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We highlight a general theory to engineer arbitrary Hermitian tight-binding lattice models in electrical LC
circuits, where the lattice sites are replaced by the electrical nodes, connected to its neighbors and to the
ground by capacitors and inductors. In particular, by supplementing each node with n subnodes, where the
phases of the current and voltage are the n distinct roots of unity, one can in principle realize arbitrary hopping
amplitude between the sites or nodes via the shift capacitor coupling between them. This general principle is
then implemented to construct a plethora of topological models in electrical circuits, topolectric circuits, where
the robust zero-energy topological boundary modes manifest through a large boundary impedance, when the
circuit is tuned to the resonance frequency. The simplicity of our circuit constructions is based on the fact that
the existence of the boundary modes relies only on the Clifford algebra of the corresponding Hermitian matrices
entering the Hamiltonian and not on their particular representation. This in turn enables us to implement a
wide class of topological models through rather simple topolectric circuits with nodes consisting of only two
subnodes. We anchor these outcomes from the numerical computation of the on-resonance impedance in circuit
realizations of first-order (m = 1), such as Chern and quantum spin Hall insulators, and second- (m = 2) and
third- (m = 3) order topological insulators in different dimensions, featuring sharp localization on boundaries
of codimensionality dc = m. Finally, we subscribe to the stacked topolectric circuit construction to engineer
three-dimensional Weyl, nodal-loop, quadrupolar Dirac, and Weyl semimetals, respectively, displaying surface-
and hinge-localized impedance.

DOI: 10.1103/PhysRevResearch.3.023056

I. INTRODUCTION

Simple topological models, such as the Su-Schrieffer-
Heeger (SSH) [1–3] and the Bernevig-Hughes-Zhang (BHZ)
model [4,5], have played a pivotal role in the development
of topological condensed matter physics. In particular, they
provide an effective description of various topologically and
symmetry-protected phases [6–11], which captures the topo-
logical invariant, boundary modes, and responses to external
perturbations. Recently, a new frontier opened up with the
advent of metamaterials where these simple models can be
directly engineered in various platforms, manifestly showing
the topological features. Notable examples include photonic
[12–20], phononic [21–29], and topolectric [30–38] settings
where local manipulation of the lattice elements allows one to
control the hopping amplitude and the phase.

In this respect, topolectric circuits, made of rather simple
capacitance and inductance elements, yield a readily available
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route for the realization of a plethora of topological phases
[30–69]. The mapping between the response of a circuit to a
locally applied voltage and a tight-binding Hamiltonian is fa-
cilitated by the frequency-dependent admittance matrix Ĵ (ω).
Its form depends on the connectivity of the circuit elements
through the nodes, which is used to engineer the parameters
of a hopping model. In this platform the impedance between
the two nodes, related to the admittance matrix, can be used
to locally detect the boundary modes [33] and thus serves as
an electric circuit analog of a tunneling probe for topological
crystals.

A. Summary of results

Motivated by these developments, in this paper we use a
general framework for constructing arbitrary tight-binding
models in topolectric circuits to realize various gapped
and gapless topological phases in one, two, and three
spatial dimensions. We first rederive in a rather transparent
and independent way the known result [30,31,38] that a
tight-binding model with arbitrary hopping amplitudes and
phases can be constructed by extending a node in an LC circuit
(see Fig. 1) to include n subnodes with the same amplitude of
the input voltage but the phase factors representing n different
nth roots of unity. This method relies on the fact that each
of the n inequivalent connectivity configurations between the
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FIG. 1. A schematic LC circuit showing only two nodes a and b.
Here Cab and Lab are the capacitance and inductance between these
two nodes, respectively. The capacitance and inductance between the
node a and the ground (G) are Ca and La, respectively.

subnodes, realized with identical capacitors, directly maps
into the phase factor equal to one of the nth roots of unity; see
also Figs. 2 and 3, where, respectively, the cases n = 2 and
n = 4 are displayed.

We show that a wide range of topological models can be
realized in rather simple two-subnode topolectric circuits. To
this end, we use the fact that the existence of the topological
modes relies only on the Clifford algebra of the Hermitian
matrices entering the Hamiltonian, but not on their representa-
tion. This enables us to implement various topological models
so that the hopping elements are purely real. In turn, the
corresponding topolectric circuit can be constructed by sup-
plementing each node (representing a lattice site) by only two
subnodes, between which the phases of current and voltage
differ by a factor of exp(iπ ) = −1.

This method is exemplified by constructing circuit real-
izations of several toy models for topological phases. Some
of them have already been discussed in the literature, as
detailed below, and even though our explicit circuit construc-
tions are often different, we arrive at qualitatively similar
results. Furthermore, our framework allows for the topolectric
implementation of the models whose circuit realizations have
not been achieved so far to the best of our knowledge.

We start the discussion with circuit implementation of
the paradigmatic one-dimensional (1D) SSH model (Fig. 4),
experimentally realized in this platform in Ref. [33], and two-
dimensional (2D) BHZ model (Fig. 6), featuring, respectively,
the localized end-point and edge topological modes. We then
compute the site-resolved on-resonance impedance to show
the hallmark boundary modes, as displayed in Figs. 5 and 7,
and to infer the global phase diagram of the models, shown
in Fig. 8 for the square lattice topolectric Chern insulator,
previously studied on brickwall or honeycomb circuits [39].
The realization of the quantum spin Hall insulator (QSHI) is
displayed in Fig. 9. The outlined general method also can be
used to construct the phases beyond the 10-fold way [70], such
as a second-order topological insulator in two dimensions
(Fig. 10) [32] and third-order topological insulator in three di-
mensions (Fig. 11) [47], both featuring sharp corner-localized
on-resonance impedance. Besides demonstrating sharp corner

localization of on-resonance impedance, we also numerically
demonstrate its sublatice polarization stemming from the rep-
resentation of the generator of the particle-hole symmetry,
which still remains to be observed in experiments.

We also show how the hierarchy of the topological in-
sulators can be realized in the topolectric platform in the
case of a 2D second-order topological insulator by breaking
the fourfold (C4) rotational symmetry of the parent first-
order phase (Fig. 12 below) and explore a related antiunitary
symmetry-protected generalized second-order topological in-
sulator on an electrical circuit (Fig. 13). We also construct the
hierarchy of topological insulators in three dimensions and
show realizations of second- and third-order topological insu-
lators, respectively, supporting hinge and corner impedance,
by breaking discrete rotational symmetries of a first-order
topological insulator, yielding surface impedance (Fig. 14).
Finally, various 2D and three-dimensional (3D) topological
nodal semimetals can be implemented through stacking of the
SSH circuits, as shown in Fig. 15(a) for a 2D Dirac semimetal
(see also Ref. [33]), with its hallmark boundary impedance
displayed in Fig. 15(b). The surface impedance corresponding
to the drumhead states for the unknotted nodal-line semimetal
is shown in Fig. 15(c), while the Fermi arc surface states
for the 3D Weyl and Dirac semimetals, respectively, obtained
by stacking 2D Chern and quantum spin Hall isulators, are
displayed in Figs. 16 and 17. Finally, the 1D hinge mode
impedance for the quadrupolar (or second-order) Dirac and
Weyl semimetals is shown in Figs. 18 and 19, respectively.

B. Organization

The rest of the paper is organized as follows. In Sec. II we
present the general framework for constructing tight-binding
models with arbitrary parameters. In Sec. III we apply this
method to the realization of the first-order topological phases
in SSH and BHZ models, as well as to the topological Chern
insulator. Section IV is devoted to higher-order topological
insulators in two and three spatial dimensions. In Sec. V
we present the construction of the C4-symmetry-breaking
second-order topological insulator from the quantum spin
Hall insulator and a related antiunitary symmetry-protected
generalized higher-order topological insulator. Section VI is
devoted to the construction of the hierarchy of 3D higher-
order topological insulators. In Sec. VII we implement various
topological nodal semimetals in the topolectric platform, such
as 2D and 3D Dirac semimetals, and 3D Weyl, nodal-line, and
quadrupolar Dirac semimetals. In Sec. VIII we summarize and
discuss our results.

II. GENERAL SETUP

In this section, we highlight a general procedure for im-
plementing an arbitrary tight-binding model in LC electrical
circuits. For completeness, we first discuss the relation be-
tween the admittance and the experimentally measurable
impedance [33]. In particular, we lay out the connection be-
tween the divergence of this observable and the existence
of the admittance zero modes, which in turn captures the
hallmark of topological phases in the circuit setup. Second, we
rederive a general rule for devising a tight-binding model with
an arbitrary phase of the hopping in an LC circuit network
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[30,31,38] in an independent and transparent approach, which
will be subsequently used to demonstrate the realization of
different topological phases in topolectric circuits.

A. Admittance and impedance matrices

To make the connection between the electric circuit and a
tight-binding lattice model, we start by considering a repre-
sentative LC circuit, shown in Fig. 1. The electric current that
flows into the ground and the voltage at a particular node a of
an LC circuit are related by Kirchhoff’s law according to

İa =
∑

b

Cab(V̈a − V̈b) + 1

Lab
(Va − Vb) + CaV̈a + 1

La
Va. (1)

Here Ẋ ≡ dX/dt , the roman letters a, b, . . . label the nodes in
the circuit, and Ia and Va denote the current and voltage at the
node a, respectively. The capacitance and inductance between
nodes a and b are, respectively, Cab and Lab, while Ca and La

represent these parameters between the node a and the ground.
To characterize the response of an LC circuit to an applied

voltage, we Fourier transform Eq. (1) to obtain a nonlocal
relation between the voltage and the current at frequency ω:

Ia(ω) =
∑

b

Jab(ω)Vb(ω). (2)

The admittance matrix Jab(ω) reads as

Jab(ω) = iω[Nab(ω) + δabWa(ω)], (3)

where

Nab(ω) = −Cab + 1

ω2Lab
, (4)

Wa(ω) = Ca − 1

ω2La
−

∑
c

Nac, (5)

and Nab and Wa depend on the network structure of the circuit
and on the grounding, respectively.

The experimentally measurable quantity in this context is
the impedance, defined through the response of the circuit
to an applied current.1 In particular, we are interested in the
voltage response when a current Ia(ω) ≡ I (ω) is injected into
a node a, yielding an outgoing current from node b, given by
Ib(ω) = −Ia(ω) (following the Kirchhoff’s sign convention),
and with no current inflow or outflow at any other nodes. The
voltage difference between nodes a and b then defines the
two-point impedance between these two nodes:

Zab(ω) = Va(ω) − Vb(ω)

I (ω)
. (6)

Taking the spectral form of the admittance matrix

Jab =
∑

n

jnψ
∗
n,aψn,b, (7)

1We emphasize that the measurement or computation of the
impedance is performed here in the probe or linear response regime,
in which the externally applied voltage and current at a single node
of a topolectric circuit (containing macroscopic number of nodes),
probing its impedance, does not perturb its state before their applica-
tion [71–73].

and introducing its regularized inverse matrix

Gab =
∑

n, jn �=0

j−1
n ψ∗

n,aψn,b, (8)

defined to exclude the zero eigenmodes of Jab, the impedance
Zab reads as [33,71–73]

Zab = Gaa − Gab − Gba + Gbb =
∑

n

|ψn,a − ψn,b|2
jn

. (9)

Therefore when at least a single eigenvalue jn of the admit-
tance matrix is very small, we expect a large response in the
impedance Zab. Particularly, in the circuit realizations of topo-
logically nontrivial phases, such a large signal corresponds to
the gapless modes at the boundary of the system. Furthermore,
in spatially extended circuits with translational symmetry in
the bulk, the zero modes of the admittance are localized at
the boundary, as we will show later in concrete examples, and
directly identify the topological nature of the system.

B. Arbitrary hopping phases

To establish the correspondence with tight-binding models,
we first notice that the admittance matrix in Eq. (3) up to the
factor of iω is Hermitian, namely, Jab(ω) = iωHab(ω), with
Hab(ω) = H∗

ba(ω). Furthermore, if the nodes are thought of
as the lattice sites, the matrix Ĥ (ω) can be associated with
a Hamiltonian of a tight-binding model on this lattice, with
the off-diagonal elements that correspond to hoppings, while
the diagonal ones represent the on-site chemical potential.
Hereafter, the matrix Ĥ (ω) is referred to as the Hamiltonian.
As can be seen from the form of the admittance matrix in
Eq. (3), the corresponding Hamiltonian is completely real.
Nevertheless, a hopping with an arbitrary complex phase can
be implemented in this setup, as shown in Refs. [30,31,38],
which we rederive in a rather straightforward and independent
manner below.

To this end, we first notice that the voltage and current
at a node are defined up to a phase factor. This observa-
tion allows one to enrich the node structure to include more
subnodes within the same node with the same magnitude of
the voltage and current, but the phase factors shifted with
respect to each other; see Figs. 2 and 3. Crucially, as explic-
itly shown in Refs. [30,31,38] by solving the corresponding
Kirchoff’s equations, an arbitrary rational phase factor can
be tuned between the subnodes, which is subsequently used
to construct a tight-binding model with an arbitrary hopping
phase between the nodes. A similar subnode-based approach
has been used to engineer tight-binding models on phononic
lattices with a paradigmatic example in this context being the
QSHI tight-binding model with purely real hoppings [21].
Importantly, topolectric realizations of the discussed topolog-
ical models can be accomplished by supplementing each node
with only two subnodes, and only on rare occasions by four
subnodes (see Secs. III B and V B), when accompanied by
suitable choices of the matrices in the orbital or sublattice
space. The explicit solutions of the Kirchoff’s equations in
the cases of four-subnode and two-subnode circuits, showing
the realizations of desired phase distributions, are presented in
Sec. 5.1(a) and Sec. 5.1(c) of Ref. [38], respectively.
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FIG. 2. Two possible circuit configurations with a two-subnode structure. (a) The normal connection, and (b) the crossed or one-shift
connection. Each subnode (+ or −) at each node (a or b) is grounded (not shown here explicitly) via capacitance and inductance Cg and Lg,
respectively; see Fig. 1.

1. Two subnodes

To illustrate this protocol, let us start with the simplest
example of a node featuring the two subnodes (±) at which
the voltages are shifted by a relative phase factor exp[iπ ] =
−1; see Fig. 2. Two possible configurations of connection
between the neighboring nodes, shown in Figs. 2(a) and
2(b), correspond to the admittance matrices with the effective
Hamiltonian

Ĥα (ω) = σ0 ⊗ D̂ + σ1 ⊗ Ĉα. (10)

Here Ĉα = Cτα , α = 0 (α = 1) corresponds to the circuit
configuration in Fig. 2(a) [Fig. 2(b)], and ⊗ represents direct
or tensor product. The Pauli matrices {σν} and {τν} act on
the node and the subnode spaces, respectively, where ν =
0, . . . , 3. Here the diagonal part in the node space is

D̂ =
(

Cg − 1

ω2Lg

)
τ0 + 1

ω2L
τ1, (11)

where Cg and Lg are the capacitance and inductance of the
grounding elements (displayed in Fig. 1, but not shown in
Fig. 2), respectively, which can tune the circuit to the reso-
nance. Since we are interested only in the configuration with
the voltages tuned out of phase on the two subnodes within
the same node, to obtain the hopping and the on-site chemical
potential the subnode matrix is projected onto the relevant
subnode subspace spanned by the vector v2 = 1/

√
2[1,−1]�.

The projector onto this subspace P2,i j = v2,iv
∗
2, j explicitly

reads

P̂2 = 1
2 (τ0 − τ1). (12)

Consequently, the hopping matrix element for the two config-
urations in Fig. 2, respectively, reads

tα = Tr(P̂2ĈαP̂2), (13)

for α = 0 and 1, yielding

tα = (−1)α C, (14)

after using Eq. (10). On the other hand, the on-site chemical
potential for these two configurations is

μα = Tr(P̂2D̂αP̂2). (15)

As a consequence of Eq. (10), we find for both circuit network
configurations μ0 = μ1 ≡ μ, where

μ = Cg − 1

ω2Lg
− 1

ω2L
. (16)

Obviously, by applying different grounding elements on the
two sites, the difference of the on-site chemical potentials
can be realized. Consequently, by periodically repeating
two-subnode circuit configurations an arbitrary tight-binding
model with pure real hopping can be realized in topolectric
circuits. In fact, as we show, a wide class of topological mod-
els can be cast in such a form since the topological features
do not depend on the representation of the Hermitian matrices
entering the Hamiltonian, but only on their Clifford algebra.
Finally, by generalizing the above construction to include
more than two subnodes on a single node a hopping with an
arbitrary phase factor can be obtained.

2. Four subnodes

Next we consider the four-subnode configurations, as
shown in Fig. 3(a), where the phase differences between the
subnode a(+) and the rest of the subnodes [including the
subnode a(+)] are ±1,±i. Therefore the relevant subnode
subspace is spanned by the vector v4 = (1/2)[1,−i,−1, i]�,
graphically represented in Fig. 3(b). The corresponding pro-
jector P4,i j = v4,iv

∗
4, j , with the explicit form given by

P̂4 = 1

4

⎛
⎜⎝

1 i −1 −i
−i 1 i −1
−1 −i 1 i

i −1 −i 1

⎞
⎟⎠. (17)

The hopping element between the nodes a and b is then the
projection of the connectivity matrix between the subnodes
onto the subspace spanned by the vector v4, namely,

tα = Tr(P̂4ĈαP̂4), (18)

with Ĉα as the connectivity matrices for four possible configu-
rations, schematically shown in Figs. 3(d)–3(g). For instance,
the circuit in Fig. 3(c) corresponds to the graph in Fig. 3(d),
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FIG. 3. (a) Circuit construction of a node with four subnodes a(α), where α = ±, ±i denote the relative phase of the current or voltage
between the subnodes. (b) Schematic representation of a node with four subnodes. (c) One-shift capacitor connection with capacitance C
between two nodes a and b. (d) Schematic representation of the one-shift capacitor connection from (c). Two-shift, three-shift, and no-shift or
direct capacitor connections between nodes a and b are schematically shown in (e), (f), and (g), respectively. The effective hopping elements
between these two nodes or sites are then t(d ) = iC, t(e) = −C, t( f ) = −iC, and t(g) = C.

and the corresponding connectivity matrix is

Ĉ(d ) = C

⎛
⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠, (19)

where C is the capacitance between two neighboring nodes.
Then Eq. (18) yields t(d ) = iC. Similarly, one can readily
check that the circuit with the graph shown in Fig. 3(e)
[Fig. 3(g)] yields the hopping t(e) = −C [t(g) = C], while for
the remaining graph in Fig. 3(f) the hopping t( f ) = −iC. A
straightforward calculation then shows that the corresponding
on-site potential when the grounding elements on all four
subnodes are the same is given by μ = Cg − 1/(ω2Lg) −
1/(ω2L). Again, by choosing different grounding elements
for different nodes, one can tune the difference of the on-site
chemical potentials. Therefore, the four-subnode LC circuit
can realize an arbitrary tight-binding model with hopping
phases being four fourth roots of unity, namely, exp[2π im/4],
with m = 1, 2, 3, 4, i.e., either purely real or purely imaginary.

3. n subnodes

This construction can now be further generalized to a
hopping with phase factors 
n,m = exp[2iπ (1 − m)/n], with
m = 1, . . . , n, which are the nth roots of unity. Now each
node contains n subnodes. The hopping elements are obtained
by projecting the connectivity matrices onto the subspace
spanned by the n-component vector vn, with the elements

vn,m = 
n,m. The matrix corresponding to the “one-shift”
in the connectivity 1 → n, 2 → 1, 3 → 2, 4 → 3, . . . , n →
n − 1 generates the hopping equal to t(1) = exp[2iπ/n]. See
the Appendix for the proof. More generally, an s-shift results
in the hopping phase equal to t(s) = exp[2iπs/n], as also
shown in the Appendix.

In the following, we apply this general protocol to con-
struct various insulating and gapless or nodal topological
phases, both more conventional first-order ones and the
higher-order ones, in one, two, and three spatial dimensions.

III. FIRST-ORDER TOPOLECTRIC INSULATORS

The hallmark of any topological phase of matter is
the bulk-boundary correspondence, which ensures the ex-
istence of topologically protected robust boundary modes
[4–11,74–79]. Typically, a d-dimensional topological phase
supports such modes that reside on (d − 1)-dimensional
boundaries, which are also characterized by the codimension
dc = d − (d − 1) = 1, yielding first-order topological phases.
Some well-known examples of topological modes include the
endpoint modes in the 1D SSH topological insulator, 1D edge
modes for 2D Chern and quantum spin Hall insulators, and the
surface states of 3D topological insulators. In this section we
demonstrate realizations of some of these insulating phases
in topolectric circuits. In Secs. VII A, VII B, and VII C we
demonstrate circuit realizations of first-order nodal or gapless
topological phases.
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FIG. 4. The SSH model and its topolectric circuit realization.
(a) The real space realization of the SSH model. A and B are two
orbitals on each lattice site. The solid red lines correspond to hopping
λ, and the hopping amplitudes t̃1 = (t + t1)/2 and t̃2 = (t − t1)/2
are, respectively, represented by solid blue and dashed black lines;
see Eq. (20). When |λ/t | < 1 the system is in the topological phase.
(b) The hopping pattern in the limit t = t1; see Eq. (21). (c) A circuit
realization of the SSH model in the limit t = t1, with two subnodes
at each node or orbital. Two nodes residing within the dashed rect-
angle constitute the unit cell of the SSH model. The corresponding
capacitances in the circuit are λ (red) and t (blue). The inductors
connecting each subnode to the ground (not shown explicitly here;
see Fig. 1) and two subnodes at each node are all with the same
inductance equal to L. (d) The circuit realization of the SSH model
with an effective negative nearest-neighbor hopping amplitude due to
the crossed or one-shift connection (see Fig. 2), yielding access to the
parameter regime λ/t < 0, which is not possible in a one-subnode
structure with only capacitor connections; see also Ref. [33].

A. Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model is a paradigmatic
example of a topological state in one dimension [1–3]. Here
we show its circuit realization within the general construction
principle, discussed in the previous section. The Hamiltonian
of the SSH model in the real space takes the following form:

H real
SSH =

∑
i

[λa†
i bi + t̃1a†

i bi+1 + t̃2b†
i ai+1], (20)

where the annihilation operators ai and bi act on the orbitals
A and B localized at the site i, respectively. The hopping am-
plitudes λ and t̃1,2 = (t ± t1)/2 are purely real; see Figs. 4(a)
and 4(b). The corresponding momentum space representation
of the SSH model reads as

Hmom
SSH = [λ + t cos(k)] τ1 + t1 sin(k) τ2, (21)

where the Pauli matrices {τμ} with μ = 0, . . . , 3 act on the
orbital space. For the range of parameters −1 < λ/t < 1,
the SSH model is in the topological regime and features a
localized zero mode at each end of the system. Furthermore,
the matrix τ3 anticommutes with the Hamiltonian Hmom

SSH and
ensures the spectral symmetry. Consequently, all zero-energy
modes are eigenstates of the matrix τ3, and as such they are
completely localized on either of the two orbitals. By contrast,
the system becomes a trivial insulator when |λ/t | > 1. This
model belongs to class BDI in the 10-fold classification [70].

The form of the Hamiltonian in Eq. (20) in terms of only
real hopping parameters allows a realization of the SSH model
through an electric circuit with two nodes corresponding to
the two orbitals per lattice site. Furthermore, when each node
contains two subnodes, it allows access to the parameter
regimes λ/t > 0 as well as λ/t < 0, which is not possible
in a one-subnode structure with pure capacitor (or inductor)
connections; see Fig. 2. Concrete circuit realizations to ac-
cess these two parameter regimes are, respectively, shown in
Figs. 4(c) and 4(d). Note that the SSH model has been studied
in the topolectric circuit extensively in Ref. [33], as well as
in other circuit setups [35,37,42,43,45]. Here we discuss this
model for the sake of completeness and to establish generic
features of a topolectric circuit.

Now consider a periodic SSH circuit [see Fig. 4(a)] with
the Hamiltonian matrix, ĤSSH(ω) ≡ Ĵ (ω)/iω, which accord-
ing to Eq. (3) is given by

ĤSSH(ω)

=

⎡
⎢⎢⎢⎣
λ + t − 1

ω2L −λ 0 . . .

−λ λ + t − 1
ω2L −t 0

0 −t λ + t − 1
ω2L −λ

0 0 −λ
. . .

⎤
⎥⎥⎥⎦.

(22)

It can be seen that this Hamiltonian matrix represents an
SSH Hamiltonian with an overall shift in chemical poten-
tial equal to λ + t − 1

ω2L . Therefore, the SSH circuit is at
resonance when the ac frequency ω = ωR = 1/

√
L(λ + t ).

We notice that the two zero-energy modes localized on one
particular orbital mix due to a finite size effect. Because of
such an orbital mixing between the zero-energy modes, the
measured impedance with one orbital (or sublattice) as the
input point and the other one as the output point shows a large
orbital selective on-resonance peak in the topological regime.
This mechanism for the observed large orbital or sublattice
selective on-resonance topological impedance is operative
on all the topolectric circuits that we discuss in this paper.
Furthermore, in a finite system zero-energy states also split
symmetrically about the zero admittance eigenvalue. There-
fore the impedance between the same sublattice (or same
orbital) at two sites is extremely small, as can be seen from
Eq. (9), which approaches zero with the increasing system
size. On the other hand, the impedance between two distinct
sublattices or orbitals at the two ends of the circuit is large,
since the zero admittance state is predominantly localized on
only one of the two orbitals at a given end. These outcomes are
demonstrated through a numerical simulation of the SSH cir-
cuit in the topological and trivial phases, shown in Figs. 5(a)
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FIG. 5. Numerical computation of the impedance of the SSH
chain realized on an electrical circuit; see Figs. 4(a) and 4(b). (a) On-
resonance logarithm of the impedance ln(Z ) in an SSH circuit of
linear dimension � = 10 with input point on the orbital A at site
1 and output point on the orbital B at various sites of the circuit
for λ/t = 0.6 (top) and λ/t = −0.6 (bottom). (b) Same as (a), but
with the output point on the orbital A at various sites of the circuit.
Frequency dependence of the impedance in an SSH circuit of linear
dimension � = 10 for (c) λ/t = ±0.55 (topological phase) and (d)
λ/t = ±2.00 (trivial phase). Here we compute the impedance with
the orbital A at site 1 as the input point and the orbital B at site 10 as
the output point. While the peak (red dots) of impedance in (c) at the
resonance [ω = ωR = 1/

√
L(λ + t )] indicates the topological nature

of the state with endpoint zero modes, the dip (blue dots) at the
resonance in (d) confirms that the phase is a trivial insulator.

and 5(b), respectively. One can also see that the impedance
grows with the separation between the two sites, consistent
with the topological mode being localized at the endpoint of
the system.

To further corroborate the topological nature of the circuit,
we measure impedance over a wide range of frequencies be-
tween orbital A from site 1 and orbital B of site 10, located
at two opposite ends of the circuit; see Fig. 5(c). The peak of
the impedance at the resonance frequency (ω = ωR) signals
that the system is topological when |λ/t | < 1. On the other
hand, for |λ/t | > 1, the dip in the impedance at the resonance
frequency is a signature of the topologically trivial nature of
this phase, as shown in Fig. 5(d).

B. Chern insulator

We now consider the circuit realization of the 2D Chern in-
sulator. The corresponding Hamiltonian in momentum space
is given by

HCI = t[sin(kx ) τ3 + sin(ky) τ2]

+{m − t0[cos(kx ) + cos(ky)]} τ1. (23)

Pauli matrices {τμ} with μ = 0, . . . , 3 act on two orbitals in a
unit cell. While t and t0 are the interunit cell hopping param-
eters, m denotes the intraunit cell hopping. This model breaks
the time-reversal symmetry. The system is in the topological
regime when −2 < m/t0 < 2, describing the Chern insulator
with 1D edge mode. By contrast, the system describes trivial
insulators when |m/t0| > 2. The band gap closing between the

FIG. 6. Chern topolectric circuit. The red (blue) squares repre-
sent sublattices or nodes A (B), and the lines indicate the hopping
between them. The dashed box corresponds to the two-sublattice
unit cell of the Chern insulator. The green, orange, red, and blue
lines denote a hopping amplitude equal to (t − t0)/2, −(t + t0)/2,
m, and −t0/2, respectively. The arrowed lines correspond to a hop-
ping of it/2 in its direction. Such hopping amplitudes are obtained
by supplementing each node with four subnodes (not shown here
explicitly) and connecting subnodes from nearest-neighbor nodes by
capacitors of capacitance equal to modulus of the requisite hopping,
following the prescription from Fig. 3 and Sec. II B 2. Each subnode
is grounded with inductor of inductance L. For the range of param-
eters −2t0 < m < 2t0 the system is topological and thus supports
boundary states that in turn yield enhanced impedance (Z) on the
edge of the circuit; see Figs. 7 and 8.

Chern and trivial insulators occurs at m/t0 = ±2. On the other
hand, the transition between two distinct Chern insulators
takes place at m/t0 = 0, also through a band gap closing.
We note that the system possesses an antiunitary particle-
hole symmetry represented by the operator A = τ3K which
anticommutes with the Hamiltonian of the system HCI, where
K is the complex conjugation. Consequently, the zero-energy
edge mode of the Chern insulator is an eigenstate of the an-
tiunitary operator A. Since the unitary part of A is τ3, the edge
modes reside on either one of two orbitals. Previously a Chern
insulator has been constructed in a brickwall or honeycomb
topolectric circuit [39]. Here we realize the Chern insulator in
a square topolectric circuit [see Eq. (23) and Fig. 6] and in
addition to probing its topological edge mode (see Fig. 7), we
also construct its phase diagram (see Fig. 8).

The tight-binding Hamiltonian in Eq. (23), according to
the previously discussed correspondence between the hopping
amplitudes and the circuit elements, is realized on the circuit
consisting of the components shown in Fig. 6. These elements
are then connected so that the 2D circuit network features
a two-node (A and B) unit cell (the dashed box in Fig. 6).
Since the lattice model HCI involves both real and imaginary
hopping elements in the real space, each node possesses four
subnodes. Then the subnodes from the nearest-neighbor nodes
are connected by capacitors with appropriate capacitance fol-
lowing the general prescription discussed in Sec. II B 2; see
also Fig. 3. All four subnodes of A and B nodes are grounded
with inductor of inductance L, so that the resonance frequency
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FIG. 7. Impedance of the Chern circuit of linear dimension
(number of sites) � = 15 in each direction at resonance when m =
0.7 and t = t0 = 1 [see Eq. (23)]. The quantity X(p, q) in each
subfigure denotes the location (p, q) of the input point, which is fixed
on the X = B (top) and A (bottom) sublattices. The output point is
then on the A and B sublattices, respectively, which we sweep over
the entire system. The sharp peak of the impedance near the edges
of the circuit (irrespective of the choice of the input point) shows the
topological nature of the Chern insulator.

of the Chern circuit is ωR = 1/
√

Lm. The numerical compu-
tations of the impedance are performed for t = t0 = 1.

To capture the topological edge modes in a Chern topolec-
tric circuit, we choose either an A or B node from one of the
four corners of the circuit as the input point and numerically
compute the impedance with a B or A node as the output
point. For a fixed input A or B node, we scan all the B or
A nodes in the system to capture the spatial resolution of the
on-resonance impedance. This measurement is then repeated
for different corner choices of the A or B nodes. The results
are summarized in Fig. 7. We find that only when m < 2 the
impedance increases sharply at the edges of the circuit, signal-
ing the appearance of the boundary modes, which is consistent
with the system becoming a Chern insulator. Also when we
scan the impedance over a wide range of frequency, it shows
an on-resonance (ω = ωR) peak only when the system is in
the topological regime. On the other hand, in the trivial phases
the on-resonance impedance shows a dip. These features are
qualitatively similar to the ones we previously reported for the
SSH chain; see Figs. 5(c) and 5(d). Hence, we do not display
these results in the paper.

Finally, we construct the global phase diagram of the model
HCI from the scaling of the on-resonance impedance (Z) as a
function of m; see Fig. 8. While in the Chern insulator phases
Z is finite, it (almost) vanishes in the trivial insulating phases.
Finally, at the transition point between two Chern insulators
(m = 0) the impedance Z (almost) vanishes. Therefore, mea-
surement of the on-resonance impedance in topolectric circuit
can be instrumental not only to identify gapless topological
modes but also to construct the global phase diagram of vari-
ous topological models, and the topological phase transitions
therein.

FIG. 8. The global phase diagram of HCI as a function of the
parameter m [see Eq. (23)], obtained by computing the on-resonance
impedance (Z), with a fixed input point on the A node at (1,1) and for
two choices (quoted in the figure) of the output point on the B nodes,
residing on the edges of the circuit with linear dimension � = 20
in each direction, when t = t0 = 1. The magnitude of Z shows that
the system is a Chern insulator with finite Z for −2 < m < 0 and
0 < m < 2, with a bandgap closing at m = 0, where Z (almost)
vanishes. It also shows the existence of trivial insulators for m > 2
and m < −2, where as well Z (almost) vanishes.

C. Quantum spin Hall insulator (QSHI)

Next we focus on the lattice model of QSHI and demon-
strate its realization on topolectric circuits. The corresponding
tight-binding model takes the following form in the momen-
tum space:

HQSHI = t[sin(kx ) 
1 + sin(ky) 
2]

+{m − t0[cos(kx ) + cos(ky)]} 
3, (24)

where � are mutually anticommuting four-component Hermi-
tian matrices. When the 
 matrices belong to the representa-
tion


1 = σ3 ⊗ τ1, 
2 = σ0 ⊗ τ2, 
3 = σ0 ⊗ τ3,


4 = σ1 ⊗ τ1, 
5 = σ2 ⊗ τ1, (25)

one can identify two sets of Pauli matrices {σμ} and {τμ}
operating on the spin (↑ and ↓) and sublattice or orbital (A
and B) indices, respectively, with μ = 0, . . . , 3. The above
model is in the topological regime for |m/t0| < 2, where it
describes a QSHI supporting counterpropagating 1D edge
modes for opposite spin projections. However, topology of the
above quadratic Hamiltonian is insensitive to the representa-
tion of the 
 matrices. We judiciously commit to the following
representation:


1 = σ1 ⊗ τ2, 
2 = σ2 ⊗ τ0, 
3 = σ1 ⊗ τ1,


4 = σ1 ⊗ τ3, 
5 = σ3 ⊗ τ0, (26)

such that in the real space all the hopping elements associated
with HQSHI are completely real. This is so, because in this
representation purely imaginary (real) 
 matrices multiply
the sine (cosine and real constant) functions. In the following
sections, we will subscribe to such representation whenever
possible. In this representation, two sets of Pauli matrices {σμ}
and {τμ} respectively operate on the orbitals or sublattices
(C, D) and (A, B). Also note that HQSHI anticommutes with
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FIG. 9. Quantum spin Hall effect in a topolectric circuit. (a) The circuit realization of the quantum spin Hall insulator (QSHI) model [see
Eq. (24)], when t = t0. The capacitances of the black, blue, and red capacitors are t/2, t , and m, respectively. Big dots are the subnodes of a
given node (color coded), representing the orbitals A, B, C, and D of the lattice model. The small black dots denote the connection between
two lines. All the subnodes are connected to the ground via an inductor of inductance L (not shown explicitly). The dashed box encircles four
nodes or orbitals, constituting the unit cell of the corresponding lattice model. (b) Spatial distribution of the on-resonance impedance (Z) on the
entire circuit for t = t0 = m = 1, with the B node at (1,1) as the fixed input point. The output point scans the entire system on four individual
sublattices or nodes separately (mentioned in the figures). (c) Same as (b), but with the C node at (1,15) as the input point. The sublattice (or
equivalently spin) selective sharp localization of impedance at the edges of the circuit manifests QSHI in the topolectric circuit.

the unitary operator 
5, which in turn generates the spectral or
particle-hole symmetry of the system. Consequently, the 1D
edge modes at zero energy are eigenstates of 
5, and reside
either on (A, B) or (C, D) sublattices.

By virtue of committing to such representation of the 


matrices, we can engineer HQSHI in an electric circuit by
supplementing each sublattice or node by two subnodes (see
Sec. II B 1 and Fig. 2). A concrete circuit realization of HQSHI

is shown in Fig. 9(a). By numerically computing the on-
resonance (ω = ωR = 1/

√
Lm) impedance, we confirm that

only in the topological regime impedance is sharply peaked
around the edges of the circuit. Furthermore, by performing
node- or sublattice-resolved computation of the on-resonance
impedance, we find that the edge mode is either localized on
the sublattices (C, D) [see Fig. 9(b)] or (A, B) [see Fig. 9(c)].
Later we will show (in Sec. V A) how one can break the
discrete fourfold (C4) rotational symmetry of this circuit to
realize a higher-order topological (HOT) insulator, supporting
corner impedance. Prior to that we first discuss some standard
models for HOT phases in two and three dimensions, and their
realizations in topolectric circuits.

IV. HIGHER-ORDER TOPOLECTRIC CIRCUITS

Recently, the notion of the bulk-boundary correspondence
has been generalized to include low-dimensional topological
modes that reside on boundaries with integer codimension
dc > 1, giving rise to the notion of higher-order topological
(HOT) phases [80–97] [68]. The well-studied examples of the
low-dimensional boundary modes are the corner (with dc =
d) and hinge (with dc = d − 1) modes; namely, an nth-order
topological phase supports boundary modes of codimension
dc = n. So far, we have discussed first-order topological in-
sulators and their realizations on topolectric circuits. Next we
present realizations of HOT insulators on topolectric circuits.
In Sec. VII D we will discuss a circuit realization of a HOT
semimetal.

A. 2D HOT insulator

We start by considering the example of a 2D Benalcazar-
Bernevig-Hughes (BBH) model [80], a second-order topolog-
ical insulator featuring four corner modes with dc = 2. The
model is defined on a square lattice with four sublattices (A,
B, C, and D) per unit cell. The lattice Hamiltonian reads as
H2D

BBH = hx + hy, where

hx = [λ + t cos(kx )] 
1 + t sin(kx ) 
2,

hy = [λ + t cos(ky)] 
3 + t sin(ky) 
4. (27)

The mutually anticommuting 
 matrices ({
i, 
 j} = 2δi j) act-
ing on the sublattice space can be chosen as


1 = σ1 ⊗ τ1, 
2 = σ1 ⊗ τ2, 
3 = σ1 ⊗ τ3,


4 = σ2 ⊗ τ0, 
5 = σ3 ⊗ τ0. (28)

Namely, the sets of Pauli matrices {τμ} and {σμ}, respectively,
operate on the sublattice space spanned by (A, B) and (C, D),
with μ = 0, . . . , 3. Notice that hx (hy) assumes the form of the
SSH model along the x (y) direction [see Sec. III A]. There-
fore, hx and hy individually support a string of zero-energy
end modes along the y and x directions, respectively, when
|λ/t | < 1. However, {hx, hy} = 0, i.e., hx acts as a mass for the
end modes of hy and vice versa. Consequently, only the four
corner modes survive in the spectra of H2D

BBH, and we realize a
2D second-order topological insulator.

This specific representation of the 
 matrices is convenient
for our purposes as it features three real and two imagi-
nary 
 matrices. It allows us to construct the BBH model
with all the hopping elements being real [see Fig. 10(a)]
and therefore the nodes (representing sublattices) with only
two subnodes are sufficient to be implemented in the cir-
cuit realization of the BBH model, as shown in Fig. 10(b).
Each subnode is grounded by an inductor of inductance L.
Consequently, the resonance frequency of the circuit is ωR =
1/

√
L(λ + t ). Furthermore, note that the matrix 
5 = σ3 ⊗ τ0
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FIG. 10. Higher-order topological insulator in a topolectric circuit. (a) A schematic representation of the BBH Hamiltonian. The (real)
hopping parameters are λ and t . This model can feature a HOTI state that supports four corner-localized zero-energy modes. (b) Circuit
realization of the BBH model. Each node (color coded) contains two subnodes, and all the subnodes are connected to the ground via an
inductor of inductance L (not shown explicitly). The capacitances of the black and red capacitors are, respectively, λ and t . The negative
hopping amplitudes are implemented via one-shift couplings discussed in Sec. II and are denoted by the crossed lines. The dashed boxes
in (a) and (b) denote the unit cell of the BBH model. (c) Spatial distribution of the on-resonance impedance (Z) for capacitances t = 1 and
λ = 0.4 (ensuring the topological regime of the BBH model), with the A node at (1,1) as the fixed input point. The output point scans the
entire system on individual sublattices separately (mentioned in the figures). (d) Same as (c), but with the C node at (1,15) as the fixed input
point. Node selective corner localization of impedance shows the circuit realization of a 2D HOTI and the sublattice symmetry of the corner
modes.

anticommutes with the Hamiltonian H2D
BBH. Hence, the spec-

trum is particle-hole symmetric, and the zero-energy corner
modes are eigenstates of 
5. Therefore, the topological corner
modes are localized either on the sublattices A and B or on the
sublattices C and D, as we also explicitly demonstrate from
the concrete circuit realization of the BBH model.

The spatial distributions of the impedance are shown in
Figs. 10(c) and 10(d) on a circuit with � = 15 sites in each
direction. In the topological regime (|λ/t | < 1) of the BBH
model, we first fix the input point at (1,1) and on node A.
The spatial variation of the on-resonance impedance on four
individual nodes over the entire system then shows sharp
corner localization on the C and D nodes; see Fig. 10(c). We
arrive at similar conclusions by choosing the B node at (1,1)
as the input point (results are not shown here explicitly). On
the other hand, when the input point is fixed on the C node
located at (1,15), the corner-localized peaks of impedance
appear on nodes A and B; see Fig. 10(d). Similar conclusions
are found with the D node at (1,15) as the input point, for
which the results are not displayed here. These features of the
node- (or sublattice) and site-resolved impedance confirm the
realization of a 2D HOT insulator on topolectric circuit and
the sublattice or node selection of the corresponding corner
impedance. We note that the 2D topolectric BBH circuit has
already been realized in Ref. [32]. Even though our explicit
circuit construction is distinct from the one engineered in
Ref. [32], here we arrive at qualitatively similar results. On
the other hand, the observed sublattice polarization of the
on-resonance corner impedance is yet to be demonstrated in
experiments.

B. 3D HOT insulator

Similar to the 2D HOTI, one can construct a BBH Hamil-
tonian for its 3D counterpart [80], yielding a third-order
topological insulator that supports eight corner modes with
dc = 3. Each unit cell then contains eight sublattices (A, . . . ,

H; see Fig. 11), and in the Fourier space the corresponding
Hamiltonian reads as

H3D
BBH = hx + hy + hz, (29)

where

hx = [λ + t cos(kx )] 
1 + t sin(kx ) 
2,

hy = [λ + t cos(ky)] 
3 + t sin(ky) 
4, (30)

hz = [λ + t cos(kz )] 
5 + t sin(kz ) 
6.

Here � are mutually anticommuting eight-dimensional Her-
mitian matrices that satisfy the Clifford algebra {
i, 
 j} =
2δi j . Even though topology of H3D

BBH is insensitive to the repre-
sentation of the 
 matrices, for the sake of convenience (about
which more in a moment), we choose


1 = �1 ⊗ σ1 ⊗ τ1, 
2 = �1 ⊗ σ1 ⊗ τ2,


3 = �1 ⊗ σ1 ⊗ τ3, 
4 = �1 ⊗ σ2 ⊗ τ0,


5 = �1 ⊗ σ3 ⊗ τ0, 
6 = �2 ⊗ σ0 ⊗ τ0, (31)

where {�μ}, {σμ} and {τμ} are three independent sets of Pauli
matrices. Since the maximal number of mutually anticommut-
ing eight-dimensional Hermitian matrices is seven, we can
always find an Hermitian matrix, namely, 
7, that satisfies
{
7, 
 j} = 2δ7 j for j = 1, . . . , 7, and therefore anticommutes
with H3D

BBH. The 
7 matrix generates a unitary particle-hole
symmetry of H3D

BBH, and in the announced representation 
7 =
�3 ⊗ σ0 ⊗ τ0.

The above model is in the topological regime for |λ/t | < 1
for which it supports eight corner-localized zero-energy
modes. This is so because all three components of H3D

BBH,
namely, hx, hy, and hz assume the form of the 1D SSH model.
Consequently, hx supports a collection of end-point zero-
energy modes, localized on the yz planes, and similarly hy on
the zx planes and hz on the xy planes. However, these three
components of H3D

BBH mutually anticommute with each other.
Consequently, only the zero modes at eight corners survive,
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FIG. 11. Circuit realization of a 3D higher-order topological insulator (HOTI). (a) A unit cell (the shaded cube) in the lattice construction
of 3D HOTI [see Eq. (29)]. The black (blue) lines represent intraunit cell (interunit cell) hopping with absolute value λ (t). The solid lines
represent positive hopping amplitudes, and the dashed lines represent negative ones. The system is topological when |λ/t | < 1. (b) A unit cell
in the circuit construction of 3D HOTI, where each node (or sublattice) contains only two subnodes. The red capacitors have capacitance equal
to λ and the blue capacitors have capacitance equal to t . The negative hopping amplitudes [see (a)] are realized through one-shift capacitor
coupling between the subnodes from the nearest-neighbor nodes (see Sec. II B 1 and Fig. 2). (c) On-resonance impedances of the 3D HOTI
circuit of linear dimension (number of sites) � = 15 in each direction for λ = 0.4 and t = 1. Throughout the input point is fixed at (1,1,1) and
on the node A. The output point scans all eight nodes (or sublattices) over the entire system, as labeled in the caption. One can see a sublattice
selection of the sharp corner-localized impedance, which confirms realization of 3D HOTI on topolectric circuit. We rotate the cubes for E, G,
and H nodes (or sublattices) for the best visualization of sharp corner impedance.

where xy, yz, and zx planes meet, yielding the corner modes.
Due to the particle-hole or spectral symmetry of H3D

BBH, the
corner modes are eigenstates of 
7. With the above specific
choices of the 
 matrices, the zero-energy corner states are
therefore localized on either the sublattices (A, B, C, D) or (E,
F, G, H).

By virtue of the above representation of the 
 matrices, all
the hopping elements associated with H3D

BBH are purely real;
see Fig. 11(a). Hence, this model can be implemented on a
topolectric circuit by supplementing each node with only two
subnodes, as shown in Fig. 11(b). Each subnode is grounded
by an inductor of inductance L, and therefore the resonance
frequency of the circuit is ωR = 1/

√
L(λ + t ). The numerical

computation of the on-resonance (ω = ωR) impedance then
shows that in the topological regime (realized on the circuit
for t = 1 and λ = 0.4) it is highly localized at the corners of
the cubic circuit; see Fig. 11(c). Moreover, when we fix the
input point for the measurement of impedance on the A node
at (1,1,1), the sharp corner-localized impedance is realized on
the E, G, and H nodes, confirming its node (or sublattice)
selection, stemming from the particle-hole symmetry of H3D

BBH.
Experimental realization of 3D BBH model in the topolec-
tric platform has been recently reported in Ref. [47], where
an enhanced impedance was detected at the corners, but no
sublattice-selective measurement was carried out (despite the
differences in the explicit circuit construction). Our discussion
should therefore motivate future experiments to search for the
predicted sublattice selection rule of corner impedance.

V. DISCRETE SYMMETRY BREAKING
AND ANTIUNITARY SYMMETRY

So far we have shown realizations of various topological
phases in 1D, 2D, and 3D topolectric circuits. In this section,
by focusing on the specific example of 2D QSHI, we first
demonstrate how one can introduce a discrete fourfold (C4)

symmetry-breaking Wilson-Dirac mass on a circuit to con-
vert the QSHI into a 2D HOTI, supporting corner-localized
impedance. Subsequently, we also show how one can exploit
an underlying antiunitary spectral symmetry to generalize the
HOTI model [98,99] in a circuit.

A. Discrete symmetry breaking: QSHI to HOTI

Recall that a QSHI supports two counterpropagating edge
modes for opposite spin projections. If we now add a term,
namely,

H� = � [cos(kx ) − cos(ky)] 
4, (32)

to the Hamiltonian for the QSHI HQSHI [see Eq. (24)], it
gaps out the edge modes, since {HQSHI, H�} = 0. Here the 


matrices follow the representation from Eq. (26). However,
notice that H� changes sign under the C4 rotation, and as such
breaks the fourfold rotational symmetry of HQSHI. Therefore,
H� acts as a mass for 1D edge modes of HQSHI, with the
profile of a domain wall mass that changes sign across each
corner of the system. Consequently, the edge modes are only
partially gapped, and according to a generalized Jackiw-Rebbi
mechanism give rise to four sharply corner-localized modes
[89,100]. We then realize a 2D HOTI by lifting the C4 sym-
metry of the system via the Wilson-Dirac mass H�.

We now show how to break such discrete rotational sym-
metry in a topolectric circuit and implement H� to realize
HOTI from QSHI. Notice that 
4 is a real Hermitian matrix
[see Eq. (26)]. Therefore, hopping matrix elements associated
with H� in the real space are completely real. We can then
introduce H� in a circuit consisting of nodes that are accom-
panied by only two subnodes, as shown in Fig. 12(a). Note that
the total Hamiltonian HQSHI + H� anticommutes with 
5 =
σ3 ⊗ τ0. Consequently, the on-resonance (ω = ωR = 1/

√
Lm)

impedance shows a node or sublattice selective sharp corner
localization, displayed in Figs. 12(b) and 12(c), confirming
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FIG. 12. Discrete symmetry breaking in topolectric circuit and realization of 2D HOTI from QSHI. (a) Circuit realization of H�

[see Eq. (32)] that breaks fourfold (C4) rotational symmetry of the QSHI circuit, shown in Fig. 9(a). All the capacitors have capacitance
�, and all the subnodes are grounded via inductors of inductance L. (b) Numerical computation of on-resonance impedance with the B node at
(1,1) as the input point for t = t0 = m = 1 and � = 0.5. The output point scans the entire system and all four individual nodes (or sublattices)
separately. (c) Same as (b), but with the C node at (1,15) as the input point. Results show node or sublattice selective sharp corner localization
of the on-resonance impedance due to the C4 symmetry breaking by a circuit analog of the Wilson-Dirac mass H�, ultimately yielding a 2D
HOTI phase.

the realization of C4 symmetry-breaking HOTI in a topolectric
circuit.

Note that here we present an alternative realization of
HOTI in two dimensions, in comparison to the previous one
from the BBH model in Sec. IV A. However, these two seem-
ingly distinct realizations of 2D HOTI are equivalent [98].
The main purpose of the present discussion is to highlight a
concrete path to explore the hierarchy of orders for topological
states (such as the first and second in this case) in topolectric
circuits. Next we discuss a further generalization of 2D HOTI
by using its antiunitary spectral or particle-hole symmetry in
a topolectric circuit.

B. Antiunitary symmetry-protected HOTI
in two dimensions

So far we discussed a plethora of topological phases in
different spatial dimensions, in which robust zero-energy
boundary modes are protected by the spectral or particle-hole
symmetry, typically generated by unitary operators. A much
less explored situation is when the zero-energy modes are pro-
tected by antiunitary operator. We have already encountered
one such example, the edge mode of the Chern insulator in
Sec. III B, that is protected by antiunitary spectral symmetry.
The notion of the antiunitary spectral symmetry is also ger-
mane for 2D HOTI and its corner modes, which we discuss
next.

Recall, first, that the model Hamiltonian for 2D HOTI,
namely, H ′

QSHI = HQSHI + H� [see Eqs. (24) and (32)], pos-
sesses unitary particle-hole symmetry generated by 
5. This
model also enjoys an antiunitary particle-hole symmetry gen-
erated by A = 
5K, as {HQSHI + H�, A} = 0. Here K is the
complex conjugation, and by virtue of the 
 matrix represen-
tation in Eq. (26), the unitary component of A is identical to
the unitary particle-hole symmetry generator (
5).

The model Hamiltonian for 2D generalized higher-order
topological insulator (GHOTI) reads [98]

HGHOTI = HQSHI + H� + Hp, (33)

where

Hp = �1(i
1
2) + �2(i
3
4), (34)

with �1 and �2 as real parameters. Notice that {HGHOTI, A} =
0. Hence, HGHOTI enjoys antiunitary particle-hole symmetry,
but loses the particle-hole symmetry with respect to the uni-
tary operator 
5. The global phase diagram of this model has
already been analyzed in Ref. [98], which we do not discuss
here in detail. In brief, HGHOTI supports four corner-localized
zero-energy modes for (1) small �1 or �2, and (2) arbitrarily
large �1 = �2. Next we implement HGHOTI on a topolectric
circuit and test the validity of these predictions from the nu-
merical measurement of the on-resonance corner impedance.

First, note that we cannot find any representation of the

 matrices in which all the on-site and hopping elements of
HGHOTI are real. So we stick to the old representation of the

 matrices [see Eq. (26)], and first supplement each node
associated with the circuit realization of HQSHI + H� by four
subnodes. Such a doubling of the HOTI circuit does not alter
any outcome we discussed so far. Nevertheless, when each
node (or sublattice) contains four subnodes one can imple-
ment Hp in a topolectric circuit following the design shown in
Fig. 13(a).

As the corner modes of GHOTI are protected by A = 
5K,
with 
5 = σ3 ⊗ τ0, their sublattice selection for finite �1

and/or �2 remains unchanged. From the measurement of the
on-resonance impedance with the B node at (1,1) as the fixed
input point, we find the following. Node (or sublattice) selec-
tive sharp corner localization of impedance does not change
for (1) small �1 [see Fig. 13(b)], (2) small �2 [see Fig. 13(c)],
and (3) large �1 = �2 [see Fig. 13(d)]. These findings are
in agreement with Ref. [98], and we find a circuit realization
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FIG. 13. Circuit realization of an antiunitary symmetry-protected generalized higher-order topological insulator (GHOTI). (a) Circuit
realization of Hp [see Eq. (34)] in a unit cell of GHOTI, where each node (equivalent of sublattice) is now accompanied by four subnodes.
Each subnode is grounded by an inductor of inductance L. The purple (orange) capacitors have capacitance equal to �1 + �2 (|�1 − �2|).
On-resonance computation of impedance with the B node at (1,1) as the input point for t = t0 = m = 2� = 1, and (b) (�1, �2) = (0.2, 0.0),
(c) (�1, �2) = (0.0, 0.3), and (d) (�1, �2) = (3.0, 3.0). The output point scans four nodes separately over the entire system. Node (or
sublattice) selective sharp corner localization of the on-resonance impedance confirms topolectric circuit realization of GHOTI for small
�1 or �2, and arbitrarily large �1 = �2.

of GHOTI for which the corner impedance is protected by
an antiunitary operator. When �1 = �2, the system always
remains in the GHOTI phase, while for large �1 or �2 it
undergoes a transition into a trivial phase, without any corner
modes. In this regime the on-resonance impedance does not
show any corner localization, which we do not display here.

We point out that the same generalization is also applicable
for the 2D BBH model for HOTI, discussed in Sec. IV A.
Furthermore the 3D BBH model from Sec. IV B also pos-
sesses an antiunitary spectral symmetry, generated by the
eight-dimensional operator 
7K, with 
7 = �3 ⊗ σ0 ⊗ τ0. In
the future, it will be interesting to find a generalized model for
3D HOTI.

VI. HIERARCHY OF HOT INSULATORS
IN THREE DIMENSIONS

Following the spirit of the previous section, we now show
how one can construct the hierarchy of 3D topological in-
sulators and capture their signatures in topolectric circuits.
Specifically, in what follows we construct 3D second- and
third-order topological insulators by respectively adding one
and two discrete symmetry-breaking Wilson-Dirac masses to
a first-order topological insulator. Recall that first-, second-,
and third-order topological insulators support gapless 2D sur-
face states, 1D hinge modes, and pointlike corner modes,
respectively. Our starting point is the Hamiltonian

HFOTI = t[sin(kx )
1 + sin(ky)
2 + sin(kz )
3]

+
[

m − t0
∑

i=x,y,z

cos(ki )

]

4 (35)

describing a first-order topological insulator with the band
inversion at the 
 = (0, 0, 0) point of the cubic Brillouin zone
for 1 < m/t0 < 3, that supports 2D gapless surface states on
six surfaces of a cubic system. As we will show, the real-
ization of third-order topological insulator demands addition
of two discrete symmetry-breaking Wilson-Dirac masses to
HFOTI, which must be accompanied by two additional mutu-
ally anticommuting 
 matrices, which also anticommute with
four mutually anticommuting 
 matrices appearing in HFOTI.

Therefore, altogether we require six mutually anticommut-
ing 
 matrices. This implies that the representation of the

 matrices must be eight-dimensional, which, on the other
hand, accommodates maximal seven mutually anticommuting
matrices. Out of them four can be chosen to be purely real
and the remaining three to be purely imaginary. Following
the discussion so far, we make a judicious choices for the 


matrices to be


1 = �1 ⊗ σ1 ⊗ τ2, 
2 = �1 ⊗ σ2 ⊗ τ0,


3 = �2 ⊗ σ0 ⊗ τ0, 
4 = �1 ⊗ σ1 ⊗ τ1,


5 = �1 ⊗ σ1 ⊗ τ3, 
6 = �1 ⊗ σ3 ⊗ τ0, (36)

such that the tight-binding model always contains only real
hopping amplitudes and we can implement it on a topolectric
circuit by supplementing each node by two subnodes. Fi-
nally, the seventh mutually anticommuting matrix is given by

7 = �3 ⊗ σ0 ⊗ τ0.

So far, we have shown realization of a variety of tight-
binding models on topolectric circuits. Following the same
spirit, one can implement HFOTI on a cubic topolectric circuit.
However, the explicit circuit realization of HFOTI is somewhat
involved, and as such it is not very instructive. Therefore,
here we do not show it explicitly, but rather focus the spatial
distribution of the on-resonance impedance. The results are
displayed in Fig. 14(a). As {HFOTI, 
7} = 0, the 2D surface
states are localized either on the sublattices A, B, C, and
D or on the sublattices E, F, G, and H. The on-resonance
impedance also shows the signature of such sublattice po-
larization. Namely, when we choose the input point for the
measurement of the on-resonance impedance (Z) on the H
sublattice, located at (1,1,1), Z is highly localized on the
surfaces on A, B, C, and D sublattices, whereas Z on the
remaining four sublattices is almost zero. It should be noted
that even though the 2D surface states of a first-order topolog-
ical insulator equally populate all six surfaces of a cube (due
to the cubic symmetry), any choice of the input point breaks
such symmetry. Therefore, despite showing strong sublattice
polarized surface localization, the on-resonance impedance is
not fully cubic symmetric.

023056-13
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FIG. 14. On-resonance impedance of (a) first-order, (b) second-order, and (c) third-order topological insulators in three dimensions, always
measured with the site on the H sublattice at (1,1,1) as the input point. The output point scans all eight sublattices over the entire system. In
a first-order topological insulator the surface impedance is localized on the A, B, C, and D sublattices (sublattice polarization) and computed
by setting t = t0 = 1 and m = 1.5 [Eq. (35)]. By contrast, the on-resonance impedance on the E, F, G, and H sublattices are (almost) zero,
and we do not show them in panels (b) and (c). The on-resonance impedance for a second-order topological insulator is predominantly
localized along the hinges in the z direction and on the xy surfaces as shown in (b) for �1 = 0.5 [Eq. (37)]. Finally, in a third-order
topological insulator the on-resonance impedance is localized at the corners on the A, B, C, and D sublattices, as shown in (c) for �2 = 0.7
[Eq. (38)].

Next we add the Wilson-Dirac mass

H1 = �1[cos(kx ) − cos(ky)]
5 (37)

to HFOTI. Note that H1 breaks discrete C4 rotational symmetry,
and as such it changes sign across four corners in the xy
plane for any z. Therefore, addition of this term gaps out the
surface states residing on the xz and yz planes, leaving four
intersections in the z direction gapless. Consequently, HSOTI =
HFOTI + H1 accommodates four zero-energy gapless hinge
modes in the z direction, and we realize a second-order topo-
logical insulator. On the other hand, the Wilson-Dirac mass H1

vanishes at the center of the surface Brillouin zone on the xy
planes, located at (kx, ky) = (0, 0), where the apex of the sur-
face Dirac cone is placed at. Hence, the xy surfaces continue
to host gapless states in a second-order topological insulator.
The realization of such C4 symmetry-breaking Wilson-Dirac
mass on a 2D topolectric circuit has already been shown in
Fig. 12(a), which can be generalized to three dimensions.
Here we discuss only the results from the spatial distribu-
tion of the on-resonance impedance, shown in Fig. 14(b).
As {HSOTI, 
7} = 0, the z directional hinge and xy surface
modes, and the corresponding on-resonance impedance con-
tinue to show sublattice polarization. Otherwise, comparing
with Fig. 14(a), we find a clear dimensional reduction of the
on-resonance impedance, which is localized along the four
hinges in the z direction. At the same time we also find
remnant surface impedance on the xy surfaces. These results
in turn guarantee a realization of a second-order topological
insulator on a topolectric circuit.

Finally, we introduce the second Wilson-Dirac mass

H2 = �2[2 cos(kz ) − cos(kx ) − cos(ky)]
6 (38)

to HSOTI. Notice that H2 vanishes along eight body-diagonal
directions (±1,±1,±1), as well as along (±√

2, 0,±1) and
(0,±√

2,±1) directions. However, the latter directions are al-
ready gapped by H1. Therefore, the total Hamiltonian HTOTI =
HSOTI + H2 supports only localized gapless modes at eight
corners of a cubic system residing in the (±1,±1,±1) di-

rections, and we realize a third-order topological insulator.
As {HTOTI, 
7} = 0, the corner modes continue to display
the sublattice polarization. Concomitantly, the on-resonance
impedance also displays sublattice polarization, besides being
highly localized at the corners of a cubic topolectric circuit, as
shown in Fig. 14(c). The corner localization of on-resonance
impedance in turn ensures the realization of a third-order
topological insulator in a topolectric circuit. We should also
note that the Hamiltonian describing a third-order topological
insulator HTOTI can be exactly mapped onto the 3D BBH
model [101], discussed in Sec. IV B.

VII. TOPOLECTRIC NODAL SEMIMETALS

So far we have discussed realizations of first-, second-, and
third-order topological insulators on topolectric circuits and
their identification from the boundary-localized on-resonance
impedance. On the other hand, there exists a whole family of
topological phases of matter, known as topological semimet-
als, where the bulk quasiparticle spectra are gapless, but
the bulk-bounadary correspondence remains operative therein
[8–11]. Typically, topological semimetals are constructed by
stacking lower-dimensional topological insulators, while pre-
serving the translational symmetry in the stacking direction,
which is the approach we use to construct their topolectric
realizations. In this section, we show that some prominent
nodal topological phases can be realized in topolectric circuits
and identify them from the boundary-localized on-resonance
impedance.

A. Stacked SSH chain: 2D Dirac and 3D nodal-line semimetals

In contrast to Weyl and Dirac semimetals where the
valence and conduction bands touch at isolated points, in
nodal-line semimetals (NLSMs) the band touching takes place
along a closed curve in momentum space [102–109]. In this
section, we first construct a 2D Dirac semimetal (DSM) by
stacking a collection of 1D SSH chains in the y direction
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FIG. 15. Realization of 2D and 3D topological semimetals from stacked 1D Su-Schrieffer-Heeger (SSH) chains [see also Fig. 4(c)] in
topolectric circuits. (a) Stacking of 1D SSH circuit along the y direction by capacitors of capacitance t2 in a translationally invariant fashion
that produces 2D Dirac semimetal (DSM) for suitable choices of λ, t and t2 (see text and Ref. [33]). For the clarity of presentation we shift the
location of the sublattices or nodes in the middle SSH circuit with respect to the first and the third one. Extending such stacking construction in
the z direction one produces a 3D nodal-line semimetal (NLSM), which we do not show here explicitly. (b) Numerically computed on-resonance
impedance (Z) with the A (top) and B (bottom) nodes at (1,1) and (15,1), respectively, as the input point for t = 1, λ = 0.2, and t2 = 3.0 [see
Eq. (40)]. The impedance is then computed with both nodes or orbitals as the output point (mentioned explicitly in each subfigure), which we
scan over the entire system. The edge-localized impedance only along the y direction captures the fingerprint of the Fermi arc associated with
a 2D DSM. (c) Numerically computed impedance for a 3D NLSM with the A node at (1,1,1) as the fixed input point for t = 1, λ = 1, and
t2 = 1 [see Eq. (41)]. The output point is chosen to be on the A (left) and B (right) nodes, which we scan over the entire systems. The top and
bottom yz surface-localized impedance captures the signature of the drumhead surface states in the real space of a topolectric circuit.

in a translationally invariant fashion, such that the symmetry
class of the system, namely, BDI, remains unchanged. The
corresponding Hamiltonian in the momentum space takes the
form

H2D
DSM = [λ + t cos(kx ) + t2 cos(ky)]τ1 + t sin(kx )τ2, (39)

where t2 denotes the strength of the inter-SSH chain hopping
along the y direction. Depending on the relative strength of
various hopping parameters (λ, t , and t2), the system supports
a 2D DSM, topological, and trivial insulators. Specifically for
λ/t > 0, the Dirac points are located at k = (π,±k�

y ), where

k�
y = π − cos−1

(
t

t2

[
1 + λ

t

])
. (40)

As one can see, depending on the values of t , λ, and t2,
Eq. (40) has a real solution for k�

y , which then describes a
2D DSM. Otherwise, the system is an insulator. Furthermore,
each of the 1D SSH topological insulators stacked between
two Dirac nodes supports endpoint zero modes. The collection
of these zero modes ultimately constitutes Fermi arc states
connecting two Dirac points in the momentum space. On the
other hand, in the real space the Fermi arc states are localized
along only two edges in the y direction. This scenario is sup-
ported from the numerical computation of the on-resonance
impedance in a 2D circuit constructed by stacking 1D SSH
circuits in the y direction. We note that the 2D DSM has been
realized in topolectric circuits in Refs. [33,36,43], and our
results are in qualitative agreement. The main purpose of this
discussion is to develop a concrete path for stacked topolectric
circuits to realize various gapless topological phases, which
we systematically explore next. As we show now, by ex-
tending this construction in the z direction, we can find a
3D unknotted nodal-line semimetal. We point out that even
though various topological knots in the momentum space have
been engineered in topolectric circuits [46], explicit demon-

stration of simple nodal-line semimetal has not been reported
so far to the best of our knowledge.

Since the hopping parameter in the y direction is com-
pletely real, one can construct the circuit corresponding to
Eq. (40) by coupling 1D SSH circuits, shown in Fig. 4(c), by
capacitors of capacitance t2 in the y direction between nodes A
and B, as shown in Fig. 15(a). Next we numerically compute
the on-resonance impedance with either an A or B node of
the circuit as an input point, and scanning all the sites as
the output point. Results are shown in Fig. 15(b), displaying
a sharp y-edge localization of the on-resonance impedance,
which in turn captures the existence of Fermi arcs states and a
2D DSM in a topolectric circuit.

Next we continue with the stacking protocol and extend it
along the z direction. For the sake of simplicity we consider
the interlayer hopping amplitude along the z direction to be t2
as well. Then the corresponding Hamiltonian in the momen-
tum space reads as

H3D
NLSM =

[
λ + t cos(kx ) + t2

∑
j=y,z

cos(k j )

]
τ1 + t sin(kx )τ2.

(41)

This model supports a NLSM, in which the valence and
conduction band touch each other over a closed curve in the
kx = π plane when t = 1, λ = 2, and t2 = 1, for example.
The implicit form of the closed curve in the kx = π plane
is then given by cos(k�

y ) + cos(k�
z ) = 1. A NLSM is there-

fore constructed by stacking 1D SSH topological insulator
in the y and z directions within the perimeter of the closed
curved mentioned above. A collection of endpoint zero modes
associated with the SSH insulator within the perimeter of
such closed curve ultimately constitutes the drumhead surface
states on the (ky, kz ) planes, which are the surface projections
of the bulk nodal loop. On the other hand, in the real space
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the surface zero-energy modes are localized on the entire yz
plane.

A circuit realization of NLSM can be engineered by ex-
tending the construction from Fig. 15(a) in the z direction,
along which the hopping elements are also real. Therefore,
interlayer hopping in the z direction is accomplished by ca-
pacitor connections with capacitance t2. The explicit circuit
construction for NLSM is, however, not shown here. The
numerical computation of the on-resonance impedance clearly
displays a strong surface localization on the top and bottom yz
planes, capturing the imprint of the drumhead surface states
associated with a NLSM in a 3D topolectric circuit, as shown
in Fig. 15(c).

B. Stacked Chern insulator: 3D Weyl semimetal

Next we construct a 3D Weyl semimetal (WSM) by stack-
ing 2D Chern insulators in the z direction in a translationally
invariant fashion. The resulting Hamiltonian in the momen-
tum space then reads as

H3D
WSM = t[sin(kx ) τ3 + sin(ky) τ2]

+
[

tz cos(kz ) + m − t0
∑
j=x,y

cos(k j )

]
τ1, (42)

where tz denotes the interlayer hopping amplitude in the z
direction. The global phase diagram of this model has been
reported in Refs. [110,111], which we do not discuss here in
detail. Conveniently, we set t = t0 = 1, m = 2, and tz = 2.5
for the rest of the discussion. For this set of parameters the
system supports a WSM, with two Weyl nodes located at
k� = (0, 0,± cos−1(4/5)). The two Weyl nodes represent the
bandgap closing points for the collection of Chern insulators
stacked in the direction connecting them, and the zero-energy
states associated with each Chern insulator layer ultimately
constitute the Fermi arc surface states. In the surface Brillouin
zone on the (k j, kz ) plane the Fermi arc connects two Weyl
points at k�

z = ± cos−1(4/5) and placed along the k j = 0 line,
where j = x or y [11,112,113]. In the real space, the Fermi
arc occupies the xz and yz planes. Next we demonstrate these
features in a circuit realization of the WSM. The existing
literature reporting topolectric circuit realizations of WSM is
concerned with systems possessing an even number of pairs
of Weyl nodes [33,54,61,63,65]. By contrast, here we demon-
strate circuit realization of the minimal WSM, supporting only
two Weyl points, by stacking layers of 2D Chern insulators.

The circuit construction of the WSM follows the spirit
of a stacked SSH chain, shown in Fig. 15(a). To engineer
a WSM we couple layers of Chern circuits, schematically
shown in Fig. 6, by capacitor connections with capacitance
tz. The construction of the Weyl topolectric circuit is not
shown here explicitly. The numerical computation of the on-
resonance impedance (Z) shows a strong localization on the
xz and yz surfaces; see Fig. 16. Selective surface localization
therefore bears the signature of the Fermi arc surface states, in
turn confirming the realization of a 3D WSM in a topolectric
circuit.

FIG. 16. Numerical computation of the on-resonance impedance
(Z) in a 3D Weyl topolectric circuit with the A (left) and B (right)
nodes at (1,1,5) as the fixed input point for t = t0 = 1, m = 2, and
tz = 2.5 [see Eq. (42)]. Respectively, the output point is fixed on the
B (left) and A (right) nodes, which we sweep over the entire system.
The strong localization of the on-resonance impedance on the xz and
yz planes captures the signature of the Fermi arc surface states.

C. Stacked QSHI: 3D Dirac semimetal

Following the spirit of constructing a 3D WSM from the
last section, one can also realize a 3D DSM by stacking 2D
layers of quantum spin Hall insulators (QSHIs) in the z direc-
tion in a translationally invariant manner. The corresponding
Hamiltonian in the momentum space then takes the form

H3D
DSM = t[sin(kx ) 
1 + sin(ky) 
2]

+
[

tz cos(kz ) + m − t0
∑
j=x,y

cos(k j )

]

3. (43)

The 
 matrices follow the representation from Eq. (26), and
tz denotes the hopping between the nearest-neighbor layers of
2D QSHI in the z direction. For t = t0 = 1, m = 2, and tz = 2,
the system supports a pair of Dirac points separated along
the kz direction and located at k� = (0, 0 ± π/2). The result-
ing Fermi arc surface states in a 3D DSM possess twofold
Kramers degeneracy and connect the Dirac points in the mo-
mentum space, similar to the Fermi arc state in a 3D WSM.
As {H3D

DSM, 
5} = 0 and 
5 = σ3 ⊗ τ0, the Fermi arc states are
sublattice polarized. Specifically, they are localized either on
the A and B sublattices or on the C and and D sublattices,
similar to the edge modes of the underlying 2D QSHI layers,
shown in Fig. 9.

A circuit realization of 3D DSM is similar to the other
cases we discussed so far. Specifically, in a Dirac topolec-
tric circuit the layers of 2D QSHI are connected by the
capacitors with capacitance tz. Numerical computation of the
on-resonance impedance then reveals sublattice polarization
and strong surface localization on the xz and yz planes; see
Fig. 17. These observations confirm the existence of the Fermi
arc surface states in a 3D Dirac topolectric circuit.

D. Stacked 2D HOTI: 3D quadrupolar Dirac semimetal

As a penultimate topic, we discuss the topolectric circuit
realization of a 3D second-order or quadrupolar DSM [87,89].
In an electronic system, a 3D quadrupolar DSM is obtained
by stacking 2D HOTIs with corner modes in the z direction,
for example, while preserving the translational symmetry. The
corresponding Hamiltonian in the momentum space assumes
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FIG. 17. Numerical computation of the on-resonance impedance
(Z) in a 3D Dirac topolectric circuit with the B node at (1,1,5) as the
fixed input point for t = t0 = 1, m = 2, and tz = 2 [see Eq. (43)]. The
output point is then selected on four nodes or sublattices separately
(mentioned explicitly in each subfigure), which we sweep over the
entire system. The sublattice selective strong localization of the on-
resonance impedance on the C and D sublattices, residing on the xz
and yz planes, signifies the Fermi arc surface states of a 3D DSM in
a topolectric circuit.

the following form:

H3D
HOTDSM = H3D

DSM + �[cos(kx ) − cos(ky)] 
4, (44)

where H3D
DSM is defined in Eq. (43) and 
4 = σ1 ⊗ τ3 [see

Eq. (26)]. Note that the second term in the above equation,
proportional to �, causes dimensional reduction of the edge
modes associated with each layer of QSHI, yielding four
corner modes (see Sec. V A). The underlying insulating layers
then correspond to 2D HOTI. Stacking of such layers of 2D
HOTIs produces a pair of higher-order Dirac nodes located at
k� = (0, 0,±π/2) for t = t0 = 1, m = tz = 2, and arbitrary
value of �. The corner states connecting these two Dirac
nodes produce 1D hinge modes.

A circuit realization of this model follows the general
stacking protocol we discussed so far. Specifically, we cou-
ple 2D layers of HOTI circuits, obtained by combing the
components shown in Figs. 9(a) and 12(a), by capacitor con-
nections of capacitance tz. The numerical measurement of the
on-resonance impedance then shows sublattice selective sharp
hinge localization for the above mentioned parameter values,
which we display in Fig. 18 for a specific choice of � = 0.8.
These results demonstrate the existence of 1D hinge modes in
a second-order Dirac topolectric circuit.

E. Stacked 2D GHOTI: 3D HOT Weyl semimetal

Finally, we demonstrate the topolectric circuit realization
of a 3D HOT Weyl semimetal. To this end we consider layers
of 2D GHOTI [see Sec. V B] coupled in the z direction along

FIG. 18. Numerical computation of the on-resonance impedance
(Z) in a 3D second-order Dirac topolectric circuit with the A node
at (1,1,5) as the fixed input point for t = t0 = 1, m = tz = 2, and
� = 0.8; see Eqs. (44) and (43). The output point is then chosen
on four individual nodes or sublattices separately (mentioned in each
subfigure), which we scan over the whole system. The on-resonance
impedance shows sublattice selective sharp hinge localization, which
in turn confirms realization of a 3D higher-order (namely, second-
order) DSM in a topolectric circuit.

which the translational symmetry is preserved. The resulting
Hamiltonian in the momentum space takes the form

H3D
HOTWSM = H3D

DSM + �[cos(kx ) − cos(ky)]
4

+�1(i
1
2) + �2(i
3
4), (45)

where the 
 matrices are defined in Eq. (26) and H3D
DSM is

shown in Eq. (43). Notice that additional terms proportional to
�1 and �2 lift the Kramers degeneracy from the valence and
conduction bands [98], yielding 2D GHOTI in the absence
of the interlayer coupling. When such layers of GHOTI are
coupled by translationally invariant interlayer hopping (tz),
specifically for t = t0 = � = 1.0 and m = tz = �1 = �2 =
2.0, Kramers nondegenerate bands touch each other at k� =
(0, 0, π/2), yielding a pair of higher-order Weyl nodes. Then
each insulating layer of GHOTI between these Weyl nodes
hosts four corner modes. By virtue of the translational sym-
metry, the collection of such corner modes between these
two points then constitutes the 1D hinge modes, yielding a
second-order WSM.

In an electric circuit this model is realized by combining
the circuit components, shown in Figs. 9(a), 12(a), and 13(a),
where each node is supplemented by four subnodes, and
subsequently coupling each layer of 2D circuit by capacitor
connections of capacitance tz. When the capacitor values are
chosen to be the ones mentioned above for the lattice model,
we realize a higher-order Weyl topolectric circuit. The nu-
merical measurements of on-resonance impedance, shown in
Fig. 19, display sublattice selective sharp hinge localization,
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FIG. 19. Numerical computation of the on-resonance impedance
(Z) in a 3D second-order Weyl topolectric circuit with the A node at
(1,1,5) as the fixed input point for t = t0 = 1, m = tz = 2, � = 1.0
and �1 = �2 = 2.0; see Eq. (45). The output point is then chosen
on four individual nodes or sublattices separately (mentioned in each
subfigure), which we scan over the whole system. The on-resonance
impedance shows sublattice selective sharp hinge localization, which
in turn confirms the realization of a 3D second-order WSM in a
topolectric circuit.

which in turn confirms the circuit realization of a second-order
WSM.

VIII. SUMMARY AND DISCUSSION

To summarize, here we present an alternative derivation
of the construction of an arbitrary hopping element, stem-
ming from an underlying lattice tight-binding model, in LC
electric circuits, where the electrical nodes play the role
of lattice sites. Subsequently, we apply this general proto-
col to engineer a plethora of topological lattice models in
topolectric circuits. In particular, we identity first-order SSH
model (Sec. III A), Chern (Sec. III B), and quantum spin Hall
(Sec. III C) insulators from the highly end-point and edge-
localized on-resonance impedance (Z), respectively, in d = 1
and d = 2. We also propose simple circuit realizations of 2D
and 3D higher-order topological insulators (Secs. IV A and
IV B), supporting corner-localized and sublattice-polarized
on-resonance impedance. In addition, we also demonstrate a
concrete route to break discrete rotational symmetry and im-
plement Wilson-Dirac mass in topolectric circuits (Sec. V A).
Such a construction allows us to convert a 2D first-order
quantum spin Hall insulator (with edge modes) into a higher-
order topological insulator (with corner modes). Finally, we
construct a generalized second-order topological insulator
for which the corner impedance is protected by an antiuni-
tary operator (Sec. V B). Furthermore, we also show explicit
construction of the hierarchy of higher-order topological in-
sulators in three dimensions, and realization of first-, second-,

and third-order topological insulators that respectively support
surface, hinge, and corner impedance as discrete rotational
symmetries are systematically broken in a topolectric circuit
(Sec. VI).

The simplicity of our circuit constructions is based on the
representation theory of the Clifford algebra. In particular,
throughout we exploit the fact that the Clifford algebra of 2N -
dimensional Hermitian matrices is closed by (2N + 1) mutu-
ally anticommuting Hermitian matrices, among which N + 1
(N) are purely real (imaginary) [114,115]. As the existence
of topological boundary modes relies on the anticommuting
nature of the involved matrices (not on their explicit represen-
tations), we choose (whenever possible) matrices multiplying
the sine (cosine and constant) functions to be purely imagi-
nary (real), such that the hopping elements in the real space
are completely real. Exceptions from this scenario are rather
sparse; see Secs. III B and V B, for example. One can then
implement a lattice topological model on an electric circuit
by supplementing each node (representing a lattice site) with
only two subnodes, between which the phases of current and
voltage differ by a factor of exp(iπ ) = −1; see Sec. II B 1. We
also highlight a generalization of this construction involving
four (Sec. II B 2) as well as n (Sec. II B 3) subnodes.

Subsequently, we present electric circuit realizations of
various gapless topological phases, such as 2D and 3D Dirac
semimetals, in Secs. VII A and VII C, by respectively stacking
1D SSH and 2D QSHI circuits, while preserving the trans-
lational symmetry in the stacking direction. In addition, we
also show a concrete realization of Weyl topolectric circuits
by stacking 2D Chern insulators (Sec. VII B). These topolec-
tric semimetals are then identified from the on-resonance
impedance that mimics the Fermi arc states in the real space.
On the other hand, a nodal-line topolectric circuit is identified
from on-resonance impedance, localized on the top and bot-
tom surfaces, bearing the signature of drumhead surface states
in the real space (Sec. VII A). Finally, we also show realiza-
tion of higher-order Dirac (Weyl) topolectric circuit, featuring
hinge-localized impedance, in Sec. VII D (Sec. VII E).

By focusing on the specific example of the Chern circuit
(Sec. III B), we show that the measurement of on-resonance
impedance can be instrumental in mapping the global phase
diagram of topological lattice models in topelectric circuits.
To this end, we use that the on-resonance impedance is finite
only inside the topological phases, while it vanishes in the triv-
ial phase as well as at the topological quantum critical point
between two topologically distinct phases (Fig. 8). There-
fore, our findings can be experimentally consequential for
understanding various paradigmatic toy models of topological
phases.

Finally, we comment on a subtle issue regarding the time-
reversal symmetry in topolectric circuit. Note that we propose
circuit realizations of various topological models that in elec-
tronic systems are protected by the time-reversal symmetry
(T ), satisfying T 2 = −1 (such as the quantum spin Hall
insulator). However, topolectric circuits are constituted by
capacitors and inductors, and all these elements are real.
Therefore, in topolectric circuits T 2 = +1. Nevertheless, due
to high-precision tunability of the circuit elements we be-
lieve that these models can still be engineered in topolectric
circuits and their topological modes can be observed through
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on-resonance boundary impedance. This should be so at least
when sufficient care is taken to minimize circuit disorder in
the setup, given that all the topological phases we discuss here
are robust against sufficiently weak randomness.

In the future, our setup should be instrumental to system-
atically investigate the role of disorder in topolectric circuits.
Disorder can be implemented in this setup by randomly and
independently varying the grounding elements [the capacitor
(Ca) or inductor (La) in Fig. 1, for example] at each node of
the circuit, such that the resonance frequency (ωR) displays
a random spatial variation δωR(x), with the spatial average
〈δωR(x)〉 = 0. Such disordered topolectric circuits can mimic
a variety of fundamentally important phenomena in dirty
topological systems, among which possibly the most interest-
ing are the topological Anderson insulator in electrical circuits
[64], gradual melting of the Fermi arc [113], and hinge [116]
impedance, respectively, in 3D Weyl and higher-order Dirac
topolectric circuits. Furthermore, the jurisdiction of topolec-
tric circuits can be further extended by engineering lattice
defects to probe topological phases within this setup. Even
though lattice defects have been realized in other topologi-
cal metamaterials, such as photonic [117,118] and phononic
[119–121] crystals, their realizations in topoloelectric crystals
remain to be studied.
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APPENDIX: ONE-SHIFT GENERATOR OF HOPPING
PHASE FACTORS

The one-shift matrix is of the form (for a fixed n, omitted
here for the notational clarity)

Ci j,(1) = C[δi, j+1(1 − δi,1) + δi,1δ j,n]. (A1)

The corresponding effective hopping element then reads

t(1) = Tr[P̂vĈ(1)P̂v], (A2)

where P̂v is the projector onto the subspace generated by the
unit vector v with the components being the nth roots of
unity, namely, vk = exp [ 2iπ (1−k)

n ], where k = 1, . . . , n. More
explicitly,

t(1) = C
1

n2

∑
i,k,l

viv
∗
k [δk,l+1(1 − δk,1) + δk,1δl,n]vlv

∗
i

= exp

[
2iπ

n

]
C. (A3)

An analogous calculation for the s-shift matrix, which is a
product of s one-shift matrices, given by

Ci j,(s) = C[δi, j+s(1 − δi,s) + δi,sδ j,n], (A4)

yields the effective hopping t(s) = C exp [ 2iπs
n ]. Therefore,

one-shift is a generator of hopping phase factors.
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semimetals: The case of a twisted magnetic phase in the
double-exchange model, Phys. Rev. B 99, 020404(R) (2019).

[110] C-Z. Chen, J. Song, H. Jiang, Q-F. Sun, Z. Wang, and
X. C. Xie, Disorder and Metal-Insulator Transitions in Weyl
Semimetals, Phys. Rev. Lett. 115, 246603 (2015).

[111] B. Roy, R.-J. Slager, and V. Juričić, Global Phase Dia-
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