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Neural-network variational quantum algorithm for simulating many-body dynamics
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We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum
many-body systems. Based on a modified restricted Boltzmann machine (RBM) wave function ansatz, the
proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement
cost. Using a qubit recycling strategy, only one ancilla qubit is required to represent all the hidden spins in an
RBM architecture. The variational algorithm is extended to open quantum systems by employing a stochastic
Schrödinger equation approach. Numerical simulations of spin-lattice models demonstrate that our algorithm is
capable of capturing the dynamics of closed and open quantum many-body systems with high accuracy without
suffering from the vanishing gradient (or “barren plateau”) issue for the considered system sizes.
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I. INTRODUCTION

Accurate and efficient simulation of quantum many-body
dynamics remains one of the most challenging problems in
physics, despite nearly a century of progress. Renewed inter-
est has been sparked in this field due to recent experiments
with Rydberg atoms [1,2], which suggest the existence of
scar states which do not thermalize. This has led to new
studies of fragmented Hilbert spaces for such constrained
models [3–5] along with further studies on fractons, which
are restricted excitations which can disperse only in certain
directions [6,7]. These studies also tie into the more estab-
lished field of many-body localization [8–10], which studies
the possibility of extremely slow relaxation of high-energy
states in systems with strong disorder. As many of the above
phenomena are hard to study analytically, there is a strong
motivation to develop powerful numerical tools to further our
understanding.

One of the most powerful numerical tools at the disposal
of condensed matter theorists is quantum Monte Carlo, which
has performed remarkably well for equilibrium physics of
numerous systems [11,12]. This has made the applicability of
this technique important to study real time dynamics. This is
often impossible due to the infamous sign problem [13,14],
and one of the few promising ways in which practitioners have
attempted to avoid this is by transferring the real-time behav-
ior to functions which form coefficients in the wave function.
These functions then need to have a variational form which
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can be optimized to get reasonably good results on small
systems [15,16]. Even though one can get around the sign
problem for these cases, severe ergodicity restrictions in the
Monte Carlo updates may render them inefficient and necessi-
tate specialized algorithms [17–19]. To allow variational wave
functions a higher degree of expressibility, some ideas from
machine learning, such as restricted Boltzmann machines
(RBMs), have been used [20–26] to serve as a representa-
tion. This has led to a well-controlled way of approximating
complicated wave functions with rich spatial features. Neural
networks have also been used to simulate open quantum sys-
tems, which are numerically more challenging to study than
closed systems, and promising results have been achieved for
both dynamical [27] and steady state [21,28,29] features.

Due to recent advances in quantum computing, it has
become possible to program a small number of qubits to
directly represent a quantum system using noisy intermediate-
scale quantum (NISQ) technology [30,31]. One of the many
applications of this setup is to speed up the optimization
step for variational wave functions [32–37]. This serves as a
substantial improvement for cases where variational Monte
Carlo is inefficient. Direct variational optimization of the
time-dependent Schrödinger equation [38–41] has also shown
promise, and many general processes can be mapped onto this
technique [42].

In this paper, we engineer a neural-network variational
quantum algorithm to simulate the dynamics of quantum
many-body systems. The algorithm integrates the power of
an RBM representation of quantum states with a quantum
speed-up coming from transferring the computationally heavy
step of calculating expectation values onto the quantum com-
puter. We show that the variational algorithm can be extended
to the dynamics of open quantum systems using a stochas-
tic Schrödinger equation approach. The proposed method is
benchmarked against canonical spin-lattice models and per-
forms well for dynamics of both closed and open systems.

2643-1564/2021/3(2)/023095(13) 023095-1 Published by the American Physical Society

https://orcid.org/0000-0002-4554-6539
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023095&domain=pdf&date_stamp=2021-05-05
https://doi.org/10.1103/PhysRevResearch.3.023095
https://creativecommons.org/licenses/by/4.0/


LEE, PATIL, ZHANG, AND HSIEH PHYSICAL REVIEW RESEARCH 3, 023095 (2021)

. 

. 

.

. 

. 

.

. . .

E
N

T

E
N

T

|v1 Rv1(αv1)

. . .Rh1(αh1)|h1

|v2 Rv2(αv2)

|h2 |hMRh2(αh2)

E
N

T . 
. 
.

RhM
(αhM

)

RvN
(αvN

)|vN

FIG. 1. Quantum circuit for preparing the unitary-coupled restricted Boltzmann machine (uRBM) state with the qubit recycling scheme
described in Eq. (4). All qubits are initialized in |0〉 state. The single rotations are governed by the relations in Eq. (5). The jth entangling
block implements the exp(i

∑
i W I

i j v̂
z
i ĥz

j ) operator, and its explicit form is given in Appendix A. After each entangling block, the ancilla qubit
representing the jth hidden spin is projected onto |+〉 state before being recycled.

II. NEURAL NETWORK QUANTUM STATES

An RBM quantum state can be obtained from a bipartite
Ising Hamiltonian

ĤRBM(θ ) =
∑

i

biv̂
z
i +

∑
j

m j ĥ
z
j +

∑
i j

Wi j v̂
z
i ĥz

j, (1)

where v̂z
i or ĥz

j is the Pauli-Z operator for the visible or
hidden qubit, respectively. We denote the complex-valued
variational RBM parameters as θ = [b, m,W ]. To prepare a
complex-valued RBM state using the state preparation pro-
tocol proposed in Ref. [43], we first entangle N + M qubits
(representing N visible and M hidden spins of an RBM archi-
tecture) according to

|�vh(θ )〉 = exp[ĤRBM(θ )]

Nvh
| + + · · · +〉vh, (2)

where |+〉 = 1√
2
(|0〉 + |1〉), Nvh =√

vh〈+ + · · · + |exp[2ĤR
RBM(θ )]| + + · · · +〉vh, ĤR

RBM(θ )

is the Hermitian part of the RBM Hamiltonian, and the
subscript vh denotes visible and hidden (ancilla) qubits.
Equation (2) gives a conceptually simple wave function
that could be generated by first applying single-qubit
transformations exp(biv̂

z
i ) and exp(mjĥ

z
j ) on individual qubits

followed by exp(Wi j v̂
z
i ĥz

j ) to couple the visible and hidden
qubits.

Once the extended wave function |�vh(θ )〉 is generated,
all ancilla qubits (i.e., hidden spins) are postselected for |+〉h,
and the desired RBM state is implemented in a quantum
circuit

|�v (θ )〉 = h〈+ + · · · + |�vh(θ )〉
Nv

, (3)

where Nv =
√

〈�vh(θ )|P̂(h)
+ |�vh(θ )〉 and P̂(h)

+ = | +
+ · · · +〉h〈+ + · · · + | projects all the hidden spins onto
|+〉 state.

Observing that Eq. (3) can be cast in the following form:

|�v (θ )〉 = 1

Nv

(
〈+|

{
exp

[
ĥz

M

(
mM +

∑
i

WiM v̂z
i

)]}
|+〉

)
M

(
〈+|

{
exp

[
ĥz

M−1

(
mM−1 +

∑
i

WiM−1v̂
z
i

)]}
|+〉

)
M−1

· · ·

×
(

〈+|
{

exp

[
ĥz

1

(
m1 +

∑
i

Wi1v̂
z
i

)]}
|+〉

)
1

exp

(∑
i

biv̂
z
i

)
| + + · · · +〉v, (4)

where [〈+|[...]|+〉] j encodes the effect of jth hidden spin
on all visible spins, it is clear that a single ancilla qubit is
sufficient to implement the entangling operation sequentially.

The above quantum operations are nonunitary when RBM
parameters are complex, i.e., bR

i �= 0, mR
j �= 0, or W R

i j �= 0,
where we use superscripts R and I to denote the real and imag-
inary parts of the RBM parameters. The nonunitary two-qubit
operations mediating entanglement across the visible-hidden
layer are difficult to implement. One could adopt a proba-
bilistic scheme [44] to generate the interlayer couplings with
an extra ancilla qubit. However, this approach is difficult

to scale with the number of qubits since it involves NM
projective measurements. The probability of one successful
sampling has therefore a lower bound of exp(−2

∑
i j |wi j |) ∼

exp[−O(NM )].
For this reason, we only consider the unitary-coupled RBM

(uRBM) ansatz in which W R
i j = 0 for the rest of this pa-

per [43]. Figure 1 depicts a quantum circuit for preparing
a uRBM state composed of N visible spins and M hidden
spins. After initializing all qubits in |0〉 state, we first perform
single qubit rotations representing the terms exp(biv̂

z
i ) and

exp(mjĥ
z
j ). The rotation angles αvi/h j are governed by the
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relations

Rvi (αvi )|0〉 = exp
(
biv̂

z
i

)|+〉
cvi

, Rhj (αh j )|0〉 = exp
(
mjĥ

z
j

)|+〉
chj

,

(5)

where the normalization factors are cvi =√
〈+| exp (2bR

i v̂z
i )|+〉 and chj =

√
〈+| exp (2mR

j ĥz
j )|+〉.

The jth entangling block implements the coupling
exp(i

∑
i W I

i j v̂
z
i ĥz

j ) and is composed of a series of controlled-Z
rotations (see Appendix A for details). Employing the qubit
recycling scheme described in Eq. (4), the ancilla qubit
representing the jth hidden spin is projected onto |+〉 state
after each entangling block before being recycled. Thus, we
only need N + 1 qubits in total, and the number of quantum
gates is proportional to the number of variational parameters,
Nvar, which scales as O(αN2), where α = M/N .

With uRBM, there are only M projective measurements of
hidden spins on |+〉 state; therefore, the success probability
has improved to exp[−O(M )]. We can further mitigate these
probabilistic projective measurements. One approach is to
rescale the variational parameters such that the hidden spins
remain close to the |+〉 state (see Ref. [44]). Alternatively, we
can use a Monte Carlo scheme with classical postprocessing
(see Appendix B) that enables us to entirely circumvent the
postselection.

III. TIME-DEPENDENT VARIATIONAL ALGORITHM

We adopt a hybrid quantum-classical approach based on
the time-dependent variational Monte Carlo (t-VMC) method
to simulate the quantum dynamics [45–47]. In the t-VMC
framework, we minimize the residue in minθ ||i ∂|�(θ )〉

∂t −
Ĥs|�(θ )〉||, where Ĥs is the system Hamiltonian, and the norm
is defined as the square root of the inner product. The resulting
equations of motion for the time-dependent variational param-
eters are

θ̇n =
∑

m

A−1
nm Im[ fm]. (6)

The covariance matrix A and force vector f read

Anm = Re〈Ô†
nÔm〉v − Re〈Ô†

n〉vRe〈Ôm〉v, (7)

fm = 〈Ô†
mĤs〉v − Re〈Ô†

m〉v〈Ĥs〉v, (8)

where 〈· · · 〉v = 〈�v (θ )| · · · |�v (θ )〉. The derivative operators
with respect to the nth variational parameter is defined as
Ôn = ∂ ln |�v (θ )〉

∂θn
. For the RBM state defined in Eq. (3), the

Ôn operators can be derived analytically, which allows an
efficient way of obtaining the gradients

Ôn =
⎧⎨
⎩

i1−δ v̂z
i , if θn = bi,

i1−δ tanh (mj + ∑
i Wi j v̂

z
i ), if θn = mj,

iv̂z
i tanh (mj + ∑

i Wi j v̂
z
i ), if θn = Wi j,

(9)

where δ = 0 if θn = bI
i or θn = mI

j or θn = W I
i , and

δ = 1 if θn = bR
i or θn = mR

j . The variational parameters

are updated iteratively according to θn(t + δt ) = θn(t ) +∑
m A−1

nm Im[ fm]δt , where δt is the update time step.
In conventional t-VMC, the covariance matrix A and force

vector f in Eq. (7) are obtained from a Markov chain random
walk approach, such as the Metropolis-Hastings algorithm.
Such a sampling could be challenging for systems that ex-
hibit long correlation time, e.g., systems near phase transition.
In a hybrid quantum-classical framework, both A and f are
sampled directly from the output of the quantum circuit de-
picted in Fig. 1, circumventing the difficulties associated with
Markov chain methods.

IV. SIMULATION RESULTS

To demonstrate the performance of the uRBM algorithm in
simulating many-body quantum dynamics, we first consider a
one-dimensional (1D) transverse-field Ising (TFI) model:

ĤTFI = −h
∑

i

σ̂ x
i −

∑
<i j>

σ̂ z
i σ̂ z

j , (10)

where h denotes the strength of the transverse field. Here,
we study the dynamics of a TFI model induced by quantum
quench. The TFI system is initially prepared in the ground
state for an initial transverse field hi. The variational param-
eters of the initial ground state wave function are obtained
using a hybrid imaginary time algorithm (see Appendix C).
At t = 0, we introduce an instantaneous change to the trans-
verse field h f �= hi and let the system evolve under the new
Hamiltonian.

In Figs. 2(a) and 2(b), we consider a TFI model of 14 spins
with periodic boundary conditions, and the transverse field is
changed from hi = 0.5 to the critical value of h f = 1.0 at t =
0. In the simulations, we use δt = 0.0005 and α = M/N = 8.
We compare the results from the uRBM algorithm with re-
sults from exact diagonalization by studying the evolution of
transverse spin polarization 〈σ x

1 〉 and its correlation 〈σ x
1 σ x

2 〉.
The good agreement with exact results confirms the accuracy
of the uRBM algorithm in capturing quantum many-body
dynamics.

Next, we consider a 1D anisotropic Heisenberg model with
periodic boundary condition in a magnetic field:

ĤH = −hz

∑
i

σ̂ z
i +

∑
<i j>

(
Jzσ̂

z
i σ̂ z

j + σ̂ x
i σ̂ x

j + σ̂
y
i σ̂

y
j

)
, (11)

where hz is the strength of the longitudinal field, and Jz is
the longitudinal coupling. We perform a quantum quench by
instantaneously changing the longitudinal coupling from Jz =
1.0 to 0.5 at t = 0. Figures 2(c) and 2(d) depict the dynamics
of spin-spin correlations of a 14-spin Heisenberg model with
hz = 1.0. We use δt = 0.0002 and α = 8 in our simulations.
Again, we observe nearly exact agreement between the results
from the uRBM algorithm and exact diagonalization, further
confirming the capability of the hybrid uRBM algorithm. This
can easily be generalized to the more interesting case of
random fields in the z direction, which allows the integrable
Heisenberg chain to express chaotic behavior and many-body
localization [48]. Additionally, we also perform the uRBM
simulation of a two-dimensional triangular antiferromagnetic
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FIG. 2. Time evolution induced by quantum quench. Results from the unitary-coupled restricted Boltzmann machine (uRBM) algorithm
(symbols) are compared with exact calculations (solids lines). (a) and (b) Dynamics of transverse polarization and its correlation in a one-
dimensional (1D) Ising model. (c) and (d) Dynamics of magnetization and transverse polarization correlations in a 1D Heisenberg model in a
global field.

Ising (TAFI) model (see Appendix D) and again observe ex-
cellent agreement with exact calculations.

V. OPEN QUANTUM SYSTEMS

Extending the variational uRBM algorithm to open
quantum systems is conceptually straightforward using the
stochastic wave function approach. The dynamics of the den-
sity matrix ρ̂ of an open quantum system can be described by
the Linblad master equation [49]:

d ρ̂

dt
= −i[Ĥs, ρ̂] + 1

2

∑
k

[2L̂k ρ̂L̂†
k − {L̂†

k L̂k, ρ̂}], (12)

where {.} denotes an anticommutator, Ĥs is the system Hamil-
tonian, and the Linblad operators L̂k describe the interaction
between the system and a Markovian bath. Instead of solving
the Linblad master equation directly, an open quantum system
can be equivalently described by an ensemble of pure state
trajectories [50,51]. The evolution of these pure state trajec-
tories is governed by a non-Hermitian effective Hamiltonian

Ĥeff = Ĥs − i
2

∑
k (L̂kL̂†

k − 〈L̂kL̂†
k 〉) and subject to continuous

measurement. The details of implementing these stochastic
wave function trajectories in quantum circuits can be found
in Appendix J.

We test the ability of the hybrid uRBM algorithm in
simulating the dynamics of an open quantum system by con-
sidering a 6-spin 1D TFI model with open boundary condition
coupled to a Markovian bath. All the spins of the TFI model
are initially prepared in |+〉 = 1√

2
(|0〉 + |1〉) state. The Lin-

blad operator is L̂k = √
γ σ̂+

k , where σ̂+
k is a raising operator

acting on the kth spin, and γ determines the strength of
system-bath interaction. Other parameters used in the simula-
tion are α = M/N = 6, γ = 0.05, h = 1.0, and δt = 0.0005.
The dynamics of transverse polarization and its correlation
are compared with those from directly solving Eq. (12). It
can be seen in Fig. 3 that the uRBM algorithm is capable of
simulating the dynamics of open systems with high accuracy.
This further extends the applicability of the hybrid uRBM
algorithm to study novel nonequilibrium phenomena in many-
body open quantum systems such as phase transitions [52,53].
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FIG. 3. Dynamics of a dissipative one-dimensional (1D) Ising model obtained from exact numerical solution of Eq. (12) (solid lines) and
from the hybrid unitary-coupled restricted Boltzmann machine (uRBM) algorithm (symbols). The simulation results from the hybrid uRBM
algorithm are obtained from averaging over 10 000 pure state trajectories, and the error bars are smaller than the symbols

VI. DISCUSSIONS

The proposed hybrid uRBM algorithm offers several ad-
vantages compared with other NISQ variational algorithms.
First, our numerical results up to 18 visible spins (see Ap-
pendix I) show that the gradients in the uRBM ansatz do
not decay exponentially with system size, suggesting the ab-
sence of the vanishing gradient (or “barren plateau”) issue
that affects many variational quantum algorithms [54]. In fact,
classical implementations of VMC using RBM ansatz have
been demonstrated on systems with more than 100 visible
spins [55,56].

Second, real and imaginary time-variational algo-
rithms [38,39,42,57] typically require significantly more
measurements (and distinct quantum circuits) than gradient
descent approaches such as variational quantum eigensolver
due of the estimation of covariance matrix A. The number
of matrix elements in A scales as O(N2

var), where Nvar is
the number of variational parameters. This measurement
cost could be prohibitive in large-scale simulation in NISQ
devices since Nvar will be a big number. Within RBM ansatz,
all matrix elements in A can be expressed analytically in
terms of the Pauli-Z operators of the visible spins [see
Eq. (9)]. A single measurement in the Z basis contributes to
the statistics of all matrix elements in A, thus significantly
reducing the number of measurements and distinct circuits
required.

Additionally, the uRBM algorithm offers great flexibility
when it comes to the number of ancilla qubits (for hid-
den spins) and circuit depth. Employing the qubit recycling
scheme depicted in Fig. 1, we only need N + 1 total number
of qubits but a circuit depth of O(αN2) to implement the
uRBM state. At the opposite end of the spectrum, we could
use M ancilla qubits to represent M hidden spins. This reduces
the circuit depth to O(N ), assuming full connectivity like
those found in ion-trap-based quantum computers [58,59].
Of course, one could envision an optimal tradeoff between
qubit number and circuit depth that takes the architecture of
the hardware into account. Additionally, we also assess the

robustness of our algorithm against imperfections of quantum
devices by performing noisy simulations. It is found that the
algorithm still yields reliable results in the presence of exper-
imental errors (see Appendix F).

Finally, the accuracy of the uRBM algorithm can be sys-
tematically improved by including more hidden spins. For
quantum systems that are very strongly correlated, our method
can be extended to deep Boltzmann machines (DBMs) with
modifications. A DBM contains more than one layer of hid-
den spins and has been shown to efficiently represent most
quantum states generated by quantum dynamics [60,61]. The
generalization of the variational algorithm to DBM will be
presented in a future publication.

VII. CONCLUSIONS

We have introduced a neural-network-based variational
quantum algorithm to simulate the dynamics of closed and
open quantum many-body systems. Our results show that
the proposed algorithm is capable of capturing the dynamics
of both types of systems with high accuracy. A key ben-
efit that the integration of quantum devices provides over
traditional variational quantum Monte Carlo is the elimina-
tion of severe ergodicity issues. Additionally, the proposed
variational algorithm offers several advantages over existing
NISQ approaches, including absence of barren plateaus for the
considered system sizes, flexibility in qubit number vs circuit-
depth tradeoff, and low measurement cost. These advantages
make the algorithm particularly appealing for implementation
in NISQ devices.

Note: During the preparation of this paper, we became
aware of related papers based on deep quantum feedforward
neural networks [62] and matrix product states [63].
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APPENDIX A: IMPLEMENTATION OF
THE ENTANGLING GATES

For uRBM ansatz (W R
i j = 0), the jth entangling block in

the quantum circuit of Fig. 1 in the main text implements
the operation exp(i

∑
i W I

i j v̂
z
i ĥz

j ) that couples the jth hidden
spin with all the visible spins. The quantum circuit for each
coupling term exp(iW I

i j v̂
z
i ĥz

j ) is shown in Fig. 4(a), where
θi j = −θ ′

i j = −W I
i j . For full RBM states with complex value

couplings, the nonunitary operation exp(W R
i j v̂

z
i ĥz

j ) can be im-
plemented using the probabilistic scheme introduced by Xia
and Kais [44] to generate the inter-layer couplings with an
extra ancilla qubit. The quantum circuit of this scheme is
shown in Fig. 4(b). The rotation angles in the controlled gates
are

θi j,1 = 2 sin−1
[√

exp
(
W R

i j − ∣∣W R
i j

∣∣)],
θi j,2 = 2 sin−1

[√
exp

( − W R
i j − ∣∣W R

i j

∣∣)]. (A1)

After each operation exp(
∑

i W R
i j v̂

z
i ĥz

j ) is implemented, the
ancilla qubit is measured. If the ancilla qubit is in state
|1〉, we continue to the next coupling term; otherwise, we
start from the beginning. Given the NM number of proba-
bilistic measurements of the ancilla qubit, this approach is
difficult to scale with the number of qubits for large-scale
simulation.

|vi

|hj

|0 Ry(θij,1) Ry(θij,2) Ry(θij,1)Ry(θij,2)

|vi

|hj Rz(θij) Rz(θij)

(a)

(b)

FIG. 4. Quantum circuits for the coupling terms
(a) exp(i

∑
i W I

i j v̂
z
i ĥz

j ) and (b) exp(
∑

i W R
i j v̂

z
i ĥz

j ) between ith
visible and jth hidden spins.

APPENDIX B: ENSEMBLE PREPARATION
OF URBM STATES

Here, we discuss an ensemble preparation of the uRBM
state without resorting to the probabilistic postselection of
hidden spins [43]. First, we note that each term on the right-
hand side of Eq. (4) in the main text can be written as

〈+|
{

exp

[
ĥz

j

(
mj +

∑
i

iW I
i j v̂

z
i

)]}
|+〉 =

∑
s=±

〈+|exp
(
mR

j ĥz
j

)|s〉〈s|exp

[(
imI

j +
∑

i

iW I
i j v̂

z
i

)
ĥz

j

]
|+〉

=
∑
s=±

Rs
(
mR

j

)〈s|exp

[(
imI

j +
∑

i

iW I
i j v̂

z
i

)
ĥz

j

]
|+〉, (B1)

where Rs(mR
j ) = 〈+|exp(mR

j ĥz
j )|s〉 can be computed classically, as it only involves single qubit operation. Using Eq. (B1), we

rewrite Eq. (4) in the main text such that

|�v (θ )〉 =
∑

sM=±
· · ·

∑
s1=±

1

Nv

[
M∏

j=1

Rsj (m
R
j )

]
〈sM |

{
exp

[
ĥz

M

(
imI

M +
∑

i

iW I
iM v̂z

i

)]}
|+〉 · · · 〈s1|

×
{

exp

[
ĥz

1

(
imI

1 +
∑

i

iW I
i1v̂

z
i

)]}
|+〉 exp

(∑
i

biv̂
z
i

)
| + + · · · 〉v =

∑
sM=±

· · ·
∑
s1=±

N�s
Nv

[
M∏

j=1

Rsj

(
mR

j

)]|��s
v (θ )〉, (B2)

where �s = [s1, · · · , sM] and N�s are the normalizations to
ensure 〈��s

v|��s
v〉 = 1. Here, |��s

v (θ )〉 is a visible-spin wave
function created by projecting hidden spins onto basis states
|s1 · · · sM〉h. Therefore, the state preparation protocol given
in Eq. (B2) replaces the probabilistic postselection of hid-
den spins with a summation over all possible �s of hidden
spins.

The expectation value of an observable Ô can be calculated

〈�v (θ )|Ô|�v (θ )〉

=
∫

dz|〈z|�v (θ )〉|2
[∫

dz′O(z, z′)
〈z′|�v (θ )〉
〈z|�v (θ )〉

]
. (B3)

The above equation suggests that the expectation value of an
observable Ô can be turned into the average of the expres-
sion inside the square bracket if we can efficiently sample z
according to the probability density |〈z|�v (θ )〉|2.

APPENDIX C: VARIATIONAL IMAGINARY
TIME EVOLUTION

In the numerical examples of closed systems in Fig. 2 of
the main text, the initial states are prepared as the ground
states of the initial Hamiltonians before quantum quenches.
The variational parameters of these initial wave functions
are obtained via a variational quantum-classical imaginary
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FIG. 5. Imaginary time evolution of (a) one-dimensional (1D) Ising model and (b) Heisenberg models. The solid lines are the exact
ground-state energy. The dashed black lines represent the imaginary time evolution using the variational unitary-coupled restricted Boltzmann
machine (uRBM) algorithm.

time evolution (ITE) following the stochastic reconfiguration
framework [64]. The update rule of the variational parameters
in the hybrid ITE algorithm is

θ̇n(τ ) =
∑

m

A−1
nm Re[ fm]. (C1)

where τ denotes the imaginary time, and the definitions of the
covariance matrix A and the force vector f are the same as
the real-time algorithm [i.e., Eqs. (7) and (8)] in the main text.
The parameters are updated iteratively

θn(τ + δτ ) = θn(τ ) + δτA−1Re[ f ], (C2)

where δτ is the imaginary time step. In our simulations, we
use δτ = 0.01 for 2500 steps. At τ = 0, the variational RBM
parameters are initialized as Gaussian random numbers with
zero mean and variance of 0.01. The ITE of the 14-spin 1D
Ising and Heisenberg models used in the main text are shown
in Fig. 5.

APPENDIX D: DYNAMICS OF TRIANGULAR
ANTIFERROMAGNETIC LATTICE

Here, we consider the dynamics of a two-dimensional
TAFI model with periodic boundary condition, a system
known for critical slowdown for a range of magnetic fields.
The Hamiltonian is given by

Ĥ = −h
∑

i

σ̂ x
i +

∑
<i j>

σ̂ z
i σ̂ z

j , (D1)

where h denotes the strength of the transverse field. A
schematic of the triangular lattice is shown in Fig. 6(a). We
perform a quantum quench by instantaneously changing the
transverse field from h = 0.5 to 1.0 at t = 0. We use δt =
0.0005 and α = M/N = 8 in our simulations. Figures 6(b)
and 6(c) show the dynamics of transverse spin polarization
〈σ x

1 〉 and its correlation 〈σ x
1 σ x

2 〉 of a 12-spin triangular lattice.
The good agreement with exact results for this more challeng-
ing example further demonstrate the capability of the uRBM
algorithm in capturing quantum many-body dynamics.

APPENDIX E: ERGODICITY PROBLEM IN TRIANGULAR
ANTIFERROMAGNETIC LATTICE

Here, we investigate the ergodicity issue of the TAFI model
in the classical limit (i.e., h = 0). The classical TAFI model
is one of the simplest examples of a frustrated magnet host-
ing a spin liquid phase at zero temperature [65]. The large
correlation lengths associated with scale invariant behavior
close to such phases lead to complex energy landscapes and a
poor performance of simple Metropolis-like updates in Monte
Carlo. Although it is possible in special cases to develop
efficient cluster algorithms, most frustrated spin systems do
not lend themselves to such methods. This is made explicit
for the TAFI in a uniform transverse field in Ref. [17], where
the authors develop a specialized cluster algorithm to study
the physics at low transverse fields. To quantify the per-
formance of standard Metropolis updates on the classical
TAFI, we calculate an autocorrelation function of the spin
correlation on lattice sites with maximal separation, i.e.,
σ z

(0,0)σ
z
(L/2,L/2), where the subscripts denote the spin position,

and L is the lattice length in each dimension. This is shown
for a range of sizes in Fig. 7, and we see that the time to
equilibrium grows with system size. As qualitative features
of the ground state phase remain similar at finite transverse
fields, we expect that similarly long autocorrelation times
would be seen in that case as well. Evidence for the same is
shown explicitly in Ref. [17]. With direct sampling in quan-
tum computers, we would circumvent this ergodicity issue.

APPENDIX F: NUMERICAL SIMULATIONS
WITH GAUSSIAN NOISE

To assess the robustness of the neural-network variational
algorithm against imperfections of near-term quantum com-
puters and errors due to a finite number of measurements, we
perform noisy simulations by adding random Gaussian noise
into the matrix elements of the covariance matrix A and the
force vector f at each time step δt . We use a Gaussian random
number of zero mean and standard deviation of δ. We perform
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(a)

FIG. 6. Time evolution in a two-dimensional triangular antiferromagnetic Ising lattice induced by quantum quench. (a) Configuration of
the triangular lattice with periodic boundary condition. (b) and (c) Results from the unitary-coupled restricted Boltzmann machine (uRBM)
algorithm (symbols) are compared with exact calculations (solids lines) for dynamics of transverse polarization and its correlation.

noisy simulation of a 6-spin 1D Ising model [see Eq. (10) of
the main text for Hamiltonian] and study its dynamics upon
quantum quench when the transverse field is changed from

FIG. 7. Autocorrelation of a two-dimensional triangular antifer-
romagnetic Ising model as a function of Monte Carlo step number
for O = σ z

(0,0)σ
z
(L/2,L/2). y aixs is scaled by 〈O(τ = 0)O(τ = 0)〉 to

ensure that maximum value is unity.

hi = 0.5 to h f = 1.0 at t = 0. The time evolution of transverse
polarization and its correlation is shown in Fig. 8. It can be
seen that our algorithm is robust against small errors, but as
the magnitude of the noise increases, the quantum dynamics
start to deviate significantly from the exact dynamics.

As the performance of quantum computers has improved
rapidly in recent years, error rates of 10−4 to 10−3 used in
Fig. 8 can be expected the near future. Particularly single-
qubit gate fidelity of 99.9999% [66] and two-qubit gate
fidelity of 99.9% [67,68] have already been demonstrated in a
trapped ion quantum computer.

APPENDIX G: DERIVATIONS OF WAVE FUNCTION
DERIVATIVES

The derivative of |�v (θ )〉 can be written as

∣∣∣∣∂�v

∂θn

〉
= h〈+ + · · · + |∂θn�̃vh〉

Ñv

− Re

[ 〈�̃vh|
Ñv

P̂(h)
+

|∂θn�̃vh〉
Ñv

]
h〈+ + · · · + |�̃vh〉

Ñv

,

(G1)

where |�̃vh(θ )〉 = exp[ĤRBM (θ )]| + + · · · +〉vh is the unnor-
malized wave function, and Nv =

√
〈�vh(θ )|P(h)

+ |�vh(θ )〉.
Here, ĤRBM(θ, h) is the RBM Hamiltonian with the hidden
spins ĥz

j replaced with binary values of ±1. The derivatives of
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FIG. 8. Noisy simulations of a 6-spin one-dimensional (1D) Ising lattice induced by quantum quench. To account for the imperfections of
actual quantum devices, random Gaussian noises with standard deviation δ are added to the covariance matrix A and the force vector f . Results
from noisy uRBM simulations (dashed lines) are compared with exact calculations (black solid lines) for dynamics of transverse polarization
and its correlation.

|�̃vh(θ )〉 are in turn given by

∂|�̃vh〉
∂bR

i

= v̂z
i |�̃vh〉,

∂|�̃vh〉
∂mR

j

= tanh

(
mj +

∑
i

Wi j v̂
z
i

)
|�̃vh〉,

∂|�̃vh〉
∂W R

i j

= v̂z
i tanh

(
mj +

∑
i

Wi j v̂
z
i

)
|�̃vh〉,

∂|�̃vh〉
∂bI

i

= iv̂z
i |�̃vh〉,

∂|�̃vh〉
∂mI

j

= i tanh

(
mj +

∑
i

Wi j v̂
z
i

)
|�̃vh〉,

∂|�̃vh〉
∂W I

i j

= iv̂z
i tanh

(
mj +

∑
i

Wi j v̂
z
i

)
|�̃vh〉. (G2)

Substituting Eqs. (G1)–(G2) into the derivative operator On =
∂ ln |�v〉

∂θn
, we arrive at Eq. (9) in the main text.

APPENDIX H: MEASURING DERIVATIVES
IN QUANTUM CIRCUITS

Here, we explain how to measure the matrix elements of
the covariance matrix A and force vector f . Since [Ôn, v̂

z
i ] =

0, the expectation values of 〈Ô†
nÔm〉v can be obtained by

measuring the visible spins in the z basis

〈Ô†
nÔm〉v = 〈�v (θ )|Ô†

nÔm|�v (θ )〉
=

∑
zv

|〈�v (θ )|zv〉|2Ô†
n(zv )Ôm(zv )

Monte Carlo sampling−−−−−−−−−−−→
according to Pv (zv )

×
Nexp∑
k=1

Ô†
n

(
zk
v

)
Ôm

(
zk
v

)
Nexp

, (H1)

where we have inserted the completeness relation
∑

zv
|zv〉〈zv|

into the second line. Here, Pv (zv ) = |〈�v (θ )|zv〉|2 is a prob-
ability density, zv = [zv,1, · · · , zv,N ] is a length-N binary
string, and Ôn is defined in Eq. (9) of the main text, with
the visible spin operators replaced by zv . Here, Nexp samples

of [z(k=1)
v · · · z(k=Nexp )

v ] are obtained from the quantum circuit
to estimate Ô†

n(zk
v )Ôm(zk

v ) according to the third line (the
Monte Carlo method) in the equation above. The expression
Ô†

n(zk
v )Ôm(zk

v ) can be evaluated efficiently once a compu-
tational state zk

v is specified. Here, 〈Ôn〉v can be similarly
calculated.

The evaluation of 〈Ô†
mĤ〉v is more complicated:

〈Ô†
mĤ〉v
= 〈�v (θ )|Ô†

mĤ |�v (θ )〉

=
∑
zv ,z̃v

〈�v (θ )|zv〉O†
m(zv )Ĥ (zv, z̃v )〈z̃v|�v (θ )〉

=
∑

zv

|〈�v (θ )|zv〉|2
[∑

z̃v

Ô†
m(zv )Ĥ (zv, z̃v )

〈z̃v|�v (θ )〉
〈zv|�v (θ )〉

]
,

× Monte Carlo sampling−−−−−−−−−−−→
according to Pv (zv )

Nexp∑
k=1

1

Nexp

×
[∑

j

Ô†
m

(
zk
v

)
Ĥ

(
zk
v, z̃k, j

v

) 〈
z̃k, j
v

∣∣�v (θ )〉〈
zk
v

∣∣�v (θ )〉

]
, (H2)

where Ĥ (zk
v, z̃k, j

v ) = 〈zk
v|Ĥ |z̃k, j

v 〉. For physical systems, the
Hamiltonian Ĥ = ∑

l wl P̂l is a linear combination of Pauli
strings, i.e., Ĥ is a sparse matrix such that each computational
state |zk

v〉 is only connected to a few other states |z̃k, j
v 〉. The

expression in the bracket of the third line of Eq. (H2) can then
be evaluated classically efficiently.
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FIG. 9. The norms of f and A−1 f as a function of system size for (a) and (b) a one-dimensional (1D) transverse field Ising model and
(c) and (d) a 1D Heisenberg model in the longitudinal field. The norms are normalized by the number of variational parameters. The blue and
red lines denote the average and minimum from 100 random initializations, respectively.

APPENDIX I: GRADIENTS OF uRBM PARAMETERS

Here, we show that the proposed uRBM algorithm does not
suffer from the barren plateau issue that affects many varia-
tional quantum algorithms [54]. In Fig. 9, we plot the norms
of the force vector f and the gradient A−1 f as a function of
system size. Both quantities are normalized by the total num-
ber of variational parameters. We consider a 1D TFI model
[panels (a) and (b)] and a 1D Heisenberg model in longitudinal
field [panels (c) and (d)] with periodic boundary condition,
both with magnetic field strength h = 1.0. The number of
hidden spins is fixed at M = 6. The RBM parameters are
randomly initialized as Gaussian variables with variance of
0.01. The blue and red lines in Fig. 9 denote the average and
minimum of 100 random initializations, respectively.

The force vector f is simply the gradient vector of the
energy function Eθ = 〈�v|(θ )Hs|�v〉(θ ), whereas the real and
imaginary parts of A−1 f dictate the parameter update in imag-
inary and real-time evolution [see Eq. (6) in the main text and
Eq. (C1) above], respectively. From Fig. 9, we can clearly see

that both f and A−1 f do not decay exponentially with system
size, indicating the uRBM algorithm does not suffer from the
vanishing gradient (or barren plateau) issue.

APPENDIX J: STOCHASTIC SCHRÖDINGER EQUATION

The dynamics of an open quantum system coupled to a
Markovian bath can be described by an ensemble of pure
state trajectories under continuous measurement [50,51]. The
stochastic differential equation governing the evolution of the
pure state trajectory can be written as

d|ψ (t )〉 = −iĤeff|ψ (t )〉dt +

×
∑

k

[
L̂k|ψ (t )〉

‖L̂k|ψ (t )〉‖ − |ψ (t )〉
]

dNk (t ), (J1)

where the non-Hermitian effective Hamiltonian

Ĥeff = Ĥs − i

2

∑
k

(L̂kL̂†
k − 〈L̂kL̂†

k 〉), (J2)
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describes the deterministic evolution of the trajectory. The
first term on the right-hand side of Eq. (J2) is the usual
system Hamiltonian, and the non-Hermitian part (terms in
brackets) describes the damping process. The terms 〈L̂kL̂†

k 〉 =
〈ψ (t )|L̂kL̂†

k |ψ (t )〉 ensure normalization of the wave function.
The deterministic evolution is interrupted by instantaneous
changes to the wave function |ψ〉 → L̂k |ψ〉

‖L̂k |ψ〉‖ , the so-called
quantum jumps described by the second term on the right-
hand side of Eq. (J1). The random numbers dNk (t ) associated
to the jumps take on the values of 0 or 1 and have expectation
values of

E [dNk (t )] = 〈ψ (t )|L̂†
k L̂k|ψ (t )〉dt . (J3)

Here, E [dNk (t )] represents the probability of a quantum jump
associated to the Linblad operator L̂k . The total jump proba-
bility is thus given by

∑
k E [dNk (t )].

Next, we describe how the stochastic Schrödinger equation
can be simulated using the variational algorithm described in
the main text. We first assume that the wave function at time
t , |ψ (t )〉, can be represented by a parametrized ansatz |�(θ )〉
prepared in a quantum circuit. Between quantum jumps, the
deterministic part of the stochastic Schrödinger can then be
simulated with Eqs. (6)–(8) in the main text, but replac-
ing the system Hamiltonian with the effective Hamiltonian
Heff. To realize a quantum jump associated with L̂k = σ+

k ,
we first note that the raising operator can be written as
σ̂+

k = exp(−τ Ĥk )exp(−i π
2 σ̂ x

k ) for large enough τ [42] and
Ĥk = |0〉k〈0|. Then the quantum jump can be realized in
a quantum circuit by evolving the quantum states σ x

k for
duration π

2 . Then we propagate the state by ITE under Ĥk

for τ . In our simulations, we use τ = 20 and a time step
of δτ = 0.01.

[1] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S Zibrov, M. Endres, M. Greiner,
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