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Entropy of a quantum channel

Gilad Gour1,* and Mark M. Wilde 2,†

1Department of Mathematics and Statistics, Institute for Quantum Science and Technology, University of Calgary, Alberta, Canada T2N 1N4
2Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, and Center for Computation and Technology,

Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 2 January 2020; accepted 22 March 2021; published 5 May 2021)

The von Neumann entropy of a quantum state is a central concept in physics and information theory, having
a number of compelling physical interpretations. There is a certain perspective that the most fundamental notion
in quantum mechanics is that of a quantum channel, as quantum states, unitary evolutions, measurements, and
discarding of quantum systems can each be regarded as certain kinds of quantum channels. Thus, an important
goal is to define a consistent and meaningful notion of the entropy of a quantum channel. Motivated by the fact
that the entropy of a state ρ can be formulated as the difference of the number of physical qubits and the “relative
entropy distance” between ρ and the maximally mixed state, here we define the entropy of a channel N as the
difference of the number of physical qubits of the channel output with the “relative entropy distance” between
N and the completely depolarizing channel. We prove that this definition satisfies all of the axioms, recently put
forward by Gour [IEEE Trans. Inf. Theory 65, 5880 (2019)], required for a channel entropy function. The task
of quantum channel merging, in which the goal is for the receiver to merge his share of the channel with the
environment’s share, gives a compelling operational interpretation of the entropy of a channel. The entropy of
a channel can be negative for certain channels, but this negativity has an operational interpretation in terms of
the channel merging protocol. We define Rényi and min-entropies of a channel and prove that they satisfy the
axioms required for a channel entropy function. Among other results, we also prove that a smoothed version of
the min-entropy of a channel satisfies the asymptotic equipartition property.
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I. INTRODUCTION

In his foundational work on quantum statistical mechanics,
von Neumann extended the classical Gibbs entropy concept
to the quantum realm [1]. This extension, known as the von
Neumann or quantum entropy, plays a key role in physics and
information theory. It is defined by the following formula [1]:

H (A)ρ ≡ − Tr{ρA log2 ρA}, (1)

where ρA is the state of a system A. The entropy has opera-
tional interpretations in terms of quantum data compression
[2] and optimal entanglement manipulation rates of pure bi-
partite quantum states [3], where the choice of base two for the
logarithm becomes clear. In recent developments of quantum
thermodynamics, it was shown that the free energy, namely,
the difference of the energy and the product of the temperature
and the von Neumann entropy, can be interpreted as the rate
at which work can be extracted from a large number of copies
of a quantum system in a thermal bath at fixed temperature,
by using only thermal operations [4].
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By defining the quantum relative entropy of a state ρA and
a positive semidefinite operator σA as [5]

D(ρA‖σA) ≡ Tr{ρA[log2 ρA − log2 σA]}, (2)

if supp(ρA) ⊆ supp(σA) and D(ρA‖σA) = +∞ otherwise, we
can rewrite the formula for quantum entropy as follows:

H (A)ρ = log2 |A| − D(ρA‖πA), (3)

where |A| denotes the dimension of the system A and πA ≡
IA/|A| denotes the maximally mixed state. In this way, we can
think of entropy as quantifying the difference of the number
of physical qubits contained in the system A and the “relative
entropy distance” of the state ρA to the maximally mixed state
πA. This way of thinking about quantum entropy is relevant
in the resource theory of purity [6–11], in which the goal is
to distill local pure states from a given state (or vice versa)
by allowing local unitary operations for free. Furthermore,
the quantum relative entropy D(ρA‖πA) has an operational
meaning as the optimal rate at which the state ρA can be distin-
guished from the maximally mixed state πA in the Stein setting
of quantum hypothesis testing [12,13]. In what follows, we
use the formula in Eq. (3) as the basis for defining the entropy
of a quantum channel.

For some time now, there has been a growing realization
that the fundamental constituents of quantum mechanics are
quantum channels. Recall that a quantum channel NA→B is a
completely positive, trace preserving map that takes a quan-
tum state for system A to one for system B [14]. Indeed,
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all the relevant components of the theory, including quantum
states, measurements, unitary evolutions, etc., can be written
as quantum channels. A quantum state can be understood
as a preparation channel, sending a trivial quantum system
to a nontrivial one prepared in a given state. A quantum
measurement can be understood as a quantum channel that
sends a quantum system to a classical one; and of course a
unitary evolution is a kind of quantum channel, as well as the
discarding of a quantum system. One might even boldly go
as far as to say that there is really only a single postulate of
quantum mechanics, and it is that “everything is a quantum
channel.” With this perspective, one could start from this uni-
fied postulate and then understand from there particular kinds
of channels, i.e., states, measurements, and unitary evolutions.

Due to the fundamental roles of quantum channels and
the entropy of a quantum state, as highlighted above, it is
thus natural to ask whether there is a meaningful notion of
the entropy of a quantum channel, i.e., a quantifier of the
uncertainty of a quantum channel. As far as we are aware,
this question has not been fully addressed in prior literature
(see Remark 2 for further discussion), and it is the aim of
the present paper to provide a convincing notion of a quan-
tum channel’s entropy. To define such a notion, we look to
Eq. (3) for inspiration. As such, we need generalizations of
the quantum relative entropy and the maximally mixed state
to the setting of quantum channels:

(1) The quantum relative entropy of channels NA→B and
MA→B is defined as [15,16]

D(N‖M) ≡ sup
ρRA

D(NA→B(ρRA)‖MA→B(ρRA)), (4)

where the optimization is with respect to bipartite states ρRA

of a reference system R of arbitrary size and the channel
input system A. Due to state purification, the data-processing
inequality [17], and the Schmidt decomposition theorem, it
suffices to optimize over states ρRA that are pure and such
that system R is isomorphic to system A. This observation
significantly reduces the complexity of computing the channel
relative entropy.

(2) The channel that serves as a generalization of the
maximally mixed state is the channel RA→B that completely
randomizes or depolarizes the input state as follows:

RA→B(XA) = Tr{XA}πB, (5)

where XA is an arbitrary operator for system A. That is, its
action is to discard the input and replace with a maximally
mixed state πB.

With these notions in place, we can now define the entropy
of a quantum channel:

Definition 1 (Entropy of a quantum channel). Let NA→B

be a quantum channel. Its entropy is defined as

H (N ) ≡ log2 |B| − D(N‖R), (6)

where D(N‖R) is the channel relative entropy in Eq. (4) and
RA→B is the completely randomizing channel in Eq. (5).

We remark here that, in analogy to the operational inter-
pretation for D(ρA‖πA) mentioned above, it is known that
D(N‖R) is equal to the optimal rate at which the channel
NA→B can be distinguished from the completely randomizing
channel RA→B, by allowing for any possible quantum strategy

to distinguish the channels [15]. Again, this statement holds in
the Stein setting of quantum hypothesis testing (see Ref. [15]
for details). We also emphasize here that the entropy of a chan-
nel can be negative for some channels, but this negativity has
an operational interpretation in terms of the channel merging
protocol (see Remark 7 in this context).

The remainder of our paper contains arguments advocating
for this definition of a channel’s entropy. In the next section,
we show that it satisfies the three basic axioms, put forward in
Ref. [18], for any function to be called an entropy function for
a quantum channel, including nondecrease under the action
of a random unitary superchannel, additivity, and normaliza-
tion. After that, we provide several alternate representations
for the entropy of a channel, the most significant of which
is the completely bounded entropy of Ref. [19]. Section III
delivers an operational interpretation of a channel’s entropy
in terms of an information-theoretic task that we call quan-
tum channel merging, which is a dynamical counterpart of
the well known task of quantum state merging [20,21]. We
calculate channel entropies for several example channels in
Sec. IV, which include erasure, dephasing, depolarizing, and
Werner–Holevo channels. In the same section, we introduce
the energy-constrained and unconstrained entropies of a quan-
tum channel and calculate them for thermal, amplifier, and
additive-noise bosonic Gaussian channels. In Sec. V, we de-
fine the α-Rényi entropy of a channel, prove that it satisfies
the basic axioms for certain values of the Rényi parameter
α, and provide alternate representations for it. In Sec. VI, we
define the min-entropy of a channel, establish that it satisfies
the basic axioms, and provide alternate representations for it.
In Sec. VII, we define the smoothed min-entropy of a channel,
and then we prove an asymptotic equipartition property, which
relates the smoothed min-entropy of a channel to its entropy.
In Sec. VIII, we discuss other entropies of a channel, noting
that several of them collapse to the (von Neumann) entropy of
a channel. We finally conclude in Sec. IX with a summary and
some open questions.

Remark 2. We note here that “the entropy of a channel”
was also defined in Refs. [22,23], but the definition given
there does not satisfy “reduction to states” or the basic axiom
of normalization. For this reason, it cannot be considered an
entropy function according to the approach of Ref. [18].

II. ENTROPY OF A QUANTUM CHANNEL

Proceeding with Definition 1 for the entropy of a quantum
channel, we now establish several of its properties, and then
we provide alternate representations for it.

A. Properties of the entropy of a quantum channel

In Ref. [18], it was advocated that a function of a quantum
channel is an entropy function if it satisfies nondecrease under
random unitary superchannels, additivity, and normalization.
As shown in the next three subsections, the entropy of a
channel, as given in Definition 1, satisfies all three axioms,
and in fact, it satisfies stronger properties that imply these.
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1. Nondecrease under the action of a uniformity
preserving superchannel

Before addressing the first axiom, let us first briefly re-
view the notion of superchannels [24], which are linear maps
that take as input a quantum channel and output a quantum
channel. To define them, let L(A → B) denote the set of all
linear maps from L(A) to L(B). Similarly, let L(C → D)
denote the set of all linear maps from L(C) to L(D). Let � :
L(A → B) → L(C → D) denote a linear supermap, taking
L(A → B) to L(C → D). A quantum channel is a particular
kind of linear map, and any linear supermap � that takes as
input an arbitrary quantum channel �A→B ∈ L(A → B) and
is required to output a quantum channel �C→D ∈ L(C → D)
should preserve the properties of complete positivity (CP)
and trace preservation (TP). That is, the supermap should
be CPTP preserving. Furthermore, for the supermap to be
physical, the same should be true when it acts on subsystems
of bipartite quantum channels, so that the supermap id ⊗�

should be CPTP preserving, where id represents an arbitrary
identity supermap. A supermap satisfying this property is
said to be completely CPTP preserving and is then called a
superchannel. It was proven in Ref. [24] that any superchannel
� : L(A → B) → L(C → D) can be physically realized as
follows. If

�C→D = �[�A→B] (7)

for an arbitrary input channel �A→B ∈ L(A → B) and some
output channel �C→D ∈ L(C → D), then the physical real-
ization of the superchannel � is as follows:

�C→D = 	BE→D ◦ (�A→B ⊗ idE ) ◦ 
C→AE , (8)

where 
C→AE : L(C) → L(AE ) is a preprocessing chan-
nel, system E corresponds to some memory or environment
system, and 	BE→D : L(BE ) → L(D) is a post-processing
channel.

A uniformity preserving superchannel � is a superchannel
that takes the completely randomizing channel RA→B in (5)
to another completely randomizing channel RC→D, such that
|A| = |C| and |B| = |D|, i.e.,

�(RA→B) = RC→D. (9)

For such superchannels, we have the following:
Proposition 3. Let NA→B be a quantum channel, and let

� be a uniformity preserving superchannel as defined above.
Then the entropy of a channel does not decrease under the
action of such a superchannel:

H (�(N )) � H (N ). (10)

Proof. This follows from the fact that the channel rela-
tive entropy is nonincreasing under the action of an arbitrary
superchannel [18,25]. That is, for two channels NA→B and
MA→B, and a superchannel �, the following inequality holds

D(N‖M) � D(�(N )‖�(M)). (11)

Applying this, we find that

H (N ) = log2 |B| − D(N‖R) (12)

� log2 |B| − D(�(N )‖�(R)) (13)

= log2 |B| − D(�(N )‖R) (14)

= log2 |D| − D(�(N )‖R) (15)

= H (�(N )). (16)

The second equality follows by definition from Eq. (9). �
In Ref. [18], a superchannel ϒ was called a random unitary

superchannel if its action on a channel NA→B can be written
as

ϒ(NA→B) =
∑

x

pX (x)Vx
B→D ◦ NA→B ◦ U x

C→A, (17)

where U x
C→A and Vx

B→D are unitary channels and pX (x) is
a probability distribution. In Ref. [18], it was proved that a
random unitary superchannel is a special kind of uniformity
preserving superchannel. Thus, due to Proposition 3, it fol-
lows that the entropy of a channel, as given in Definition 1,
satisfies the first axiom from Ref. [18] required for an entropy
function.

2. Additivity

In this subsection, we prove that the entropy of a channel is
additive, which is the second axiom proposed in Ref. [18] for
a channel entropy function. The proof is related to many prior
additivity results from Refs. [15,19,26–28].

Proposition 4 (Additivity). Let N and M be quantum
channels. Then the channel entropy is additive in the follow-
ing sense:

H (N ⊗ M) = H (N ) + H (M). (18)

Proof. This can be understood as a consequence of the
additivity results from Refs. [15,28], which in turn are related
to the earlier additivity results from Refs. [19,26,27]. For
channels NA1→B1 and MA2→B2 , and corresponding randomiz-
ing channels R(1)

A1→B1
and R(2)

A2→B2
, we have by definition that

H (N ⊗ M)

= log2(|B1||B2|) − D(N ⊗ M‖R(1) ⊗ R(2) ) (19)

= log2 |B1| + log2 |B2| − D(N ⊗ M‖R(1) ⊗ R(2) ), (20)

and so the result follows if

D(N ⊗ M‖R(1) ⊗ R(2) ) = D(N‖R(1) ) + D(M‖R(2) ).
(21)

Note that the inequality “�” for Eq. (21) trivially follows, and
so it remains to prove the inequality “�” for Eq. (21). To this
end, let ψRA1A2 be an arbitrary pure state, and define

ρR′A1 ≡ MA2→B2 (ψRA1A2 ), (22)

σR′A1 ≡ RA2→B2 (ψRA1A2 ), (23)
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where system R′ ≡ RB2. Then we find that

D((NA1→B1 ⊗ MA2→B2 )(ψRA1A2 )‖(RA1→B1 ⊗ RA2→B2 )(ψRA1A2 ))

= D(NA1→B1 (ρR′A1 )‖RA1→B1 (σR′A1 )) (24)

� D(NA1→B1 (ρR′A1 )‖RA1→B1 (ρR′A1 )) + D(ρR′A1‖σR′A1 ) (25)

= D(NA1→B1 (ρR′A1 )‖RA1→B1 (ρR′A1 )) + D(MA2→B2 (ψRA1A2 )‖RA2→B2 (ψRA1A2 )) (26)

� sup
ρR′A1

D(NA1→B1 (ρR′A1 )‖RA1→B1 (ρR′A1 ))

+ sup
ψRA1A2

D(MA2→B2 (ψRA1A2 )‖RA2→B2 (ψRA1A2 )) (27)

= D(NA1→B1‖RA1→B1 ) + D(MA2→B2‖RA2→B2 ). (28)

The first inequality follows from the same steps given in the
proof of Ref. [[28], Lemma 38]. This concludes the proof. �

Another approach to establishing additivity is to employ
the first identity of Proposition 6 (in Sec. II B) and [[26], Eq.
(3.28)], the latter of which was independently formulated in
Ref. [[19], Sec. 2.3].

3. Reduction to states and normalization

We now prove that the entropy of a channel reduces to the
entropy of a state if the channel is one that replaces the input
with a given state.

Proposition 5 (Reduction to states). Let the channel NA→B

be a replacer channel, defined such that NA→B(ρA) = σB for
all states ρA and some state σB. Then the following equality
holds:

H (N ) = H (B)σ . (29)

Proof. For any input ψRA, the output is NA→B(ψRA) =
ψR ⊗ σB, and we find that

D(NA→B(ψRA)‖RA→B(ψRA)) = D(ψR ⊗ σB‖ψR ⊗ πB)

= D(σB‖πB). (30)

This implies that

H (N ) = log2 |B| − D(N‖R) (31)

= log |B| − D(σB‖πB) (32)

= H (B)σ , (33)

concluding the proof. �
A final axiom (normalization) for a channel entropy func-

tion [18] is that it should be equal to zero for any channel
that replaces the input with a pure state and it should be equal
to the logarithm of the output dimension for any channel that
replaces the input with the maximally mixed state. Clearly,
Proposition 5 implies the normalization property if the re-
placed state is maximally mixed or pure.

B. Alternate representations for the entropy of a channel

The entropy of a quantum channel has at least three al-
ternate representations, in terms of the completely bounded
entropy of Ref. [19], the entropy gain of its complementary
channel [27], and the maximum output entropy of the chan-
nel conditioned on its environment. We recall these various
channel functions now.

Recall that the completely bounded entropy of a quantum
channel NA→B is defined as [19]

HCB,min(N ) ≡ inf
ρRA

H (B|R)ω, (34)

where H (B|R)ω ≡ H (BR)ω − H (R)ω is the conditional en-
tropy of the state ωRB = NA→B(ρRA) and the system R is
unbounded. However, due to data processing, purification, and
the Schmidt decomposition theorem, it follows that

HCB,min(N ) = inf
ψRA

H (B|R)ω, (35)

where ψRA is a pure bipartite state with system R isomorphic
to the channel input system A.

Due to the Stinespring representation theorem [29], every
channel NA→B can be realized by the action of an isometric
channel UN

A→BE and a partial trace as follows:

NA→B = TrE ◦UN
A→BE . (36)

If we instead trace over the channel output B, then this realizes
a complementary channel of NA→B:

N c
A→E ≡ TrB ◦UN

A→BE . (37)

Using these notions, we can define the entropy gain of a
complementary channel of NA→B as follows [27]:

G(N c
A→E ) ≡ inf

ρA

[H (E )τ − H (A)ρ], (38)

where τBE ≡ UN
A→BE (ρA). The entropy gain has been in-

vestigated for infinite-dimensional quantum systems in
Refs. [30–32]. We can also define the maximum output en-
tropy of the channel conditioned on its environment as

sup
ρA

H (B|E )τ , (39)

where again τBE ≡ UN
A→BE (ρA).

We now prove that the entropy of a channel, as given in
Definition 1, is equal to the completely bounded entropy, the
entropy gain of a complementary channel, and the negation of
the maximum output entropy of the channel conditioned on its
environment.

Proposition 6. Let NA→B be a quantum channel, and let
UN

A→BE be an isometric channel extending it, as in Eq. (36).
Then

H (N ) = HCB,min(N ) = G(N c
A→E ) = − sup

ρA

H (B|E )τ , (40)
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where τBE ≡ UN
A→BE (ρA). It then follows that

|H (N )| � log2 |B|. (41)

Proof. Using the identity D(ρ‖cσ ) = D(ρ‖σ ) − log2 c,
for a constant c > 0, and the fact that the conditional entropy
H (B|R)N (ψ ) = −D(NA→B(ψRA)‖ψR ⊗ IB), we find that

H (N ) = log2 |B| − D(N‖R) (42)

= log2 |B| − sup
ψRA

D(NA→B(ψRA)‖RA→B(ψRA)) (43)

= log2 |B| − sup
ψRA

D(NA→B(ψRA)‖ψR ⊗ πB) (44)

= − sup
ψRA

D(NA→B(ψRA)‖ψR ⊗ IB) (45)

= inf
ψRA

H (B|R)N (ψ ) (46)

= HCB,min(N ). (47)

We can then conclude the dimension bound in Eq. (41) from
the fact that it holds uniformly for the conditional entropy
|H (B|R)| � log2 |B|. Defining τRBE = UN

A→BE (ψRA), from the
identity

H (B|R)τ = H (BR)τ − H (R)τ = H (E )τ − H (A)ρ, (48)

for ρA = TrR{ψRA}, and where we used τR = ψR, we have that

H (N ) = G
(
N c

A→E

) ≡ inf
ρA

[H (E )τ − H (A)ρ]. (49)

We finally conclude that

H (N ) = − sup
ρA

H (B|E )τ , (50)

which follows from the identity (duality of conditional en-
tropy)

H (B|R)ω = −H (B|E )U (ψA ). (51)

This concludes the proof. �
Remark 7. We note here, as observed in Ref. [19], that

the dimension lower bound H (N ) � − log2 |B| is saturated
by the identity channel, while the dimension upper bound
H (N ) � log2 |B| is saturated for the completely randomiz-
ing (depolarizing) channel, which sends every state to the
maximally mixed state. Also, the entropy H (N ) is equal to
zero for a replacer channel that replaces the input with a pure
quantum state. It is also known that the entropy of a channel is
nonnegative for all entanglement-breaking channels, as shown
in Ref. [19]. This includes all classical channels.

Thus, unlike entropy of a quantum state, the entropy of a
quantum channel can be negative. This negativity captures the
ability of the channel to distill quantum entanglement, in a
sense made precise by the quantum channel merging theorem
stated as Theorem 10 in Sec. III. In the previous subsection
we saw that for a replacer channel with pure output state,
the entropy of a channel is zero. This replacer channel is
also entanglement breaking. However, the identity channel is
the least noisy channel, and therefore should have the least
entropy possible. Indeed, as stated above, for the identity
channel, our entropy function equals the negative of the loga-
rithm of the dimension (which is the smallest possible value).

Corollary 8. For any quantum channel NA→B,

H (N ) � − log |A| , (52)

with equality if and only if NA→B is an isometry.
Proof. The proof that − log |A| is the smallest possible

value follows trivially from the well known bound
D(NA→B(ψRA)‖RA→B(ψRA)) � log |AB|, or alternatively
from (40) and (49) and dropping the nonnegative term
H (E )τ . Now, from the proposition above,

H (N ) = inf
ψRA

H (B|R)N (ψ ). (53)

Therefore, the smallest possible value − log |A| is achieved
if and only if NA→B(ψRA) is the maximally entangled state
(recall |R| = |A|). This is only possible if |B| � |A| and N is
an isometry. �

III. QUANTUM CHANNEL MERGING

Given a bipartite state ρBE , the goal of quantum state
merging is for Bob to use forward classical communication to
Eve, as well as entanglement, to merge his share of the state
with Eve’s share [20,21]. The optimal rate of entanglement
consumed is equal to the conditional entropy H (B|E )ρ . Alter-
natively, the optimal rate of entanglement gained is equal to
the conditional entropy H (B|R)ψ , where ψRBE is a purification
of ρBE .

In this section, we define a task, called quantum channel
merging, that can be considered a dynamical counterpart of
state merging. Given a quantum channel NA→B with isometric
extension UN

A→BE , the goal is for Bob to merge his share of the
channel with Eve’s share. We find here that the entanglement
cost of the protocol is equal to supρA

H (B|E )ω, where ωBE =
UN

A→BE (ρA). Equivalently, by employing Eq. (50), the entan-
glement gain of the protocol is equal to H (N ), the entropy of
the channel NA→B. Thus, the main result of this section is a
direct operational interpretation of the entropy of a channel as
the entanglement gain in quantum channel merging. We note
here that the completely bounded entropy of Ref. [19] (i.e.,
entropy of a channel) was recently interpreted in terms of a
cryptographic task in Ref. [33].

We now specify the quantum channel merging
information-processing task in detail. Let NA→B be a
quantum channel, and suppose that UN

A→BE is an isometric
channel extending it. Here, we think of the isometric channel
UN

A→BE as a broadcast channel (three-terminal device), which
connects a source to the receivers Bob and Eve. Suppose that
a source generates an arbitrary state ψRAn and then sends the
A systems through the isometric channel (UN

A→BE )⊗n, which
transmits the B systems to Bob and the E systems to Eve.
The goal is for Bob to use free one-way local operations and
classical communication (one-way LOCC) to generate ebits
at the maximum rate possible, while also merging his systems
with Eve’s.

Let n ∈ N, M ∈ Q, and ε ∈ [0, 1]. An (n, M, ε) pro-
tocol for this task consists of a one-way LOCC channel
PBnEnB0E0→B̃n

E ẼnB1E1
such that

sup
ψRAn

1
2

∥∥[
id⊗n

BE→B̃E Ẽ
◦(
UN

A→BE

)⊗n]
(ψRAn ) ⊗ �L

B1E1

− PBnEnB0E0→B̃n
E ẼnB1E1

([(
UN

A→BE

)⊗n(
ψRAn

)] ⊗ �K
B0E0

)∥∥
1

� ε, (54)
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FIG. 1. The goal of quantum channel merging is for Bob to merge his share of the channel with Eve’s. Given a channel NA→B, let VN ≡
(UN

A→BE )⊗n, where UN
A→BE is an isometric channel extending NA→B. By consuming a maximally entangled state �K of Schmidt rank K and

applying a one-way LOCC protocol P , Bob and Eve can distill a maximally entangled state �L of Schmidt rank L and transfer Bob’s systems
Bn to Eve, in such a way that any third party having access to the inputs An and the outputs Bn and En would not be able to distinguish
the difference between the ideal situation on the left and the simulation on the right. Theorem 10 states that the optimal asymptotic rate of
entanglement gain is equal to the entropy of the channel N .

where �K
B0E0

and �L
B1E1

are maximally entangled states of
Schmidt rank K and L, respectively, and M = L/K , so that
the number of ebits gained in the protocol is equal to log2 M =
log2 L − log2 K . Figure 1 depicts the task of quantum channel
merging.

Definition 9 (Q. channel merging capacity). A rate R is
achievable for quantum channel merging if for all ε ∈ (0, 1],
δ > 0, and sufficiently large n, there exists an (n, 2n[R−δ], ε)
protocol of the above form. The quantum channel merging ca-
pacity CM (N ) is defined to be the supremum of all achievable
rates:

CM (N ) ≡ sup {R | R is achievable for channel merging on N }.
(55)

Theorem 10. The quantum channel merging capacity of a
channel N is equal to its entropy:

CM (N ) = H (N ). (56)

We provide a detailed proof of Theorem 10 in Appendix A.

IV. EXAMPLES

In this section, we provide formulas for the entropy of sev-
eral fundamental channel models, including erasure channels,
dephasing channels, depolarizing channels, and Werner–
Holevo channels. We also define the energy-constrained and
unconstrained entropies of a channel and determine formulas
for them for common bosonic channel models, including ther-
mal, amplifier, and additive-noise channels.

A. Finite-dimensional channels

A first observation to make is that, for any finite-
dimensional channel, it is an “easy” optimization task to
calculate its entropy. This is a consequence of the identity
H (N ) = − supρA

H (B|E )U (ρ) from Proposition 6 and the con-
cavity of conditional entropy [34,35] (in this context, see also
[[26], Eq. (3.19)]). Thus, one can exploit numerical optimiza-
tions to calculate it [36,37].

For channels with symmetry, it can be much easier to eval-
uate a channel’s entropy, following from some observations
from, e.g., Ref. [[38], Sec. 6]. Let us begin by recalling the
notion of a covariant channel NA→B [39]. For a group G
with unitary channel representations {Ug

A}g and {Vg
B}g acting

on the input system A and output system B of the channel
NA→B, the channel NA→B is covariant with respect to the

group G if the following equality holds for all g ∈ G:

NA→B ◦ Ug
A = Vg

B ◦ NA→B. (57)

If the averaging channel is such that 1
|G|

∑
g U

g
A(X ) =

Tr[X ]I/|A| (implementing a unitary one-design), then we sim-
ply say that the channel NA→B is covariant. It turns out that
the entropy of a channel is simple to calculate for covari-
ant channels, with the optimal ψRA in Eq. (35) being the
maximally entangled state, or equivalently, the optimal ρA in
− supρA

H (B|E )U (ρ) being the maximally mixed state.
Proposition 11. Let NA→B be a quantum channel that is

covariant with respect to a group G, in the sense of Eq. (57),
and let UN

A→BE be an isometric channel extending it. Then
it suffices to perform the optimization for the entropy of a
channel over states that respect the symmetry of the channel:

H (N ) = − sup
ρA=SA(ρA )

H (B|E )U (ρ), (58)

where the symmetrizing channel SA = 1
|G|

∑
g∈G Ug

A. Thus, if
a channel is covariant, then H (N ) = −H (B|E )U (π ); i.e., the
optimal state ρA is the maximally mixed state πA.

Proof. First recall from Proposition 6 that H (N ) =
− supρA

H (B|E )U (ρ). Let ρA be an arbitrary state. If a channel
NA→B is covariant as in Eq. (57), then it is known that there
exists a unitary channel Wg

E such that [14,40]

UN
A→BE ◦ Ug

A = (
Vg

B ⊗ Wg
E

) ◦ UN
A→BE . (59)

See also Ref. [41], Appendix A for a simple proof. Then we
find that

H (B|E )U (ρ) = H (B|E )(Vg⊗Wg)U (ρ) (60)

= 1

|G|
∑
g∈G

H (B|E )(Vg⊗Wg)U (ρ) (61)

= 1

|G|
∑
g∈G

H (B|E )(U◦Ug)(ρ) (62)

� H (B|E )(U◦S )(ρ). (63)

The first equality follows from invariance of conditional en-
tropy under the action of a local unitary (the equality holds
for all g ∈ G). The third equality follows from channel covari-
ance. The inequality follows from concavity of conditional
entropy [34,35]. �

A simple example of a channel that is covariant is the
quantum erasure channel, defined as [42]

E p(ρ) ≡ (1 − p)ρ + p|e〉〈e|, (64)
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FIG. 2. Entropy of the qubit erasure channel as a function of the
erasure probability p. When p = 0, the erasure channel is the identity
qubit channel and thus takes on its smallest value. When p = 1, the
erasure channel deterministically replaces the input with the pure
state |e〉〈e| and thus has entropy equal to zero.

where ρ is a d-dimensional input state, p ∈ [0, 1] is the era-
sure probability, and |e〉〈e| is a pure erasure state orthogonal to
any input state, so that the output state has d + 1 dimensions.
A d-dimensional dephasing channel has the following action:

Dp(ρ) =
d−1∑
�=0

p�Z�ρZ�†, (65)

where p is a vector containing the probabilities p� and Z
has the following action on the computational basis Z|x〉 =
e2π ix/d |x〉. This channel is covariant with respect to the
Heisenberg–Weyl group of unitaries, which is well known
to form a unitary one-design. A particular kind of Werner–
Holevo channel performs the following transformation on a
d-dimensional input state ρ [43]:

W (d )(ρ) ≡ 1

d − 1
[Tr{ρ}I − T (ρ)], (66)

where d � 2 and T denotes the transpose map T (·) =∑
i, j |i〉〈 j|(·)|i〉〈 j|. As observed in Ref. [[43], Sec. II], this

channel is covariant. The d-dimensional depolarizing chan-
nel is a common model of noise in quantum information,
transmitting the input state with probability 1 − p ∈ [0, 1]
and replacing it with the maximally mixed state π ≡ I

d with
probability p:

�p(ρ) = (1 − p)ρ + pπ. (67)

By applying Proposition 11 and evaluating the resulting
entropy −H (B|E ) for each of the above channels when the
maximally mixed state π is input, we arrive at the following
formulas:

H (E p) = h2(p) + (p − 1) log2 d, (68)

H (Dp) = H (p) − log2 d, (69)

H (W (d ) ) = log2 [(d − 1)/2], (70)

H (�p) = −
(

1 − p + p

d2

)
log2

(
1 − p + p

d2

)
−(

d2 − 1
) p

d2
log2

p

d2
− log2 d, (71)

0.2 0.4 0.6 0.8 1.0
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FIG. 3. Entropy of the qubit dephasing channel as a function of
the dephasing probability p. The optimal input state is the maxi-
mally entangled state, so that the channel entropy is evaluated on
the Choi state of the channel. When p = 0, the dephasing channel
is the identity qubit channel and thus takes on its smallest value.
When p = 1/2, the dephasing channel is a classical channel, so that
its Choi state is maximally classically correlated. For such a state,
D(N‖R) = 1 so that the channel entropy is equal to zero.

where H (p) is the Shannon entropy of the probability vector
p. These formulas are plotted and interpreted in Figs. 2–4.

B. Energy-constrained entropy of a channel

We can define the energy-constrained entropy of a channel
for infinite-dimensional systems, by employing the identity in
Proposition 6 and the definition of conditional entropy from
Ref. [44].

To review the definition from Ref. [44], recall that the
quantum entropy of a state ρ acting on a separable Hilbert
space is defined as

H (ρ) ≡ Tr{η(ρ)}, (72)

where η(x) = −x log2 x if x > 0 and η(0) = 0. The trace in
the above equation can be taken with respect to any countable
orthonormal basis of H [[45], Definition 2]. The quantum
entropy is a nonnegative, concave, lower semicontinuous

0.2 0.4 0.6 0.8 1.0
p

�1.0

�0.5

0.5

1.0

FIG. 4. Entropy of the qubit depolarizing channel as a function of
the depolarizing probability p. When p = 0, the depolarizing channel
is the identity qubit channel and thus takes on its smallest value.
When p = 1, the depolarizing channel replaces the channel input
with the maximally mixed state and thus takes on its maximal value.
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function on D(H) [46]. It is also not necessarily finite (see,
e.g., Ref. [47]). When ρA is assigned to a system A, we write
H (A)ρ ≡ H (ρA). Recall that the relative entropy of two states
ρ and σ acting on a separable Hilbert space is given by [48,49]

D(ρ‖σ )

≡ [ln 2]−1
∑
i, j

|〈φi|ψ j〉|2[p(i) ln

(
p(i)

q( j)

)
+ q( j) − p(i)],

(73)

where ρ = ∑
i p(i)|φi〉〈φi| and σ = ∑

j q( j)|ψ j〉〈ψ j | are
spectral decompositions of ρ and σ with {|φi〉}i and {|ψ j〉} j

orthonormal bases. The prefactor [ln 2]−1 is there to ensure
that the units of the quantum relative entropy are bits. For a
bipartite state ρAB, the mutual information is defined as

I (A; B)ρ ≡ D(ρAB‖ρA ⊗ ρB). (74)

Finally, for a bipartite state ρAB such that H (A)ρ < ∞, the
conditional entropy is defined as [44]

H (A|B)ρ ≡ H (A)ρ − I (A; B)ρ, (75)

and it is known that H (A|B)ρ ∈ [−H (A)ρ, H (A)ρ] [44].
A Gibbs observable is a positive semidefinite operator G

acting on a separable Hilbert space such that Tr{e−βG} < ∞
for all β > 0 [14,50,51]. This condition for a Gibbs observ-
able means that there is always a well defined thermal state.

Finally, we say that a quantum channel NA→B obeys the
finite-output entropy condition [14,50,51] with respect to a
Gibbs observable G if for all P � 0, the following inequality
holds:

sup
ρA:Tr{GρA}�P

H (B)N (ρ) < ∞. (76)

We now define the energy-constrained and unconstrained
channel entropy as follows:

Definition 12. Let NA→B be a quantum channel that satis-
fies the finite-output entropy condition with respect to a Gibbs
observable G. For P � 0, the energy-constrained entropy of
NA→B is defined as

H (N , G, P) ≡ inf
ψRA:Tr{GψA}�P

H (B|R)ω, (77)

where ωRB ≡ NA→B(ψRA) and the optimization is with respect
to all pure bipartite states with system R isomorphic to system
A. The unconstrained entropy of NA→B with respect to G is
then defined as

H (N , G) ≡ inf
P�0

H (N , G, P). (78)

C. Bosonic Gaussian channels

In this section, we evaluate the energy-constrained and
unconstrained entropy of several important bosonic Gaus-
sian channels [14,52], including the thermal, amplifier, and
additive-noise channels. Here we take the Gibbs observable
to be the photon number operator n̂ [14,52], and we note
that each of these channels satisfies the finite-output entropy
condition mentioned above. From a practical perspective, we
should be most interested in these particular single-mode
bosonic Gaussian channels, as these are of the greatest interest
in applications, as stressed in Ref. [[14], Sec. 12.6.3] and Ref.

[[53], Sec. 3.5]. Each of these are defined, respectively, by the
following Heisenberg input-output relations:

b̂ = √
ηâ +

√
1 − ηê, (79)

b̂ =
√

Gâ + √
G − 1ê†, (80)

b̂ = â + (x + ip)/
√

2, (81)

where â, b̂, and ê are the field-mode annihilation operators for
the sender’s input, the receiver’s output, and the environment’s
input of these channels, respectively.

The channel in Eq. (79) is a thermalizing channel, in which
the environmental mode is prepared in a thermal state θ (NB)
of mean photon number NB � 0, defined as

θ (NB) ≡ 1

NB + 1

∞∑
n=0

( NB

NB + 1

)n

|n〉〈n|, (82)

where {|n〉}∞n=0 is the orthonormal, photonic number-state ba-
sis. When NB = 0, θ (NB) reduces to the vacuum state, in
which case the resulting channel in Eq. (79) is called the pure-
loss channel. The parameter η ∈ (0, 1) is the transmissivity
of the channel, representing the average fraction of photons
making it from the input to the output of the channel. Let Lη,NB

denote this channel.
The channel in Eq. (80) is an amplifier channel, and the

parameter G > 1 is its gain. For this channel, the environment
is prepared in the thermal state θ (NB). If NB = 0, then the
amplifier channel is called the pure-amplifier channel. Let
AG,NB denote this channel.

Finally, the channel in Eq. (81) is an additive-noise chan-
nel, representing a quantum generalization of the classical
additive white Gaussian noise channel. In Eq. (81), x and p
are zero-mean, independent Gaussian random variables each
having variance ξ � 0. Let Tξ denote this channel. Note that
the additive-noise channel arises from the thermal channel in
the limit η → 1, NB → ∞, but with (1 − η)NB → ξ [54].

Kraus representations for the channels in Eqs. (79)–(81)
are available in Ref. [55], which can be helpful for further
understanding their action on input quantum states.

All of the above channels are phase-insensitive or phase-
covariant Gaussian channels [14,52]. Let NS � 0. Since the
function supρ:Tr{n̂ρ}�NS

H (B|E )U (ρ) we are evaluating is con-
cave in the input and invariant under local unitaries, Ref.
[[56], Remark 22] applies, implying that the optimal input
state for the entropies of these channels is the bosonic thermal
state θ (NS ). We then find by employing well known entropy
formulas from Refs. [57,58] (see also Ref. [59] in this context)
that

H (Lη,NB , n̂, NS )

= g2{[D1 + (1 − η)(NS − NB) − 1]/2}
+ g2{[D1 − (1 − η)(NS − NB) − 1]/2} − g2(NS ),

(83)

H (AG,NB , n̂, NS )

= g2{[D2 + (G − 1)(NS + NB + 1) − 1]/2}
+ g2{[D2 − (G − 1)(NS + NB + 1) − 1]/2} − g2(NS ),

(84)
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FIG. 5. Entropy of the bosonic thermal channel as a function of
the transmissivity η. When η = 1, the thermal channel is the identity
channel and thus takes on its smallest value of −∞, regardless
of the value of NB. When η = 0 and NB = 0, the thermal channel
deterministically replaces the input with the pure vacuum state |0〉〈0|
and thus has entropy equal to zero. As the thermal noise NB increases,
the entropy of the thermal channel increases.

H (Tξ , n̂, NS ) = g2{[D3 − (ξ + 1)]/2}
+ g2{[D3 + ξ − 1]/2} − g2(NS ), (85)

where g2 is the bosonic entropy function defined in Eq. (210)
and

D1 ≡
√

[(η + 1)NS + (1 − η)NB + 1]2 − 4ηNS (NS + 1),
(86)

D2

≡
√

[(G + 1)NS +(G − 1)(NB + 1) + 1]2−4GNS (NS + 1),
(87)

D3 ≡
√

(ξ + 1)2 + 4ξNS. (88)

Note that we arrived at the formula for H (Tξ , n̂, NS ) by con-
sidering the limit discussed above. Furthermore, by the same
reasoning as given in Ref. [[56], Sec. 6], these functions are
decreasing with increasing NS , and so we find that

H (Lη,NB , n̂) = inf
NS�0

H (Lη,NB , n̂, NS ) (89)

= lim
NS→∞

H (Lη,NB , n̂, NS ), (90)

H (AG,NB , n̂) = inf
NS�0

H (AG,NB , n̂, NS ) (91)

= lim
NS→∞

H (AG,NB , n̂, NS ), (92)

H (Tξ , n̂) = inf
NS�0

H (Tξ , n̂, NS ) (93)

= lim
NS→∞

H (Tξ , n̂, NS ), (94)

which leads to the following formulas for the unconstrained
entropies of the channels:

H (Lη,NB , n̂) = log2(1 − η) + g2(NB), (95)

H (AG,NB , n̂) = log2(G − 1) + g2(NB), (96)

H (Tξ , n̂) = log2(ξ ) + 1

ln 2
. (97)

These formulas are plotted and interpreted in Figs. 5–7. A
Mathematica file is available with the arXiv posting of this
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FIG. 6. Entropy of the bosonic amplifier channel as a function of
the amplifier gain G. When G = 1, the amplifier channel is the iden-
tity channel and thus takes on its smallest value of −∞, regardless
of the value of NB. As the amplifier gain G and the thermal noise NB

increase, the entropy of the thermal channel increases.

paper to automate these calculations, but we note here that the
expansion g2(x) = log2(x) + 1/ ln 2 + O(1/x) is helpful for
this purpose. We also note that the formulas in Eqs. (95) and
(96) were presented in Ref. [[60], Eq. (2)] and the formula in
Eq. (97) was presented in Ref. [[57], Sec. V].

V. RÉNYI ENTROPY OF A QUANTUM CHANNEL

Generalizing the von Neumann entropy of a quantum state,
the Rényi entropy finds extensive application in physics and
information theory. Given a pure bipartite state, the Rényi en-
tropy of the reduced state is an entanglement measure, which
finds application in conformal field theory [61], holography
[62], and black holes [63]. The full range of values of the
Rényi entropy is known as the entanglement spectrum. The
Rényi entropy finds information-theoretic meaning in the ex-
pression for the error exponent of entanglement concentration
[64] and quantum data compression [65], indicating the ex-
ponential rate at which errors in these settings decay to zero.
As such, it is worthwhile to understand the Rényi entropy of a
channel as a generalization of the Rényi entropy of a state.

In this section, we define the Rényi entropy of a channel,
following the same approach discussed in the introduction.

2 4 6 8 10
�

�1
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3

4

5

FIG. 7. Entropy of the bosonic additive-noise channel as a func-
tion of the noise parameter ξ . When ξ = 0, the additive-noise
channel is the identity channel and thus takes on its smallest value
of −∞. As ξ increases, the entropy of the additive-noise channel
increases logarithmically.
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That is, we first write the Rényi entropy of a state as the
difference of the number of physical qubits and the Rényi
relative entropy of the state to the maximally mixed state.
Then we define the Rényi entropy of a channel in the same
way as in Definition 1, but replacing the channel relative
entropy with the sandwiched Rényi channel relative entropy
from Ref. [15].

The Rényi entropy of a quantum state ρA of system A is
defined for α ∈ (0, 1) ∪ (1,∞) as

Hα (A)ρ ≡ 1

1 − α
log2 Tr

{
ρα

A

}
(98)

= 1

1 − α
log2 ‖ρA‖α

α, (99)

where ‖X‖α ≡ [Tr{|X |α}]1/α and |X | ≡
√

X †X for an oper-
ator X . The Rényi relative entropy of quantum states can
be defined in two different ways, known as the Petz–Rényi
relative entropy [66,67] and the sandwiched Rényi relative
entropy [68,69]. The sandwiched Rényi relative entropy is
defined for α ∈ (0, 1) ∪ (1,∞), a state ρ, and a positive
semidefinite operator σ as

Dα (ρ‖σ ) ≡ 1

α − 1
log2 Tr{(σ (1−α)/2αρσ (1−α)/2α )α}, (100)

whenever either α ∈ (0, 1) or supp(ρ) ⊆ supp(σ ) and α > 1.
Otherwise, it is set to +∞. The sandwiched Rényi relative
entropy obeys the data processing inequality for ρ and σ as
above, a quantum channel N , and α ∈ [1/2, 1) ∪ (1,∞) [70]
(see also Refs. [68,69,71–73]):

Dα (ρ‖σ ) � Dα[N (ρ)‖N (σ )]. (101)

It converges to the quantum relative entropy in the limit
α → 1 [68,69]:

lim
α→1

Dα (ρ‖σ ) = D(ρ‖σ ). (102)

By inspection, the Rényi entropy of a state can be written as

Hα (A)ρ = log2 |A| − Dα (ρA‖πA). (103)

The sandwiched Rényi channel divergence of channels
NA→B and MA→B is defined for α ∈ [1/2, 1) ∪ (1,∞) as [15]

Dα (N‖M) ≡ sup
ρRA

Dα (NA→B(ρRA)‖MA→B(ρRA)), (104)

where the optimization is with respect to bipartite states ρRA

of a reference system R of arbitrary size and the channel
input system A. Due to state purification, the data-processing
inequality in Eq. (101), and the Schmidt decomposition theo-
rem, it suffices to optimize over states ρRA that are pure and
such that system R is isomorphic to system A.

We now define the Rényi entropy of a quantum channel as
follows:

Definition 13 (Rényi entropy of a q. channel). Let NA→B

be a quantum channel. For α ∈ [1/2, 1) ∪ (1,∞), the Rényi
entropy of the channel N is defined as

Hα (N ) ≡ log2 |B| − Dα (N‖R), (105)

where RA→B is the completely randomizing channel from
Eq. (5).

We remark here that Dα (N‖R), for α > 1, has an op-
erational interpretation as the strong converse exponent for
discrimination of the channel NA→B from the completely
randomizing channel RA→B, when considering any possible
channel discrimination strategy [15].

One could alternatively define a different Rényi entropy of
a channel according to the above recipe, but in terms of the
Petz–Rényi relative entropy. However, it is unclear whether
the additivity property is generally satisfied for the resulting
Rényi entropy of a channel, and so we do not consider it
further here, instead leaving this question open.

A. Properties of the Rényi entropy of a quantum channel

The Rényi entropy of a channel obeys the three desired
axioms from Ref. [18], and in fact, the proofs are essentially
the same as the previous ones, but instead using properties of
the sandwiched Rényi relative entropy.

Proposition 14. Let NA→B be a quantum channel, and let
� be a uniformity preserving superchannel as defined above.
Then for all [1/2, 1) ∪ (1,∞),

Hα (�(N )) � Hα (N ). (106)

Proof. We follow the same steps as in Eqs. (12)–(16), but
making the substitutions H → Hα and D → Dα . Also, we
use the fact that, for [1/2, 1) ∪ (1,∞), the sandwiched Rényi
channel divergence does not increase under the action of a
superchannel, as shown in Ref. [18]. �

Proposition 15 (Additivity). Let N and M be quantum
channels. Then the channel Rényi entropy is additive in the
following sense for α ∈ (1,∞):

Hα (N ⊗ M) = Hα (N ) + Hα (M). (107)

Proof. The proof here follows the same approach given in
the proof of Proposition 4, making the substitutions H → Hα

and D → Dα . The steps in Eqs. (24)–(28) follow from the
same steps given in the proof of Proposition 41 of Ref. [28],
which in turn rely upon the additivity result from Ref. [19].
See also Ref. [15] in this context. �

Proposition 16 (Reduction to states). Let the channel
NA→B be a replacer channel, defined such that NA→B(ρA) =
σB for all states ρA and some state σB. Then the following
equality holds for all α ∈ (0, 1) ∪ (1,∞):

Hα (N ) = Hα (B)σ . (108)

Proof. The proof is essentially the same as the proof
of Proposition 5, making the substitutions H → Hα and
D → Dα . �

We can then conclude that the Rényi entropy of a channel
satisfies the normalization axiom from the fact that Hα (B)σ =
log |B| if σB is maximally mixed and H (B)σ = 0 if σB is pure.

B. Alternate representations for the Rényi entropy
of a quantum channel

Just as we showed in Sec. II B that there are alternate
representations for the entropy of a quantum channel, here we
do the same for the Rényi entropy of a channel. We define the
conditional Rényi entropy of a bipartite state ρAB as

Hα (A|B)ρ|ρ ≡ −Dα (ρAB‖IA ⊗ ρB), (109)
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where Dα (ρ‖σ ) is the sandwiched Rényi relative entropy
from Eq. (100). The conditional Petz–Rényi entropy of a
bipartite state ρAB is defined as

Hα (A|B)ρ ≡ − inf
σB

Dα (ρAB‖IA ⊗ σB), (110)

where the Petz–Rényi relative entropy Dα (ρ‖σ ) is defined for
α ∈ (0, 1) ∪ (1,∞) as [66,67]

Dα (ρ‖σ ) ≡ 1

α − 1
log2 Tr{ρασ 1−α}, (111)

whenever either α ∈ (0, 1) or supp(ρ) ⊆ supp(σ ) and α > 1.
Otherwise, it is set to +∞. The Petz–Rényi relative entropy
obeys the data processing inequality for ρ and σ as above, a
quantum channel N , and α ∈ (0, 1) ∪ (1, 2] [66,67]:

Dα (ρ‖σ ) � Dα[N (ρ)‖N (σ )]. (112)

The completely bounded 1 → α norm of a quantum chan-
nel is defined for α � 1 as [19]

‖NA→B‖CB,1→α ≡ sup
ρR

∥∥ρ
1/2α
R NA→B(�RA)ρ1/2α

R

∥∥
α
, (113)

where the optimization is with respect to a density operator ρR

and �RA ≡ |�〉〈�|RA denotes the projection onto the following
maximally entangled vector:

|�〉RA ≡
∑

i

|i〉R|i〉A, (114)

where {|i〉R}i and {|i〉A}i are orthonormal bases and system R
is isomorphic to the channel input system A.

We can now state the alternate representations for the
Rényi entropy of a channel:

Proposition 17. Let NA→B be a quantum channel, and let
UN

A→BE be an isometric channel extending it, as in Eq. (36).
Then for α ∈ (0, 1) ∪ (1,∞),

Hα (N ) = inf
ψRA

Hα (B|R)ω|ω = − sup
ρA

Hβ (B|E )τ , (115)

where the first optimization is with respect to bipar-
tite pure states with system R isomorphic to system A,
ωRB ≡ NA→B(ψRA), τBE ≡ UN

A→BE (ρA), and β = 1/α. For
α ∈ [1/2, 1) ∪ (1,∞),

|Hα (N )| � log2 |B|. (116)

For α ∈ (1,∞), we have that

Hα (N ) = α

1 − α
log2 ‖NA→B‖CB,1→α. (117)

Proof. To establish the equality

Hα (N ) = inf
ψRA

Hα (B|R)ω|ω, (118)

we follow the same reasoning as in Eqs. (42)–(46), but mak-
ing the substitutions H → Hα and D → Dα . To establish the
equality

inf
ψRA

Hα (B|R)ω|ω = − sup
ρA

Hβ (B|E )τ , (119)

we employ the identity [[74], Theorem 2]

Hα (B|R)ω|ω = −Hβ (B|E )τ . (120)

To establish the dimension bounds, consider from data
processing that

Hα (B|R)ω|ω � Hα (B)ω � log2 |B|, (121)

where the second inequality follows from a dimension bound
for the Rényi entropy. To establish the other dimension bound,
let us employ the identity [[74], Theorem 2] again

Hα (B|R)ω|ω = −Hβ (B|E )τ (122)

� − inf
σE

Dβ (τBE‖IB ⊗ σE ) (123)

� −Hβ (B)τ (124)

� − log2 |B|. (125)

The first inequality is stated in Ref. [[74], Corollary 4], and
the second follows from data processing of the Petz–Rényi
relative entropy under measurements, which holds for β ∈
(0, 1) ∪ (1,∞), as shown in Ref. [[75], Sec. 2.2] (note that a
measurement in the eigenbasis of τB combined with the partial
trace over system E is a particular kind of measurement).

To establish the connection to the completely bounded
norm for α > 1, we invoke Ref. [[15], Lemma 8] to find that

Hα (N ) = log2 |B| − Dα (N‖R) (126)

= log2 |B| − α

α − 1
log ‖	

π
(1−α)/α
B

◦ NA→B‖CB,1→α

(127)

= α

1 − α
log ‖NA→B‖CB,1→α, (128)

where

	
π

(1−α)/α
B

(XB) ≡ π
(1−α)/2α
B XBπ

(1−α)/2α
B (129)

= |B|(α−1)/αXB, (130)

concluding the proof. �
Again, the dimension lower bound is saturated for the iden-

tity channel, while the dimension upper bound is saturated for
the completely depolarizing channel.

VI. MIN-ENTROPY OF A QUANTUM CHANNEL

The min-entropy of a quantum state ρA of a system A is
defined as [76]

Hmin(A)ρ ≡ − log2 ‖ρ‖∞ (131)

= lim
α→∞ Hα (A)ρ. (132)

It has found extensive application in the context of quantum
cryptography [76]. The max-relative entropy of a state ρ with
a positive semidefinite operator σ is defined as [77]

Dmax(ρ‖σ ) ≡ inf{λ : ρ � 2λσ } (133)

= log2 ‖σ−1/2ρσ−1/2‖∞, (134)

whenever supp(ρ) ⊆ supp(σ ), and otherwise, it is set to +∞.
The max-relative entropy was recently given an information-
theoretic meaning as the distinguishability cost of two
quantum states [78]. It is known that [68]

Dmax(ρ‖σ ) = lim
α→∞ Dα (ρ‖σ ). (135)
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Observe that the min-entropy of a quantum state ρ can be
written as the difference of the number of physical qubits
for the system A and the max-relative entropy of ρ to the
maximally mixed state πA:

Hmin(A)ρ = log2 |A| − Dmax(ρA‖πA). (136)

Thus, following the spirit of previous developments, we define
the min-entropy of a channel as follows:

Definition 18 (Min-entropy of a quantum channel). We
define the min-entropy of a quantum channel NA→B according
to the recipe given in the introduction of our paper:

Hmin(N ) ≡ log2 |B| − Dmax(N‖R), (137)

where Dmax(N‖R) is the max-channel divergence [15,16] and
RA→B is the completely randomizing channel from Eq. (5).

The max-channel divergence is defined for two arbitrary
channels NA→B and MA→B as [15,16]

Dmax(N‖M) ≡ sup
ρRA

Dmax(NA→B(ρRA)‖MA→B(ρRA))

(138)

= Dmax(NA→B(�RA)‖MA→B(�RA)). (139)

The latter equality, that an optimal state is the maximally
entangled state �RA, was proved in Ref. [[28], Lemma 12]
(see also Ref. [[79], Eq. (45)] and Ref. [[28], Remark 13] in
this context). In fact, an optimal state is any pure bipartite state
with full Schmidt rank (reduced state has full support).

Due to the limit in Eq. (135) and the equality in Eq. (139),
it follows that

Dmax(N‖M) = lim
α→∞ Dα (N‖M). (140)

As such, we can immediately conclude that the min-entropy
of a channel Hmin(N ) is equal to the following limit:

Hmin(N ) = lim
α→∞ Hα (N ), (141)

and that it satisfies nondecrease under a uniformity preserving
superchannel, additivity, and reduction to states (i.e., for a
replacer channel, it reduces to the min-entropy of the replac-
ing state), which, as stated previously, imply the three axioms
from Ref. [18].

A. Alternate representation for the min-entropy of a channel
in terms of conditional min-entropies

The conditional min-entropy of a bipartite quantum state
ρAB is defined as [76]

Hmin(A|B)ρ ≡ − inf
σB

Dmax(ρAB‖IA ⊗ σB). (142)

We can also define the following related quantity:

Hmin(A|B)ρ|ρ ≡ −Dmax(ρAB‖IA ⊗ ρB), (143)

and clearly we have that

Hmin(A|B)ρ � Hmin(A|B)ρ|ρ. (144)

The identities in Eqs. (35) and (40), as well as the definition
of conditional min-entropy, inspire the following quantity:

H↑
min(N ) = inf

ψRA

Hmin(B|R)ω. (145)

In the above, ωRB ≡ NA→B(ψRA) and ψRA is a pure state with
system R isomorphic to the channel input system A.

This quantity might seem different from the min-entropy of
a channel, but the following proposition states that H↑

min(N )
is actually equal to the min-entropy of the channel Hmin(N ),
thus simplifying the notion of min-entropy of a quantum chan-
nel:

Proposition 19. Let NA→B be a quantum channel. Then

Hmin(N ) = inf
ψRA

Hmin(B|R)ω|ω (146)

= Hmin(B|R)�N |�N (147)

= H↑
min(N ), (148)

where ωRB ≡ NA→B(ψRA) and ψRA is a pure state with system
R isomorphic to the channel input system A. Also, the state
�N

RB = NA→B(�RA) is the Choi state of the channel.
Proof. The first equality follows from the same steps in the

proof of Proposition 17 [see the reasoning around Eq. (118)].
The second equality, i.e.,

Hmin(N ) = Hmin(B|R)�N |�N , (149)

follows by the observation in Eq. (139).
The proof of the equality Hmin(N ) = H↑

min(N ) follows
from semidefinite programming duality, similar to what was
done previously for conditional min-entropy in Ref. [80].
Consider that

H↑
min(N )

= inf
ψRA

Hmin(B|R)NA→B (ψRA ) (150)

= inf
ψRA

[− inf
σR

Dmax(NA→B(ψRA)‖σR ⊗ IB)] (151)

= inf
ψRA

[− inf
σR

{log2 Tr{σR} : NA→B(ψRA) � σR ⊗ IB}] (152)

= − log2 sup
ψRA

inf
σR

{Tr{σR} : NA→B(ψRA) � σR ⊗ IB}. (153)

Considering the innermost part of the last line above as the
semidefinite program

inf
σR

{Tr{σR} : NA→B(ψRA) � σR ⊗ IB}, (154)

its dual is given by

sup
XRB

{Tr{XRBNA→B(ψRA)} : XR � IR, XRB � 0}. (155)

Now let us write the pure state ψRA as ψRA = YR�RAY †
R , where

YR satisfies Tr{Y †
R YR} = 1, so that Y †

R YR is a density operator
ρR. Due to the fact that the set of pure states ψRA with full-rank
reduced state ψR is dense in the set of all pure states, it suffices
to optimize over these. This means that we can rewrite the last
line of the first block (without the negative logarithm) as

sup
YR,XRB

{Tr{Y †
R XRBYRNA→B(�RA)} : XR � IR,

XRB � 0, Tr{Y †
R YR} = 1, |YR| > 0}. (156)
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We now define X ′
RB ≡ Y †

R XRBYR, so that

XRB � 0 ⇐⇒ X ′
RB � 0 (157)

XR � IR ⇐⇒ X ′
R � Y †

R YR = ρR. (158)

Then we find that the above is equal to

sup
ρR,X ′

RB

{Tr{X ′
RBNA→B(�RA)} : X ′

R � ρR, Tr{ρR} = 1,

X ′
RB � 0, ρR � 0}

= supX ′
RB

{Tr{X ′
RBNA→B(�RA)} : Tr{X ′

R} = 1, X ′
RB � 0}

(159)

= sup
X ′

RB

{Tr{X ′
RBNA→B(�RA)} : Tr{X ′

RB} = 1, X ′
RB � 0}

(160)

= ‖NA→B(�RA)‖∞. (161)

The first equality above follows because we are maximizing
over both ρR and X ′

RB, and the objective function only in-
creases by taking X ′

R = ρR and with a maximal value one for
the trace. So we conclude that

inf
ψRA

Hmin(B|R)NA→B (ψRA )

= − log2 ‖NA→B(�RA)‖∞ (162)

= − log2 inf {λ : NA→B(�RA) � λIRB} (163)

= − log2 inf {λ : NA→B(�RA) � λπR ⊗ IB} (164)

= Hmin(B|R)�N |�N (165)

= Hmin(N ), (166)

where �N = NA→B(�RA) and the last equality follows from
Eq. (149). �

B. Relation of min-entropy of a channel to its extended
min-entropy

The extended min-entropy of a channel is defined as [18]

H ext
min(N ) ≡ Hmin(B|R)ω, (167)

where ωRA = NA→B(�RA), with �RA the maximally entangled
state. It is not clear to us whether H ext

min(N ) is generally equal
to the min-entropy of a channel Hmin(N ). However, due to
Eq. (149), we conclude that

H ext
min(N ) � Hmin(N ). (168)

VII. ASYMPTOTIC EQUIPARTITION PROPERTY

The smoothed conditional min-entropy of a bipartite state
ρAB is defined for ε ∈ (0, 1) as (see, e.g., Ref. [81])

H ε
min(A|B)ρ ≡ sup

P(ρAB ,̃ρAB )�ε

Hmin(A|B)ρ̃ , (169)

where the optimization is with respect to all subnormalized
states ρ̃AB (satisfying ρ̃AB � 0, Tr{̃ρAB} � 1, and ρ̃AB �= 0) and
the sine distance (also called purified distance) of quantum
states ρ and σ [82–85] is defined in terms of the fidelity

[86] as

P(ρ, σ ) ≡
√

1 − F (ρ, σ ), (170)

F (ρ, σ ) ≡ ∥∥√
ρ
√

σ
∥∥2

1. (171)

The definition of fidelity is generalized to subnormalized
states ω and τ as follows [87]:

F (ω, τ ) ≡ F [ω ⊕ (1 − Tr{ω}), τ ⊕ (1 − Tr{τ })], (172)

where the right-hand side is the usual fidelity of states (that
is, we just add an extra dimension to ω and τ and complete
them to states). The smoothed conditional min-entropy satis-
fies the following asymptotic equipartition property [88] (see
also Ref. [81]), which is one way that it connects with the
conditional entropy of ρAB:

lim
n→∞

1

n
H ε

min(An|Bn)ρ⊗n = H (A|B)ρ. (173)

The purified channel divergence of two channels NA→B and
MA→B is defined as [16]

P(N ,M) ≡ sup
ρRA

P(NA→B(ρRA),MA→B(ρRA)), (174)

Again, due to state purification, the data-processing inequality
for P(ρ, σ ), and the Schmidt decomposition theorem, it suf-
fices to optimize over states ρRA that are pure and such that
system R is isomorphic to system A. We then use this notion
for smoothing the min-entropy of a channel:

Definition 20 (Smoothed min-entropy of a channel). The
smoothed min-entropy of a channel is defined for ε ∈ (0, 1)
as

H ε
min(N ) ≡ sup

P(N ,Ñ )�ε

Hmin(Ñ ), (175)

where P(N , Ñ ) is the purified channel divergence [16].
In the following theorem, we prove that the smoothed

min-entropy of a channel satisfies an asymptotic equipartition
theorem that generalizes Eq. (173).

Theorem 21 (Asymptotic equipartition property). For all
ε ∈ (0, 1), the following inequality holds

lim
n→∞

1

n
H ε

min(N⊗n) � H (N ). (176)

We also have that

lim
ε→0

lim
n→∞

1

n
H ε

min(N⊗n) � H (N ). (177)

Proof. We first prove the inequality in Eq. (176). Let ωRnAn

denote the de Finetti state [89], defined as

ωRnAn ≡
∫

d (σRA) σ⊗n
RA , (178)

where σRA is a pure state with system R isomorphic to the
channel input system A, and d (σRA) denotes the Haar mea-
sure on pure states. This state is the maximally mixed state
of the symmetric subspace of the systems (RA)n, and it is
permutation invariant [90]. That is, for a unitary channel
Wπ

Rn ⊗ Wπ
An corresponding to a permutation π , we have that

ωRnAn = (Wπ
Rn ⊗ Wπ

An )(ωRnAn ) for all π ∈ Sn, with Sn denoting
the symmetric group. Let ωR′RnAn denote the purification of
the de Finetti state, with the purifying system R′ satisfying
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the inequality |R′| � (n + 1)|A|2−1 [89]. The reduced state ωAn

is permutation invariant and has full rank. The latter follows
because the set of pure states ψRA with a full-rank reduced
density operator ψR is dense in the set of all pure states, and
tensor products of full-rank states are full rank. Let ωÑ n

R′RnBn

denote the state resulting from the action of the quantum
channel Ñ n

An→Bn on the input state ωR′RnAn , and let ωN⊗n

R′RnBn

denote the state resulting from the action of the quantum
channel N⊗n

A→B on the input state ωR′RnAn . Let CPTP(An → Bn)
denote the set of all quantum channels from input system An

to output system Bn. Let Perm(An → Bn) denote the set of all
permutation covariant quantum channels from input system
An to output system Bn. Define ψÑ n

RBn to be the state resulting
from the action of the channel Ñ n

An→Bn on the input state ψRAn .
Then consider that

H ε
min(N⊗n)

= sup
Ñ n ∈ CPTP(An → Bn) :

P(N⊗n, Ñ n) � ε

inf
ψRAn

Hmin(Bn|R)ψÑ n |ψÑ n

(179)

� sup
Ñ n ∈ Perm(An → Bn) :

P(N⊗n, Ñ n) � ε

inf
ψRAn

Hmin(Bn|R)ψÑ n |ψÑ n

(180)

= sup
Ñ n ∈ Perm(An → Bn) :

P(N⊗n, Ñ n) � ε

Hmin(Bn|RnR′)ωÑ n |ωÑ n

(181)

� sup
Ñ n ∈ Perm(An → Bn) :

P(ωN⊗n
, ωÑ n

) � ε′

Hmin(Bn|RnR′)ωÑ n |ωÑ n .

(182)

The first equality follows from Definition 20. The first
inequality follows by restricting the maximization to
permutation-covariant channels. The second equality follows
because the reduced state ωAn has full rank and by applying
the remark after Eq. (139), to conclude that

inf
ψRAn

Hmin(Bn|R)ψÑ n |ψÑ n

= − sup
ψRAn

Dmax(Ñ n
An→Bn (ψRAn )‖ψR ⊗ IBn ) (183)

= − sup
ψRAn

Dmax(Ñ n
An→Bn (ψRAn )‖ψR ⊗ πBn )

+ n log2 |B| (184)

= − sup
ψRAn

Dmax(Ñ n
An→Bn (ψRAn )‖R⊗n

A→B(ψRAn ))

+ n log2 |B| (185)

= −Dmax(Ñ n
An→Bn (ωR′RnAn )‖R⊗n

A→B(ωR′RnAn ))

+ n log2 |B| (186)

= Hmin(Bn|RnR′)ωÑ n |ωÑ n . (187)

The second inequality follows by applying the post-selection
technique [[89], Theorem 1] with

ε′ ≡ ε(n + 1)−2(|A|2−1). (188)

(See also Proposition D.5 of Ref. [91].) Note that the factor of
two in the exponent of Eq. (188) is necessary because we are
employing the sine distance as the channel distance measure.
To be clear, the statement we are invoking is that if

N n,Mn ∈ Perm(An → Bn) (189)

satisfy

P
(
N n

An→Bn (ωR′RnAn ),Mn
An→Bn (ωR′RnAn )

)
� ε′, (190)

then

P
(
N n

An→Bn ,Mn
An→Bn

)
� ε. (191)

Continuing, we have that

Eq. (182)

= sup
Ñ n ∈ CPTP(An → Bn) :

P(ωN⊗n
, ωÑ n

) � ε′

Hmin(Bn|RnR′)ωÑ n |ωÑ n

(192)

= sup
σR′RnBn :

P(N⊗n(ωR′RnAn ), σR′RnBn ) � ε′,
σR′Rn = ωR′Rn

Hmin(Bn|RnR′)σ |σ

(193)

� sup
σR′RnBn :

P(N⊗n(ωR′RnAn ), σR′RnBn ) � 2ε′/3

Hmin(Bn|RnR′)σ |σ

− log2

(
8 + [ε′/3]2

[ε′/3]2

)
. (194)

The first equality follows from reasoning similar to that
given for Lemma 11 in Appendix B of Ref. [92], i.e., that a
permutation-covariant channel is optimal among all channels,
due to the fact that the original channel N⊗n is permutation
covariant. In our case, it follows by employing the fact that
the channel min-entropy does not decrease under the action of
a uniformity preserving superchannel [see the discussion after
Eq. (141)], and the superchannel that randomly performs a
permutation at the channel input and the inverse permutation
at the channel output is one such superchannel. The second
equality is a consequence of the fact that the following two
sets are equal:{

Ñ n
An→Bn (φRAn ) : P(Ñ n

An→Bn (φRAn ),N⊗n
A→B(φRAn )) � ε,

Ñ n
An→Bn ∈ CPTP

}
= {

ω̃RBn ∈ D(HRBn ) : P(ω̃RBn ,N⊗n
A→B(φRAn )) � ε,

ω̃R = φR
}
, (195)

which follows from applying Lemma 10 in Appendix B of
Ref. [92]. The inequality follows from Theorem 3 of Ref. [93]
(while noting that the state ρ̂AB defined therein satisfies ρ̂B =
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ρB, so that the proof Theorem 3 of Ref. [93] applies to our
situation).

Continuing, and by applying Ref. [[78], Eq. (L10)] and
definitions, we find that

sup
σR′RnBn :

P(N⊗n(ωR′RnAn ), σR′RnBn ) � 2ε′/3

Hmin(Bn|RnR′)σ |σ

� Hα (Bn|RnR′)ωN⊗n |ωN⊗n + f (2ε′/3, α) (196)

� Hα (N⊗n) + + f (2ε′/3, α) (197)

= nHα (N ) + f (2ε′/3, α), (198)

where

f (δ, α) ≡ log2(1 − δ2) + log2(δ2)

α − 1
. (199)

The second inequality follows from the definition of the Rényi
entropy of a channel (Definition 13), and the equality follows
from the additivity of the Rényi entropy of a channel (Propo-
sition 15). Putting everything above together, we conclude the
following bound:

1

n
H ε

min(N ) �Hα (N ) − 1

n
log2

(
8 + [ε′/3]2

[ε′/3]2

)
+ f (2ε′/3, α)

n
. (200)

Taking the limit as n → ∞, we conclude that the following
inequality holds for all α > 1:

lim
n→∞

1

n
H ε

min(N ) � Hα (N ). (201)

Since this inequality holds for all α > 1, we can take the limit
as α → 1 to conclude that

lim
n→∞

1

n
H ε

min(N ) � H (N ). (202)

This concludes the proof of the inequality in Eq. (176).
To arrive at the second inequality in Eq. (177), let Ñ n be a

channel such that

P(N⊗n, Ñ n) � ε. (203)

Now let φRAn be an arbitrary state. We then have from the
definition in Eq. (174) that

P
(
N⊗n

A→B(φRAn ), Ñ n
An→Bn (φRAn )

)
� ε. (204)

Defining the states

ω̃RBn ≡ Ñ n
An→Bn (φRAn ), (205)

ωRBn ≡ N⊗n
A→B(φRAn ), (206)

we find that

Hmin(Ñ n) � Hmin(Bn|R)ω̃|ω̃ (207)

� H (Bn|R)ω̃ (208)

� H (Bn|R)ω + ε2n log2 |B| + g2(ε), (209)

where

g2(ε) ≡ (ε + 1) log2(ε + 1) − ε log2 ε. (210)

The second inequality follows from monotonicity of the con-
ditional Rényi entropy with respect to α, and the last from the
uniform continuity bound in Ref. [[94], Lemma 2]. The above
bound holds for any choice of φRAn , and so we conclude that

Hmin(Ñ n) � H (N⊗n) + ε2n log2 |B| + g2(ε) (211)

= nH (N ) + ε2n log2 |B| + g2(ε), (212)

where the equality follows from the additivity of the entropy
of a channel (Proposition 4). Now, the inequality has been
shown for all Ñ n satisfying P(N⊗n, Ñ n) � ε, and so we
conclude, after dividing by n, that

1

n
H ε

min(N⊗n) � H (N ) + 2ε log2 |B| + 1

n
g2(ε). (213)

Taking the limit as n → ∞, we get that

lim
n→∞

1

n
H ε

min(N⊗n) � H (N ) + 2ε log2 |B|. (214)

Now taking the limit as ε → 0, we arrive at the second in-
equality in Eq. (177). �

In Appendix B, we point out how an approach similar to
that in the above proof leads to an alternate proof of the upper
bound in Ref. [[92], Theorem 8], regarding an asymptotic
equipartition property for the smoothed max-mutual informa-
tion of a quantum channel.

VIII. GENERALIZED CHANNEL ENTROPIES FROM
GENERALIZED DIVERGENCES

In this section, we discuss other possibilities for defin-
ing generalized entropies of a quantum channel. One main
concern might be how unique or distinguished our notion
of entropy of a channel from Definition 1 is, being based
on the channel relative entropy of the channel of interest
and the completely randomizing channel. As a consequence
of the fact that there are alternate ways of defining channel
relative entropies, there could be alternate notions of channel
entropies. However, we should recall that one of the main
reasons we have chosen the definition in Definition 1 is that
the channel relative entropy appearing there has a particularly
appealing operational interpretation in the context of channel
discrimination [15]. That is, for what one might consider the
most natural and general setting of quantum channel discrim-
ination, the optimal rate for distinguishing a channel from the
completely randomizing channel is given by the channel rela-
tive entropy in Eq. (4) [15]. As we show in what follows, there
are further reasons to focus on our definition of the entropy of
a channel from Definition 1, as well as our definition of the
min-entropy of a channel from Definition 18.

To begin the discussion, let S (C) denote the set of quantum
states for an arbitrary quantum system C. Let us recall that
a function D : S (C) × S (C) → R ∪ {+∞} is a generalized
divergence [95,96] if for arbitrary Hilbert spaces HA and
HB, arbitrary states ρA, σA ∈ S (A), and an arbitrary channel
NA→B, the following data processing inequality holds

D(ρA‖σA) � D(NA→B(ρA)‖NA→B(σA)). (215)

Examples of interest are in particular the quantum relative
entropy, the Petz-Rényi divergences, the sandwiched Rényi
divergences, as considered in this paper.
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Based on generalized divergences, one can define at least
two different channel divergences as a measure for the dis-
tinguishability of two quantum channels NA→B and MA→B.
Here we consider a function of two quantum channels to be
a channel divergence if it is monotone under the action of a
superchannel.

(1) Generalized channel divergence [16]:

D(N‖M) ≡ sup
ρRA

D(NA→B(ρRA)‖MA→B(ρRA)). (216)

In the above, the optimization can be restricted to pure states
of systems R and A with R isomorphic to system A. The
monotonicity of the generalized channel divergence under the
action of a superchannel was proven in Ref. [18].

(2) Amortized channel divergence [28]:

DA(N‖M)

≡ sup
ρRA,σRA

D(NA→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA).

(217)

The monotonicity of the amortized channel divergence under
the action of a superchannel was proven in Ref. [28].

We can consider other divergences as follows, but they are
not known to be monotone under the action of a general super-
channel, and so we do not label them as channel divergences:

(1) Choi divergence:

D�(N‖M) ≡ D(NA→B(�RA)‖MA→B(�RA)). (218)

As we show in Appendix C, the Choi divergence is monotone
under the action of a superchannel consisting of mixtures of a
unital preprocessing channel and an arbitrary post-processing
channel.

(2) Adversarial divergence:

Dadv(N‖M) ≡ sup
ρRA

inf
σRA

D(NA→B(ρRA)‖MA→B(σRA)).

(219)
In the above, due to state purification, data processing, and the
Schmidt decomposition, the maximization can be restricted
to pure states ρRA of systems R and A with R isomorphic to
system A. The minimization should be taken over mixed states
σRA. For a proof of this fact, see Appendix D.

(3) Adversarial Choi divergence:

Dadv,�(N‖M) ≡ inf
σRA

D(NA→B(�RA)‖MA→B(σRA)). (220)

(4) “No quantum memory” divergence:

sup
ρA

D(NA→B(ρA)‖MA→B(ρA)). (221)

There could certainly even be other divergences to
consider. In our context, two effective ways of singling
out particular divergences as primary and others as sec-
ondary are (1) whether the channel divergence has a
compelling operational interpretation for a channel dis-
crimination task and (2) whether the channel divergence
leads to an entropy function that satisfies the axioms from
Ref. [18].

Based on the recipe given in the Introduction, from a given
divergence D′(N‖M) (any of the choices above), one could
then define a generalized entropy function of a channel NA→B

as

H(N ) ≡ log2 |B| − D′(N‖R), (222)

where RA→B is the completely randomizing channel from
Eq. (5).

Taking the above approach to pruning entropy functions,
we can already rule out the last one (“no quantum mem-
ory”), as done in Ref. [18], because, after taking D to be
the most prominent case of quantum relative entropy, the
resulting entropy function is the minimum output entropy of
a channel, which is known to be nonadditive [97]. While an
entropy arising from the Choi divergence leads to an entropy
function satisfying the axioms desired for an entropy func-
tion, the Choi divergence itself does not appear to have a
compelling operational interpretation in the sense of being
a “channel measure” because it simply reduces a channel
discrimination problem to a state discrimination problem (i.e.,
it does not make use of the most general approach one could
take for discriminating arbitrary channels). This point could
be debated, and we do return to entropy functions derived
from Choi and adversarial Choi divergences in Sec. VIII D
below.

A. Collapse of entropy functions derived from quantum
relative entropy

From the list above, by focusing on the operational
and axiomatic criteria listed above, this leaves us with the
generalized channel divergence and the amortized channel
divergence. Here we also consider the adversarial divergence.
Interestingly, after taking D to be the prominent case of quan-
tum relative entropy and the channel M to be the completely
randomizing channel, we find the following collapse of the
divergences:

D(N‖R) = DA(N‖R) = Dadv(N‖R). (223)

The first equality was shown in Refs. [15,28], and we show
the second one now. From the definitions, we have that
Dadv(N‖M) � D(N‖M) for any generalized divergence D
and any channel M. So we show the opposite inequality for
the special case of D = D and M = R. Let ρRA and σRA be
arbitrary states. Then

D(NA→B(ρRA)‖RA→B(σRA))

= D(NA→B(ρRA)‖σR ⊗ πB) (224)

= −H (NA→B(ρRA))

− Tr{NA→B(ρRA) log2(σR ⊗ πB)} (225)

= −H (NA→B(ρRA)) − Tr{ρR log2 σR}
− Tr{NA→B(ρA) log2 πB} (226)

= −H (NA→B(ρRA)) − Tr{ρR log2 ρR}
+ D(ρR‖σR) − Tr{NA→B(ρA) log2 πB} (227)

= −H (NA→B(ρRA))

− Tr{NA→B(ρRA) log2(ρR ⊗ πB)} + D(ρR‖σR)

(228)

= D(NA→B(ρRA)‖RA→B(ρRA)) + D(ρR‖σR). (229)
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Now taking an infimum over all σRA and invoking the nonneg-
ativity of quantum relative entropy, we conclude that

inf
σRA

D(NA→B(ρRA)‖RA→B(σRA))

= D(NA→B(ρRA)‖RA→B(ρRA)). (230)

By taking a supremum over ρRA, we then conclude that
Dadv(N‖R) = D(N‖R).

Thus, the collapse in Eq. (223), as well as the operational
interpretation of D(N‖R) from Ref. [15] and the fact that the
resulting entropy function satisfies the axioms from Ref. [18],
indicate that our choice of the entropy of a quantum channel
in Definition 1 is cogent.

B. Collapse of entropy functions derived from
max-relative entropy

Interestingly, a similar and further collapse occurs when
taking D to be the max-relative entropy:

Dmax(N‖R) = D�
max(N‖R) (231)

= DA
max(N‖R) (232)

= Dadv
max(N‖R). (233)

The first two equalities were shown in Ref. [[28], Proposition
10] for arbitrary channels N and M. By employing a semidef-
inite programming approach as in the proof of Proposition 19,
we can conclude the last equality. Thus, this collapse, as well
as the facts that the max-relative entropy Dmax(N‖M) is an
upper bound on the rate at which any two channels can be
distinguished in an arbitrary context [[28], Corollary 18] and
the resulting entropy function Hmin(N ) satisfies the axioms
from Ref. [18], indicate that our choice of the min-entropy of
a quantum channel in Definition 18 is also cogent.

C. Entropy functions derived from Rényi relative entropies

In Sec. V, we defined the Rényi entropy of a channel as
in Definition 13, in terms of the sandwiched Rényi relative
entropy. The following collapse is known for the sandwiched
Rényi relative entropy for α ∈ (1,∞) [15,28]:

Dα (N‖R) = DA
α (N‖R). (234)

However, it is not known whether these quantities are equal
for α ∈ (0, 1) or whether they are equal to the adversarial
divergence Dadv

α (N‖R) for any α ∈ (0, 1) ∪ (1,∞). At the
same time, one of the most compelling reasons to fix the
definition of channel Rényi entropy as we have done is that
the channel divergence Dα (N‖R) has both a convincing oper-
ational interpretation in channel discrimination as the optimal
strong converse exponent and the entropy function satisfies all
of the desired axioms for an entropy function. Furthermore,
the entropy function Hα (N ) represents a useful bridge be-
tween the entropy and min-entropy of a quantum channel, due
to the facts that limα→1 Hα (N ) = H (N ), limα→∞ Hα (N ) =
Hmin(N ), and Hα (N ) � Hβ (N ) for α � β � 1.

One should notice that we did not define the Rényi entropy
of a channel in terms of the Petz–Rényi relative entropy and
the resulting channel divergence, amortized channel diver-
gence, or adversarial divergence. One of the main reasons for
this is that it is not known whether the resulting entropy func-

tions are additive. Furthermore, operational interpretations for
these divergences have not been established, having been open
since the paper [15] appeared. As such, it very well could
be the case that one could derive cogent notions of channel
entropy from the Petz–Rényi relative entropy, but this remains
the topic of future work.

D. Entropy functions derived from Choi and
adversarial Choi divergences

In this subsection, we discuss various entropy functions
derived from Choi and adversarial Choi divergences. As em-
phasized previously, we note again here that the operational
interpretations for these divergences are really about state
discrimination tasks rather than channel discrimination tasks.
Nevertheless, the resulting entropy functions satisfy the ax-
ioms put forward in Ref. [18].

By picking the divergence D to be the quantum relative
entropy D, we find that the Choi and adversarial Choi di-
vergences are equal when discriminating an arbitrary channel
NA→B from the completely randomizing channel RA→B:

D�(N‖R) = Dadv,�(N‖R). (235)

The proof of this statement follows along the lines of
Eqs. (224)–(229). There is a simple operational interpretation
for D�(N‖R) in terms of state discrimination [12,13], while
an operational interpretation for Dadv,�(N‖R) in terms of
state discrimination was given recently in Ref. [98].

We could also pick the divergence D to be Petz–Rényi
relative entropy Dα or the sandwiched Rényi relative entropy
Dα . The resulting Choi and adversarial Choi divergences are
then generally not equal when discriminating an arbitrary
channel NA→B from the completely randomizing channel
RA→B. There is an operational interpretation for D

�

α (N‖R)
for α ∈ (0, 1) in terms of state discrimination [99,100] (error
exponent problem), and there is an operational interpretation
for D�

α (N‖R) for α ∈ (1,∞) in terms of state discrimina-
tion [72] (strong converse exponent problem). Interestingly,
Ref. [98] has given a meaningful operational interpretation for

the adversarial Choi divergences D
adv,�

α (N‖R) for α ∈ (0, 1)
and Dadv,�

α (N‖R) for α ∈ (1,∞) in terms of error exponent
and strong converse exponent state discrimination problems,
respectively.

For NA→B a quantum channel and �N
RB ≡ NA→B(�RA) the

Choi state, the resulting channel entropy functions are then as
follows:

H�(N ) ≡ H (B|R)�N = H adv,�(N ), (236)

H�
α (N ) ≡ Hα (B|R)�N |�N , (237)

H
�

α (N ) ≡ Hα (B|R)�N |�N , (238)

H adv,�
α (N ) ≡ Hα (B|R)�N , (239)

H
adv,�

α (N ) ≡ Hα (B|R)�N . (240)

It then follows that all of the above entropy functions are
additive for α ∈ (0, 1) ∪ (1,∞) (with the exception of addi-
tivity holding for H adv,�

α (N ) for α ∈ [1/2, 1) ∪ (1,∞)), due
to the facts that the Choi state of a tensor-product channel
is equal to the tensor product of the Choi states of the indi-
vidual channels, as well as the additivity of the underlying
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conditional entropies, for H adv,�
α (N ) shown in Ref. [81] and

for H
adv,�

α (N ) following from the quantum Sibson identity
[[96], Lemma 7] (see also Ref. [[74], Lemma 1]). Normal-
ization and reduction to states (as in Proposition 5) follows
for all of the above quantities. What remains is monotonicity
under random unitary superchannels, and what we can show
is something stronger: monotonicity under doubly stochastic
superchannels, the latter defined in Ref. [18] as superchannels
� such that their adjoint �† is also a superchannel, where
the adjoint is defined with respect to the inner product for
supermaps considered in Ref. [18].

Theorem 22. Let � be a doubly stochastic superchannel
given by

�[NA→B] ≡ 	BE→D ◦ NA→B ◦ 
C→AE , (241)

with 	BE→D and 
C→AE quantum channels, E a quantum
memory system, |A| = |C|, and |B| = |D|. Then, for H any
of the entropy functions in Eqs. (236)–(240), the following
inequality holds:

H(�(NA→B)) � H(NA→B). (242)

The inequality above holds for α ∈ [1/2, 1) ∪ (1,∞) for the
functions in Eqs. (237) and (239) and for α ∈ (0, 1) ∪ (1, 2]
for the functions in Eqs. (238) and (240).

Proof. Recall from Ref. [18] that, since � is doubly
stochastic, we have that

TrE {
C→AE (IC )} = IA, (243)

	BE→D(IB ⊗ ρER) = ID ⊗ ρR. (244)

Let � be as above, and let us begin by considering the adver-
sarial quantities for the ranges of α for which data processing
holds. Let ωR be an arbitrary state. Let ξAER ≡ 
C→AE (�CR),
and note that the marginal ξA is the maximally mixed state due
to Eq. (243) and the dimension constraint |A| = |C|. There-
fore, there exists a quantum channel ER→ER such that

ξAER = ER→ER(�AR). (245)

Let σER ≡ ER→ER(ωR). With these notations set, and working
with the specific entropy function in Eq. (239), we find that

H adv,�
α (�(NA→B)) � −Dα{�(NA→B)(�CR)‖ID ⊗ σR} (246)

= −Dα (	BE→D ◦ NA→B ◦ 
C→AE (�CR)‖ID ⊗ σR) (247)

= −Dα (	BE→D ◦ NA→B ◦ 
C→AE (�CR)‖	BE→D(IB ⊗ σER)) (248)

� −Dα (NA→B ◦ 
C→AE (�CR)‖IB ⊗ σER) (249)

= −Dα (NA→B(ξAER)‖IB ⊗ σER) (250)

= −Dα (ER→ER ◦ NA→B(�AR)‖ER→ER(IB ⊗ ωR)) (251)

� −Dα (NA→B(�AR)‖IB ⊗ ωR) . (252)

Since the inequality holds for an arbitrary state ωR, we conclude that

H adv,�
α (�(NA→B)) � H adv,�

α (NA→B), (253)

which is the inequality in Eq. (242) for the adversarial Choi
Rényi entropy H adv,�

α (N ). The proof for the entropy functions
in Eqs. (236) and (240) goes the same way, since the above
proof only relied upon the data processing inequality.

To arrive at the inequality in Eq. (242) for the entropy
functions in Eqs. (237)–(238), we exploit the same proof, but
we choose ωR to be the maximally mixed state. By tracing
over systems AE in Eq. (245), we find that

πR = TrAE {ξAER} = TrAE {ER→ER(�AR)} (254)

= (TrE ◦ER→ER)(πA), (255)

and so we conclude that the reduced channel TrE ◦ER→ER is
unital. This means that, by choosing σER ≡ ER→ER(ωR) again,
we can conclude that σR = πR. By applying the same steps as
above, we then find that

H�
α (�(NA→B)) = −Dα{�(NA→B)(�CR)‖ID ⊗ πR} (256)

� −Dα (NA→B(�AR)‖IB ⊗ πR) (257)

= H�
α (NA→B), (258)

which is the inequality in Eq. (242) for the entropy function
in Eq. (237). The proof for the entropy function in Eq. (238)
then goes the same way. �

As a final remark to conclude this section, we note that the
following limit holds

lim
α→∞ H adv,�

α (NA→B) = H ext
min(NA→B), (259)

as a consequence of Eq. (135), and so the proof given above
represents a different way, from that given in Ref. [18], for
arriving at the conclusion that the extended min-entropy of a
channel is nondecreasing under the action of a doubly stochas-
tic superchannel.

IX. CONCLUSION AND OUTLOOK

In this paper, we have introduced a definition for the en-
tropy of a quantum channel, based on the channel relative
entropy between the channel of interest and the completely
randomizing channel. Building on this approach, we defined
the Rényi and min-entropy of a channel. We proved that these
channel entropies satisfy the axioms for entropy functions,
recently put forward in Ref. [18]. We also proved that the
entropy of a channel is equal to the completely bounded
entropy of Ref. [19], and the Rényi entropy of a channel is
related to the completely bounded 1 → p norm considered in

023096-18



ENTROPY OF A QUANTUM CHANNEL PHYSICAL REVIEW RESEARCH 3, 023096 (2021)

Ref. [19]. The smoothed min-entropy of a channel satisfies an
asymptotic equipartition property that generalizes the same
property for smoothed min-entropy of quantum states [88].
We showed that the entropy of a channel has an operational
interpretation in terms of a task called quantum channel merg-
ing, in which the goal is for the receiver to merge his share
of the channel with the environment’s share, and this task is
a dynamical counterpart of the known task of quantum state
merging [20,21]. We evaluated the entropy of a channel for
several common channel models. Finally, we considered other
generalized entropies of a quantum channel and gave further
evidence that Definition 1 is a cogent approach for defining
entropy of a quantum channel.

Going forward from here, one of the most interesting open
questions is to determine if there is a set of axioms that
uniquely identifies the entropy of a quantum channel, similar
to how there is a set of axioms that uniquely characterizes
Shannon entropy [101]. We wonder the same for the Rényi
entropy of a channel, given that the Rényi entropies were
originally identified [102] by removing one of the axioms
that uniquely characterizes Shannon entropy. On a different
front, one could alternatively define the entropy of n uses of
a quantum channel in terms of an optimization over quantum
costrategies [103,104] or quantum combs [105], and for ana-
lyzing the asymptotic equipartition property in this scenario,
one could alternatively smooth with respect to the strategy
norm of Refs. [105,106]. The results of Ref. [15] suggest
that the asymptotic equipartition property might still hold in
this more complex scenario, but further analysis is certainly
required. Note that a related scenario has been considered
recently in Ref. [107]. Finally, if the Petz–Rényi channel
divergence between an arbitrary channel and the completely
depolarizing channel is additive, then a Rényi channel entropy
defined from it would be convincing. This question about
Petz–Rényi channel divergence has been open since Ref. [15].

Note added. After completing the results in our related
preprint [108], we noticed Ref. [[25], Eq. (6)], in which Yuan
proposed to define the entropy of a quantum channel in the
same way as we have proposed in Definition 1. Yuan’s work
is now published as Ref. [25].
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APPENDIX A: QUANTUM CHANNEL MERGING
CAPACITY PROOF

This Appendix details the proof of Theorem 10.

1. Converse bound

Let us begin by considering the converse part, following
the approach given in Ref. [21] for quantum state merging.

Proposition 23. Fix n, L, K ∈ N and ε ∈ [0, 1]. Let NA→B

be a quantum channel. Then an (n, L/K, ε) quantum channel
merging protocol for NA→B satisfies the following bound:

1

n
[(1 − √

ε) log2 L − log2 K]

� H (N ) + √
ε log2 |A| + g2(

√
ε). (A1)

Proof. We closely follow the approach given in Ref. [[21],
Sec. IV-B], which established the converse part of the quan-
tum state merging theorem. Consider an arbitrary (n, L/K, ε)
quantum channel merging protocol of the form described
above. To prove the converse, we can really employ any entan-
glement measure that reduces to the entropy of entanglement
for pure states and is asymptotically continuous. So let us
choose the entanglement of formation [109], which is defined
for a bipartite state ρAB as

EF (A; B)ρ

≡ inf

{∑
x

pX (x)H (A)ψx : ρAB =
∑

x

pX (x)ψx
AB

}
, (A2)

where the infimum is with respect to all convex decompo-
sitions of ρAB into pure states ψx

AB. The entanglement of
formation does not increase under the action of an LOCC
channel [109]. For the purposes of the converse, as in Ref.
[[21], Sec. IV-B], we imagine that the reference party R is
working together with Bob B, and they are spatially separated
from Eve E . Let ωRB̃n

E ẼnB1E1
and ω̃RB̃n

E ẼnB1E1
denote the follow-

ing
respective states:

ωRB̃n
E ẼnB1E1

≡ [
id⊗n

BE→B̃E Ẽ
◦(
UN

A→BE

)⊗n]
(ψRAn ) ⊗ �L

B1E1
, (A3)

ω̃RB̃n
E ẼnB1E1

≡ PBnEnB0E0→B̃n
E ẼnB1E1

([(
UN

A→BE

)⊗n
(ψRAn )

] ⊗ �K
B0E0

)
.

(A4)

Define

f (n, ε, |A|, L) ≡ √
εn log2 |A| + √

ε log2 L + g2(
√

ε). (A5)

We then have that

log2 L + H (R)ω

= H (B1)ω + H (R)ω (A6)

= H (RB1)ω (A7)

= EF (RB1; B̃n
E ẼnE1)ω (A8)

� EF
(
RB1; B̃n

E ẼnE1
)
ω̃

+ f (n, ε, |A|, L). (A9)

The first equality follows because log2 L = H (B1)ω for a max-
imally entangled state of Schmidt rank L. The second equality
follows because quantum entropy is additive with respect to
product states. The third equality follows because the entan-
glement of formation reduces to entropy of entanglement for
pure states. The inequality is a consequence of the uniform
continuity bound from Ref. [[94], Corollary 4]. Continuing,
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we have that

EF
(
RB1; B̃n

E ẼnE1
)
ω̃

� EF (RBnB0; EnE0)(UN )⊗n(ψ )⊗�K (A10)

= H (RBnB0)(UN )⊗n(ψ )⊗�K (A11)

= H (RBn)(UN )⊗n(ψ ) + H (B0)�K (A12)

= H (RBn)(UN )⊗n(ψ ) + log2 K. (A13)

The first inequality follows from LOCC monotonicity of the
entanglement of formation under the action of the one-way
LOCC channel PBnEnB0E0→B̃n

E ẼnB1E1
. The last three equalities

follow for reasons similar to what have been given above.
Putting everything together, we find that

log2 M = log2 L − log2 K (A14)

� H (Bn|R)(UN )⊗n(ψ ) + f (n, ε, |A|, L). (A15)

Since the protocol is required to work for every possible input
state ψRAn , we conclude the following bound:

log2 M � inf
ψRAn

H (Bn|R)(UN )⊗n(ψ ) + f (n, ε, |A|, L) (A16)

= nH (N ) + f (n, ε, |A|, L), (A17)

with the equality following from the additivity of the entropy
of a channel [19] (recalled here as Proposition 4). The inequal-
ity in the statement of the proposition follows by dividing by
n and rearranging. �

2. Achievability bound

Now let us consider the achievability part.
Proposition 24. Fix n, L, K ∈ N and ε ∈ (0, 1). Let NA→B

be a quantum channel. Then there exists an (n, L/K, ε) chan-
nel merging protocol for NA→B such that its entanglement
gain satisfies the following inequality for all α > 1:

1

n
[log2 L − log2 K] � Hα (N )

− α

n(α − 1)
[4 log2(1/ε) + 4(|A|2 − 1) log2(n + 1)]

− α

n(α − 1)
[1/α + 2 log2 13]. (A18)

Proof. For the achievability part, we employ ideas used in
the theory of quantum channel simulation [91,110–112]. In
particular, the main challenge of quantum channel merging
over quantum state merging is that it is necessary for the
protocol to work for every possible state ψRAn that could be
input, not merely for a fixed state input. In prior work on
quantum channel simulation [91,110–112], this challenge has
been met by appealing to the post-selection technique [[89],
Theorem 1]. Here, we use the same approach. In the context
of the post-selection technique, it is helpful to consult the
unpublished note [113] for further details.

Let ζAnÂn denote the maximally mixed state of the symmet-
ric subspace of the AnÂn systems [90], where Â is isomorphic
to the channel input system A. Note that this state can be
written as [[90], Proposition 6]

ζAnÂn =
∫

dψAÂ ψ⊗n
AÂ

, (A19)

where ψAÂ denotes a pure state and dψAÂ is the Haar measure
over the pure states. This state is permutation invariant; i.e.,
for a unitary channel Wπ

An ⊗ Wπ

Ân corresponding to a permu-
tation π , we have that ζAnÂn = (Wπ

An ⊗ Wπ

Ân )(ζAnÂn ) for all
π ∈ Sn, with Sn denoting the symmetric group. Let ζR′ÂnAn be
a purification of ζAnÂn , and note that it can be chosen such that
[113]

ζR′ÂnAn = (
Wπ

R′ ⊗ Wπ

Ân ⊗ Wπ
An

)
(ζR′ÂnAn ), (A20)

where Wπ
R′ is some unitary, which implies that(
Wπ−1

R′ ⊗ Wπ−1

Ân

)
(ζR′ÂnAn ) = Wπ

An (ζR′ÂnAn ). (A21)

The first goal is to show the existence of a state merging
protocol for the state (UN

A→BE )⊗n(ζR′ÂnAn ). As shown in Ref.
[[114], Theorem 5.2] (see also the earlier Ref. [[115], Proposi-
tion 4.7] in this context), there exists a state merging protocol
with error

√
13ε′, with the entanglement gain satisfying

log2 L − log2 K � H ε′
min(Bn|ÂnR′)(UN )⊗n(ζ )

− 2 log2

(
1

ε′

)
. (A22)

(To arrive at the inequality in Eq. (A22), one needs to use
the fact that P(ρ, σ ) � 1

2‖ρ − σ‖1 for any two states.) That
is, there exists a one-way LOCC channel PBnEnB0E0→B̃n

E ẼnB1E1

such that the following inequality holds:

1

2

∥∥[
id⊗n

BE→B̃E Ẽ
◦(
UN

A→BE

)⊗n]
(ζR′ÂnAn ) ⊗ �L

B1E1
− PBnEnB0E0→B̃n

E ẼnB1E1

([(
UN

A→BE

)⊗n
(ζR̂′AnAn )

] ⊗ �K
B0E0

)∥∥
1 �

√
13ε′. (A23)

Now our goal is for Eq. (54) to be satisfied for all possible states ψRAn . As a first step toward this goal, note that we can
symmetrize the protocol PBnEnB0E0→B̃n

E ẼnB1E1
as follows:

PBnEnB0E0→B̃n
E ẼnB1E1

≡ 1

n!

∑
π∈Sn

(
Wπ−1

B̃n
E

⊗ Wπ−1

Ẽ n

) ◦ PBnEnB0E0→B̃n
E ẼnB1E1

◦ (Wπ
Bn ⊗ Wπ

En ), (A24)

and the inequality in Eq. (A23) is still satisfied, i.e.,

1
2

∥∥[
id⊗n

BE→B̃E Ẽ
◦(
UN

A→BE

)⊗n]
(ζR′ÂnAn ) ⊗ �L

B1E1
− PBnEnB0E0→B̃n

E ẼnB1E1

([(
UN

A→BE

)⊗n
(ζR′ÂnAn )

] ⊗ �K
B0E0

)∥∥
1 �

√
13ε′. (A25)
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This follows from the unitary invariance and convexity of the trace norm, the permutation covariance of the maps
[id⊗n

BE→B̃E Ẽ
◦(UN

A→BE )⊗n] and (UN
A→BE )⊗n:

∀π ∈ Sn :
(
Wπ−1

B̃n
E

⊗ Wπ−1

Ẽ n

) ◦ id⊗n
BE→B̃E Ẽ

◦(
UN

A→BE

)⊗n ◦ Wπ
An = id⊗n

BE→B̃E Ẽ
◦(
UN

A→BE

)⊗n
, (A26)

∀π ∈ Sn :
(
Wπ−1

Bn ⊗ Wπ−1

En

) ◦ (
UN

A→BE

)⊗n ◦ Wπ
An = (

UN
A→BE

)⊗n
, (A27)

and the equality in Eq. (A21). Furthermore, the symmetrization can be accomplished by one-way LOCC (Bob randomly picks
π , applies Wπ

Bn , communicates the value to Eve, who applies Wπ
En at the input and Wπ−1

B̃n
E

⊗ Wπ−1

Ẽ n at the output), and is thus

free in our model. Since the symmetrized protocol, the target channel [id⊗n
BE→B̃E Ẽ

◦(UN
A→BE )⊗n], and the channel (UN

A→BE )⊗n are
permutation covariant, we can now invoke the post-selection technique [[89], Theorem 1] to conclude that as long as we choose
ε′ = ε(n + 1)−2(|A|2−1), then it is guaranteed that

sup
ψRAn

1
2

∥∥[
id⊗n

BE→B̃E Ẽ
◦(
UN

A→BE

)⊗n]
(ψRAn ) ⊗ �L

B1E1
− PBnEnB0E0→B̃n

E ẼnB1E1

([(
UN

A→BE

)⊗n
(ψRAn )

] ⊗ �K
B0E0

)∥∥
1 �

√
13ε. (A28)

Propagating this choice of ε′ to the quantity in Eq. (A22), this means that we require

log2 L − log2 K � H ε(n+1)−2(|A|2−1)

min (Bn|ÂnR′)(UN )⊗n(ζ ) − 2 log2

(
1

ε

)
− 4(|A|2 − 1) log2 (n + 1). (A29)

At this point, we invoke Ref. [[81], Eq. (6.92)], as well as the inequality 1 − √
1 − δ2 � δ2/2 holding for all δ ∈ [0, 1], to

conclude the following bound for α > 1:

H ε(n+1)−2(|A|2−1)

min (Bn|ÂnR′)(UN )⊗n(ζ )

� Hα (Bn|ÂnR′)(UN )⊗n(ζ )|(UN )⊗n(ζ ) + 2 log2

(
ε(n + 1)−2(|A|2−1)) − 1

α − 1
(A30)

� inf
φRAn

Hα (Bn|R)ω|ω − 2 log2(1/ε) + 4(|A|2 − 1) log2 (n + 1) − 1

α − 1
(A31)

= Hα (N⊗n) − 2 log2(1/ε) + 4(|A|2 − 1) log2 (n + 1) − 1

α − 1
(A32)

= nHα (N ) − 2 log2(1/ε) + 4(|A|2 − 1) log2 (n + 1) − 1

α − 1
, (A33)

where the first equality follows from Proposition 17, with
ωRBn ≡ N⊗n

A→B(φRAn ), and the last equality critically relies
upon the additivity Hα (N⊗n) = nHα (N ) from Proposi-
tion 15, which in turn directly follows from the main
result of Ref. [19]. Putting everything together, we con-
clude that for ε ∈ (0, 1/13), there exists an (n, L/K,

√
13ε)

channel merging protocol for NA→B such that its en-
tanglement gain satisfies the following inequality for all
α > 1:

1

n
[log2 L − log2 K] � Hα (N )

− α

n(α − 1)

[
2 log2

(
1

ε

)
+ 4(|A|2 − 1) log2(n + 1) + 1

α

]
.

(A34)

We arrive at the statement of the proposition by a final substi-
tution ε′′ = √

13ε ∈ (0, 1), which implies that ε = (ε′′)2/13
and 2 log2(1/ε) = 4 log2(1/ε′′) + 2 log2 13. �

3. Quantum channel merging capacity is equal to the entropy
of a channel

We can now put together the previous two propositions to
conclude the following theorem:

Proof of Theorem 10. By applying the limits n → ∞
and ε → 0, the following bound is a consequence of
Proposition 23:

CM (N ) � H (N ). (A35)

For an arbitrary α > 1, ε ∈ (0, 1), and δ > 0, we can conclude
from Proposition 24 that there exists an (n, 2n[Hα (N )−δ], ε)
channel merging protocol by taking n sufficiently large. This
implies that Hα (N ) is an achievable rate for all α > 1. How-
ever, since this statement is true for all α > 1, we can conclude
that the rate supα>1 Hα (N ) = H (N ) is achievable also. This
establishes that CM (N ) � H (N ). �

APPENDIX B: MAX-MUTUAL INFORMATION OF A
CHANNEL AND THE ASYMPTOTIC EQUIPARTITION

PROPERTY

In this Appendix, we point out how the max-mutual in-
formation of a quantum channel is a limit of the sandwiched
Rényi mutual information of a channel, the latter having been
defined in Ref. [116]. We then show how to arrive at an
alternate proof of the asymptotic equipartition property in Ref.
[[92], Theorem 8] by making use of this connection.

First recall that the sandwiched Rényi mutual informa-
tion of a channel is defined for α ∈ (0, 1) ∪ (1,∞) as
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[[116], Eq. (3.5)]

Iα (N ) ≡ max
ψRA

Iα (R; B)ω, (B1)

where

ωRB ≡ NA→B(ψRA), (B2)

Iα (R; B)ω ≡ min
σB

Dα (ωRB‖ωR ⊗ σB), (B3)

where Dα is the sandwiched Rényi relative entropy from
Eq. (100). It was subsequently used in Ref. [15]. The
max-mutual information of a channel is equal to [[92],
Definition 4]

Imax(N ) ≡ max
ψRA

Imax(R; B)ω, (B4)

Imax(R; B)ω ≡ min
σB

Dmax(ωRB‖ωR ⊗ σB). (B5)

Proposition 25. For a quantum channel NA→B, the follow-
ing limit holds:

Imax(N ) = lim
α→∞ Iα (N ). (B6)

Proof. To see this, consider that

lim
α→∞ Iα (N )

= lim
α→∞ max

ψRA

min
σB

Dα (NA→B(ψRA)‖ψR ⊗ σB) (B7)

= sup
α>1

max
ψRA

min
σB

Dα (NA→B(ψRA)‖ψR ⊗ σB) (B8)

� max
ψRA

min
σB

sup
α>1

Dα (NA→B(ψRA)‖ψR ⊗ σB) (B9)

= max
ψRA

min
σB

Dmax(NA→B(ψRA)‖ψR ⊗ σB) (B10)

= Imax(N ). (B11)

Now consider that

lim
α→∞ Iα (N )

= sup
α>1

max
ψRA

min
σB

Dα (NA→B(ψRA)‖ψR ⊗ σB) (B12)

� sup
α>1

min
σB

Dα (NA→B(�RA)‖�R ⊗ σB) (B13)

= min
σB

sup
α>1

Dα (NA→B(�RA)‖�R ⊗ σB) (B14)

= min
σB

Dmax(NA→B(�RA)‖�R ⊗ σB) (B15)

= Imax(N ), (B16)

with the exchange of min and sup in the last line following
from Ref. [[117], Corollary A.2]. The last equality follows
from the remark after Ref. [[92], Definition 4]. �

The smoothed max-mutual information of a quantum chan-
nel NA→B is then defined for ε ∈ (0, 1) as [[92], Definition 5]

Iε
max(N ) ≡ inf

Ñ : P(N ,Ñ )�ε

Imax(Ñ ). (B17)

(Here we smooth with respect to purified distance for conve-
nience.) We then have that [[92], Theorem 8]

lim
n→∞

1

n
Iε
max(N⊗n) � I (N ), (B18)

where I (N ) is the mutual information of a channel [26],
defined as

I (N ) = lim
α→1

Ĩα (N ) = sup
ψRA

I (R; B)ω, (B19)

where ωRB ≡ NA→B(ψRA).
To arrive at an alternate proof of the upper bound in Ref.

[[92], Theorem 8], consider that an application of Ref. [[81],
Eq. (6.92)], definitions, and arguments similar to those in the
first part of Theorem 21 imply the following inequality for all
α > 1 and ε ∈ (0, 1):

Iε
max(N⊗n) � Iα (N⊗n) + f (ε, α) (B20)

= nIα (N ) + f (ε, α), (B21)

where the equality follows from Ref. [[116], Lemma 6] and
f (ε, α) is a function of ε and α that vanishes when dividing
by n and taking the large n limit. Dividing by n and taking the
limit n → ∞, we find that

lim
n→∞

1

n
Iε
max(N⊗n) � Iα (N ). (B22)

Since the inequality holds for all α > 1, we can take the limit
α → 1, apply Eq. (B19), and conclude the bound in Eq. (B18).

APPENDIX C: DATA PROCESSING OF THE CHOI
DIVERGENCE UNDER PARTICULAR SUPERCHANNELS

Proposition 26. Let � be a superchannel of the following
form:

�(NA→B) =
∑

x

p(x) 	x
BE→D ◦ NA→B ◦ 
x

C→AE , (C1)

where p(x) is a probability distribution, and for each x the
map 	x

BE→D is an arbitrary quantum channel, and 
x
C→AE is a

unital quantum channel (hence |C| = |A||E |). Then the Choi
divergence is monotone under such superchannels:

D�(N‖M) � D�[�(N )‖�(M)]. (C2)

Proof. To prove it, we first prove the monotonicity under
any superchannel of the form

ϒ(NA→B) = 	BE→D ◦ NA→B ◦ 
C→AE , (C3)

with 	BE→D an arbitrary quantum channel, and 
C→AE

a unital quantum channel. Indeed, denoting by 
t
AE→C

the quantum channel obtained from 
C→AE by taking
the transpose on each of its Kraus operators, and denot-
ing by Ã, C̃, and Ẽ , replicas of systems A, C, and E ,
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we find that

D�(ϒ(N )‖ϒ(M)) = D(ϒ(NA→B)(�C̃C )‖ϒ(MA→B)(�C̃C )) (C4)

= D((	BE→D ◦ NA→B ◦ 
C→AE )(�C̃C )‖(	BE→D ◦ MA→B ◦ 
C→AE )(�C̃C )) (C5)

� D((NA→B ◦ 
C→AE )(�C̃C )‖(MA→B ◦ 
C→AE )(�C̃C )) (C6)

= D
((


t
ÃẼ→C̃ ◦ NA→B

)(
�ÃA ⊗ �ẼE

)∥∥(

t

ÃẼ→C̃ ◦ MA→B
)(

�ÃA ⊗ �ẼE

))
(C7)

� D(NA→B(�ÃA ⊗ �ẼE )‖MA→B(�ÃA ⊗ �ẼE )) (C8)

= D(NA→B(�ÃA)‖MA→B(�ÃA)) (C9)

= D�(N‖M), (C10)

where, in both inequalities, we used data processing of the divergence D, for the second equality we used the relation

C→AE (�C̃C ) = 
t

ÃẼ→C̃
(�ÃA ⊗ �ẼE ), and for the third equality we used the property D(ρ ⊗ ω‖σ ⊗ ω) = D(ρ‖σ ) [69]. Now,

to prove the monotonicity under � as in Eq. (C1), we write � = ∑
x p(x)ϒx, where each ϒx has the form Eq. (C3). With this

notation, we find that

D�(�(N )‖�(M)) = D

(∑
x

p(x)ϒx(NA→B)(�C̃C )

∥∥∥∥∑
x

p(x)ϒx(MA→B)(�C̃C )

)
(C11)

= D

(
TrX

[ ∑
x

p(x)ϒx(NA→B)(�C̃C ) ⊗ |x〉〈x|X
]∥∥∥∥TrX

[ ∑
x

p(x)ϒx(MA→B)(�C̃C ) ⊗ |x〉〈x|X
])

(C12)

� D

(∑
x

p(x)ϒx(NA→B)(�C̃C ) ⊗ |x〉〈x|X
∥∥∥∥∑

x

p(x)ϒx(MA→B)(�C̃C ) ⊗ |x〉〈x|X
)

(C13)

� D

(∑
x

p(x)NA→B(�ÃA) ⊗ |x〉〈x|X
∥∥∥∥ ∑

x

p(x)MA→B(�ÃA) ⊗ |x〉〈x|X
)

(C14)

= D
(
NA→B(�ÃA)

∥∥MA→B(�ÃA)
)

(C15)

= D�(N‖M), (C16)

where, in the first inequality, we used the monotonicity of
the divergence under data processing, and for the second in-
equality, we used the monotonicity under maps of the form in
Eq. (C3). �

APPENDIX D: OPTIMIZING THE ADVERSARIAL
CHANNEL DIVERGENCE

By definition, we always have that

Dadv(N‖M) � sup
ψRA

inf
σRA

D(NA→B(ψRA)‖MA→B(σRA)), (D1)

where ψRA is pure with system R isomorphic to system A.
To see the claim after Eq. (219), let ρRA be an arbitrary state

with purification φR′RA. It thus holds that φR′RA is a purification
of ρA, with R′R acting as the purifying systems. By taking
a “canonical” purification of ρA that is in direct correspon-
dence with its eigendecomposition, there exists a purification
ϕSA of ρA with system S isomorphic to system A. Since the
purification φR′RA is related by an isometric channel US→R′R
to the purification ϕSA as φR′RA = US→R′R(ϕSA) and applying
the isometric invariance of generalized divergences [118], we
conclude for an arbitrary state ωSA that

D(NA→B(ϕSA)‖MA→B(ωSA))

= D((US→R′R ◦ NA→B)(ϕSA)‖(US→R′R ◦ MA→B)(ωSA))

(D2)

= D{NA→B(φR′RA)‖MA→B(US→R′R(ωSA))} (D3)

� D{NA→B(ρRA)‖MA→B((TrR′ ◦US→R′R)(ωSA))} (D4)

� inf
σRA

D(NA→B(ρRA)‖MA→B(σRA)). (D5)

The first inequality is from data processing under the partial
trace over R′. Since the inequality holds for arbitrary ωSA, we
conclude that

inf
σRA

D(NA→B(ρRA)‖MA→B(σRA))

� inf
ωSA

D(NA→B(ϕSA)‖MA→B(ωSA)). (D6)

We can then take a supremum to conclude that

inf
σRA

D(NA→B(ρRA)‖MA→B(σRA))

� sup
ϕSA

inf
ωSA

D(NA→B(ϕSA)‖MA→B(ωSA)). (D7)

Since the inequality holds for an arbitrary choice of ρRA, we
conclude that

Dadv(N‖M) � sup
ϕSA

inf
ωSA

D(NA→B(ϕSA)‖MA→B(ωSA)). (D8)

This concludes the proof.
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