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We consider the spectral statistics of the Floquet operator for disordered, periodically driven spin chains in
their quantum chaotic and many-body localized (MBL) phases. The spectral statistics are characterized by the
traces of powers t of the Floquet operator, and our approach hinges on the fact that for integer t in systems
with local interactions, these traces can be re-expressed in terms of products of dual transfer matrices, each
representing a spatial slice of the system. We focus on properties of the dual transfer matrix products as
represented by a spectrum of Lyapunov exponents, which we call spectral Lyapunov exponents. In particular,
we examine the features of this spectrum that distinguish chaotic and MBL phases. The transfer matrices can
be block diagonalized using time-translation symmetry, and so the spectral Lyapunov exponents are classified
according to a momentum in the time direction. For large t we argue that the leading Lyapunov exponents in each
momentum sector tend to zero in the chaotic phase, while they remain finite in the MBL phase. These conclusions
are based on results from three complementary types of calculation. We find exact results for the chaotic phase
by considering a Floquet random quantum circuit with on-site Hilbert space dimension q in the large-q limit. In
the MBL phase, we show that the spectral Lyapunov exponents remain finite by systematically analyzing models
of noninteracting systems, weakly coupled systems, and local integrals of motion. Numerically, we compute the
Lyapunov exponents for a Floquet random quantum circuit and for the kicked Ising model in the two phases.
As an additional result, we calculate exactly the higher-point spectral form factors (hpSFFs) in the large-q limit
and show that the generalized Thouless time scales logarithmically in system size for all hpSFFs in the large-q
chaotic phase.
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I. INTRODUCTION

One of the fundamental goals of quantum statistical me-
chanics is to understand the basic hallmarks of chaotic
dynamics. From a practical perspective, the presence of chaos
is associated with memoryless evolution, so that the ther-
modynamic description is well justified on the basis of the
ergodic hypothesis. However, the classical notion of chaos
does not extend directly to the quantum world, as Schrödinger
evolution is linear and unitary and cannot admit diverging
trajectories in Hilbert space [1]. Nevertheless, a large class of
interacting many-body systems are believed to show quantum
chaotic behavior, as embodied in the eigenstate thermalization
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hypothesis (ETH) [2–4]. By contrast, many-body localization
provides a generic mechanism which prevents the onset of
chaos in quantum systems in the presence of strong disorder
[5–7].

Random matrices [8] have long played a key role in pro-
viding minimal prototypes for properties of quantum chaotic
systems. One important outcome is that spectral correlations
have been identified as an indicator of chaotic behavior: As
originally conjectured by Bohigas, Giannoni, and Schmit [9],
chaotic quantum systems exhibit the same spectral correla-
tions as those of random matrices in the appropriate symmetry
class. In particular, a distinctive fingerprint of quantum chaos
is the presence of level repulsion between energy eigenvalues
[10,11].

Spectral fluctuations can be conveniently characterized via
the Fourier transform of the two-point correlator of eigenval-
ues, known as the spectral form factor (SFF):

K(t ) =
∑
m,n

eı(θm−θn )t = | Tr[W (t )]|2. (1)
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FIG. 1. Summary of results: Behavior is indicated using red lines for the quantum chaotic phase and blue lines for the MBL phase.
(a) Schematic dependence of the SFF on t for many-body chaotic and MBL Floquet systems with system size L. The dashed red line is the
RMT circular unitary ensemble (CUE) behavior. The generic behavior for many-body chaotic systems is characterized by two time scales: (i)
the Thouless time tTh, which marks the onset of RMT behavior in the SFF, and (ii) the Heisenberg time tHei, which is of the order of the inverse
of mean level spacing and so scales exponentially with L. For MBL systems with localization length ξ , the SFF grows quickly with t , reaching
a plateau at a time O(qξ ) that is independent of L. (b) Schematic dependence of the leading Lyapunov exponent λ> [see Eqs. (5) and (10)] on
t in the two phases. At large t , λ> tends to zero in the chaotic phase and to a finite value in the MBL phase. (c) Schematic dependence at late
times of the leading Lyapunov exponent λ0(k) in each momentum sector on the momentum eigenvalue k [see Eq. (12)]. In the chaotic phase,
λ0(k) converges to zero for all k. In the MBL phase, λ0(k) converges to a smooth function of k for k �= 0, with a distinct, larger value at k = 0.
(d) Schematic dependence at late times of the scaled cumulant generating function Ft (α) on α [see Eq. (3)]. The gradient of Ft (α) near α = 0
captures the L dependence of fluctuations in the SFF. We find that Ft (α) has zero gradient in the chaotic phase and finite gradient in the MBL
phase, reflecting fluctuations of the SFF that grow rapidly with L in the second case.

Here, W is the generator of the time evolution. and W (t )
denotes its t power, while {θm} are the spectral levels of
the system under consideration (energies for systems with a
time-independent Hamiltonian, or eigenphases of the Floquet
operator for a periodically driven system). The analysis of the
SFF in many-body systems has recently been spurred on by
the development of two novel approaches to Floquet models,
where W generates the time evolution for a single period. Both
in a long-range version of the kicked Ising model [12,13]
and in Floquet random circuits [14–17] in the limit of large
local Hilbert space dimension, the average SFF K (t ) ≡ 〈K(t )〉
(where 〈· · · 〉 denotes the average over an ensemble of statis-
tically similar systems) was shown to reproduce the random
matrix theory (RMT) result for times t larger than a scale tTh

known as the Thouless time [see Fig. 1(a)].
It has been reported on the basis of analytical and nu-

merical calculations that tTh diverges with the system size
L in generic quantum systems [14–18], with the exception
of specific fine-tuned models in the absence of conservation
laws [19]. For this reason, it is important to understand which
features control the behavior of K(t ) for intermediate times
1 � t � tTh, which can nevertheless be arbitrarily large in
the thermodynamic limit. A simple argument suggests that in
this time regime, K(t ) is typically exponentially large in L:
Because of locality of interactions, different portions of the
system for t � tTh have not had time to generate correlations
of their eigenphases; as a consequence, the trace in (1) can be
factorized into contributions from the Hilbert space of each
decoupled region [15]. Moreover, in this regime, since the
SFF is not self-averaging [20] and for many-body systems has
exponentially large fluctuations in the system size, its average
may not be sufficient to characterize its behavior.

In this paper, we study signatures of spectral statistics
of quantum many-body systems with local interactions by
using the fact that Tr[W (t )] can be expressed as a product
of dual transfer matrices, each associated with a spatial slice
of the system. The dual transfer matrix product is charac-
terized by a set of Lyapunov exponents, which we dub the
spectral Lyapunov exponents, and by an associated cumulant
generating function. The dual transfer matrix product grows
exponentially with system size: Average growth rates are
given by Lyapunov exponents, and sample-to-sample fluctua-
tions in growth rate are described by the cumulant generating
function. There are several motivations for this approach.
Knowledge of the Lyapunov exponents allows one to in-
vestigate both the spectral statistics of quantum many-body
systems in the thermodynamic limit and spectral statistics at
times earlier than tTh. In addition, knowledge of the cumu-
lant generating function allows one to study fluctuations of
the SFF. Finally, the study of spectral Lyapunov exponents
provides a different way of characterizing localized systems
already in the thermodynamic limit.

A summary of our results is as follows. At fixed time t ,
the spectrum of Lyapunov exponents can be organized into
t momentum sectors, associated with the invariance under
discrete time translations of the evolution operator. We char-
acterize the behavior of the leading Lyapunov exponent in
each sector, showing that there is a clear distinction at large
time ruled by the ergodicity properties of the dynamics [see
Figs. 1(b) and 1(c)]: For chaotic systems, the largest Lya-
punov exponent at each momentum sector converges to zero
at large time, signaling the absence of exponential growth of
K (t ) with system size and the emergence of random matrix
behavior in the spectral correlations. For many-body localized
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(MBL) systems, the Lyapunov exponents remain nonzero at
large time, with a limiting but nonuniversal form of their
spectrum.

We also discuss the fluctuations of the leading Lyapunov
in the zero-momentum sector [see Fig. 1(d)] by introduc-
ing a (scaled) cumulant generating function. We argue that
higher cumulants are not important except in some nongeneric
settings. These results are justified by considering two dif-
ferent models and a combination of analytical and numerical
analyses.

As a side result, in the chaotic phase, we compute exactly
the higher-point spectral form factors (hpSFFs) in the limit
of large local Hilbert space dimension q → ∞ and thermody-
namic limits. The hpSFF is closely related to other diagnostics
of chaos. As an example, the out-of-time-order correlator
[21–26] is known to be related to the hpSFF for local operators
at late times [27], and for global operators [28,29]. We also
define the generalized Thouless times as the time after which
hpSFF behavior of a quantum many-body system reduces to
the RMT result. We show that the generalized Thouless times
derived from all hpSFFs scale logarithmically in system size
in the large-q limit.

Our calculations complement earlier work that has been
concerned with the averaged SFF and its relation to chaos
and localization [15,30,31]. In Ref. [30], the growth rate of
the ensemble-averaged SFF at fixed time was studied specif-
ically for the kicked Ising model (see Sec. III B) across the
many-body localization transition. The authors introduce an
appropriate ensemble-averaged transfer matrix, study its sym-
metries, and discuss the role of the time-momentum operator.
More recently, a general picture was presented in Ref. [18]
for the long-time behavior of the ensemble-averaged trans-
fer matrix, together with numerical results for a random
quantum circuit in the ergodic phase. The behavior of the
ensemble-averaged transfer matrix across the MBL transition
is discussed in Ref. [32]. In contrast to this previous work, our
focus here is on the average of the log of SFF rather than of the
SFF itself, and on the notion of spectral Lyapunov exponents
and fluctuations in the growth rate of the dual transfer matrix
product.

The remainder of this paper is organized as follows. In
Sec. II we introduce the spectral Lyapunov exponents and
cumulant generating function. In Sec. III we define two quan-
tum circuit models which each display both a quantum chaotic
phase and an MBL phase as a coupling parameter is varied. In
Sec. IV, we compute exactly the Lyapunov exponents and the
generating function for a random circuit model in the large-
q limit. The results demonstrate that the leading Lyapunov
exponent in the chaotic phase tends toward zero at large times.
In Sec. V, we discuss the Lyapunov exponents for models
of noninteracting systems, systems with small coupling, and
systems with local integrals of motion. In this way we argue
that the leading Lyapunov exponent remains finite at large t
in the MBL phase. In Sec. VI, we present numerical results
for the two quantum circuit models. Within the limitations
imposed by the maximum computationally accessible values
of t , results are consistent with distinct types of behavior
in each phase as described above. Finally, we conclude and
discuss the outlook in Sec. VII.

FIG. 2. Left: A diagrammatic representation of Eq. (4). The op-
erator W is represented as a matrix-product operator (MPO). The
curly lines on the top and bottom boundaries represent a trace of
W , and ones on the left and right boundaries represent periodic
boundary conditions. Right: Each MPO acts vertically on a physical
space with dimension q and horizontally on an auxiliary space with
dimension q̃.

II. SPECTRAL LYAPUNOV EXPONENTS
AND GENERATING FUNCTION

Consider an ensemble of disordered systems, each asso-
ciated with a Floquet operator W which we assume to be
spatially inhomogeneous due to the presence of local disorder.
Let {θm} be the eigenphases of W . We introduce the higher-
point spectral form factor (hpSFF) [28,33] as

〈KL(t )α〉 :=
〈[∑

m,n

eı(θm−θn )t

]α
〉

= 〈| Tr[W (t )]|2α〉, (2)

where 〈·〉 is the ensemble average and the subscript denotes
the system size L with periodic boundary conditions. For
α = 1, we have the standard SFF, KL(t ) = 〈KL(t )〉. To study
fluctuations of the hpSFF (which are exponentially large in L)
in the thermodynamic limit, we introduce the scaled cumulant
generating function

Ft (α) ≡ lim
L→∞

1

L
ln 〈KL(t )α〉. (3)

As we will see below, the function Ft (α) captures the large-L
scaling of all cumulants of the SFF. Knowledge of it gives ac-
cess to the large-deviation distribution of K (t ). By definition,
Ft (α) is a convex function.

The behavior of Ft (α) can be analyzed by considering a
dual picture [34,35], using a 90◦ rotation which exchanges
space and time. To be more concrete without losing generality,
we can represent W as a matrix-product operator, where the
vertical bonds have the physical dimension q and the auxiliary
horizontal ones have dimension q̃. Then we can rewrite its
trace in the dual picture as

TrH[W (t )] = TrH̃[VLVL−1 · · ·V1] = TrH̃[V (L)], (4)

where the operators Vi are q̃t × q̃t matrices defined implicitly
by the diagram in Fig. 2. To avoid confusion, we have written
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explicitly the Hilbert space where the trace is taken as a
subscript and we set V (L) ≡ VL · · ·V1. Since the operator W
is inhomogeneous in space, the matrices Vi are different from
one another and randomly distributed due to the presence of
local disorder.

At this stage, one can proceed in two ways. One possibility
is to perform the average over the disorder by considering
2α layers W (t ) ⊗ · · · ⊗ W (t ) ⊗ W †(t ) ⊗ · · ·W †(t ). By using
Eq. (4), this amounts in practice to computing the disorder
average of 2α replicas of the single-slice transfer matrix Vi

for integer α. The resulting transfer matrix leads directly to
〈K(t )α〉. Additionally, after averaging, the resulting transfer
matrix is invariant under spatial translations, and so it is
sufficient to study a single slice and its leading eigenvalues
and associated eigenvectors. This approach was employed
recently in several studies [13,15,18,19,30,32,36,37]. We will
use this method to compute analytically Ft (α) in the limit of
large local Hilbert space dimension.

Another possibility is to consider the transfer matrix for a
single layer W (t ). This has the advantage for numerical calcu-
lations that its size (q̃t × q̃t ) is smaller and independent of α.
However, since there is no sense in averaging W (t ), we have to
study this transfer matrix for individual samples. That means
that at large L, V (L) is the product of many random matrices.
The natural quantities that characterize this product are the
Lyapunov exponents. More precisely, in order to define them,
we note that the trace in Eq. (4) enforces periodic boundary
conditions and homogeneity in time ensures that the matrices
Vi are invariant under translations in the time directions. There
is therefore a momentum quantum number associated with the
time direction. The spectral decomposition of V (L) can thus
be organized into the different momentum sectors k = 2π j/t ,
with j = 0, . . . t − 1, in the form

V (L) =
∑

k

∑
a

|�a(k)〉 eλ(L)
a (k)L/2+ıφ(L)

a (k) 〈ra(k)| , (5)

where λ
(L)
0 (k) � λ

(L)
1 (k) � · · · are growth rates which have

sample-to-sample fluctuations for finite L but converge with
probability 1 to the spectral Lyapunov exponents with mo-
mentum k. We refer below to these growth rates as finite-size
spectral Lyapunov exponents. The φ(L)

a (k)’s are the corre-
sponding phases, while |�a〉 and |ra〉 are the left and right
eigenvectors, respectively, which are biorthogonal and nor-
malized such that 〈ra|�b〉 = δab. We find that the largest
Lyapunov exponent always lies in the zero-momentum sector,
so for convenience we denote

λ(L)
> ≡ λ

(L)
0 (k = 0). (6)

Furthermore, for any finite t , there is always a gap 
λ(L)

between λ(L)
> and the other Lyapunov exponents, so that at

large L

KL(t ) =
∑
k,k′

∑
a,a′

e[λ(L)
a (k)+λ

(L)
a′ (k)]L/2eı[φ(L)

a (k)−φ
(L)
a′ (k′ )]

∼ eλ
(L)
> L + O(e−L
λ). (7)

From Eq. (3) it follows that

Ft (α) = lim
L→∞

1

L
ln 〈eαλ

(L)
> L〉 (8)

and that derivatives of Ft (α) at α = 0 provide cumulants of
the largest finite-size Lyapunov exponent:

dn

dαn
Ft (α)

∣∣∣∣
α=0

= lim
L→∞

Ln−1〈[λ(L)
> ]n〉c. (9)

In particular, when L → ∞, we extract the average and vari-
ance

F ′
t (α = 0) = lim

L→∞
〈λ(L)

> 〉 ≡ λ>, (10)

F ′′
t (α = 0) = lim

L→∞
L var(λ(L)

> ). (11)

Therefore, provided F ′′
t (α = 0) is not divergent, in the limit

L → ∞, the distribution of λ> is concentrated on its mean
λ> almost surely, and the function Ft (α) encodes its large
deviations. In contrast with KL(t ), the Lyapunov exponents
are thus self-averaging. In general we will denote

λa(k) = lim
L→∞

〈
λ(L)

a (k)
〉
, (12)

which defines the spectral Lyapunov exponents. In the follow-
ing, we will study the k dependence of the leading Lyapunov
exponents λ0(k) and the fluctuations of λ(L)

> as encoded by the
generating function F (α) for chaotic and MBL systems.

III. MODELS

For our analytical and numerical analysis we will consider
two main models: the random phase model (RPM) [15] and
the kicked Ising model (KIM) [19,30]. Below, we summarize
their definitions and main features.

A. Random phase model

The random phase model (RPM) consists of q-state
“spins” arranged with nearest-neighbor coupling on a one-
dimensional lattice. We use site labels n = 1, 2, . . . , L and
orbital labels an = 1, 2, . . . , q on the nth site. The qL × qL

Floquet operator W = W2 · W1 is a product of two factors.

W1 = U1 ⊗ U2 ⊗ · · ·UL (13)

generates rotations at each site n, with q × q unitary matri-
ces Un chosen randomly and independently from the circular
unitary ensemble (CUE). W2 couples neighboring sites and is
diagonal in the basis of site orbitals. The phase of the diagonal
elements is a sum of terms depending on the quantum states
of adjacent sites, so that

[W2]a1,...,aL ;a1,...,aL = exp

(
ı
∑

n

ϕ(n)
an,an+1

)
. (14)

We take each ϕ(n)
an,an+1

to be an independent Gaussian random
variable with mean zero and standard deviation ε, which ef-
fectively controls the coupling between neighboring spins.

For fixed q, the model exhibits a many-body localization
transition as a function of ε [15,38], with a critical value εc

separating an MBL (ε < εc) from a chaotic phase (ε > εc).
We will employ this model for exact analytic calculations
within the chaotic phase, in the limit q → ∞. Note that ac-
cessing the MBL phase in this limit is problematic as εc → 0
when q → ∞. We will therefore complement the analysis
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with numerical studies at q = 3, for which the model has
εc ≈ 0.25 [15].

B. Kicked Ising model

The kicked Ising model (KIM) is a Floquet Ising spin-1/2
chain defined by the time evolution operator W = W2 · W1

with

W1 = eı
∑

i hiσ
z
i eı

∑
i bσ x

i , (15a)

W2 = eı
∑

i Jσ z
i σ z

i+1 , (15b)

with hi, J , and b being real parameters. Similarly to the RPM,
this model has a many-body localization transition at a critical
coupling strength Jc = 0.23 [30], so that it exhibits a MBL
phase for J < Jc and a chaotic phase for Jc < J � π/4.

This model has recently received a lot of attention, because
of the existence of a “self-dual point” in the parameter space:
|J| = |b| = π/4 and arbitrary local longitudinal fields hj . For
these special values of the parameters, not only the evolution
operator W , but also its duals Vj [see Eq. (4) and Appendix B
for the detailed definition] acting in the space direction, can
be chosen to be unitary and with the same form as Eqs. (15a)
and (15b). In this case, at all times t , not only the average
SFF [19] but also its higher moments are in perfect agreement
with the prediction of an appropriate random matrix ensemble
which takes care of all the symmetries [13]. Indeed, unlike the
RPM, this model is time-reversal invariant, and consequently,
the behavior of SFF for tHei > t � tTh is expected to follow
the circular orthogonal ensemble (COE), which is given in the
limit of large random matrices for t � tHei by

KCOE ∼ 2t . (16)

At the self-dual point, additional discrete symmetries have
been identified for the dynamics induced by Eqs. (15a) and
(15b), but they become irrelevant at large t [13,19,30].

Although solvable, the behavior at the self-dual point is
not generic [39], as it implies, for instance, that tTh does
not diverge with the system size but remains O(1). Here, we
will mainly use this model for numerical analysis without
restricting ourselves to the self-dual point, taking advantage of
its particularly small finite-time corrections near the self-dual
point.

IV. THE CHAOTIC PHASE

A. General behavior

We start by focusing on systems belonging to the CUE
symmetry class and on the case Ft (α = 1), which is simply
related to the usual average of the spectral form factor 〈K(t )〉.
We make use of the defining property [Eq. (3)] to estimate
the behavior of Ft (α = 1) at large t in the chaotic phase. As
observed in Refs. [15–18], for systems in the CUE symmetry
class, the SFF approaches the random matrix prediction

〈KL(t )〉 ∼ KCUE(t ) = t, t � tTh(L). (17)

The specific details controlling the behavior tTh(L) are not
yet fully understood, but in different setups [15–17] one ex-
pects tTh ∝ Lν , with ν > 0 [40]. As a consequence, as already
stated, the Thouless time tTh(L) → ∞ when L → ∞. Al-

though Ft (α) is formally defined only in the limit L → ∞, we
expect it to capture well the finite-L behavior of KL(t ) when
t ∼ tTh(L). From Eq. (3), we can write

KL(t ) = exp{L[Ft (α) + o(1)]}, (18)

and this suggests that in order for the exponential growth in L
of KL(t ) to be suppressed, we must have FtTh (α = 1) � 1/L.
We thus deduce the scaling

Ft (α = 1) � t−1/ν . (19)

This argument can be extended to other values of α, and we
reach the conclusion that the chaotic phases must be charac-
terized by

lim
t→∞ Ft (α) = 0, ∀α � 0. (20)

In the next section, we will quantitatively justify this state-
ment by computing explicitly Ft (α) for the RPM in the limit
q → ∞.

Additionally, we see that not only the leading Lyapunov in
the zero-momentum sector λ> but also t Lyapunov exponents
have to vanish in the large-t limit in order to reproduce the
linear growth in time in (17). The most natural assumption
is that the t vanishing Lyapunov exponents correspond to
the different λ0(k) in the t momentum sectors. Similarly, for
systems belonging to the COE symmetry class, in order to
fulfill Eq. (16), we expect two vanishing Lyapunov exponents
for t → ∞ in each momentum sector. We support these con-
jectures with numerical simulations in Sec. VI.

B. Ft (α) for RPM at q → ∞
As a solvable model of the chaotic phase in a spatially

extended many-body quantum system we consider the RPM
[15], and compute analytically Ft (α) and λ> in the large-q
limit. We first of all consider integer values of α = n. We
map the computation of 〈K(t )n〉 to the partition function of a
one-dimensional statistical mechanical problem with nearest-
neighbor interactions. As explained above, we introduce a
transfer matrix in the space direction which allows the exact
computation of 〈K (t )n〉 in the limit of large q: The value of
Ft (n) corresponds to the leading eigenvalue of the transfer
matrix for the statistical mechanics problem, in a way that
generalizes the approach described in Ref. [15]. Lastly, we
analytically continue Ft (α) to noninteger α and obtain λ>.

To derive the transfer matrix for 〈K(t )n〉, we construct
the associated Hilbert space by performing the Haar average
over W1 for each site independently, as illustrated in Fig. 3.
This independent averaging over W1 is legitimate because
the 1-gates are drawn independently across different sites
and because W2 consists of diagonal 2-gates only. Using the
procedure explained in Refs. [14] and [15], we find a total
of n! t n diagrams at each site in the limit of large q. To each
diagram we associate a state in the Hilbert space, labeled by
a vector v in Zn

t and by p = (σ (1), σ (2), . . . , σ (n)), where σ

belongs to the permutation group Sn of n elements. Figure 3(a)
is the diagrammatic representation of 〈K(t )α〉. Figure 3(b) is
the diagrammatic representation of a given site where each
Haar-random 1-gate is represented by a single dot [41]. Upon
averaging, the jth loop (out of n loops) on the left is paired
with the p j th loop on the right in Fig. 3(b). Furthermore,

023118-5



CHAN, DE LUCA, AND CHALKER PHYSICAL REVIEW RESEARCH 3, 023118 (2021)

FIG. 3. Construction of the Hilbert space associated with the
transfer matrix for a statistical mechanics problem. (a) Diagrammatic
representation of 〈K(t )n〉. Space and time are represented by the
horizontal and vertical directions. The boxes and ellipses represent
the Haar-random 1-gates and the diagonal 2-gates, respectively. The
white and gray sheets represent W (t ) and W †(t ), respectively. The
curly lines on top and bottom represent traces. (b) Diagrammatic
representation of a single site, where the 2-gates are omitted. (c) and
(d) Two examples of single-site configurations after the ensemble
average over W1 in the large-q limit.

the pairing of the jth loop will have 1 out of t possible
configurations, labeled by v j . Figures 3(c) and 3(d) are two
examples.

The average over W2 in the large-q limit gives the matrix
elements of the transfer matrix T

〈p, v| T (t, n) |p′, v′〉 = exp(−ε n t ) exp

[
εt

n∑
j=1

δp j ,p′
j
δv j ,v

′
j

]
,

(21)
which is constructed by counting the unmatched con-
figurations and pairings between configuration (p, v) and
(p′, v′), since each unmatched configuration gives a factor of
exp(−εnt ). As an example, the matrix element between the
states in Figs. 3(c) and 3(d) is exp(−6ε), since n = 3, t = 2
and none of the pairings or configurations match. In summary,
we have shown that the evaluation of 〈K (t )n〉 can be mapped
to a one-dimensional statistical mechanical model where each
site has n!t n states and where the interaction is defined by
Eq. (21).

In Appendix A, we compute the leading eigenvalue Et (α)
of T and analytically continue the result from integer n to
arbitrary α � 0 to obtain

Et (α) = e
1−x
tx (tx)α�

(
α + 1,

1 − x

tx

)
, (22)

where �(a, b) denotes the incomplete gamma function and
we parametrize x = e−tε . As a consistency check, at ε = 0,
Et (α) = α!tα as expected since all the entries of the transfer
matrix are unity. In general, we have the relation

lim
q→∞ Ft (α) = ln Et (α). (23)

FIG. 4. Main panel: Large-q analytical results for Ft (α) vs α for
different t at fixed ε = 1 for the RPM. The rainbow colors corre-
spond to different values of t , from t = 3 in red (top) to t = 8 in blue
(bottom) in steps of 1. Solutions for t > 8 are very small on the scale
shown. Inset: Large-q results for Ft (α) vs α at t = 10 for the RPM.
The rainbow colors correspond to different values of ε, from ε = 0
in red (top) to ε = 0.8 in blue (bottom) in steps of 0.1. Results for
ε � 0.8 are very small on the scale shown.

At large times (x � 1), we obtain the expansion

Ft (α) = α(t − 1)x + 1

2
x2[(α2 − 2α)t2 + 2αt − α] + O(x3).

(24)
Using the replica trick, the Lyapunov exponent can be com-
puted as

λ> = e
1−x
tx �

(
0,

1 − x

tx

)
+ ln (1 − x). (25)

These analytical solutions are plotted in Figs. 4 and 5. Figure 4
shows that Ft (α) becomes flat as t (main panel) and ε (inset)
increase, which implies that λ> tends to zero for increasing ε

and t . This behavior of λ> in time is shown more explicitly
in Fig. 5. Note that for small t (in particular, t = 1), λ> is

FIG. 5. Main panel: Large-q analytical results for λ> vs t for
the RPM. The rainbow colors correspond to different values of ε,
from ε = 0.05 in red (top) to ε = 1 in blue (bottom) in steps of 0.05.
Inset: Large-q analytical results for Ft (α = 1) vs t for the RPM. The
rainbow colors correspond to different values of ε, from ε = 0 in red
(top) to ε = 1 in blue (bottom) in steps of 0.05.
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negative. We will see that this short-time feature also appears
in the finite-q numerics. The Fig. 5 inset shows the analytic
result for the log of the averaged SFF.

We use Eq. (24) to define a generalized Thouless time t (α)
Th

associated with the hpSFF as the time after which hpSFF
behavior (of a quantum many-body system) coincides with the
RMT result. For the CUE in the large-q limit, the hpSFF is ex-
actly α!tα due to the same diagrammatic approach explained
in Fig. 3. The transfer matrix (21) becomes the identity matrix
in the limit of large t , and its trace gives the hpSFF CUE result
as expected. To compute the t (α)

Th , we demand the Lth power of
the leading Lyapunov exponent to be O(1), i.e., Ft (α) ∼ 1/L.
Using Eq. (24), we see that t (α)

Th = O(ln L) independent of α.
This result generalizes the logarithmic scaling obtained in Ref.
[15] at α = 1.

V. THE MBL PHASE

In this section, we discuss the general features of Ft (α) and
of the Lyapunov spectrum λ0(k) in the MBL phase. In order to
obtain some intuition, we first treat the case of uncoupled sites
by analyzing the RPM at ε = 0. Then we consider systems
with small coupling using a perturbative analysis applicable
to both the RPM and KIM. Lastly, we analyze the leading
Lyapunov exponent for an effective model of MBL in terms
of local integrals of motion (LIOMs).

A. Uncoupled sites

We use the RPM at ε = 0 as a toy model for the MBL
phase. In this case, W2 is simply the identity, and the model
reduces to L noninteracting spins, each independently evolv-
ing with a random CUE matrix. From Eq. (2), we obtain for
all moments

〈KL(t )α〉 = 〈| Tr[U (t )]|2α〉L
CUE, (26)

where the average is performed within the CUE from which U
is drawn. Given the trivial dependence of (26) on the system
size L, we see from (7) that except for λ0(k = 0), all the other
Lyapunov exponents [thus including all λ0(k �= 0)] are degen-
erate with the value −∞: This is a general feature of models
with uncoupled sites. From (3), we obtain an expression for
Ft (α) in terms of the average of a single CUE matrix. In
particular, for q = 2, we obtain the explicit formula

lim
t→∞ Ft (α) = ln

[
4α�(α + 1/2)

�(α + 1)

]
, q = 2. (27)

Note that the large time limit washes away many microscopic
details and this expression holds more generally for nonin-
teracting spins 1/2 with an arbitrary distribution of random
fields, thus including the KIM at J = 0, as well as disordered
free fermions in one dimension, i.e., the Anderson model [42].
For q > 2, one cannot get an analytic expression; neverthe-
less, at large q but t � q, one can use that Tr[U (t )] behaves
as a Gaussian-distributed complex random variable with zero
average and variance q, leading to

Ft (α) ∼ ln[qα�(α + 1)], t � q � 1. (28)

Note that in realistic models, the limit of large time is reached
quite quickly, whenever t is larger than the single-spin Heisen-
berg time, i.e., t � q = O(1).

By contrasting (27) and (28) with (20), we observe a first
indication of the different behavior in a nonergodic phase:
Ft (α) converges to a nonzero function at large t . In the next
sections we will see that this feature also characterizes the
MBL phase.

While accessing numerically the whole function Ft (α) can
be problematic, we will show in Sec. VI that the neighborhood
of α = 0 can be studied efficiently. Indeed, with the exception
of special cases [e.g., for noninteracting spin 1/2, Eq. (27)

leads to F ′
t (0)

t→∞−→ 0], the behavior F ′
t (0) �= 0 at large times

provides a sufficient indication of a nonergodic phase.

B. Perturbative analysis at small coupling

The dual transfer matrix provides an interesting framework
in which to perform a perturbative expansion at small coupling
between sites. The technique can be applied to both the KIM
and the RPM, but we focus on the first. In Appendixes B and
C, we show that the transfer matrix Vi corresponding to the
two-layer structure introduced in Eqs. (15a) and (15b) can be
written as Vi = V (1)

i V (2)
i , where

V1 ≡
t∏

μ=1

(
eıJ1μ + e−ıJσ x

μ

)
, (29a)

V2,i ≡
[ ı

2
sin(2b)

]t/2
eıh j

∑t
μ=1 σ z

μ+ f (b)σ z
μσ z

μ+1, (29b)

and f (a) = arctanh(e−2ıa). Note the resemblance with
Eqs. (15a) and (15b), whose unitary form is recovered at the
self-dual unitary point |b| = |J| = π/4 [19]. Here, we focus
on b = π/4 and small J . The operator V1 is easily diagonal-
ized, and at small J the leading eigenstate is |0〉 = |+ · · · +〉,
with σ x |±〉 = ± |±〉. Every spin flip σ z

j |0〉 is suppressed by
a power of J . At the leading order in J , we thus truncate
the Hilbert space of the trace in (4) to states only involv-
ing up to one spin flip σ z

μ |0〉, where we use Greek letters
μ = 0, . . . , t − 1 to parametrize the position in time in the
dual Hilbert space. Additionally, we employ the translational
invariance in the time direction so that, within this truncation,
we have a single magnon in each momentum sector k

|k〉 = 1√
t

t−1∑
μ=0

eıkμσ z
j |0〉 , k = 2πn

t
. (30)

We can thus obtain an expression for λ0(k) for every k �= 0,
which takes the form (see Appendix C for the full derivation)

λ0(k) = ln | 〈k|V2|k〉 |2 + · · · ∼ 2 ln |J|

+
∫

dhP(h) ln

[
cos(h)2

[2 − cos(h)2][cos k + sin(h)2]2

]
+ O(J2),

(31)

where P(h) is the probability distribution of the random fields
hi. [A comparison between Eq. (31) and numerically exact
results is shown in Fig. 7.] Note that at first order in J , the
time variable does not appear explicitly in Eq. (31). We can
thus take the t → ∞ limit, where k becomes a continuous
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FIG. 6. The leading (solid lines) and subleading (dashed lines)
Lyapunov exponents vs time for different ratios between the vari-
ances J2

2,1 and J2
1 . For any finite ratio J2

2,1/J2
1 > 0, the leading

exponent is finite at sufficiently large t . For J2
2,1/J2

1 = 0, the leading
Lyapunov exponent vanishes at sufficiently large t , and the sublead-
ing exponent converges to a large negative number and is not shown
in the plot.

variable k ∈ [−π, π ]. We leave for further investigation the
study of the convergence of higher-order corrections, but quite
interestingly, Eq. (31) provides an explicit result in the limits
of both large times and large system sizes.

The case k = 0 needs a different treatment because even
at the leading order, O(J ), the zero-momentum sector is two
dimensional, containing |0〉 and the zero-momentum magnon
|k = 0〉 in Eq. (30). This fact is at the origin of the dis-
continuity observed in the spectrum at k = 0 (see Fig. 7).
The resulting Lyapunov exponents λ0(0) and λ1(0) cannot be
written analytically but can easily be computed numerically
(see Appendix C).

FIG. 7. λ0(k) vs k for KIM with t = 18. The rainbow colors
correspond to different values of J , from J = 0.001 in red (bottom
for k �= 0) to J = 0.785 in purple (top for k �= 0). (Recall that the
critical coupling strength for KIM is Jc = 0.23.) We include data for
λ0(k) at values of J as small as 0.001 and compare it with the result
from perturbation theory, Eq. (31), labeled in gray [full equation in
(C12)]. Inset: λ0(k = 0) for different values of J with the same color
coding as the main panel.

C. Local integrals of motion

To describe the general behavior of the (fully) MBL phase,
we consider an effective model based on the hypothesis that
the MBL phase is characterized by an extensive number of
LIOMs with exponentially decaying interactions [43,44],

H =
∑

i

J (1)
i τ z

i +
∑
i< j

J (2)
i, j τ z

i τ
z
j +

∑
i< j<k

J (3)
i, j,kτ

z
i τ

z
j τ

z
k + · · · ,

(32)
where the operators τα

i with α = x, y, z form a spin-1/2
representation for each i but have an exponentially decay-
ing support in real space around the physical site i, i.e.,
||[τ z

i , σ
z
j ]|| = O(e−|i− j|/ξ ), with ξ being the localization length

and || · || being the operator norm. The τ z
i provide an extensive

set of integrals of motion that do not relax. Relaxation for
real spin σ z

i operators is thus induced by the accumulating
random phases between different components of the system.
This dephasing dynamics in MBL is the origin of logarithmic
growth of entanglement [45,46] and power-law relaxation of
local observables [47,48].

For simplicity, we focus on the two-body model where
J (n)

i, j,... = 0 for n � 3 and where J (2)
i,i+r are independently and

Gaussianly distributed for each i and r, i.e.,〈(
J (1)

i

)2〉 = J2
1 ,

〈(
J (2)

i,i+r

)2〉 = J2
2,r . (33)

Furthermore, we will consider the simplest nontrivial LIOM
in the main text where J2,1 �= 0 and J2,r = 0 for all r > 1.

To analyze the behavior of Lyapunov exponents in LIOM,
we construct a 2 × 2 transfer matrix for all time t ,

Vi =
(

e−ıt
(

J (1)
i+1+J (2)

i,i+1

)
e−ıt

(
J (1)

i+1−J (2)
i,i+1

)
e−ıt

(
−J (1)

i+1−J (2)
i,i+1

)
e−ıt

(
J (1)

i+1+J (2)
i,i+1

)
)

, (34)

such that TrH̃[V (L)] = TrH̃[VLVL−1 · · ·V1]. We numerically
compute the two Lyapunov exponents using the method of
QR decomposition described in Sec. VI. We see that for any
finite ratio J2

2,1/J2
1 > 0, the leading exponent λ> ≡ λ0 and

subleading exponent λ1 converge to positive and negative
finite values, respectively, as shown in Fig. 6.

Moreover, we analyze 〈K(t )α〉 for the LIOM (32) with
two-body terms for integer α in Appendix D. We map 〈K(t )α〉
to the partition function of stacked spin chains with two-body
interactions, which can be written in terms of another transfer
matrix, whose size increases as α increases and as we include
longer-range two-body terms in (33). We numerically diago-
nalize the transfer matrix and show that the Ft (α) for integer
α are qualitatively consistent with the Lyapunov exponent
calculation above, and with the form of Ft (α) computed for
the RPM and KIM in MBL regime, as discussed below in
Sec. VI.

We have used the LIOM picture to show that the leading
Lyapunov exponent converges to a finite value as a function of
time. We expect the existence of a positive finite λ> to persist
for general LIOMs with exponentially decaying support (see
examples in Appendix D) and higher-body interaction terms.
As one includes interaction terms of larger supports in the
analysis, the size of the transfer matrix (34) and, consequently,
the number of Lyapunov exponents increases. However, in-
triguingly, there is not a notion of time-momentum sectors for
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the Hamiltonian in Eq. (32) once expressed in the LIOM basis.
This seems to indicate the possibility of a further structure
for the LIOM effective Hamiltonian which would retain the
notion of a time-momentum quantum number. We will leave
the analysis of Lyapunov exponents for Hamiltonian systems
for future studies.

VI. NUMERICS

The advantage of the dual formulation is that the Lya-
punov exponents can be computed efficiently via an iterative
procedure at arbitrarily large L. Indeed, by using the QR
decomposition, we can write

V1 = Q1R1,

V2Q1 = Q2R2,

VL . . .V2V1 = QLRLRL−1 · · · R1, (35)

where Qi is an orthogonal matrix and Ri is an upper triangular
matrix. An estimate of the ath Lyapunov exponent in the
momentum sector k is then

λa(k) = 2

L

L∑
i=1

μa,i(k), (36)

where we define for convenience

μa,i(k) ≡ ln[Ri]aa. (37)

By iteratively acting with the matrices Vi and projecting
onto the momentum sector k, we can generate a large number
L of μa,i. In this way we can obtain the behavior of Ft (α)
for α in the neighborhood of 0. However, in order to access
larger values of α � 1, it is necessary to access values of
λ(L)

a �= 〈λ(L)
a 〉 whose probability is exponentially suppressed in

L. This requires repeating the calculation in Eq. (36) several
times in order to sample the tail of the distribution of λ(L)

a at
finite L. To this end, we define

λ(�)
> := 2

�

�∑
j=1

μ0, j (k = 0), (38)

where � is chosen such that the spatial correlation between
μ0 and μ� is sufficiently small. Our data suggest that for both
the RPM and KIM simulations, it is sufficient to have � =
10, which we will take hereafter. We then define an effective
cumulant generating function that approximates Eq. (3) as

Ft,�(α) := 1

�
ln
〈
e2α�λ

(�)
>
〉
, (39)

where 〈·〉 denotes the average over all realizations of � con-
secutive μ’s in (38).

We can perform this numerical procedure exactly, and the
main limitation is represented by the exponential growth in
the size of the matrices Vi with t . Alternatively, one can
adopt some approximate scheme based on matrix-product
states (MPSs) and the density-matrix renormalization group
(DMRG) algorithm. However, we will see below that this is
effective only deep in the MBL phase.

Using these methods, we compute the leading Lyapunov
spectrum λ0(k), focusing, in particular, on two main repre-
sentative cases λ> ≡ λ0(k = 0) and λ0(k = π ) as functions

FIG. 8. λ0(k) vs k for RPM with t = 12. The rainbow colors
correspond to different values of ε, from ε = 0.2 in red (bottom for
k �= 0) to ε = 2 in purple (top for k �= 0). (Recall that the RPM at
q = 3 has εc ≈ 0.25.) Inset: λ0(k = 0) for different values of J with
the same color coding as the main panel.

of time t . We also extract the cumulant generating function
Ft,�(α) in the chaotic and MBL phases. At late time in the
MBL phase, we expect λ0(k) to have a nonuniform shape
as a function of k with a positive finite λ> in the k = 0
momentum sector. In the chaotic phase, we expect the leading
Lyapunov λ0(k = 0) to approach zero at late time, and we
further conjecture that the largest Lyapunov exponents in the
other momentum sector approach zero as well, so that λ0(k)
is flat in the chaotic phase. Finally, we expect Ft,�(α) to have
a finite positive gradient in the MBL phase and to have zero
gradient in the chaotic phase.

We summarize the result of numerics as follows: For the
KIM, the data are in agreement with the theoretical expec-
tations above. Note that exactly at the self-dual point of the
KIM, Vi is unitary. Consequently, the SFF does not grow ex-
ponentially in space, and λ> is identically zero at the self-dual
point. For this reason, even away from the self-dual point,
the finite-time corrections are small. For RPM with on-site
dimension q = 3, the data are compatible with the theoreti-
cal expectations, but agreement is not conclusive due to the
limited times that are accessible within our numerics.

In Figs. 7 and 8, we show the largest Lyapunov expo-
nents λ0(k) in each momentum sector k for the KIM and
RPM, respectively. For the KIM in the chaotic phase, λ0(k)
is very small for all k. On the other hand, in the MBL phase,
λ0(k = 0) is positive (except for very small J , see below),
and λ0(k �= 0) is negative. In Fig. 7 we include data for J as
small as 0.001 and show that for k �= 0 it agrees well with
the result from perturbation theory given in Eq. (31) [full
equation in (C12)] and that for k = 0 it agrees with the result
from degenerate perturbation theory evaluated numerically.
Note that in Fig. 7 we observe a peculiarity in λ0(k = 0)
for J = 0.001, 0.01, where the λ0(k = 0) have small negative
values. We find that the window of J where λ0(k = 0) < 0
gets smaller as t gets larger, and we expect this to be only
a finite-time effect. For RPM, the data shown in Fig. 8 are
limited by finite-t effects, but they are compatible with and
seem to tend towards the expected behaviors.
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FIG. 9. λ> vs t for KIM for different values of J .

Next, in order to characterize the t dependence of the spec-
tral Lyapunov exponents, we focus on two distinctive cases:
k = 0, π . In Figs. 9 and 10, we show λ> ≡ λ0(k = 0) and
λ0(k = π ), respectively, as a function of t for the KIM. Con-
sistent with our picture, in the chaotic phase both λ0(k = 0)
and λ0(k = π ) are small at large t . In the MBL phase, λ0(k =
0) converges towards a positive value while λ0(k = π ) tends
towards a finite negative value as t increases. Note that there
are decaying oscillations in time with a periodicity of 4 for
small J which are still visible at the accessible time with exact
matrix multiplication (t ∼ 20). In order to access larger values
of t , we employ a variation of the DMRG algorithm: After
the application of each transfer matrix, we reproject the dual
Hilbert space onto a matrix-product state at fixed bond dimen-
sion χ . With this method, we can access much larger times
(t ∼ 40) and confirm that the oscillations are suppressed in t ,
as shown in Fig. 11. However, the accessible values of ξ are
limited by the necessity of using periodic boundary conditions
in the time direction, and the nonunitarity of the dual transfer
matrix. In the chaotic phase, the DMRG algorithm applied
in the dual picture cannot be exploited for large t since the
Lyapunov exponents obtained in this way do not converge for
accessible values of χ .

FIG. 10. λ0(k = π ) vs t up to t = 20 for KIM with four different
values of J . Note that the data for J = 0.69 and J = 0.78 lie on top
of each other.

FIG. 11. λ> vs t for KIM for J = 0.1 with data from MPS projec-
tion on bond dimensions χ = 4, 6, 8, 10. For comparison, data from
exact diagonalization are shown with a dashed line.

In Figs. 12 and 13, we show λ0(k) against t for the RPM for
k = 0 and π , respectively. In the MBL phase, λ0(k) behaves as
expected for both momentum sectors. However, the behavior
of λ0(k) in the chaotic phase is affected by the finite-time
effects. While λ0(k = π ) for the chaotic phase tends towards
zero and is small relative to the corresponding Lyapunov
exponents in the MBL phase, λ0(k = 0) remains finite for the
accessible values of t .

In Figs. 14 and 15, we show the cumulant generating
function (39) computed for the KIM and RPM, respectively.
Recall that the first and second cumulants of λ> are the first
and second derivatives of the cumulant generating function
at α = 0. For the KIM, Ft,�(α) shows obviously distinctive
behaviors in the chaotic and MBL phases. In particular, Ft,�(α)
has zero derivative in the former phase, which is consistent
with the expectation that λ> = 0, discussed in earlier sections.
However, again, for the RPM, Ft,�(α) does not show such a
clear difference in behavior between the two phases for the
accessible t (Fig. 15).

Finally, we recall the different symmetry classes of the
KIM and RPM, namely, COE and CUE, respectively. The
former symmetry class has KCOE ≈ 2t . Therefore, for the

FIG. 12. λ> vs t for RPM for different values of ε.
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FIG. 13. λ0(k = π ) vs t for RPM with four different values of ε.

KIM, it is natural to expect in the chaotic phase at large
times that there are 2t (not just t) zero Lyapunov exponents
contributing to K (t ) ∼ ∑

k,a eλa (k)L, two from each of the t
momentum sectors. In order to check this, we compute the
gaps 
λa(k) ≡ λa(k) − λa+1(k) in Appendix E and verify
that 
λ0(k) is indeed small at large t in the chaotic phase for
the KIM. In the RPM, the corresponding computation shows
that the gap 
λa(k) is much larger.

VII. CONCLUDING REMARKS

We have proposed a set of physical quantities, the spec-
tral Lyapunov exponents, which allow us to explore the
fluctuations and the generic behavior of the SFF in the ther-
modynamic limit. We have shown that the spectral Lyapunov
exponents have distinct long-time behaviors in the chaotic and
MBL phases: For chaotic systems, the largest Lyapunov expo-
nent in each momentum sector k converges to zero at large
time, implying the absence of exponential growth of K (t )
with system size and the onset of random matrix behavior
in the spectral correlation. For MBL systems, the Lyapunov
exponents remain nonzero with a nonuniversal form of the
spectrum which encodes the residual spectral correlations. We
further propose a scaled cumulant generating function Ft (α)

FIG. 14. Ft,�(α) vs α for the KIM with t = 22 and � = 10 for
four values of J inside the MBL and chaotic phases.

FIG. 15. Ft,�(α) vs α for the RPM with t = 13 and � = 10 for
four values of ε inside the MBL and chaotic phases.

associated with the hpSFF, which encodes the fluctuations of
the leading Lyapunov exponent in the zero-momentum sector.
We argue on the basis of analytical and numerical analy-
ses that the average F ′

t (0) = limL→∞ L−1〈ln K (t )〉 provides a
sufficient characterization of the MBL and chaotic phases in
generic settings.

Our results for behavior of the spectral Lyapunov expo-
nents in each phase are complementary to and consistent with
recent studies based on a transfer matrix that generates the
average SFF [18,32].

There are many interesting directions to pursue in the fu-
ture. First, it would be exciting to look at the behavior of the
spectral Lyapunov spectrum when the MBL-ETH transition
is approached and where universality is expected and could
manifest itself both in the fluctuations Ft (α) and the spectrum
λ0(k). Second, it remains to be understood how the existence
of conserved quantities affects the behavior of the spectral
Lyapunov exponents. One possible extension would be the
inclusion of a U(1) charge conservation [16]. More generally,
one could look at the behavior of Hamiltonian systems for
which the energy provides a natural conserved quantity. In
such cases, the time variable in the dual picture is continuous,
and the time-momentum operator becomes a local conserved
quantity in contrast to the Floquet case. This should be at the
origin of the different scaling expected for the Thouless time
in these systems.
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APPENDIX A: DERIVATION OF λ> AND Ft (α)
IN CHAOTIC PHASE

In this Appendix, we compute 〈K(t )α〉 for the RPM in the
limit of large q and large L by obtaining the leading eigen-
value of the transfer matrix (21). Furthermore, we analytically
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continue the results to compute Ft (α) and λ>(t ) in the same
limits.

To obtain the leading eigenvector of the transfer matrix
(21) with integer α = n, note that all of its matrix elements are
non-negative. So there is a unique largest real eigenvalue and
a corresponding eigenvector with non-negative components
due to the Perron-Frobenius theorem. Furthermore, due to the
symmetry of the diagrams, the eigenvector must be invariant
under permutation, and hence we find (1, . . . , 1)T as the lead-
ing eigenvector.

To find the leading eigenvalue E1, we sum over any given
row of T and obtain

E1 =
(

t

1 + ty

)n n∑
d=0

P(n, d ) (1 + y)n−d , (A1a)

P(n, d ) = n!

(n − d )!

d∑
j=0

(−1) j

j!
, (A1b)

y = etε − 1

t
, (A1c)

where P(n, d ) is the number of elements in Sn with
distance d from any given reference permutation
[49], say, the identity p = (1, 2, . . . , n); C(t, ε, n, d ) =∑

v′ 〈(1, . . . , n), (1, . . . , 1)| T |p, v′〉 is the sum of t n matrix
elements at fixed p. From the leading eigenvalue in (A1a), we
can then recover Ft (n) = ln E1.

Above we derived an expression for 〈K(t )α〉 at integer
α = n. Now we re-express Eqs. (A1a)–(A1c) in a different
form where the dependence on α can be easily analytically
continued to real values. First of all, we can rewrite the sum
in (A1b) as

d∑
j=0

(−1) j

j!
= 1

e
−

∞∑
k=0

(−1)k+d+1

�(k + d + 2)
, (A2)

where e is Euler’s number. Plugging (A2) into (A1b), we can
exchange the order of sums in (A1a) and perform the sum over
d . After some manipulations, the final result takes the compact
form valid for arbitrary α � 0

E1 = ey

(
1

t
+ y

)−α

�(α + 1, y), (A3)

and

lim
q→∞ Ft (α) = ln E1. (A4)

Leaving the large-q limit implicit, we can now compute the
leading Lyapunov exponent

λ> =F ′
t (α = 0)= lim

L→∞
1

L
〈lnK(t )〉= lim

L→∞
1

L

∂

∂α
〈K(t )α〉|α→0.

(A5)
The derivative of the incomplete gamma function can be eval-
uated as

∂

∂α
�(α + 1, y)

∣∣∣∣
α→0

= e−y ln(y) + �(0, y). (A6)

After some straightforward manipulations, we arrive at
Eq. (25), reproduced below:

λ> = ey�(0, y) − ln

(
1 + 1

yt

)
. (A7)

APPENDIX B: EXPLICIT FORM OF THE DUAL CIRCUIT

Here, we derive an explicit form for the dual transfer matrix
for the two models introduced in Sec. III. Both models are
composed of a layer W1 of single-site unitaries and a layer W2

oftwo-site unitaries diagonal in the computational basis. We
will therefore treat them both at once. To be more specific,
we use the notation introduced in Sec. III A for the RPM in
Eqs. (13) and (14), i.e.,

W1 = U1 ⊗ U2 · · ·UL, (B1a)

[W2]a1,...,aL ;a′
1,...a

′
L

= δa1,a′
1
· · · δaL,a′

L
exp

(
ı
∑

n

ϕ
(n)
an,an+1

)
,

an ∈ 1, . . . , q. (B1b)

For the RPM, the unitary matrices Uj are drawn from the
CUE, and the phases φan,an+1 are Gaussian variables with zero
average and standard deviation ε. With the same notation, the
KIM can be recovered setting q = 2, with Uj = eıh jσ

z
j eıbσ x

j and
ϕ(n)

an,an+1
= Jeıπ (an+an+1 ) (an = 1, 2).

In order to deduce the form of the transfer matrix in the
space direction, we write explicitly the trace in (4). We intro-
duce a compact notation for the indices a = (a1, . . . , aL ), and
we have

TrH[W (t )] =
∑

{a1,...,at }
[W ]a1,at · · · [W ]a3,a2 [W ]a2,a1

=
∑

{a1,...,at }

L∏
j=1

t∏
μ=1

e
ıϕ

( j)

aμ
j ,aμ

j+1 [Uj]aμ+1
j ,aμ

j
. (B2)

We now introduce a dual Hilbert space H̃ = ⊗t
μ=1C

q

with dimension Ñ = qt and the computational basis b =
{b1, . . . , bt } with each bμ = 1, . . . , q. Then, defining the j-
dependent dual layers

[V1, j]b,b′ =
t∏

μ=1

eıϕ
( j)
bμ,bμ ′ , (B3a)

[V2, j]b,b′ =
t∏

μ=1

[Uj]bμ+1,bμδb,b′ , (B3b)

and Vj = V2, jV1, j , we have that

TrH[W t ] =
∑

{b1,...,bL}
[V1]b1,b2 [V2]b2,b3 · · · [VL]bL,b1

= TrH̃[V1V2 · · ·VL]. (B4)

Note that in the dual formulation the one-body unitary matri-
ces in W1 are converted into two-body diagonal matrices in
V2, while the two-body phases in W2 are converted into the
one-body V1.
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APPENDIX C: WEAKLY COUPLED SPINS

In this Appendix we provide the details of the calculation
of the Lyapunov spectrum in the limit where different sites are
weakly coupled. This corresponds to J → 0 and ε → 0 for
the KIM and RPM, respectively. For the sake of clarity, we
will focus on the KIM, although the discussion can be easily
adapted to the RPM.

From Eqs. (B3a) and (B3b), we have

V1 ≡
t∏

μ=1

(eıJ1μ + e−ıJσ x
μ) = [2ı sin(2J )]t/2e

∑
μ f (Jj )σ x

j , (C1a)

V2, j ≡ 2−t eıh j
∑t

μ=1 σ z
μ

t∏
μ=1

(
eıb1μ,μ+1 + e−ıbσ z

μσ z
μ+1

)

=
[ ı

2
sin(2b)

]t/2
eıh j

∑t
μ=1 σ z

μ+ f (b)σ z
μσ z

μ+1 , (C1b)

where in the last equalities we used the matrix identity
holding for any operator O2 = 1

eıa + e−ıaO = [2ı sin(2a)]1/2e f (a)O (C2)

and f (a) = arctanh(e−2ıa). Setting σ x |±〉 = ± |±〉, we de-
fine

V1 |0〉 = (2 cos J )t |0〉 , |0〉 ≡ |+ · · · +〉 , (C3)

V1 |μ1, . . . , μM〉 = (ı tan J )M (2 cos J )t |μ1, . . . , μM〉 ,

|μ1, . . . , μM〉 ≡ σ z
μ1

· · · σ z
μM

|0〉 . (C4)

At small J , the largest eigenvalue is associated with the vac-
uum ferromagnetic state |0〉, and spin flips are suppressed with
powers of tan(J ). At the leading order in J , we can restrict our
Hilbert space to a single spin flip [M = 1 in (C4)]. In order to
compute the trace in Eq. (B4) in this limit, we need the matrix
elements of V ( j)

2 between pairs of single spin-flip states. They
can be written explicitly by going back to the original time
direction as

〈μ|V2, j |ν〉 = 2−t Tr
[
σ zU �

j σ
zU t−�

j

]
, � = |ν − μ|, (C5)

where the trace is performed in the Hilbert space of a single
spin.

Additionally, we can make use of the translational invari-
ance in the time direction to decompose the trace in (B4) in
momentum sectors. We thus define a spin wave with momen-
tum k as

|k〉 = 1√
t

∑
μ

eıμk |μ〉 , k = 2πn

t
, n = 0, . . . , t − 1.

(C6)
The trace in the single spin flip of momentum k �= 0 can then
be written as

Trk
[
V (1)V (2)

1 · · ·V (1)V (2)
L

] = (2 cos J )tL(ı tan J )L

〈k|V (2)
1 |k〉 · · · 〈k|V (2)

L |k〉 . (C7)

We deduce

λ0(k)
J�1∼ 2t ln |2 cos J| + 2 ln | tan J| + ln[| 〈k|V2|k〉 |2].

(C8)

Setting

θh = arccos[cos(b) cos(h)], αh = arccos

(
sin(h) cos(b)

sin(θ )

)
,

(C9)
we can rewrite

Uj = eıθh j �n·�σ j , �n = 1

sin(θ )
( sin(b) cos(h),

− sin(b) sin(h), cos(b) sin(h)), (C10)

which can be easily diagonalized, and we arrive at the final
expression

ln[| 〈k|V2|k〉 |]2 = −t ln 2

+
∫

dhP(h) ln

[
sin(αh)2 sin(2θh) sin(tθh)

cos(k) − cos(2θh)

]2

. (C11)

At large t , we can make the replacement inside the integral
ln | sin(tθh)|2 → −2 ln 2, and for b = π/4, we get the final
expression

λ0(k)
J�1∼ 2t ln | cos J| + 2 ln | tan J|

+
∫

dhP(h) ln

[
cos(h)2

[2 − cos(h)2][cos k + sin(h)2]2

]
.

(C12)

For the zero-momentum sector, instead two states can
contribute to the trace, i.e., the vacuum |0〉 and the zero-
momentum magnon |k = 0〉. The trace in this sector can then
be rewritten as

Trk=0
[
V (1)V (2)

1 · · ·V (1)V (2)
L

] = (cos J )tL Tr[M1 · · · ML],
(C13)

where the matrices Mj = M(h j ) and M(h) take the form

M(h) =⎛
⎝ 2 cos(tθh) −2ı

√
t cos(αh) sin(θht )

2 tan(J )
√

t cos(αh) sin(θht ) 2ı tan(J )[t cos(θht ) cos(αh)2

+ cot(θh) sin(θht ) sin(αh)2]

⎞
⎠.

(C14)

By computing the two Lyapunov exponents η0, η1 associated
with the sequence of random matrices Mj (see the method
explained in Sec. VI)

Tr[M1 · · · ML] −→ A0eη0L + A1eη1L, (C15)

we have the approximation

λ0(k = 0) ∼ 2t ln | cos(J )| + 2η0,

λ1(k = 0) ∼ 2t ln | cos(J )| + 2η1. (C16)

APPENDIX D: 〈Kn(t )〉 IN THE MBL PHASE

In this Appendix we analyze 〈K(t )α〉 for the LIOM model
(32) with two-body nearest-neighbor terms for integer α. We
map 〈K(t )α〉 to the partition function of stacked spin chains
with two-body interactions, which can be written in terms of
a transfer matrix [50]. We numerically diagonalize the transfer
matrix constructed from the LIOM and show that the results
are qualitatively compatible with the numerical results from
the RPM and KIM models in the MBL regime.
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FIG. 16. (a) Representation of 〈K(t )〉 with nearest-neighbor two-
body interactions, which is mapped to the partition function of a
pair of spin chains with one-body (red) and nearest-neighbor (blue)
two-body interactions. The gray regions illustrate the Hilbert space
associated with the transfer matrix for 〈K(t )〉, which has four degrees
of freedom. (b) Representation of 〈K(t )〉 with up to next-nearest-
neighbor two-body interactions, which is mapped to spin chains
with additional next-nearest-neighbor (green) two-body interactions.
The associated Hilbert space has dimension 16. (c) Representation
of 〈K(t )2〉 with nearest-neighbor two-body interaction, which is
mapped to four spin chains with one-body (red) and nearest-neighbor
terms (blue). Again, the Hilbert space dimension is 16.

It is instructive to construct the transfer matrix for 〈K(t )〉
for (32) with nearest-neighbor two-body terms and then gen-
eralize the procedure for general two-body terms and hpSFFs.
Before averaging, the argument of the (first point) SFF is

K(t ) =
∑
{m,n}

L∏
k=1

exp
[
ıtJ (1)

k (mk − nk )

+ıtJ (2)
k,k+1(mkmk+1 − nknk+1)

]
, (D1)

where m = (m1, m2, . . . , mL ), mk = ±1, and the first sum
is over all possible values of m and n. J (1)

k and J (2)
k,k+1 are

distributed according to (33). The ensemble average gives

〈K(t )〉 =
∑
{m,n}

L∏
k=1

exp

[
− 1

2
t2J2

1 (mk − nk )2

−1

2
t2J2

2 (mkmk+1 − nknk+1)2

]
. (D2)

This is the partition function of a stack of two spin chains
whose state is specified by m and n; see Fig. 16(a). Consider
the basis (mk, nk ) with mk, nk = ±1. Equation (D2) can then
be rewritten using a transfer matrix in terms of this basis as

T =

⎡
⎢⎢⎣

1 h1h2 h1h2 1
h1h2 h2

1 h2
1 h1h2

h1h2 h2
1 h2

1 h1h2

1 h1h2 h1h2 1

⎤
⎥⎥⎦, (D3)

where h1 = exp(−t2J2
1 ) and h2 = exp(−t2J2

2 ), and

〈K(t )〉 = Tr(T L ) (D4)

FIG. 17. Ft (α) vs integer α for LIOMs with two-body nearest-
neighbor terms at J1 = J2 = 1 and t = 1, 10, 100, 1000, represented
by different symbols. Other finite values of the ratio J1/J2 give
qualitatively similar behavior for Ft (α).

for the periodic boundary condition (the case of open bound-
ary condition can also be evaluated). The diagonalization of
T gives two eigenvalues of 0 with eigenvectors (−1, 0, 0, 1)T

and (0,−1, 1, 0)T . The nonvanishing eigenvalues are

E± = 1 + e−2J2
1 t2 ±

√
4e−2t2(J2

1 +2J2
2 ) + e−4J2

1 t2 − 2e−2J2
1 t2 + 1,

(D5)

and we have in this case

Ft (α = 1) = ln E+, (D6)

while E− corresponds to the second Lyapunov exponent. As a
consistency check, in the uncoupled regime where J2 = 0, we
have only a single nondegenerate exponent,

E+ = 2 + 2e−2J2
1 t2

(D7)

E− = 0. (D8)

With the periodic boundary condition, 〈K(t )〉|J2=0 = (2 +
2e−2J2

1 t2
)L → 2L at large t as expected.

The evaluation of 〈K(t )〉 can be generalized to LIOMs (32)
with general (not just nearest-neighbor) two-body terms. We
take the variance of two-body coupling between spins sepa-
rated by r sites to be 〈(J (2)

i,i+r )2〉 = J2
2 e−2(r−1)/ξ ≡ J2

2,r . Using
the same approach, the ensemble average becomes

〈K(t )〉 =
∑
{m,n}

L∏
k=1

exp

[
− 1

2
t2J2

1 (mk − nk )2

−
rmax∑
r=1

1

2
t2J2

2,r (mkmk+r − nknk+r )2

]
. (D9)

This is the partition function of a stack of two spin
chains with two-body interactions up to a distance of rmax.
Consequently, the Hilbert space associated with the trans-
fer matrix is a tensor product of rmax copies of on-site
Hilbert spaces and contains degrees of freedom labeled by
(mk, nk, . . . , mk+rmax−1 , nk+rmax−1 ), where nk, mk · · · = ±1. The
cases of rmax = 1 and 2 are illustrated in Figs. 16(a) and 16(b).
The resulting transfer matrix has 4rmax eigenvalues: A genuine
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FIG. 18. 
λ0(k) vs k for KIM at t = 18. The rainbow colors
correspond to different values of J , from J = 0.1 in red (top) to
J = 0.79 in purple (bottom). Deep in the chaotic phase, 
λ0(k) are
small for all k.

MBL phase has an infinite number of nontrivial Lyapunov
exponents which are recovered in the limit rmax → ∞.

We can further generalize this approach to the evaluation
of 〈Kn(t )〉 with integer exponent n and with only two-body
nearest-neighbor terms. In this case we have

〈Kn(t )〉=
∑

m(1),n(1),m(2),n(2)...

L∏
k=1

exp

{
− 1

2
t2J2

1

[
n∑

i=1

(
m(i)

k − n(i)
k

)]2

−1

2
t2J2

2

[
n∑

i=1

(
m(i)

k m(i)
k+1 − n(i)

k n(i)
k+1

)]2}
, (D10)

which is the partition function of 2n copies of spin chains
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FIG. 19. 
λ0(k) vs k for RPM at t = 12. The rainbow colors
correspond to different values of ε, from ε = 0.2 in red (top) to
ε = 2 in purple (bottom). Deep in the chaotic phase, 
λ0(k) remains
gapped for all k.

with two-body nearest-neighbor interaction, as illustrated in
Fig. 16(c), so that the transfer matrix Hilbert space size grows
as 4n. We numerically diagonalize the transfer matrix and
plot the value of Ft (α) in Fig. 17 for integer α up to α = 5.
Although this approach does not allow analytical continuation
of 〈Kn(t )〉, we see that the form of Ft (n) is compatible with
the expectation that λ> = F ′

t (α = 0) is finite, as discussed in
Sec. V.

APPENDIX E: GAPS IN THE LYAPUNOV SPECTRUM

In Figs. 18 and 19, we show 
λa(k) ≡ λa(k) − λa+1(k)
with a = 0 computed for the KIM and RPM. In particular,
in the chaotic phase of the KIM, the gap in the Lyapunov
spectrum is small. This supports the expectation that in each
time-momentum sector, there are two vanishing Lyapunov ex-
ponents contributing to 〈K (t )〉 ∼ ∑

k,a eλa (k)L at long times. In
the chaotic phase of the RPM, the corresponding computation
suggests that 
λa(k) remains gapped.
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[50] M. Žnidarič, Entanglement in a dephasing model and many-
body localization, Phys. Rev. B 97, 214202 (2018).

023118-16

https://doi.org/10.1103/PhysRevResearch.2.043403
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevLett.123.210603
http://arxiv.org/abs/arXiv:2009.11863
http://arxiv.org/abs/arXiv:2008.01697
https://doi.org/10.1103/PhysRevLett.121.264101
https://doi.org/10.1103/PhysRevLett.78.2280
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1007/JHEP12(2020)205
https://doi.org/10.1007/JHEP11(2017)048
https://doi.org/10.1016/j.physletb.2019.06.025
https://doi.org/10.1103/PhysRevE.101.052201
https://doi.org/10.1103/PhysRevE.102.062144
http://arxiv.org/abs/arXiv:2012.11580
https://doi.org/10.1103/PhysRevD.98.086026
https://doi.org/10.1088/0951-7715/29/2/325
https://doi.org/10.1088/1751-8113/49/37/375101
http://arxiv.org/abs/arXiv:2009.10105
http://arxiv.org/abs/arXiv:2012.00777
http://arxiv.org/abs/arXiv:1912.09489
https://doi.org/10.1103/PhysRevX.11.011022
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1103/PhysRevB.90.174302
https://doi.org/10.1103/PhysRevLett.113.147204
https://doi.org/10.1103/PhysRevB.97.214202

