
PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

Tensor networks contraction and the belief propagation algorithm

R. Alkabetz and I. Arad
Department of Physics, Technion, 3200003 Haifa, Israel

(Received 28 August 2020; revised 11 March 2021; accepted 12 March 2021; published 27 April 2021)

Belief propagation is a well-studied message-passing algorithm that runs over graphical models and can
be used for approximate inference and approximation of local marginals. The resulting approximations are
equivalent to the Bethe-Peierls approximation of statistical mechanics. Here, we show how this algorithm can be
adapted to the world of projected-entangled-pair-state tensor networks and used as an approximate contraction
scheme. We further show that the resultant approximation is equivalent to the “mean field” approximation
that is used in the simple-update algorithm, thereby showing that the latter is essentially the Bethe-Peierls
approximation. This shows that one of the simplest approximate contraction algorithms for tensor networks
is equivalent to one of the simplest schemes for approximating marginals in graphical models in general and
paves the way for using improvements of belief propagation as tensor networks algorithms.

DOI: 10.1103/PhysRevResearch.3.023073

I. INTRODUCTION

There is a natural connection between classical prob-
abilistic systems of many random variables and quantum
many-body systems. In both cases the description of a generic
state of a system requires an exponential number of param-
eters in the size of the system or the number of physical
units that compose it. For example, a general probability
distribution over n bits requires the specification of 2n − 1
non-negative numbers, while a full description of a quantum
state over n qubits requires 2n − 1 complex numbers. How-
ever, in both cases, states that are relevant to us are often
subject to many local constraints, which, in turn, may lead
to a succinct description of the system. A good example is
tensor networks (TNs) [1], where the 2n coefficients of a
quantum state are given by the contraction of a set of local
tensors. As a probabilistic analog, consider graphical models
[2–4], in which a multivariate probability distribution is given
by a product of local factors. Tensor networks and graphical
models are therefore two frameworks that provide a compact
description of the state of the system, which in principle can
be used to simulate it.

Both frameworks also face similar challenges. In both
cases, calculating the expectation value of a local observable
can be an NP-hard problem [5,6], as it (at least naively)
involves summation over an exponential number of terms. In
addition, when the underlying graph that describes the model
is a tree, this can be done efficiently using dynamical program-
ming (via the sum-product algorithm [2] for graphical models
or directly by the results of Ref. [7] for tensor networks);
however, when there are loops, the problem becomes hard,
and one usually resorts to approximations. In the world of

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

tensor networks this is known as the problem of approximate
contraction, whereas in the world of graphical models this is
known as the problem of approximated inference and local
marginals.

Over the years many different algorithms and techniques
have been suggested to address this problem for both frame-
works. Some of them have been adopted and adjusted to
the other framework. For example, the corner-transfer matrix
renormalization group (CTMRG) method [8,9] for approx-
imate tensor network contraction has its roots in Baxter’s
work in statistical mechanics [10,11], as well as ideas of us-
ing Monte Carlo sampling for TN contraction [12–14]. From
the other side, the tensor renormalization group (TRG) algo-
rithm for the contraction of tensor networks can be used for
highly accurate approximations of classical statistic mechan-
ical quantities such as partition functions and magnetization
[15] (see also Ref. [16]).

In this paper we show how an important class of inference
and marginalization algorithms for graphical models, called
belief propagation (BP), can be adapted and used for approx-
imate tensor network contraction. This idea was suggested in
Ref. [17], in the context of a general mapping between tensor
networks and graphical models. Here, by using a slightly
different mapping, we show how this approximation is in fact
equivalent to the basic contraction approximation that is at
the heart of the simple-update algorithm of tensor networks
[18,19]. As we discuss later, since the underlying approxima-
tion in the BP algorithm is the Bethe-Peierls approximation,
our results imply that this type of approximation is also at the
center of the simple-update method. It also motivates the study
of various improvements of the BP algorithms as potential
tensor network contraction algorithms.

II. A BP ALGORITHM FOR TENSOR NETWORKS

Belief propagation (BP) [20] is a statistical in-
ference algorithm on graphical models that can be
used to approximate their marginals [2–4]. It is also

2643-1564/2021/3(2)/023073(12) 023073-1 Published by the American Physical Society

https://orcid.org/0000-0001-7756-9199
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023073&domain=pdf&date_stamp=2021-04-27
https://doi.org/10.1103/PhysRevResearch.3.023073
https://creativecommons.org/licenses/by/4.0/

R. ALKABETZ AND I. ARAD PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

FIG. 1. BP messages on a tree PEPS TN. (a) A local patch of a
PEPS defined on a tree. The (a, b) edge defines a bipartition of the
system into two branches. (b) The TN that corresponds to 〈ψ |ψ〉.
Also here, the (a, b) edge defines two branches. The tensors that re-
sult from the contraction of each branch are the messages ma→b(x, x′)
and mb→a(x, x′). (c) The messages satisfy recursion relations that are
used to define that BP eqautions.

known as the sum-product algorithm in the context
of coding theory [21] and can also be viewed as an
iterative way to solve the Bethe-Peierls equations of statistical
physics [22,23]. In what follows, we present a BP variant on a
projected-entangled-pair-state (PEPS) tensor network. For an
alternative approach, which first maps the PEPS to a graphical
model and then uses the BP on that graphical model, please
see Appendix A.

We now describe the BP algorithm on PEPS tensor net-
works. We assume the reader is familiar with the basic notions
of tensor networks. For an excellent introduction to the subject
we recommend Ref. [1], as well as more recent texts such as
Ref. [24]. We consider a PEPS |ψ〉, in which the physical
spins sit on the vertices (nodes) of some graph G = (V, E)
[Fig. 1(a)]. Each node a ∈ V is associated with a tensor Ta

that has one physical index (leg) of bond dimension d and a
“virtual leg” of dimension D for each adjacent edge. Virtual
legs of the same edge in G are contracted together.

We now look at the double-layer TN that corresponds to the
scalar ‖ψ‖2 = 〈ψ |ψ〉 [Fig. 1(b)]. When G = (V, E) is a tree
[such as a matrix-product state (MPS), for example], it can
be contracted efficiently using dynamical programming. One
way to perform it is as follows. Given two incident nodes a, b,
the edge that connects them divides the system into two parts;
see Figs. 1(a) and 1(b). We define the “message” ma→b(x, x′)
to be the tensor that results from contracting the branch of
〈ψ |ψ〉 that is connected to a, where (x, x′) are the indices
of the open ket-bra edges connected to node a. Similarly,
the message mb→a(x, x′) is related to the contraction over the
branch of b. See Figs. 1(a) and 1(b). If we consider them as
matrices of the indices (x, x′), they are positive semidefinite,
due to the fact that they are a result of a contraction of a branch
with its complex conjugate. Crucially, these messages satisfy

FIG. 2. In a tree, the converged BP messages can be used to
calculate the local RDMs. In this example, a two-local RDM is
shown. The same formulas are used to approximate the local RDMs
also when the underlying PEPS is not a tree.

a recursive relation. If Na is the set of nodes that are incident
to a, then the tensor ma→b is given by the contraction

ma→b = Tr

(
TaT ∗

a

∏
a′∈Na\{b}

ma′→a

)
, (1)

where Tr(·) denotes contraction of joint indices. For example,
if b, c, d are incident to a, then the message ma→b(x, x′) is
given in terms of the messages mc→a(x, x′) and md→a(x, x′),
as shown in Fig. 1(c).

In principle, we can pick any node which is not a leaf,
define it as a root, and use Eq. (1) to calculate the messages
from the leaves to the root. Using the messages that lead to
the root, we can calculate ‖ψ‖2. This calculation can also
be done differently. Instead of forcing a particular causality
order between the messages, we can try to solve Eq. (1) for all
messages simultaneously. This can be done by solving Eq. (1)
iteratively: Starting from a set of random positive semidefinite
(PSD) messages {m(0)

a→b(x, x′)} for all incident nodes a, b, we
define the set of messages at step t + 1 using the messages of
step t :

m(t+1)
a→b

def= Tr

(
TaT ∗

a

∏
a′∈Na\{b}

m(t)
a′→a

)
. (2)

Equation (2) is the BP equation for PEPS tensor networks. It
is a natural extension of the BP equations of graphical models
[2–4]. The equation also guarantees that if the messages at
t are PSD when viewed as a matrix whose (x, x′) element
is ma→b(x, x′), then so would be the messages at t + 1. The
fixed point of this iterative process will solve Eq. (1) and
give us all the ma→b(x, x′) messages. It is a well-known fact
that the BP iterations on tree graphical models have a unique
fixed point to which they converge in a linear number of steps
[25]. The same arguments easily generalize also to our case.
Once we have the messages, we can use the fact that they
are contractions over branches and use them to calculate local
reduced density matrices (RDMs). For example, the calcula-
tion of two-local RDMs is shown in Fig. 2. The PSD property
of the messages guarantees that the resultant RDMs are also
PSD.

Thus far, the BP equations (2) might seem no more than
an elegant method for contracting tree PEPS. Things become
interesting when we consider graphs with loops. In such a
case, the messages can no longer be defined as the contraction
of branches, since an edge in the graph no longer partitions
it into two distinct branches. Yet we can still define them
as solutions to Eq. (1) and try to find them iteratively using
Eq. (2). If the iterations converge to a fixed point, we can
use the messages to estimate local marginals, using the same

023073-2

TENSOR NETWORKS CONTRACTION AND THE BELIEF … PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

expressions as we did in the case of trees, which are illustrated
in Fig. 2. This procedure is called loopy BP. Evidently, this is
an uncontrolled approximation. In fact, there is no guarantee
that the BP iterations will converge to a fixed point or that
there is a unique fixed point. Nevertheless, in the world of
graphical models, the BP method often provides surprisingly
good results, in particular when the graph looks locally like
a tree and there are no long-range correlations. A famous
example consists of problems related to the decoding of er-
ror correction codes, in which BP performs extremely well
[26]. As we shall see, also in the world of tensor networks,
loopy BP often performs well on problems with short-range
entanglement.

While a general theory to explain the performance of the
BP algorithm is still lacking, there are some partial results in
this direction. An important result is due to Yedidia et al. [27],
who established the correspondence between fixed points of
the BP algorithm and the Bethe-Peierls approximation [22].
The Bethe-Peierls approximation is an approximation scheme
for classical statistical mechanics, in which one treats the
system as if it is defined on a tree (a Bethe lattice). This as-
sumption implies that the Gibbs distribution of the system, as
well as the free-energy functional, can be written as functions
of the local marginals. When the actual interaction graph of
the system is not a tree, this is an uncontrolled approximation.
Nevertheless, also in these cases, one can take the Bethe
free-energy functional and look for a locally consistent set
of marginals that minimizes it. This procedure often gives
surprisingly good approximations. Yedidia et al. [27] showed
that there is a one-to-one correspondence between stationary
points of the Bethe free energy and fixed points of the BP
equations. The marginals obtained from the messages at a
fixed point minimize the Bethe free energy, and conversely,
from the marginals at the stationary point one can derive
fixed-point messages of BP.

As we show in Appendix A 2, this result naturally gen-
eralizes to our case. The idea is that our BP algorithm for
PEPS is the usual BP algorithm that is applied to a graphical
model with complex entries, obtained from the tensor network
of 〈ψ |ψ〉. Such graphical models were studied in Ref. [28],
under the name “double-edge factor graph” (DEFG), where it
was argued that the BP algorithm corresponds, as in the usual
case, to the stationary points of the Bethe free energy.

At this point it seems tempting to benchmark the BP
algorithm for PEPS contraction and compare it to other
methods. Indeed, we first used the BP algorithm as a con-
traction subroutine in an imaginary time evolution algorithm
on various two-dimensional (2D) models and compared it
with the performance of the simple-update method [29].
Surprisingly, the final energies of both algorithms were sus-
piciously close to each other. As we show next, this can be
explained theoretically; the mean field approximation at the
heart of the simple-update method and the BP algorithm are
equivalent.

III. THE SIMPLE-UPDATE METHOD

The simple-update method [18] is a direct generaliza-
tion of the time-evolving block decimation (TEBD) [30–32]
algorithm for 1D real and imaginary time evolution to

FIG. 3. The properties of a canonical representation of a tree
PEPS. (a) An example of a canonical representation of a tree PEPS
and its relation to the Schmidt decomposition. The empty circles are
diagonal tensors that correspond to the Schmidt weights λ. (b1) The
orthonormality of the Schmidt bases implies a simple formula for the
contraction of the left and right branches and (b2) a local canonical
condition on the PEPS tensors. (c) A local expression for the reduced
density matrices.

higher dimensions. It calculates the dynamics of many-body
spin systems that sit on a lattice and are described by a
(quasi)canonical PEPS tensor network. The method is effi-
cient and numerically stable but often results in poor accuracy
due to its oversimplified representation of local environments.

At its core lies a quasicanonical form of the PEPS that
allows a crude approximation of local TN environments, often
referred to as the mean field approximation. In this form, in
addition to the local tensors of the PEPS, there are also diag-
onal λ tensors in the middle of every edge, shown as empty
circles in Fig. 3. When the PEPS is in the shape of a tree,
the form becomes truly canonical; every edge corresponds
to a bipartition of the system, and its λ tensors become the
Schmidt weights of the corresponding bipartition, as shown in
Fig. 3(a).

When the underlying graph has loops, the canonical form
is no longer well defined; removing an edge from the graph
no longer divides it into two parts, and so it cannot be asso-
ciated with a Schmidt decomposition between two branches.
Nevertheless, we can still define a PEPS to be quasicanonical
if it satisfies the local conditions of Fig. 3(b2). In such a
case, the expression for local RDMs [e.g., Fig. 3(c)] is no
longer exact. Yet, when the graph looks locally like a tree,
or when the quantum state has only short-range correlations,
this approximation is often reasonable.

In the simple-update method, one evolves the system in
real or imaginary time using the Trotter-Suzuki decomposi-
tion, while striving to keep the quasicanonical form along
the real or imaginary time evolution. This is done using local

023073-3

R. ALKABETZ AND I. ARAD PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

singular value decompositions (SVDs) on the tensors. See, for
example, Ref. [19] and Appendix B. Importantly, by using a
trivial time evolution (i.e., setting the Hamiltonian to zero),
one can use these SVDs to iteratively drive any PEPS to
quasicanonical form. See Appendix B for details. We call
this procedure the trivial-simple-update algorithm (trivial-SU
algorithm) and note that it can also be viewed as an algo-
rithm for approximate contraction of the PEPS, because once
we have the quasicanonical form, we can use it to approxi-
mate the local RDMs, as in Fig. 3(c). Importantly, while the
underlying PEPS changes in this process, it still represents
exactly the same quantum state. The trivial-SU algorithm has
already been used previously under different names such as
the quasiorthogonalization in Appendix B of Ref. [33] or the
superorthogonalization in Ref. [34]. Given that the trivial-SU
algorithm does not change the overall state of the system, it
can be seen also as a special case of a holographic transforma-
tion on a normal factor graph (NRF). NRFs are an equivalent
framework to tensor networks for representing multivariate
functions in a graphical notation. For a detailed explanation
of NRF and holographic transformations, see Ref. [35].

IV. BP-SU EQUIVALENCE

The trivial-SU algorithm and the BP algorithm for TN are
two different algorithms for approximate contraction of PEPS.
They originate from two very different places: The trivial-
SU algorithm is a natural algorithm for TN, which relies on
the Schmidt decomposition and SVD, whereas the BP algo-
rithm is a message-passing algorithm for graphical models
that originated from inference problems and the Bethe-Peierls
approximation. It might therefore come as a surprise that these
two algorithms are equivalent. In hindsight, this could have
been anticipated, as both are exact on trees. We prove the
following theorem.

Theorem 1. Every trivial-SU fixed point corresponds to a
BP fixed point such that the local RDMs computed in both
methods are identical.

As a simple corollary, we conclude that if the trivial-SU
equations and the BP equations have a unique fixed point, both
algorithms will yield the same RDMs. In light of this equiv-
alence, the success of the imaginary time SU algorithm for
many models (see, for example, models analyzed in Ref. [19])
is another example of the success of the Bethe-Peierls approx-
imation.

To prove Theorem 1, we note that in the BP algorithm
the TN remains fixed, while the BP messages evolve to a
fixed point. In the trivial-SU algorithm, there are no messages,
but the local tensors that make up the TN evolve until they
converge to a quasicanonical fixed point, without changing the
underlying quantum state. In both cases, the evolution is done
via local steps. Our proof uses two lemmas.

Lemma 1. Let T , T ′ be two tensor networks that represent
the same state |ψ〉, such that T ′ is obtained from T using
a single trivial-SU step on tensors Ta, Tb and the λ weight
between them. Then every BP fixed point of T has a corre-
sponding fixed point of T ′ with the same RDMs, and vice
versa.

The idea of the proof is to show that the fixed-point mes-
sages of the new TN can be constructed from the fixed-point

messages of the old TN, except for the local place of change,
where the messages are adapted to fit the new tensors. The full
proof of the lemma is given in Appendix C 1.

Using this lemma repeatably along the trivial-SU itera-
tions, we conclude that the BP fixed points of an initial TN
are equivalent to those of its quasicanonical representation.
To finish the proof, we show that the BP fixed point of a
quasicanonical PEPS yields the same RDMs as the λ weights
do:

Lemma 2. Given a TN in a quasicanonical form (i.e., a fixed
point of the trivial-SU algorithm), it has a BP fixed point that
gives the same RDM estimates as those of the quasicanonical
form based on the λ weights.

The idea of the proof is that after “swallowing” a
√

λ of
each λ tensor in its two adjacent Ta, Tb tensors, we reach a
PEPS for which the messages ma→b(x, x′) = λxδx,x′ are a BP
fixed point. The full proof is found in Appendix C 2.

Numerical Tests

As we saw, both BP and trivial-SU algorithms produce
the same RDM approximations. In addition, the asymptotic
complexity of a single step in both algorithms is O(dDk),
where k is the local degree of a vertex. What is less clear is the
number of iterations needed for both algorithms to converge.
We compared these numbers on two types of PEPS on finite
square grids: a random PEPS with complex entries, and an
approximate ground state of the antiferromagnetic Heisenberg
model on a square lattice with random, nearest-neighbor cou-
pling. Our numerics indicate that the convergence times of
both algorithms are similar. While for the random PEPS, the
BP seemed slightly faster (TBP/TtSU
 0.7), for the antiferro-
magnetic Heisenberg model, the trivial-SU algorithms seemed
to converge faster (TBP/TtSU
 1.5). Full details of the numer-
ical procedure and the results can be found in Appendix D.

Finally, we stress that in all our numerical tests, the
marginals produced by both methods (the trivial-SU and the
BP algorithms) were identical up to the convergence ε of the
algorithms (which was typically 10−6).

V. DISCUSSION

In this paper, we have defined the belief propagation
method for PEPS contraction, which can be viewed as the
ordinary BP method applied for double-edge factor graphs
(DEFGs) [28] that are derived from the PEPS tensor net-
work. Just as in ordinary graphical models, the fixed points
of the BP iterations correspond to stationary points of the
Bethe free energy, which is defined for the underlying PEPS
TN. We have shown that the BP algorithm is equivalent to
the trivial-SU algorithm on PEPS tensor networks, which
leads to a quasicanonical form. This correspondence has some
interesting implications. First, since the fixed points of the
imaginary time SU algorithm are quasicanonical PEPS tensor
networks, our result implies that their SU approximate envi-
ronments correspond to a Bethe-Peierls approximation. The
success of the SU algorithm can therefore be seen as another
example of the power of the Bethe-Peierls approximation.
Indeed, just like the BP algorithm, the SU algorithm often
gives surprisingly good results, even when the underlying

023073-4

TENSOR NETWORKS CONTRACTION AND THE BELIEF … PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

graph has many short-range loops and is very different from
a tree, as, for example, in the case of square lattice graphs
[18,19]. Second, it shows that one of the simplest algorithms
for approximating marginals in the world of graphical models
is equivalent to one of the simplest approximate contrac-
tion algorithms in the world of tensor networks. Therefore
it would be interesting to “import” other, more sophisticated
algorithms for marginal approximations to the world of tensor
networks. A natural candidate is the generalized belief prop-
agation (GBP) algorithm [27], which produces much better
approximations, at the price of a higher computational cost. It
generalizes the BP algorithm by considering messages from
larger regions in the graph, corresponding to Kikuchi’s cluster
variation method [36,37]. It would be interesting to compare
the performance of this algorithm, as well as other BP im-
provements [38–42], when acting on TNs with that of more
accurate contraction algorithms, such as the corner-transfer
matrix renormalization group (CTMRG) method [8,9], the
tensor renormalization group (TRG) algorithm [15,43], and
the boundary MPS (bMPS) technique [44], to name a few.

From a theoretical prospective, it would be interesting to
better understand the physical and mathematical role of the
complex Bethe free energy that we have derived. In par-
ticular, we know that for tree tensor networks, it is related
to the Schmidt decomposition. Can we somehow relate it
to the underlying entanglement structure also when the un-
derlying graph has loops? Another interesting question is
whether the BP equations can be used to analytically analyze
models for which the ground state is a known PEPS, such
as the Affleck-Kennedy-Lieb-Tasaki (AKLT) model. Finally,
we note that unlike the trivial-SU algorithm, our BP scheme
easily generalizes to mixed states described by projected-
entangled-pair-operator (PEPO) tensor networks, for which
there is no natural Schmidt decomposition.

ACKNOWLEDGMENTS

The authors thank Eyal Bairy, Raz Firanko, Roman Orús,
and Yosi Avron for their help with the manuscript and many
useful suggestions. I.A. acknowledges the support of the Israel
Science Foundation (ISF) under Individual Research Grants
No. 1778/17 and No. 2074/19.

APPENDIX A: GRAPHICAL MODELS, BELIEF
PROPAGATION, AND THE MAPPING OF PEPS TENSOR

NETWORKS AND DOUBLE-EDGE FACTOR GRAPHS

In this Appendix we give a very brief background on the
subject of graphical models and the belief propagation algo-
rithm and then sketch a mapping between the PEPS tensor
networks and a particular type of graphical models called
double-edge factor graphs. Together, this will show that our
BP algorithm for PEPS is essentially the usual BP algorithm
applied to the mapped double-edge factor graphs, and the
converged messages correspond to a Bethe-Peierls approxi-
mation.

1. Graphical models and belief propagation

Graphical models are a powerful tool for modeling mul-
tivariate probability distributions. They provide a succinct

description of the statistical dependence of a set of ran-
dom variables using graphs and are used in fields such
as bioinformatics, communication theory, statistical physics,
combinatorial optimization, signal and image processing, and
statistical machine learning, to name a few. In this section we
give a brief background on this tool and the BP algorithm. For
a thorough review, we refer the reader to Refs. [2–4].

Roughly speaking, there are three main families of graph-
ical models: Bayesian networks, Markov random fields
(MRFs), and factor graph graphical models. As the latter
family supersedes the first two, we will concentrate on it.

A factor graph graphical model is a succinct description
multivariate function f (x1, . . . , xn), given as a product of
functions over subsets of these variables:

f (x1, . . . , xn) =
∏
a∈F

fa(xa).

Here, f (x1, . . . , xn) is called a global function, and the { fa}
functions are called factors. The factors are defined over a
subset of variables xa = (xi1 , xi2 , . . . , xik), where typically we
are interested in the cases where k = O(1). Finally, we use
F to denote the set of all factors and x = (x1, . . . , xn) as a
shorthand notation for the set of all variables.

When the factors are all non-negative functions, the global
function f (x1, . . . , xn) also becomes non-negative and can be
used to model multivariate probability distributions

P(x) = 1

Z

∏
a∈F

fa(xa),

where 1/Z is a normalization factor given by Z =∑
x

∏
a∈F fa(xa). In this paper, we mainly focus on such

probabilistic factor graphs, which are a particular type of
probabilistic graphical models. In Appendix A 2 we also dis-
cuss how factor graphs can describe quantum states.

Probabilistic factor graphs capture many natural probabil-
ity distributions from a wide range of scientific areas such
as physics, economics, machine learning, coding theory, etc.
For example, in classical statistical mechanics the Gibbs dis-
tribution is of that form: Given a local Hamiltonian H (x) =∑

a∈F ha(xa), its Gibbs distribution at inverse temperature
β is

P(x) = 1

Z
e−βH (x) = 1

Z

∏
a∈F

e−βha (xa).

In this case, fa(xa) = e−βha (xa), and Z is the partition function.
There is a convenient graphical way to capture the re-

lation between the various factors, using a so-called factor
graphG = (V,F , E). This is a bipartite graph with two types
of vertices: V = {x1, x2, . . . , xn} is the set of variables, also
called nodes or variable nodes. The other set of vertices are
the factors F = { f1, f2, . . .}, also called factor nodes. E is the
set of edges, where an edge connects the node xi to the factor
fa if and only if fa depends on xi. For example, the factor
graph in Fig. 4 corresponds to probability distributions of the
form P(x1, x2, x3) = 1

Z f1(x1, x2, x3) · f2(x1, x2).
Given a graphical model, a central task is to calculate

marginals of P(x) over some small set of random variables.
This is needed, for example, for the calculation of local expec-
tation values or for the optimization of the model with respect

023073-5

R. ALKABETZ AND I. ARAD PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

FIG. 4. An example of a factor graph representing the probability
distribution P(x1, x2, x3) = 1

Z f1(x1, x2, x3) · f2(x1, x2).

to empirical data. This task is NP-hard in general, involving a
summation over an exponential number of configurations [5].

Belief propagation (BP) [2–4,45] is a message-passing al-
gorithm that is designed to approximate such marginals. It is
exact on graphical models whose underlying graph is a tree
and often gives surprisingly good results on loopy graphs. In
these cases, however, it is essentially an uncontrolled heuris-
tic. The BP algorithm is often known by different names in
different contexts. In statistical physics, it is known as the
“Bethe-Peierls approximation” [22,23], and in coding theory
as the “sum-product algorithm” [21]. The name “belief prop-
agation” was coined by Pearl, who used it in the context of
Bayesian networks [20,45].

The main objects in the BP algorithm are “messages”
between factor and nodes and vice versa. To write them, let
us define Ni as the set of factors in which xi participates,
and similarly Na to be the set of variables of the factor fa

(i.e., adjacent nodes to fa). A message from a factor fa to
an adjacent node i ∈ Na is a non-negative function ma→i(xi),
and a message from node i to factor a is a non-negative
function mi→a(xi). The BP algorithm starts by initializing the
messages (say, randomly), and then at each step, the messages
are updated from the messages of the previous step by the
local rules (see also Fig. 5):

m(t+1)
i→a (xi)

def=
∏

b∈Ni\{a}
m(t)

b→i(xi), (A1)

m(t+1)
a→i (xi)

def=
∑

xa\{xi}
fa(xa)

∏
j∈a\{i}

m(t)
j→a(x j). (A2)

If the messages converge to a fixed point, they can be
used to estimate the marginal on a subset of nodes with a
local treelike structure. For example, the marginal of a single
variable xi is given by

Pi(xi) = 1

N
∏
a∈Ni

ma→i(xi), (A3)

where N is a normalization factor. The marginal over the
variables of a factor is given by

Pa(xa) = 1

N fa(xa)
∏
i∈Na

mi→a(xi). (A4)

These two expressions are demonstrated in Fig. 6.
For tree graphical models, the BP messages are promised

to converge to a unique fixed point in linear time, and formulas
(A3) and (A4) give the exact marginals [25].

When the underlying graph has loops, the BP algorithm is
called “loopy BP,” and the formulas for the marginals become,
essentially, uncontrolled. Moreover, it is not known how fast
the algorithm will converge, if ever, or if it has a unique
fixed point. Nevertheless, in many practical cases, loopy BP
provides surprisingly good results.

While a general theory to explain the performance of the
BP algorithm is still lacking, there are some partial results
in this direction. An important result is due to Yedidia et al.
[27], who highlighted the correspondence between the Bethe-
Peierls approximation and fixed points of the BP algorithm,
which we now explain briefly. The starting point consists of
models defined on tree graphs. A simple observation is that
for these models, the global probability distribution can be
written in terms of its local marginals:

P(x) =
∏
a∈F

Pa(xa)
∏
i∈V

[Pi(xi)]
1−di , (A5)

where Pa(xa) is the marginal on the nodes adjacent to a ∈ F
and Pi(xi) is the marginal of xi. Finally, di = |Ni| is the number
of factors that are adjacent to xi. Using Eq. (A5), we can write
the free-energy function in terms of the local marginals:

FBethe =
∑

a

∑
xa

Pa(xa) ln
Pa(xa)

fa(xa)

−
∑

i

(di − 1)
∑

xi

Pi(xi) ln Pi(xi). (A6)

The above expression is called the Bethe free energy. When
the underlying graph is not a tree, the Bethe free energy
is still well defined but no longer equals the exact free en-
ergy. In such a case, we can use it to approximate the local
marginals. We write the Bethe free energy as a function of
unknown marginals {qa(xa), qi(xi)}, and then we estimate the
real marginals {Pa(xa), Pi(xi)} by finding the {qa(xa), qi(xi)}
that minimize the Bethe free energy. This procedure is exact
on trees, where the Bethe free energy is equal to the exact free
energy, but on loopy graphs it is essentially an uncontrolled

FIG. 5. Illustration of the BP equations on a factor graph graphical model: Eqs. (A1) and (A2). In such a case there are two types of
messages: (a) nodes to factors [Eq. (A1)] and (b) factors to nodes [Eq. (A2)].

023073-6

TENSOR NETWORKS CONTRACTION AND THE BELIEF … PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

FIG. 6. Calculating the local marginals from the BP messages by the formulas in Eqs. (A3) and (A4). These formulas give the exact
marginals when the underlying graphical model is a tree.

approximation; the resultant qa(xa), qi(xi), may be far from
the exact marginals, and in fact, they might not be marginals
of any underlying global distribution. Nevertheless, decades
of experience in statistical mechanics have shown that this
is often a good approximation that gives better results than
simple mean field. In Ref. [27] it was shown that there is
a one-to-one connection between the fixed points of the BP
equations and the stationary points of the Bethe free energy.
The Lagrange multipliers used to minimize the latter become
the fixed-point BP messages, and the local marginals coin-
cide. This connection between a message-passing inference
algorithm and a variational approach gave rise to a plethora of
other message-passing algorithms, such as generalized belief
propagation (GBP), which are based on more sophisticated
free energies, such as the Kikuchi’s cluster variation method
[36].

2. Mapping a PEPS tensor network to a graphical model

In this section we present a mapping that takes a PEPS
TN to a graphical model. Relations and dualities between
graphical models and tensor networks have been studied over
the years by several authors [17,46,47]. Our approach shares
some similarities with these works but, in particular, builds on
the double-edge factor graph (DEFG) formalism of Ref. [28],
which by itself uses ideas introduced in Ref. [48] of repre-
senting quantum states and quantum processes using factor
graphs with complex entries. This allows us to transform a
tree tensor network into a tree graphical model, and it also has
the desirable property of messages being positive semidefinite
matrices.

The mapping between PEPS and DEFG is illustrated in
Fig. 7. Let |ψ〉 be the many-body quantum state that is
described by our TN, and consider the tensor network cor-
responding to 〈ψ |ψ〉, in which we clump every edge in |ψ〉

with its equivalent edge in 〈ψ | [see Fig. 7(b)]. We call such
pairs of edges “double edges.” They run over D2 values of the
double indices (x, x′) of the ket and the bra TN. We map this
TN into a graphical model as follows:

(1) We associate every double edge with a node so that its
double indices (xi, x′

i) now become a single variable in the
graphical model. We denote this pair by a single variable zi =
(xi, x′

i) and notice that it runs over D2 discrete values.
(2) We associate the contraction of every pair Ta, T ∗

a of
bra-ket local tensors along their physical leg with a factor.
See Figs. 7(b) and 7(c). Specifically, let T μ

a;x1,...,xk
be the PEPS

tensor at node a, with μ being the physical leg; then the
resultant factor is given by

fa[z1, . . . , zk]
def= fa[(x1, x′

1), . . . , (xk, x′
k)]

def=
d∑

μ=1

T μ
a;x1,...,xk

· (
T μ

a;x′
1,...,x

′
k

)∗
. (A7)

See Fig. 8. As in the body of the paper, we write xa =
(x1, . . . , xk), x′

a = (x′
1, . . . , x′

k), and za = (z1, . . . , zk) for the
variables of the factor a. With this notation, we may write
fa(za) = fa(xa, x′

a). Definition (A7) immediately implies that
as a matrix, fa(xa, x′

a) is positive semidefinite.
(3) Graphically, variable nodes are denoted by circles, and

factors are denoted by squares. Adjacent variables and factors
are connected by double lines (edges) that correspond to the
double variable zi = (xi, x′

i) that they represent. See Fig. 7.
With these definitions, the resultant graphical model is

called a DEFG and describes the function

P(z)
def= P(z1, . . . , zn) = 1

Z

∏
a

fa(za),

Z
def=

∑
z

∏
a

fa(za) = 〈ψ |ψ〉. (A8)

FIG. 7. (a)–(c) Mapping a tensor network to a graphical model of type double-edge factor graph.

023073-7

R. ALKABETZ AND I. ARAD PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

FIG. 8. Defining the complex fa(za) factors from the PEPS ten-

sors Ta, via fa(za)
def= Tr(TaT ∗

a). zi
def= (xi, x′

i) that originate from the
ket and the bra of the 〈ψ |ψ〉 TN.

Writing P(z) as P(x, x′), the positive semidefiniteness of the
individual fa(xa, x′

a) implies that P(x, x′) is also a positive
semidefinite function. We can therefore interpret it as the
density matrix of some fictitious quantum states that “lives
on the edges of the PEPS,” although it has a nonconventional
normalization because TrP = ∑

x,x P(x, x) is not necessarily
equal to 1 [instead, it is

∑
x,x′ P(x, x′) = 1].

Once the factor graphical model is defined, we can run the
BP iterations on it,

m(t+1)
i→a (zi)

def=
∏

b∈Ni\{a}
m(t)

b→i(zi), (A9)

m(t+1)
a→i (zi)

def=
∑

za\{zi}
fa(za)

∏
j∈a\{i}

m(t)
j→a(z j), (A10)

which are simply the usual BP equations (A1) and (A2) with
xi replaced by the double-edge variable zi. It is easy to see that
these equations are equivalent to Eq. (2) in the main text by
noting that every node i is adjacent to exactly two factors a, b
(because it corresponds to an edge in the PEPS connecting
two vertices), and therefore by Eq. (A9),

m(t+1)
i→b (zi) = m(t)

a→i(zi),

which we identify with m(t+1)
a→b from Eq. (2). Moreover, the

summation
∑

za\{zi} in Eq. (A10) is exactly the contraction
of the virtual legs in Eq. (2) and Fig. 1(c). Finally, note that
as fa(xa, x′

a) are positive semidefinite, Eqs. (A9) and (A10)
imply that if the messages at time t are positive semidefinite,
then so are the messages at t + 1.

The above discussion shows that as in the ordinary graph-
ical models, here also fixed points of the BP iterations are
solving a Bethe-Peierls type of approximation. In particular,
defining the local “marginals”

Pa(za)
def=

∑
z\za

P(z), Pi(zi)
def=

∑
z\{zi}

P(z),

we can write a complex Bethe free energy

FBethe =
∑

a

∑
za

Pa(za) ln
Pa(za)

fa(za)

−
∑

i

(di − 1)
∑

zi

Pi(zi) ln Pi(zi), zi = (xi, x′
i),

(A11)

which is defined by first choosing a specific branch of the
logarithmic function. Note that in this case, di = |Ni| = 2
because there are always exactly two adjacent factors to each

variable zi, and so

FBethe =
∑

a

∑
za

Pa(za) ln
Pa(za)

fa(za)
−

∑
i

∑
zi

Pi(zi) ln Pi(zi).

(A12)

It is not very hard to show that even though Pa(z), Pi(zi), fa(za)
might take complex values, FBethe must be real. In Ref. [28]
it was argued that also in this case, fixed points of the BP
iterations correspond to stationary points of the above func-
tional. We note, however, that unlike the ordinary case, we
currently see no reason why the complex Bethe free energy
should be positive—even though P(z) is positive semidefinite.
Interestingly, in all of our numerics, it was positive.

APPENDIX B: THE SIMPLE-UPDATE METHOD

In this Appendix we give a brief review of the simple-
update (SU) method and the associated trivial-SU algorithm.
For full details, we refer the reader to Refs. [19,49].

In the simple-update algorithm, one usually starts from a
quasicanonical PEPS and then applies local gates that perform
real or imaginary time evolution according to the Trotter-
Suzuki decomposition. For example, in the imaginary time
evolution, if the Hamiltonian interaction term between the
neighboring sites a, b is hab, the operator Uab = e−δτhab will
be applied, where δτ is a small Trotter-Suzuki time step.
Once Uab is applied, a local SVD is performed, as shown in
Figs. 9(b)–9(f), which guarantees that (i) the resultant tensor
network can be reshaped into a local PEPS with Ta, λ, Tb

replaced by T ′
a , λ′, T ′

b , (ii) a truncation is performed so that
the bond dimension of new tensors does not increase, and (iii)
some of the local canonical conditions are (approximately)
satisfied [50]—see Fig. 9(g).

FIG. 9. The simple-update steps of applying a “gate” Uab on the
tensors {Ta, λ, Tb} and updating them to {T ′

a , λ′, T ′
b }. (a) The original

tensors. (b) Applying Uab. (c) The Ta, Tb tensors and all surrounding
λ weights are contracted into one big tensor, which is reshaped as a
matrix. (d) An SVD is performed on the matrix. (e) and (f) Trivial
λiλ

−1
i pairs are inserted into the external legs and define the new

T ′
a , λ′, T ′

b tensors. At this step, one can truncate the smallest weights
of λ′ to reduce the bond dimension back to D. (g) If no truncation
was done, the resulting tensors satisfy some of the local canonical
conditions.

023073-8

TENSOR NETWORKS CONTRACTION AND THE BELIEF … PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

FIG. 10. Swallowing the λ weights in the T tensors and obtaining an equivalent TN with F tensors. The empty circles denote a simple-
update weight tensor λxδxy, and the red circles denote its square root:

√
λxδxy.

When the operator Uab is not unitary (e.g., in the case of
imaginary time evolution), or when truncation is performed,
the resultant TN will no longer be quasicanonical. Some of
the canonical conditions will be satisfied, but not all of them.
However, also in that case, the λ weights still provide a reason-
able approximation for the local environments, as is evident
by the success of the SU algorithm in many cases. Moreover,
in the imaginary time case, if the system reaches a fixed point
(the approximate ground state), it is also a fixed point of all
the local SU steps. This state satisfies all the local canonical
conditions and is therefore a quasicanonical state.

Finally, in the trivial-SU algorithm, we only apply the SVD
steps, without applying Uab [step (b) in Fig. 9] or performing
the truncation. In other words, we essentially perform an SVD
of the fused tensor in Fig. 9(d), which yields tensor T ′

a , λ′, T ′
b

satisfying the local canonical condition of Fig. 9(g). Repeating
this step on all edges, if a fixed point is reached, it is by
definition a quasicanonical PEPS and can be used to calculate
local RDMs via the λ weights [see Fig. 3(c)]. Importantly,
for the proof of Lemma 1, in this process the underlying
PEPS keeps changing while still representing exactly the same
quantum state |ψ〉.

We conclude this Appendix by noting that the trivial-SU
algorithm has already been used previously under differ-
ent names. See, for example, the quasiorthogonalization in
Appendix B of Ref. [33] or the superorthogonalization in
Ref. [34]. See also interesting parallels between our BP con-
struction, the trivial-SU algorithm, and the network contractor
dynamics (NCD) theory of Ref. [51] (see also Chap. 5 in
Ref. [49]).

APPENDIX C: PROOFS OF LEMMAS 1 AND 2

1. Proof of Lemma 1

Assume that a trivial-SU step changes the TN T to T ′ by
locally changing the adjacent tensors Ta, λ, Tb to T ′

a , λ′, T ′
b ,

while keeping the rest of the tensors fixed [see Figs. 9(a)–9(f)
with trivial Uab = 1]. To simplify the bookkeeping, we “swal-
low” the λ tensors in the Ta tensors by splitting every λ tensor
into λ = √

λ · √λ and contracting each
√

λ with its adjacent
Ta tensor; see Fig. 10. We denote the resulting tensor networks
by F ,F ′ and note that their local tensors are identical except
for Fa, Fb and F ′

a , F ′
b , which are equal to the Ta, Tb, T ′

a , T ′
b

tensors contracted with the appropriate
√

λ tensors. The fact
that the contraction of (Ta, λ, Tb) is equal to the contraction of
(T ′

a , λ′, T ′
b) implies that the contraction of (Fa, Fb) is equal to

the contraction of (F ′
a , F ′

b).
Let {ma→b(x, x′)} be fixed-point BP messages of F . We

will use these messages to construct fixed-point BP messages
{m′

a→b(x, x′)} of F ′ that give the same RDMs. All messages
except for the a → b and b → a messages remain the same.
The a → b and b → a messages are defined by the BP iter-
ative equations using the new tensors F ′

a , F ′
b so that they will

satisfy them. For example, if tensor Fa is connected also to
tensors Fc, Fd in addition to Fb, then m′

a→b(x, x′) is given by
the diagram in Fig. 1(c), replacing T tensors by corresponding
F ′ tensors. To finish the proof, we need to show that this
new set of messages (i) is a BP fixed point and (ii) produces
the same RDMs according to the BP formula (see Fig. 2).
Clearly, for adjacent vertices that have nothing to do with
a, b, both conditions hold trivially, as the relevant messages

...

......

...

(a) (b)

(1) (2)

(3) (4)

(5)

FIG. 11. Verifying point (i) in the proof of Lemma 1. Consider a patch in the TN given in (a), where a single trivial SU step was performed
on the a, b vertices, changing Ta, λ, Tb to T ′

a , λ′, T ′
b , or equivalently Fa, Fb to F ′

a , F ′
b . In (b) we verify that the new BP message m′

b→e(x, x′) is
related to the messages m′

a→b(x, x′), m′
f →b(x, x′) using the BP equations: Equality (1) follows from definition, m′

b→e = mb→e. Then in (2) we
use the assumption that mb→e is a fixed point of the BP equation, and similarly in (3) we use that assumption on ma→b. In (4) we use the fact
that the contraction of Fa, Fb is equal to the contraction of F ′

a , F ′
b , together with the definitions that all the new messages are equal to the old

messages, except for the a ↔ b messages. Finally, in (5) we use the definition of m′
a→b, which satisfies the BP equations.

023073-9

R. ALKABETZ AND I. ARAD PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

FIG. 12. The proof of Lemma 2: Defining the BP messages with Eq. (C1) and using the canonical condition [see Fig. 9(g)] show that these
messages are fixed points of the BP equations.

and underlying tensors are unchanged. Let us then verify these
points for vertices in the vicinity of a, b.

(a) Checking point (i). By definition, the a → b and b → a
messages satisfy the BP equations. So we only need to ver-
ify that other messages from a or b (but not between them)
satisfy the BP equations. Consider, for example, the message
b → e in Fig. 11(a). We need to verify that m′

b→e(x, x′) is
indeed a BP fixed point, given as the appropriate expression
of m′

a→b, m′
f →b [see Fig. 1(c) for the BP equations]. This is

proved in Fig. 11(b) in a series of five simple equalities (see
the caption for full explanation), which rely on the facts that
the original messages are fixed points of the BP equations
and that the contraction of Fa, Fb is equal to the contraction
of F ′

a , F ′
b .

(b) Checking point (ii). By definition, if we are interested
in two-body RDMs on vertices that are different from both a
and b, then the RDM estimate will remain the same because
neither the relevant messages nor the tensors changed. We
only need to verify this claim for the RDM ρab and RDMs that
contain a or b with another adjacent node, such as ρbe. For the
former, ρab = ρ ′

ab because it depends on the incoming mes-
sages to the a, b nodes (which remain the same), together with
the contraction of F ′

a , F ′
b , which by assumption is identical to

that of Fa, Fb. For the latter, the proof uses the same idea as in
checking point (i). Using the assumptions that the contraction
of Fa, Fb is identical to that of F ′

aF ′
b and that F ′

e = Fe, it is easy
to show that the three-body RDM ρabe is identical to that of
ρ ′

abe, from which we deduce that ρbe = ρ ′
be. This concludes

the proof of Lemma 1.

2. Proof of Lemma 2

As in the first lemma, we first define F to be an equiva-
lent TN in which every λ weight tensor in T was split into√

λ · √
λ and the

√
λ tensors are contracted into the Ta tensors

to give the Fa tensors (see Fig. 10). Next we define a set of
messages

ma→b(x, x′) def= λxδx,x′ (C1)

for every two adjacent vertices a, b, where λ is the weight on
the ab edge in the original T tensor. We claim that (i) these
messages are BP fixed points on the F TN and (ii) they give
the same two-body RDMs as those of the trivial-SU method
of quasicanonical T . Both claims are immediate. Claim (i)
follows by writing the BP equation for the a → b message
in terms of the Fa tensor and noticing that this expression is
equal to λxδx,x′ using the canonical condition on T . This is
illustrated in Fig. 12. Claim (ii) follows from definitions of

the two-body RDMs of the BP method and the SU method
[see Figs. 2 and 3(c)].

APPENDIX D: NUMERICAL TESTS

Here, we give the details of the numerical tests we per-
formed to compare the convergence speed of the BP and
trivial-SU algorithms on PEPS tensor networks. We tested the
algorithms over two types of systems: (i) random PEPS and
(ii) PEPS ground states of the antiferromagnetic Heisenberg
model (AFH) with random couplings

H =
∑
〈a,b〉

Jabσa ⊗ σb, Jab < 0. (D1)

Both systems were simulated on 4 × 4 and 10 × 10 square
lattices. In all tests, the physical bond dimension was d = 2,
and virtual bond dimensions were D = 2, 3, 4. All in all,
we therefore tested 2 × 2 × 3 = 12 different configurations.
For every configuration we used statistics of 20–50 different
random realizations on which we did the analysis.

In the random PEPS configurations, the tensor entries
where chosen as a + ib, where a, b were uniformly distributed
in (−1, 1). In the AFH configurations, we used random
couplings Jab uniformly distributed in the interval (−1, 0). To
obtain the ground states of these models, we ran an imaginary
time evolution with the simple-update algorithm, decreasing
values of imaginary time steps by δτ = 0.1, . . . , 0.0001. Af-
ter obtaining an approximation to the ground state, we applied
a random local gauge change on every bond in order to get a
TN that is far away from a canonical form. Specifically, for
every virtual edge (a, b), we drew a random matrix Vab which
was a product of a random unitary with a random diagonal
matrix with entries between 0.5 and 2. We then inserted the
identity V −1

ab Vab = 1 in the middle of the edge, absorbing V −1
ab

TABLE I. Average ratio of convergence times TBP/TtSU, together
with standard deviations, for random PEPS and ground states of the
antiferromagnetic Heisenberg model (AFH) with random nearest-
neighbor couplings on N × N lattices. We simulated different bond
dimensions D = 2, 3, 4 using 20–50 realizations for each configura-
tion. Full details can be found in Appendix D.

Random PEPS AFH

4 × 4 10 × 10 4 × 4 10 × 10

D = 2 0.7 ± 0.2 0.6 ± 0.2 1.4 ± 0.1 1.3 ± 0.1
D = 3 0.7 ± 0.2 0.7 ± 0.2 1.1 ± 0.2 1.2 ± 0.1
D = 4 0.7 ± 0.2 0.8 ± 0.2 1.6 ± 0.5 1.8 ± 0.2

023073-10

TENSOR NETWORKS CONTRACTION AND THE BELIEF … PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

FIG. 13. The ratio of the number of iterations that it takes for the BP algorithm to converge to that for the trivial-SU algorithm. The tests
were on four different systems: 4 × 4 and 10 × 10 antiferromagnetic Heisenberg models with random coupling, as well as 4 × 4 and 10 × 10
random PEPS. For each of these four cases, PEPS were used with bond dimension D = 2, 3, 4, and the statistics was generated using 20–50
different realizations. More details on the numerical procedure can be found in the main text. g.s., ground state; w., with.

in Ta and Vab in Tb. This way, the resultant TN was far from
quasicanonical, yet represented the same approximate ground
state.

To calculate the convergence time for each algorithm, we
looked at the averaged trace distance of two-body RDMs
between consecutive iterations [see Fig. 3(c) for a trivial-SU
RDM illustration and Fig. 2 for a BP RDM illustration]. We
stopped the iterations when 1

m

∑
〈a,b〉 ‖ρ (t+1)

ab − ρ
(t)
ab ‖1 < 10−6,

where 〈a, b〉 denotes nearest-neighbor nodes and m is the total

number of such neighbors. We defined TBP and TtSU to be
the convergence times of the two algorithms and calculated
the TBP-to-TtSU ratio statistics, which are given in Table I and
Fig. 13. Evidently, the BP performs slightly better for ran-
dom PEPS, where there are presumably very few correlations
between the different spins. On the other hand, for the more
ordered instances of the AFH ground states, the trivial-SU
algorithm seems to converge faster, and this trend seems to
increase as we increase the bond dimension D.

[1] R. Orús, Ann. Phys. (Amsterdam) 349, 117 (2014).
[2] M. J. Wainwright and M. I. Jordan, Found. Trends Mach.

Learn. 1, 1 (2008).
[3] D. Koller and N. Friedman, Probabilistic Graphical Mod-

els: Principles and Techniques (MIT Press, Cambridge, MA,
2009).

[4] M. Mezard and A. Montanari, Information, Physics, and Com-
putation (Oxford University Press, Oxford, 2009) .

[5] G. F. Cooper, Artif. Intell. 42, 393 (1990).
[6] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev.

Lett. 98, 140506 (2007).
[7] I. L. Markov and Y. Shi, SIAM J. Comput. 38, 963 (2008).

[8] R. Orús and G. Vidal, Phys. Rev. B 80, 094403 (2009).
[9] T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. 65, 891

(1996).
[10] R. J. Baxter, J. Math. Phys. (Melville, NY) 9, 650 (1968).
[11] R. J. Baxter, J. Stat. Phys. 19, 461 (1978).
[12] A. W. Sandvik and G. Vidal, Phys. Rev. Lett. 99, 220602

(2007).
[13] L. Wang, I. Pižorn, and F. Verstraete, Phys. Rev. B 83, 134421

(2011).
[14] A. J. Ferris and G. Vidal, Phys. Rev. B 85, 165146 (2012).
[15] M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601

(2007).

023073-11

https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1561/2200000001
https://doi.org/10.1016/0004-3702(90)90060-D
https://doi.org/10.1103/PhysRevLett.98.140506
https://doi.org/10.1137/050644756
https://doi.org/10.1103/PhysRevB.80.094403
https://doi.org/10.1143/JPSJ.65.891
https://doi.org/10.1063/1.1664623
https://doi.org/10.1007/BF01011693
https://doi.org/10.1103/PhysRevLett.99.220602
https://doi.org/10.1103/PhysRevB.83.134421
https://doi.org/10.1103/PhysRevB.85.165146
https://doi.org/10.1103/PhysRevLett.99.120601

R. ALKABETZ AND I. ARAD PHYSICAL REVIEW RESEARCH 3, 023073 (2021)

[16] E. Efrati, Z. Wang, A. Kolan, and L. P. Kadanoff, Rev. Mod.
Phys. 86, 647 (2014).

[17] E. Robeva and A. Seigal, Inf. Inference 8, 273 (2018).
[18] H. C. Jiang, Z. Y. Weng, and T. Xiang, Phys. Rev. Lett. 101,

090603 (2008).
[19] S. S. Jahromi and R. Orús, Phys. Rev. B 99, 195105 (2019).
[20] J. Pearl, in Proceedings of the National Conference on Artificial

Intelligence (AAAI, Menlo Park, CA, 1982), pp. 133–136.
[21] F. R. Kschischang, B. J. Frey, and H. Loeliger, IEEE Trans. Inf.

Theory 47, 498 (2001).
[22] H. A. Bethe, Proc. R. Soc. London, Ser. A 150, 552 (1935).
[23] R. Peierls, Proc. Cambridge Philos. Soc. 32, 477 (1936).
[24] J. C. Bridgeman and C. T. Chubb, J. Phys. A: Math. Theor. 50,

223001 (2017).
[25] See, for example, Theorem 14.1 in Ref. [4].
[26] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, IEEE J. Sel.

Areas Commun. 16, 140 (1998).
[27] J. S. Yedidia, W. T. Freeman, and Y. Weiss, in Advances in

Neural Information Processing Systems (Kaufmann, San Mateo,
CA, 2001), Vol. 13, pp. 689–695.

[28] M. X. Cao and P. O. Vontobel, in 2017 IEEE Information Theory
Workshop (ITW) (IEEE, Piscataway, NJ, 2017), pp. 136–140.

[29] R. Alkabetz, Using the belief propagation algorithm for finding
tensor networks approximations of many-body ground states,
Master’s thesis, Technion, Haifa, Israel, 2020.

[30] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[31] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[32] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.

Mech.: Theory Exp. (2004) P04005.
[33] H. Kalis, D. Klagges, R. Orús, and K. P. Schmidt, Phys. Rev. A

86, 022317 (2012).
[34] S.-J. Ran, W. Li, B. Xi, Z. Zhang, and G. Su, Phys. Rev. B 86,

134429 (2012).
[35] A. Al-Bashabsheh and Y. Mao, IEEE Trans. Inf. Theory 57, 752

(2011).
[36] R. Kikuchi, Phys. Rev. 81, 988 (1951).
[37] T. Morita, M. Suzuki, K. Wada, and M. Kaburagi, Prog. Theor.

Phys. Suppl. 115, 136 (1994).

[38] A. Montanari and T. Rizzo, J. Stat. Mech.: Theory Exp. (2005)
P10011.

[39] M. Chertkov and V. Y. Chernyak, J. Stat. Mech.: Theory Exp.
(2006) P06009.

[40] J. Mooij, B. Wemmenhove, B. Kappen, and T. Rizzo, in
Proceedings of the Eleventh International Conference on Ar-
tificial Intelligence and Statistics, Proceedings of Machine
Learning Research Vol. 2 (PMLR, Cambridge, MA, 2007),
pp. 331–338.

[41] E. Nachmani, Y. Be’ery, and D. Burshtein, in 2016 54th
Annual Allerton Conference on Communication, Control,
and Computing (Allerton) (IEEE, Piscataway, NJ, 2016),
pp. 341–346.

[42] G. T. Cantwell and M. E. J. Newman, Proc. Natl. Acad. Sci.
USA 116, 23398 (2019).

[43] Z.-C. Gu, M. Levin, and X.-G. Wen, Phys. Rev. B 78, 205116
(2008).

[44] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, Phys.
Rev. Lett. 101, 250602 (2008).

[45] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference (Kaufmann, San Mateo, CA,
1988).

[46] A. Critch and J. Morton, Symmetry Integrability Geom.
Methods Appl. 10, 095 (2014) .

[47] J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, Phys. Rev. B
97, 085104 (2018).

[48] H. Loeliger and P. O. Vontobel, IEEE Trans. Inf. Theory 63,
5642 (2017).

[49] S.-J. Ran, E. Tirrito, C. Peng, X. Chen, L. Tagliacozzo, G. Su,
and M. Lewenstein, Tensor Network Contractions: Methods and
Applications to Quantum Many-Body Systems (Springer Nature,
Cham, 2020) .

[50] Specifically, some of the conditions are exactly satisfied when
no truncation is done; otherwise, there is an error which scales
like the sum of the squares of the Schmidt coefficients that were
neglected.

[51] S.-J. Ran, B. Xi, T. Liu, and G. Su, Phys. Rev. B 88, 064407
(2013).

023073-12

https://doi.org/10.1103/RevModPhys.86.647
https://doi.org/10.1093/imaiai/iay009
https://doi.org/10.1103/PhysRevLett.101.090603
https://doi.org/10.1103/PhysRevB.99.195105
https://doi.org/10.1109/18.910572
https://doi.org/10.1098/rspa.1935.0122
https://doi.org/10.1017/S0305004100019174
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1109/49.661103
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1103/PhysRevA.86.022317
https://doi.org/10.1103/PhysRevB.86.134429
https://doi.org/10.1109/TIT.2010.2094870
https://doi.org/10.1103/PhysRev.81.988
https://doi.org/10.1143/PTPS.115.27
https://doi.org/10.1088/1742-5468/2005/10/P10011
https://doi.org/10.1088/1742-5468/2006/06/P06009
https://doi.org/10.1073/pnas.1914893116
https://doi.org/10.1103/PhysRevB.78.205116
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1109/TIT.2017.2716422
https://doi.org/10.1103/PhysRevB.88.064407

