unity in the original lattice exchanges ¢ and m’
particles in the new lattice. This is another manifes-
tation of the weak symmetry breaking mentioned in
Sec. V.

The above considerations can be extended to KW, ,
phases. Without detailing the analogous arguments, we
state the similar result: for 0 < A, < |h,| and L, even,
the ideal fixed-point Hamiltonian can also be recast as an
ordinary TC.

APPENDIX F: GROUND-STATE DEGENERACY
FOR GAPPED PHASES OF EQ. (38)

In this Appendix we provide arguments for the nontriv-
ial size dependence of the GSD for Al, and KW phases,
and derive their GSD using direct counting arguments in
the original spin representation of the models and without
using the fermion mapping. For this purpose we shall set
8 = 0 in the underlying spin lattice. As we shall see, solu-

tions in the underlying spin lattice confirm the conclusions in
Sec. IV [30].

First, we consider the trivial phase (Alp), whose ideal
fixed-point Hamiltonian corresponds to choosing h, = h, =0
and i, > 0 in Eq. (38). The commuting operators are I'°
and I'¢ which satisfy the constraint in Eq. (10) and the
system is equivalent to the standard toric code. The GSD
is 4 labeled by T, given by Eq. (9). They are raised by
the Wilson operators W, , which are products of Z lines
across the torus along two directions as in the toric code.
For h; <0 (phase Aly), the state I') = —1 on each pla-
quette minimizes the energy. However, for L, L, both odd,
this state is forbidden by the total parity constraint in
Eq. (10):

[1r) =8 = -1 (1)
p

Thus, the lowest-energy state has I'* = 1 on one plaquette and
has a very large degeneracy (these states are not global ground
states).

We now turn to the case of h; =h, =0 and h, > 0 in
Eq. (38), which corresponds to the ideal fixed-point Hamil-
tonian [see Eq. (33) and Table II] for the phase KW, g
describing a stack of Kitaev wires along the x direction. To
determine ground-state topological degeneracies, we find all
constraints relating operators that enter in Eq. (33), which
in this case are I'j and U, , in Table II. Interestingly, we
find that these operators satisfy different global constraints
depending on whether L, is even or odd. For L, even, their
constraint is

( I rg)(]_[ Ux,,,) =1, (F2)

odd rows lattice

where the first product is taken over the lower vertices of
squares of odd rows. Equations (10) and (F2) give two con-
straints [note if one sets U, = £1 in Eq. (F2) and substitutes
Eq. (8), we obtain Eq. (E6) as it should]. This means that spec-
ifying the eigenvalues of all I'¢ and U, , (there are 2*L:L=2
of them in total) still leaves 4 degrees of freedom in the
total Hilbert space. Thus, the ground state is fourfold degen-
erate labeled by topological operators T; and 7, in Eq. (9),
which together with I') and U, , span the entire Hilbert
space.
For L, odd we find

TowL,—2
( I1 rg)(]‘[ Ux,,,) =_T,. (F3)

odd rows lattice

In contrast to the L, even case, the constraint relates T
to I'S and U, , operators in the Hamiltonian. Therefore, T
eigenvalue cannot be assigned arbitrarily, and the ground-state
degeneracy is two labeled by 7, only raised by W,. For exam-
ple, for h, > 0 (phase KW, o) U, =T¢ =1 in the ground
state and Eq. (F3) gives 7, = —1: the periodic boundary con-
dition along the x direction is forbidden. For &, < O (phase
KW, 1), U, = —1,I'; = 1 in the ground state, and Eq. (F3)
leads to

T = —(=1)"". (F4)
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Thus, for L, odd, the x-direction boundary condition is an-
tiperiodic for L, even and periodic for L, odd. As is shown
in Sec. VI A, there is a critical point h, = h, separating the
two phases studied above. Note that Eq. (F3) is not invariant
under translation along the y direction by unity, which is a
manifestation of weak symmetry breaking discussed in the
main text.

The degrees of freedom counting for KW, phases can be
summarized as follows:

Operators | Degrees of freedom
e BT
X xly — =
T. " 0, Lyodd
T, 1

The ground-state degeneracy is then 2!+, where 1 + z is the
number of independent 7, ,, operators.

APPENDIX G: CHERN NUMBERS FOR MODEL (40)

The BAG Hamiltonian (40) is diagonalized in momentum
space and has the form in Eq. (20), which can be written as
H=o0.c(k), (G1)

where c(k) = (Re A(k), —Im A(k), £(k)). This defines a unit
vector in k space n(k) = ¢/|c| and the Chern number is

1 am 9
C= " Y 2k
an ) ok~ ok,

Evaluating Eq. (G2) near each gap-closing point and adding
them gives the result in Eq. (43). For this purpose, we pick
a specific point in the parameter space for each phase. For
example, for gapless phases we choose |h,| = |hy| = |A]|.
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