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Dielectric friction, violation of the Stokes-Einstein-Debye relation, and non-Gaussian
transport dynamics of dipolar solutes in water
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The phenomenon of dielectric friction predicts slowing down of rotational and translational diffusion of a
dipolar tracer in a polar medium due to retarded response of the medium polarization. This problem is studied
here by numerical simulations in which the dipole moment of the tracer (solute) is continuously increased. The
rotational time of the solute increases linearly with its squared dipole moment. A more pronounced effect of the
solute dipole is found on the relaxation time of the electric field of the medium acting on the dipole: We report
two orders of magnitude retardation for the electric field dynamics. With this strong retardation, classical theories
of dielectric friction fail to describe slowing down of rotational diffusion. This failure is traced back to the break-
down of additivity between friction produced by van der Waals and electrostatic forces and torques. In contrast
to the neglect of their correlations by traditional models, electrostatic and van der Waals forces and torques are
strongly correlated. Electrostatic interactions bring to linear transport coefficients a number of features typically
associated with the dynamics of low-temperature and supercooled liquids. The translational diffusion coefficient
becomes strongly anisotropic in the solute’s body frame, which translates to non-Gaussian translational dy-
namics. The Stokes-Einstein-Debye relation connecting the translational and rotational single-particle dynamics
deviates from the hydrodynamic limit in linear proportion to the squared solute dipole. It is also found to increase
with lowering temperature in qualitative agreement with phenomenology of supercooled liquids.
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I. INTRODUCTION

Following the classical work by Einstein [1], mobility of
a colloidal particle in a liquid has been viewed as a result
of random collisions of liquid’s molecules with the tagged
particle [2–4]. While in principle correct, this view is far from
accurate when applied to transport coefficients in liquids. Col-
lisions in dense liquids never happen as single-particle events
[5,6], and it is more productive to think of collective liquid
excitations leading to imbalances in forces acting on different
sides of a tagged particle and producing the overall Browninan
motion. For instance, translational friction is determined by
statistics and dynamics of forces acting from the solvent on
the tagged particle (solute). If the total fluctuating force from
the solvent on the solute is F(t ) and its fluctuation is δF(t ),
then the translational diffusion coefficient is given by the time
integral of the force-force correlation function [7,8]

Dt =
[

(β2/3)
∫ ∞

0
dt〈δF(t ) · δF(0)〉

]−1

, (1)
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where β = (kBT )−1 is the inverse temperature. Equation (1)
assumes Langevin dynamics without memory effects [5,9], as
is commonly adopted for diffusion of a large solute.

The perspective suggested by Eq. (1) makes clear that
transport coefficients in molecular liquids must be affected by
a number of collective modes (number density, polarization
density, etc.) and by different types of interaction potentials
between the solute and the medium [van der Walls (vdW),
electrostatic, surface hydrogen bonds, etc.]. On the other hand,
the Stokes-Einstein phenomenology for diffusion and mobil-
ity in liquids, exploiting the paradigm of random molecular
collisions, predicts a very generic view of the problem relating
it solely to solute’s geometry and solvent’s shear viscosity η.
Changes of coordinates of the tagged particle, e.g., its position
and orientation, dissipate energy as prescribed by hydrody-
namic equations and are all related to η.

This powerful paradigm leads to a number of relations
between translation and rotation transport coefficients known
as Stokes-Einstein-Debye (SED) relations [10,11]. When hy-
drodynamic equations are used to calculate the rotational
relaxation time τr and the translational diffusion coefficient
Dt for a spherical solute with the radius a, the following
relations follow [8,12]: Dt = (6πβηa)−1 and τr = 4πβηa3.
From these equations, one can form the SED product

Dtτr = 2
3 a2. (2)

The importance of this result is that it links single-particle
rotations and translations trough the common dissipation
mechanism: measuring one property is sufficient for knowing
the other.
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FIG. 1. Effect of electrostatic solute-solvent interactions on a
spherical ion (charge q0) and a spherical dipole (dipole moment m0).
There is a fluctuating electrostatic force δFE acting on the ion, but
there is no electrostatic torque. In contrast, the force acting on the
dipole is zero, but there is a nonzero electrostatic torque affecting
the rotational dynamics if the solvent field has a projection δE⊥
perpendicular to the dipole m0.

Early warnings that this picture might be not entirely
correct came from the classical work on dielectric friction
[13–17]. The main message of those theories is that transport
of a solute carrying an electric multipole is affected by its
electrostatic interactions with the medium dipoles. Electro-
statics is long-ranged and corresponding fluctuations involve
many solvent molecules. Fundamentally, the notion of di-
electric friction is a conceptual departure from the picture
of individual molecular collisions. In contrast, it considers
correlated subensembles of medium dipoles responding to
the perturbation introduced by the solute with their collective
relaxation time. The response of a polar medium to the solute
movement is delayed, leading to dielectric loss. Dielectric
friction is a result of this dissipation of energy in the material
due to coupled collective movements of its dipoles.

The fluctuation-dissipation arguments [18] suggest that
dissipation of energy due to dielectric loss is equivalent to
fluctuations in the medium: the modes that produce most
dissipation are those that fluctuate the most. One can, there-
fore, view the problem of dielectric friction in the light of
fluctuating electrostatic forces acting from the solvent on the
solute multipole. One immediately realizes that the results of
such interactions will be entirely different for a spherical ion
and for a spherical dipole.

Figure 1 illustrates the distinction between two config-
urations: (i) charge q0 placed at the center of a spherical
solute and (ii) the solute charge replaced with the point dipole
m0. The fluctuation of the electrostatic force δFE = q0δEs

produced by the fluctuating electric field of the solvent δEs

will contribute to the translational friction ζt = (βDt )−1 a
term proportional to q2

0 [Eq. (1)] [19]. In contrast, rotational
dynamics are affected by random torques T(t ) acting from
the medium on the solute [12]. If the charge is placed at the
center of mass of the solute, then there will be no torque
from electrostatic forces, TE = 0 (Fig. 1). One, therefore,
anticipates that electrostatics will affect Dt but will not affect
τr . This disparity should lead to the SED violation.

Just the opposite situation applies to a point dipole. If the
electric field is uniform within the solute, then there is no
electrostatic force, FE = 0, but there is an electrostatic torque,

TE = m0 × Es. (3)

FIG. 2. Diagram of the dumbbell solute with charges ±q at the
centers of two fused spheres. The shaded areas show arrested sol-
vation layers at the surface of the solute, which rotate together with
the solute. Equilibrium for the individual solvent molecules in this
surface layer, Fw

LJ = −Fw
E , projects into the condition F ‖

LJ = −FE for
the component of the vdW (LJ) force parallel to the unit vector û
specifying the solute orientation. Fluctuations of the vdW force in
the perpendicular direction δF⊥

LJ contribute an additional component
to the corresponding variance (see text for more detail).

The component of the solvent field perpendicular to the dipole
δE⊥ (Onsager’s directing field [20]) will rotate the dipole thus
affecting the rotational dynamics (Fig. 1). Further, fluctua-
tions δTE will add friction to rotational relaxation [14] and
alter τr without affecting Dt . One expects deviations from the
hydrodynamic equations for τr while keeping Dt consistent
with hydrodynamics. Once again, a deviation from the SED
relation should follow.

How these general arguments will actually translate to
changes of transport coefficients of a probe molecule placed
in a polar liquid is not easy to predict. This is because dif-
ferent interactions, mostly vdW and electrostatic interactions,
compete in the overall time correlation functions constructed
with forces and torques. Classical theories of dielectric fric-
tion assume that the effects of short-range vdW interactions
and long-range electrostatics are separable, leading to additive
components in the corresponding translational and rotational
friction coefficients [13,17]. This assumption was shown to be
incorrect for both the ion mobility [19,21–24] and rotational
dynamics [25,26]. In this regard, it becomes important to
study model situations in which electrostatic and vdW forces
and torques can be well characterized.

We report here molecular dynamics (MD) simulations of
a model solute with two opposite charges +q and −q placed
symmetrically around the solute center of mass. The solute
is composed of two fused Lennard-Jones (LJ) spheres with
the radii 2.2 Å, which can be viewed as a model of an
iodine molecule [26] (Fig. 2). The simulations done in room-
temperature simple point charge (SPC/E) force-field water
aim at producing the dependence of rotational and transla-
tional dynamics of the solute on its dipole moment, which is
altered by maintaining the distance between the charges while
changing the partial charge q in small steps. This setup has
allowed us to test the basic predictions of classical theories of
dielectric friction and contrast them with perturbation theories
for the statistics of the electric field produced by the solvent
inside the solute.
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The Nee-Zwanzig theory [14] predicts a linear scaling of τr

with the squared dipole moment of the solute [Eq. (4)], which
is approximately confirmed by our simulations. However, the
SED product Dtτr never follows the prediction of Eq. (2)
and instead is a linear function of m2

0. The interaction of the
solute dipole with the surrounding water molecules makes
the translational diffusion coefficient in the body frame of
the solute anisotropic. This anisotropy couples translations to
rotations and leads to non-Gaussian translational dynamics on
the timescale of rotational relaxation.

The violation of the SED relation and the non-Gaussian
translational dynamics are often viewed as signature prop-
erties of low-temperature and supercooled liquids [27–30].
In contrast, our results for the transport coefficients are
obtained in room-temperature water and show that this phe-
nomenology arises from the electrostatic coupling of a tagged
molecule with the medium. By extending these results to low
temperatures, we suggest that explaining SED violation in
supercooled water [31,32] requires development of physical
models specifically including electrostatics in terms of dielec-
tric friction.

II. ROTATIONAL DYNAMICS

Stochastic fluctuations of the torque initiated by fluc-
tuations of the electric field [Eq. (3)] lead to the energy
dissipation of the rotating dipole to the medium. This is the
rotational dielectric friction, which slows the dipole rotation
down. Fluctuation relations repeating the steps of Nee and
Zwanzig [14] derivation are given in detail in Appendix C.
They lead to the following equation for the integral rotational
relaxation time

τr = τ 0
r + (βm0)2

6
〈(δEs)2〉τE . (4)

In this equation, τ 0
r is the hydrodynamic rotational relaxation

time and τE is the relaxation time of the electric field fluctu-
ations. The product of the field variance 〈(δEs)2〉 and τE is
given by the time integral of the time correlation function of
the field,

τE 〈(δEs)2〉 =
∫ ∞

0
dtCE (t ), (5)

where

CE (t ) = 〈δEs(t ) · δEs(0)〉. (6)

Finally, the rotational relaxation time τr in Eq. (4) is calculated
as the integral time based on the rotational time correlation
function Cr (t ),

τr =
∫ ∞

0
dtCr (t ). (7)

Here Cr (t ) is determined based on the dynamics of the unit
vector û(t ) = m0(t )/m0 identified with the solute dipole

Cr (t ) = 〈û(t ) · û(0)〉. (8)

Equation (4) predicts slowing of the rotational dynamics,
with the rotational relaxation time increasing linearly with the
squared solute dipole m2

0. This scaling is derived from the sol-
vent linear response, when neither the variance of the electric

FIG. 3. Rotational relaxation time of the solute vs m2
0. The

dashed line shows the dielectric result from Eq. (13) calculated with
a = 3r0/161/3.

field nor its relaxation time are affected by the presence of the
solute. The rotational times of solutes with varying m0 cal-
culated from MD approximately follow the predicted scaling
also reported in the past [26,33,34] (Fig. 3). The increment
�τr = τr − τ 0

r is shown in Fig. 3, where the rotational time
of the smallest dipole in our simulations, corresponding to
q = 0.05, is taken as the relaxation time τ 0

r unperturbed by
electrostatics [Table I lists τr (m0)].

The MD protocol used in this study is explained in more
detail in Appendix A. Important for the discussion is that
SPC/E water at T = 300 K was used to solvate a dumbbell
solute with the LJ radius r0 = 2.2 Å close to the size of the
iodide ion (Fig. 2). The solute interacts with water by two
LJ potentials centered at the centers of two fused LJ spheres.
The charges +q and −q are placed symmetrically around
the particle’s center of mass at the centers of two spheres
separated by the distance r0; q is listed here in elementary
units of charge e. This simulation setup is close to that utilized
by Kumar and Maroncelli [26].

Assuming linear response of the solvent allows us to con-
nect fluctuations of the electric field to the susceptibility, i.e.,
the average field produced by the dipole in response to a small
probe dipole. This average field, R = 〈Es〉 = 2χRm0, scaling
linearly with the solute dipole, is known as the Onsager re-
action field [20]. The linear susceptibility can be calculated
in various formalisms including dielectric theories. The latter
approach connects χR to the radius of the solute a and the
dielectric constant of the medium (solvent) εs

χR = 1

a3

εs − ε∞
2εs + ε∞

, (9)

where the infinite-frequency dielectric constant ε∞ is included
to account for the solvent polarizability (ε∞ = 1 for SPC/E
water used in simulations).

The reaction-field susceptibility χR can be alternatively
expressed in terms of the variance of the electric field [19]

χR = (β/6)〈(δEs)2〉. (10)

The rotational relaxation time becomes

τr = τ 0
r + βm2

0χRτE . (11)

The dynamic component of this equation, the relaxation time
τE of the medium electric field inside the solute, also follows
from dielectric theories [8,35] and is given in terms of the
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Debye relaxation time of the solvent τD (specified by the peak
of the dielectric loss spectrum)

τ c
E = 3ε∞

2εs + ε∞
τD, (12)

where the superscript “c” marks the continuum estimate. The
rotational relaxation time in the dielectric continuum estimate
thus becomes [14,36,37]

τ c
r = τ 0

r + τD
3βε∞m2

0

a3

εs − ε∞
(2εs + ε∞)2

. (13)

The dashed line in Fig. 3 shows the result of Eq. (13) with
the dielectric cavity radius a = 3r0/161/3 made equal to the
effective radius representing the volume of the fused diatomic.
As we show below, a surprisingly good performance of the
dielectric formula in reproducing the MD results in fact hides
serious violations of the fundamental assumptions of the
theory.

From the experimental standpoint, approximations inher-
ent to dielectric theories can be avoided by linking the linear
susceptibility χR to the Stokes shift and Stokes-shift dynamics
provided by spectroscopy [8,38]. If the optical chromophore
changes its dipole by �m0 in an optical transition, then the
steady-state Stokes shift becomes �ESt = 2�m2

0χR. This re-
lation allowed van der Zwan and Hynes [39] to establish the
connection between the excess of the relaxation time �τr =
τr − τ 0

r and the Stokes shift

�τr = m2
0

2�m2
0

β�EStτs, (14)

where τs = τE is the integral Stokes-shift relaxation time
defined, similarly to Eq. (5), by time integration of the cor-
responding time correlation function [37,40]. Equation (14)
offers two significant advantages over Eq. (13): (i) no specific
solvation model is required and (ii) the corrections of the
dipole moment due to chromophore’s polarizability [37,41]
[often approximated as (1/9)(ε∞ + 2)2] cancel out in the ratio
m0/�m0.

A linear relation �τr ∝ �EStτs has been indeed observed
experimentally [37,41,42]. However, the slope of this corre-
lation was found to be grossly inconsistent with expectations
based on the dipole moments m0 and �m0 entering Eq. (14).
This dramatic failure was related to the breakdown of the
assumption of friction additivity inherent to both Eqs. (4)
and (14) and to strong cross-correlations between vdW and
electrostatic torques [26].

Equation (11) is derived under the assumption of linear
response when neither the statistics nor the dynamics of the
field fluctuations are affected by the solute. Both assumptions
are violated with increasing solute dipole. The field variance
is increased due to the density contraction of water around
the solute caused by the electrostatic pull of the solute dipole
(Fig. 19). The shell contraction can be partially accounted for
by defining [19] an effective solute radius based on the solute-
solvent radial distribution function (RDF) g0s(r) (Fig. 19)

a−3
eff = 3

∫ ∞

0
(dr/r4)g0s(r). (15)

However, this radius contraction (filled points in Fig. 4) does
not fully account for a nonlinear increase of the field fluc-

FIG. 4. Dipolar (reaction field) susceptibility calculated from
MD [open points, Eq. (10)] and from an analytical model (filled
points, Appendix B). The dash-dotted horizontal line refers to the
dielectric estimate from Eq. (9) with a = 3r0/161/3. Crosses indicate
χR calculated assuming that the field variance is produced by the
solvent field projected on the direction of the solute dipole [Eq. (17)].
The dashed lines are linear fits through the simulation points.

tuations at higher solute dipoles. The results of calculations
are slightly higher than simulations (open points in Fig. 4)
at small solute dipoles, but fall below the simulation results
at higher dipole values. However, an exact fit is not expected
here since the calculations are done by adopting the field of a
point dipole placed at the center of a spherical solute, while
the simulated solute carries a nonpoint dipole with the field
of the quadrupole moment affecting the result. The dielectric
formula for χR [Eq. (9)] obviously does not account for all
these complications, but provides a fair numerical estimate at
small solute dipoles when linear response holds (dash-dotted
line in Fig. 4).

The reaction-field susceptibility χR was calculated from
Eq. (10) with the electric field Es taken at the center of mass
of the solute. This is in contrast to the calculation of electric
forces discussed below, which are calculated from electric
fields at the partial charges qi = ±q. The distribution of the
electric field p(Es) turns out to be strongly non-Gaussian
when calculated in the laboratory frame (Fig. 5 shows the
mean distribution p̄ = 1

3 [p(Esx ) + p(Esy) + p(Esz )]). This is
the result of solute rotations, which transform the Gaussian
distribution of the field in the body frame of the molecule

FIG. 5. Distribution of the Cartesian projections of the electric
field created by SPC/E water at the geometrical center of the fused
dumbbell solute. The simulation results (points) are compared to best
fits to the Gaussian distribution (dashed lines). Calculations are done
at q = 1.0 and 1.5, T = 300 K.
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FIG. 6. Relaxation time τE calculated from MD (open
points) and from the microscopic solvation theory (filled points,
Appendix B). The dash-dotted line refers to the dielectric formula in
Eq. (12) (τD = 6.3 ps for SPC/E water at 300 K [43]). The dashed
line is a linear fit through the MD points (note the logarithmic scale):
τE = 0.230 + 0.106 × m2

0 ps, m0 is in D.

(Fig. 21) to a stepwise distribution in the laboratory frame.
A similar phenomenology, with the field distribution of a
similar shape, is found for the electric field acting on a tagged
molecule in the bulk SPC/E water (see below).

The idea that the variance of the solvent field Es predomi-
nantly reflects solute rotations can be tested since in this case
one can write the fluctuation of the field as

δEs = û(R + δE‖), (16)

where R = 〈E‖〉 is the reaction field [20] obtained by averag-
ing the projection of the field on the direction of the dipole
E‖ = û · Es. The variance of the field in this approximation
becomes

〈(δEs)2〉 � R2 + 〈(δE‖)2〉. (17)

The field variance calculated by Eq. (17) is shown by crosses
in Fig. 4. This approximation works increasingly well with
increasing solute dipole, but becomes highly inaccurate at the
lowest dipoles considered here. The reason for this change is
that the solvent fluctuates independently of the solute rotations
when the dipole is small, but becomes increasingly arrested at
the solute surface when the solute dipole is increased (this is
seen as the appearance of a shoulder in the radial distribution
function shown in Fig. 19). Eventually, the surface layer ro-
tates with the solute and the fluctuations of the field recorded
in the laboratory frame are mostly due to solute rotations. The
arrested layer needs to be understood as an arrested interfacial
structure, in contrast to a stagnant surface layer or iceberg
structure proposed in the past [44]. The orientational structure
does not fluctuate much due to the electrostatic pull from
the solute. The water molecules can still exchange between
the interface and the bulk [45], but arrive to the interface in
orientations specified by the local energetic preferences.

Consistent with this physical picture, the nonlinear effect
of the solute dipole on the relaxation time of the electric field
τE is much more pronounced than its effect on the statistics
of field fluctuations (cf. Fig. 4 to Fig. 6). Microscopic calcula-
tions based on the linear response approximation [19] (filled
points in Fig. 6, Appendix B) are consistent with the dielectric
estimate in Eq. (12) (dash-dotted line, τD = 6.3 ps for SPC/E
water [43]). Both formalisms fail to account for the retardation

of the collective dynamics of the electric field reported by
simulations. The increase of the dipole moment from �0.5 D
at q = 0.05 to �16 D at q = 1.5 leads to a pronounced retar-
dation of the electric field dynamics with the retardation factor
of �183 (Table I). An approximately linear scaling of τE with
m2

0 is consistent with a similar trend for �τr in Fig. 3 and
we indeed find �τr ≈ τE for large solute dipoles (Fig. 22).
We can therefore conclude that the arrested structure of the
water layer at the solute surface leads to a longer rotational
time of the water-dressed solute and a good match between
the rotational and electric field relaxation times.

Strong retardation of the field dynamics induced by the so-
lute dipole brings the standard Nee-Zwanzig equation for the
rotational dielectric friction [Eq. (11)] in significant disagree-
ment with simulations. Retardation of rotational dynamics by
the solute-solvent electrostatics as predicted by Eqs. (4) and
(11) far exceeds the simulation results reported in Fig. 3 (the
predicted rotational time becomes ∼800 times higher than the
MD result for the largest dipole studied here). It is clear that
both dielectric and microscopic linear solvation theories do
not capture this nonlinear retardation and the agreement be-
tween simulations and the dielectric formula shown in Fig. 3
is a result of strong cancellations of errors.

Past reports of the violation of linear response relations
for dielectric friction [19,21–24,26] attributed it to cross-
correlations between electrostatic and LJ forces/torques. Here
we also find significant cross-correlations between the LJ and
electrostatic torques producing a negative contribution to the
overall variance (Fig. 7, Appendix G)

〈(δT)2〉 = 〈(δTE )2〉 + 〈(δTLJ)2〉 + 2〈δTE · δTLJ〉. (18)

We find that the variance of the electrostatic torque is remark-
ably close in magnitude to the negative of the cross-correlation
between electrostatic and LJ torques (Tables II and III)

−〈δTE · δTLJ〉 � 〈(δTE )2〉. (19)

One, therefore, can determine the torque variance as the dif-
ference between the LJ and electrostatic components

〈(δT)2〉 � 〈(δTLJ)2〉 − 〈(δTE )2〉. (20)

If solute rotations do not involve memory effects, then the
rotational relaxation time can be determined by integrating the
torque-torque time correlation [7] function [cf. to Eq. (1)]

τr = (β2/6)
∫ ∞

0
dt〈δT(t ) · δT(0)〉. (21)

Retardation of rotational relaxation can, therefore, be at-
tributed to both the changes in the variance of the torque
and changes in the relaxation time of the torque-torque cor-
relation function. They both increase approximately linearly
with m2

0 and neither of them can be viewed as the sole factor
responsible for retardation. Further, the relaxation times for
electrostatic and cross correlation functions turn out to be
very close. Combining this result with Eq. (19), the overall
rotational time becomes the difference between the LJ and
electrostatic components

τr � τLJ
r − τE

r , (22)

where each relaxation time is calculated by integrating the
corresponding component correlation function. In contrast,
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FIG. 7. Relaxation times (upper panel) and variances (lower
panel) of the torque acting from water on the solute calculated from
MD simulations (points). Electrostatic (E, filled squares), vdW (LJ,
filled circles), and cross (Cross, open diamonds) components and
total torque variance (Tot, filled triangle) in Eq. (18) are shown in
the lower panel (Table III lists the numerical values). The average
component relaxation times (obtained from normalized correlation
functions) are shown in the upper panel, along with the correlation
time of the cross-correlation component (cross, open diamonds). The
dashed lines are linear fits through the points. The open diamonds
nearly coincide with the filled squares on the scale of the plot;
T = 300 K.

the relaxation times shown in the upper panel of Fig. 7 are
the average relaxation times of the corresponding normalized
correlation functions.

In view of the surprising equality between the negative
of the torque cross-correlation and the variance of the elec-
trostatic torque, we additionally calculated the variance of
the total force acting from water on the solute. The force is
separated into the electric and LJ components, F = FE + FLJ

(Appendix E) and the force variance is separated into the elec-
trostatic and LJ components similarly to Eq. (18) (Table II).
We again find a nearly identical compensation between the
electrostatic variance and the cross-correlation (Fig. 8)

−〈δFE · δFLJ〉 � 〈(δFE )2〉. (23)

This relation implies that, similarly to Eq. (20), the force
variance can be approximated as the difference between the
LJ and electrostatic self components

〈(δF)2〉 � 〈(δFLJ)2〉 − 〈(δFE )2〉. (24)

The physical picture leading to this remarkable cancellation is
discussed below.

III. DIFFUSION ANISOTROPY

The placement of a dipole at the solute makes the structure
of water in the interface orientationally anisotropic. The sol-
vent polarization induced by the dipole depends on the polar
angle relative to the rotation axis. The solvent electrostatic

FIG. 8. Variance of the force acting from water on the solute
from MD simulations (points). The variance is split into electrostatic
(E, squares), vdW (LJ, circles), and cross-correlation (Cross, open
diamonds) components (Table II lists of the numerical values). Filled
triangles indicate the total variance; T = 300 K.

response is also anisotropic. Given that translational diffu-
sion is affected by both the interfacial structure and, through
dielectric friction, by electrostatics, one can anticipate that
the diffusion coefficient in the molecular frame of the solute
gains anisotropy. The situation here is somewhat similar to
the complex rotational/translational coupling of an ellipsoidal
particle when anisotropic translational diffusion is caused by
the particle shape [46–48]. We explore here the possibility
of a similar phenomenology due to anisotropic interfacial
polarization.

The anisotropic diffusion coefficient is calculated by rotat-
ing the vector of the particle velocity v(t ) from the laboratory
frame of the simulation box to the body frame fixed on the
particle. The z axis of the body frame is taken to coincide with
the rotation axes specified by the unit vector û(t ) of the solute
dipole. The body-frame velocity ṽ(t ) = R(t ) · v(t ) is obtained
by applying the rotation matrix R(t ) aligning the z axis with
û(t ). The body-frame diffusion coefficients along the z axis
and perpendicular to it are calculated from time integrals of
the velocity correlation functions

D̃‖ =
∫ ∞

0
dt〈ṽz(t )ṽz(0)〉, D⊥ = 1

2

∫ ∞

0
dt〈ṽ⊥(t ) · ṽ⊥(0)〉,

(25)
where ṽ⊥(t ) = ṽ(t ) − û(t )ṽz(t ).

The diffusion coefficient D̃‖ can be equivalently calculated
in the laboratory frame by projecting the velocity on the direc-
tion of the dipole moment: vu(t ) = û(t ) · v(t ). The diffusion
coefficient becomes

D̃‖ =
∫ ∞

0
dt〈vu(t )vu(0)〉. (26)

Given that linear velocities and orientations are statistically
independent in the Gibbs ensemble, one can write

〈vu(t )vu(0)〉 = 〈vα (t )vβ (0)〉〈ûα (t )ûβ (0)〉, (27)

where summation over common Cartesian projections α, β is
assumed. For isotropic rotational diffusion, one obtains [49]

〈ûα (t )ûβ (0)〉 = 1
3δαβCr (t ), (28)
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FIG. 9. Cv (t ) (solid lines) and Cr (t ) (dashed lines) for q = 0.4,
m0 = 4.2 D (blue), and q = 0.6, m0 = 6.3 D (black). The dotted
horizontal line marks the zero value. Both functions are normalized
to their t = 0 values.

where the rotational time correlation function is given by
Eq. (8). The longitudinal diffusion coefficient finally becomes

D̃‖ = 1

3

∫ ∞

0
dtCv (t )Cr (t ) � 1

3

∫ ∞

0
dtCv (t )e−t/τr , (29)

where

Cv (t ) = 〈v(t ) · v(0)〉 (30)

is the velocity time correlation function.
Equation (29) is a general result indicating that allowing

the axis of symmetry to rotate modifies the diffusion coeffi-
cient along that axis. This is made clear in the second step in
Eq. (29), where the rotational correlation function is replaced
with a single-exponential decay with the rotational relaxation
time τr . Given the equality between physical body rotations
and coordinate transformations [50], τr can be viewed as the
timescale of laboratory frame rotations. Equation (29) shows
that such random rotations of the laboratory frame affect the
diffusion constant measured along a chosen axis of a rigid
body. When τr much exceeds the relaxation time τv of the
velocity correlation function, such frame rotations become in-
significant and one restores the diffusion coefficient measured
in the stationary laboratory frame.

The result of integration of two correlation functions in
Eq. (29) depends on the relative amplitudes and time decays
of the positive and negative portions of the velocity autocor-
relation function. This is illustrated in Fig. 9, where we plot
both Cv (t ) and Cr (t ). Because τr > τv , the decaying rotational
correlation function mostly reduces the negative tail of Cv (t )
thus increasing the diffusion coefficient D̃‖. This corresponds
to D̃‖ > D̃⊥ in Fig. 10. Rotations become slower and τr grows
as the solute dipole is increased (Fig. 3). The negative portion
of Cv (t ) contributes in this case more substantially to the
integral, leading to closer values of the parallel and perpen-
dicular diffusion coefficients in Fig. 10. One obtains nearly
isotropic diffusion in the intermediate range of solute dipoles.
Overall, the diffusion anisotropy D⊥/D‖ scales linearly with
m2

0 (Fig. 10). We also find that D⊥ stays nearly constant as m0

is varied and the main effect of the dipole moment is on the
parallel component D‖ (Fig. 26).

FIG. 10. Diffusion anisotropy in the body frame D̃⊥/D̃‖ vs m2
0

from MD simulations (points). The dash-dotted line is a linear fit.

IV. NON-GAUSSIAN TRANSLATIONAL DYNAMICS

Anisotropic diffusion coefficient in the laboratory frame
is responsible for rotation-translation coupling. This is al-
ready seen from Eq. (29) and the dependence of the diffusion
anisotropy on the solute dipole in Fig. 10. Here, we present
additional arguments for rotation-translation coupling by
showing that translational dynamics carry the non-Gaussian
character [47].

The translational and rotational degrees of freedom are
coupled through the rotational matrix transformation involv-
ing a nonlinear, trigonometric dependence on the rotational
angles [46–48]. This nonlinear coordinate transformation is
responsible for non-Gaussian statistics of molecular displace-
ments characterized by the non-Gaussian parameter [51,52]

α2(t ) = 3〈[�r(t )]4〉
5〈[�r(t )]2〉2

− 1, (31)

where �r(t ) is the center-of-mass displacement of the solute
and �r(t )4 = (�rα (t )�rα (t ))2.

To model α2(t ), one assumes that the solute Cartesian
coordinate rα (t ) is described by the Langevin equation [47]

∂t rα (t ) = ξα (t ), (32)

where the random force is defined by the correlation
function, 〈ξα (t )ξβ (t ′)〉 = 2Dαβ (t )δ(t − t ′), incorporating the
anisotropic diffusion constant

D(t ) = D‖û(t )û(t ) + D⊥[I − û(t )û(t )]. (33)

From the Langevin equation, one obtains

〈�rα (t )�rβ (t )〉 = 2δαβD⊥t + 2�D
∫ t

0
dt ′〈ûα (t ′)ûβ (t ′)〉,

(34)

where �D = D‖ − D⊥. From this equation and Eq. (28),
the squared displacement of the solute is determined by the
spherically symmetric diffusion coefficient Dt = D̄ = (D‖ +
2D⊥)/3,

〈�r2(t )〉 = 6D̄t . (35)

The mean-squared particle displacement does not register the
translation-rotation coupling and that is why a measure of
non-Gaussian dynamics in terms of higher statistical moments
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FIG. 11. Non-Gaussian translational dynamics parameter α2(t )
at m0 values (D) listed in the plot. These values of the solute dipole
correspond to partial charges q = 0.1, 0.6, and 1.0 placed at the
fused solute dumbbell.

is required [53,54]. Assuming the mono-exponential decay of
Cr (t ) with the relaxation time τr , one obtains (Appendix H)

α2(t ) = 2�D2

15D̄2
f (3t/τr ), (36)

where f (x) = (x − 1 + e−x )/x2. This equation applies to the
long-time diffusional dynamics since no ballistic effects were
included in Eqs. (32) and (35). It therefore does not reproduce
the rising part of α2(t ) due to fast dynamics.

The calculated values of α2(t ) (Fig. 11) show slowly de-
caying tails, into tens of picoseconds, roughly consistent with
the slow ∝ t−1 decay predicted by Eq. (36). The translational
dynamics are non-Gaussian on the timescale of rotational
relaxation (Fig. 3) roughly corresponding to the decay time
seen in Fig. 11.

V. STOKES-EINSTEIN-DEBYE RELATION

A uniform electric field within a dipolar solute produces
no force on the dipole (Fig. 1). Within this approximation,
fluctuating electrostatic interactions do not impose dielectric
friction on dipole translations, but significantly affect its ro-
tations. This distinction is expected to alter the SED relation,
which is based on pure hydrodynamic considerations and does
not account for electrostatic effects.

The product Dtτr entering the SED equation is shown in
Fig. 12. Equation (2) does not provide a quantitative estimate.
An overestimated value of the SED product from Eq. (2) is

FIG. 12. The SED product [Eq. (2)] vs m2
0. The dotted line in-

dicates the SED result in the right-hand side of Eq. (2) with a = r0.
The dashed line is a linear fit through the simulation points.

FIG. 13. The SED product for the dipolar fused dumbbell with
q = 1.5 vs the inverse temperature. The dots denote MD simulations
and the dashed lines are linear fits of the corresponding portions of
the data. The dotted line shows the result of Eq. (2).

also confirmed by the experimental results for water shown
in Fig. 15 below. Instead of predicted constant value deter-
mined solely by the solute size, the SED product becomes
an approximately linear function of m2

0. This linear scaling
mirrors the variation of τr shown in Fig. 3. SED violation is
often related to transition from continuous diffusion to jump-
diffusion at low temperatures [55]. However, the concept of
jump-diffusion does not apply to the bulky solute studied here
and the SED violation is an electrostatic phenomenon.

Lowering temperature increases an effective strength of
the solute-solvent dipolar coupling and can be mapped on an
increase of the solute dipole. In fact, the violation of SED is
most often recorded by lowering temperature [28]. Standard
models of dielectric friction predict for the temperature varia-
tion

[Dtτr](T ) = 2

3
a2 + m2

0χR

6πa

τE (T )

η(T )
. (37)

The second summand follows an Arrhenius temperature de-
pendence arising from the field relaxation time and solvent
viscosity, which often deviates from the Arrhenius law at low
temperatures [56]. An important outcome here is that, depend-
ing on the relative activation energies of τE (T ) and η(T ), the
dielectric friction term will either increase or decrease with
changing temperature. For the dipolar solute studied here,
lowering temperature leads to a sharp rise of the SED product
(Fig. 13). This temperature dependence is consistent with
phenomenology typically reported for supercooled molecular
glass-formers [10,28,57].

Water is a good study case for SED violation by electro-
static interactions alone since almost the entire polarizability
of water resides at the center of mass and no significant vdW
torques are expected. This is confirmed by our direct calcula-
tions of the LJ and electrostatic torques acting on SPC/E water
in the bulk (Table IV). Nevertheless, the direct application
of Eq. (21) to calculate τr (T ) gives overestimated results
for SPC/E water, probably because water’s rotations involve
discontinuous jumps and cannot be reduced to rotational dif-
fusion [11,31,55,58,59].

We also find that the distribution of the electric field at a
tagged molecule in bulk SPC/E water is highly non-Gaussian
(Fig. 14). The origin of this peculiar distribution is the rota-
tion of water in the laboratory frame, as is clarified for the
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FIG. 14. Distribution of a Cartesian projection Esα of the field
at a tagged SPC/E water molecule (points). The simulation results
are compared to the best fit to the Gaussian distribution (solid line);
T = 320 K.

dumbbell solute in Figs. 5 and 21. The distribution of the field
is Gaussian in the body frame of the molecule, and it is shifted
by the amount of the water reaction field [60] along the axis
parallel to the molecular dipole. The electric field distribution
is therefore Gaussian when projected on the OH bond. The
corresponding field fluctuations strongly affect the vibrational
band shape [61].

Rotations of water molecules in the laboratory frame
spread the shifted Gaussian distributions along the dipolar
axis into a stepwise functions with the range of electric-field
magnitudes specified by the reaction field. Since transport
coefficients and scattering of radiation are determined in the
laboratory frame of reference, this observation implies that
single-particle rotational dynamics of water affecting these
observable properties should carry significant non-Gaussian
features. We also find that the variance of the electric field at a
tagged water molecule is an approximately linearly decaying
function of temperature (Fig. 24), in direct violation of the
expectations of the fluctuation-dissipation theorem [18] pre-
dicting ∝ T for the variance of a collective variable. Similar
violations of the temperature law are found for the variance of
the dipole moment of polar liquids [62].

Given the failure of the diffusion model for water’s trans-
lations and rotations, one cannot expect that the present
discussion can quantitatively resolve the problem of SED vio-
lation in low-temperature water. However, the strong effect of
dipolar interactions in water on relaxation times and transport
coefficients calls for inclusion of electrostatics in any con-
siderations of water dynamics at low temperatures. Despite
our observation that the direct use of Eq. (37) is not justified,
supercooled water still shows the type of SED breakdown
predicted by Eq. (37), which can be written as

[Dtτr](T ) = A + BeβEa . (38)

Figure 15 shows the SED product for supercooled water
[31,32], which fits well to Eq. (38). This functionality comes
in contrast to the power law [Dtτr](T ) ∝ T −γ suggested to
fit the simulation results in Ref. [10]. In addition, two-state
models of water thermodynamics have been used to describe
the dependence of the water viscosity on temperature [63].
This approach was recently extended to rationalize effects of
temperature and pressure on rotational relaxation and self-

FIG. 15. The SED product for supercooled water [31,32]. The
solid line is a numerical fit of experimental data from Ref. [32] and
the solid line is the fit to the exponential function from Eq. (38) with
A = 0.386 Å2, B = 8.47×10−11 Å2, and Ea/kB = 5129 K.

diffusion [64,65]. However, the model is phenomenological
and relies on a large number of fitting parameter.

There are a number of properties of force-field water mod-
els consistent with the phenomenology of dielectric friction
affecting linear transport coefficients. The diffusion coeffi-
cient of force-field water was found to be anisotropic in
the body frame [66,67], connecting to our calculations pre-
sented in Fig. 10. This result implies that phenomenology
of non-Gaussian translational dynamics based on translation-
rotation coupling producing α2(t ) �= 0 (Fig. 11) applies to
both high- and low-temperature water [68,69]. The strength of
dipole-dipole interactions is determined by the dimensionless
parameter (m∗)2 = βm2/σ 3

s , where m is the liquid dipole and
σs is the molecular diameter. Therefore, lowering temperature
increases dielectric friction thus making α2(t ) higher in am-
plitude and shifting its decay to longer times [10,68] because
of slower rotations caused by increasing strength of dipole-
dipole interactions (Fig. 3).

VI. DISCUSSION

Electrostatic solute-solvent interactions are viewed as a
major reason for enhanced friction and slower translational
[19,21,22,24] and rotational [25,26,33,34] diffusion of multi-
polar particles in polar media [14–17]. Dielectric friction is
caused by fluctuations of the electric field produced by the
solvent at the charge or dipole of the solute. The effect of
electric field fluctuations on the rotational time of a dipolar
solute is traditionally estimated through Eq. (4). A similar
equation can be derived [19] for the translational diffusion
coefficient Dt of a spherical ion carrying the charge q0 (in
contrast to partial charges ±q making up the dipole, Fig. 1)

D0
t /Dt = 1 + (βq0)2

3
τE D0

t 〈(δEs)2〉, (39)

where D0
t is the Stokes-Einstein hydrodynamic diffusion coef-

ficient. These two equations predict that combining rotational
dynamics of a dipole with translational diffusion (conduc-
tivity) of an ion gives access to the same set of parameters
describing the statistics and dynamics of the electric field in
condensed materials. In particular, one can relate the diffusion
coefficient of an ion to the increment �τr of the rotational
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time of the dipole

D−1
t = (

D0
t

)−1 + 2q2
0

m2
0

�τr . (40)

The practicality of these predictions is severely diminished by
two significant complications: (i) the competition and cross-
correlations between vdW (LJ) and electrostatic forces and
torques [19,26] and (ii) the nonlinear retardation of the field
dynamics making τE a function of q0 for an ion [19] and an
approximately linear function of m2

0 for the dipole (Fig. 6).
These two factors are so significant that they often in-

validate Eqs. (4) and (39), as is the case with the present
simulation setup. Both equations grossly overestimate the
effect of electrostatics on either translational or rotational
dynamics when accurate values of the field variance and relax-
ation time τE are applied. Consequently, the failure of Eq. (14)
to describe experimental spectroscopic data [37,41,42] is ac-
tually related to the failure of the standard linear theory of
dielectric friction. From the experimental perspective, the ef-
fect of the solute dipole on the field dynamics shown in Fig. 6
can be translated to slower Stokes-shift relaxation for excited
states of chromophores [70,71] usually carrying higher dipole
moments. This observation also implies slower field dynamics
in highly polar bulk liquids and inside solutes carrying large
dipole moments, such as solvated proteins [72].

The range of dipole moments studied here exceeds what
is typically found for spectroscopic dipolar probes of com-
parable sizes. To estimate how realistic these dipoles are
and whether the strong retardation of the rotation dynamics
and electric-field fluctuations can be achieved in real sys-
tems, one needs to consider the reduced solute dipole. The
strength of dipole-water interaction is determined not by the
dipole magnitude itself, but, instead, by the reduced dipole
(m∗

0 )2 = βm2
0/σ

3
eff, where σeff = 2aeff is the effective diameter

of the solute [Eq. (15), Figs. 19 and 20]. The reduced dipole
m∗

0 reaches the value of �5.4 at the largest dipole moment
explored in our simulations. Strong deviations between our
calculations for rotational friction and standard theories start
at m∗

0 � 1. For comparison, the reduced dipole of SPC/E water
is m∗ � 2.4, where (m∗)2 = βm2/σ 3

s for a material with the
molecular dipole m and the molecular diameter σs [5,74].
One therefore anticipates strong deviations from the standard
linear theories of dielectric friction and dielectric relaxation
for bulk water.

This expectation is supported by simulations of SPC/E
water at different temperatures performed in this study. We
find that Eq. (4) strongly overestimates the rotational time for
water (Fig. 25). We also find that the continuum estimate τE =
τ c

E for the electric field relaxation [Eq. (12)] is much below τE

reported by MD (Fig. 16). In contrast, τE (T ) is slightly below
the Debye relaxation time τD(T ) for SPC/E water [73]. These
results are consistent with the nonlinear retardation of the
field dynamics shown in Fig. 6. The relaxation time deviates
upward from τ c

E with increasing dipole thus making τD(T ) a
better estimate of τE (T ). This outcome might be of general
importance for polar liquids, especially at low temperatures,
when m∗ becomes larger in magnitude.

Another class of important solutes is colloidal particles,
such as proteins, which are stabilized in solution by high

FIG. 16. τE from MD (points, MD) compared to τD of SPC/E
water [73] (Debye) and to τ c

E from Eq. (12) (Continuum).

density of surface charges. For proteins carrying significant
dipole moment due to ionized surface residues [75], the re-
duced dipole m∗

0 � 5 is often found. This is close to the upper
end of our scale and one should anticipate a dramatic failure
of standard theories of dielectric friction when applied to
protein’s rotational dynamics [76]. A strong, about three to
four orders of magnitude [72], retardation of the dynamics of
electric field produced by water inside the protein parallels
the field retardation found for the dipolar solutes in this study
(Fig. 6).

What has been missing from previous studies of diffusion
and mobility is the appreciation that electrostatic interactions
bring to linear transport coefficients a number of features
typically associated with the dynamics of low-temperature
or supercooled liquids. We showed here that the diffusion
coefficient of a dipolar solute is anisotropic in the body frame.
Changing the solute dipole alters the diffusion anisotropy
and brings it, for a large dipole, to the magnitudes compa-
rable to anisotropy of a thin long rod (1 � D‖/D⊥ � 2 [49]).
Because the coordinate transformation from the body frame
to the laboratory frame is achieved by rotational matrices
involving nonlinear trigonometric functionalities in terms of
rotational angles, diffusion anisotropy is translated to non-
Gaussian translational dynamics on the timescale comparable
to the rotational time [47]. In accord with the logic established
in studies of dynamics of glass formers [53], one needs a
four-point correlation function [α2(t ) here] to interrogate the
non-Gaussian dynamics. Further, distinct effects of electro-
statics on translational and rotational dynamics (Fig. 1) lead
to the violation of the SED relation linking the one-particle
translational and rotational transport coefficients [Eq. (2); note
that we avoid linking either of them to the collective property
of shear viscosity].

The SED violation is often attributed to heterogeneous
dynamics [28,30,53,77], i.e., the temporal coexistence of
domains with fast and slow dynamics in a homogeneous
medium. In this framework, dynamic heterogeneity becomes
a dynamic signature of nonergodicity in respect to experi-
ments recording structural α relaxation. The appearance of
distributed α-relaxation times, leading to dispersed dynamics
and non-Arrhenius kinetics [30,57,77], is the consequence
of existence of a slower dynamic process (rate exchange)
restoring ergodicity on a timescale much longer than α re-
laxation. That model explains SED violation by the fact that
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translational diffusion is dominated by fast states, while slow
states mostly contribute to rotational diffusion [77] (this view
was disproved in simulations of SPC/E water [10]). There are
obviously no such distributed states in our relatively short
simulations containing a single solute in the simulation cell,
but we nevertheless find the same phenomenology of the SED
product increasing either with solute polarity (Fig. 12) or with
lowering temperature (Fig. 13).

In contrast to this “dynamical disorder” mechanism [78]
for SED violation requiring introducing an unspecified slow
rate exchange process, well-defined physical interactions are
considered here to produce similar effects. Electrostatics af-
fects translational diffusion of ions and rotation of dipoles,
but does not affect rotations of ions and translations of dipoles
(Fig. 1). As a result of this asymmetry, SED violation must
occur when dielectric friction is significant. Our simulations
indicate that this is true for strongly polar liquids at room tem-
perature and must be true for essentially all dipolar liquids at
low temperatures. This is because the strength of dipolar inter-
actions m∗ ∝ T −1/2 increases with lowering temperature and
dielectric friction starts affecting linear transport coefficients
at m∗ > 1. The SED relation assumes uncorrelated motion of
single particles in a liquid. Electrostatics instead makes the
particle motions strongly correlated and thus collective. The
role of lowering temperature is to enhance these collective
correlations.

Random torques responsible for rotational diffusion and
random forces producing translational diffusion include vdW
(LJ) and electrostatic components. They turn out to be remark-
ably correlated such that the negative of the cross-correlation
of electrostatic and LJ force/torque is nearly exactly equal
to the positive self-variance of the electrostatic component
[Eqs. (19) and (23)]. This interesting phenomenon can be
qualitatively explained by the diagram shown in Fig. 2.

Consider a thin layer of water at the solute surface. At large
solute dipoles, the water layer is immobilized (shaded areas in
Fig. 2) and, as we have shown above, rotates together with the
solute (we still stress that it is the interfacial structure that is
frozen, not the interfacial mobility of water molecules). For
water molecules in these areas, equilibrium is established be-
tween the electrostatic pull and the LJ repulsion, Fw

E = −Fw
LJ.

Taken together, these individual equilibrium conditions imply
δFE = FE û [Eq. (16)] and

δFLJ = −FE û + δF⊥
LJ û⊥, (41)

where û⊥ is the unit vector specifying the perpendicular
projection of the vdW force. This latter relation imme-
diately leads to the condition of equality between the
cross-correlation and the negative variance of the electrostatic
force [Eq. (23)]. Fluctuations of water density in the interface
produce, in addition, fluctuations of the vdW force δF⊥

LJ in
the direction perpendicular to the solute dipole moment. The
variance of the perpendicular vdW force contributes to the
total variance making 〈(δFLJ)2〉 distinct from the variance of
the electrostatic force 〈(δFE )2〉 � 〈F 2

E 〉 dominated by solute
rotations. Density fluctuations thus enhance 〈(δFLJ)2〉 relative
to 〈(δFE )2〉. This phenomenology is illustrated in Fig. 17
where distributions of electrostatic forces parallel and perpen-
dicular to the direction of the dipole unit vector û are shown.
The vertical dashed lines in the figure indicate the average

FIG. 17. Distribution of force projections on the direction of the
solute dipole (E‖ and LJ‖) and perpendicular to the solute dipole (E⊥
and LJ⊥). The dashed vertical lines show the average parallel projec-
tions of the corresponding components. The results of simulations
are shown at q = 1.3, m0 = 13.7 D, and T = 300 K.

parallel force projections, which are equal in magnitude and
carry opposite signs to ensure the equilibrium condition.

The compensatory correlation between the forces was pre-
viously reported for a dipolar diatomic similar to the one
studied here at a single dipole magnitude [26]. Similar re-
markable equality between the variance of electric forces and
the negative of the cross-correlation between LJ and electric
forces was also found in our study of translational diffusion
of solvated proteins [76]. Such a broad range of solutes po-
tentially points to universality of this phenomenon, at least in
application to diffusion of sufficiently large and highly polar
solutes in water (it does not apply to water itself). Our results
indicate that this phenomenology requires the formation of an
arrested solvation layer at the solute surface.

VII. CONCLUSIONS

Numerical simulations of dipolar dumbbells carried out
here have shown a strong effect of the solute dipole on its
rotational dynamics. Even though qualitatively predicted by
classical theories of dielectric friction, the effect of electrostat-
ics on linear transport coefficients is very different from these
predictions. Two physical phenomena are at the center of this
discrepancy: (i) nonlinear slowing down of the electric field
dynamics of the polar medium and (ii) strong correlations be-
tween vdW and electrostatic solute-solvent interactions. The
rotational dynamics of a dipolar solute in room-temperature
water carries many qualitative signatures of linear transport
coefficients in supercooled liquids: violation of the SED rela-
tion and non-Gaussian translational dynamics.
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APPENDIX A: SIMULATION PROTOCOL

The solute is a dumbbell made of two overlapping spheres
with charges +q and −q at their centers. The radius of each
sphere, r0 = 2.2 Å, defines the LJ diameter σ0 = 2r0 = 4.4 Å
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FIG. 18. Configurations of charges in the dumbbell solute. Also
shown is the body frame associated with the solute.

for the repulsive core of the spheres. The LJ interaction poten-
tial between the solute and the oxygen atom of SPC/E water
is given as a sum of two LJ site-site potentials

ULJ(r) = 4εLJ

∑
i

[
σ 12

LJ

|r − si|12
− σ 6

LJ

|r − si|6
]
, (A1)

where si, i = 1, 2 are the vectors s = |si| = r0/2 pointing
from the geometric center of the solute (origin of the body
frame, Fig. 18) to the centers of two spheres. The solute-
solvent LJ diameter is σLJ = 3.783 Å and the solute-solvent
LJ energy is εLJ = 0.12579 kcal/mol. For SPC/E water, the LJ
diameter for the oxygen-oxygen interaction is σLJ = 3.166 Å
and the LJ energy is εLJ = 0.15535 kcal/mol [79]. The dis-
tance between the centers of spheres in the dumbbell is 2s =
r0. Each sphere carries the mass of 126.9 a.u. thus making the
total mass of the solute equal to 253.8 a.u.

The Large scale Atomic/Molecular Massively Parallel
Simulator MD package was used for the production of tra-
jectories. We have followed the standard protocol of MD
integration with the integration time-step of 1 fs, NVT ensem-
ble at T = 300 K, and the SPC/E force field for water.

A cubic simulation box with length L = 35.2 Å was used
with periodic boundary conditions applied in all three direc-
tions. The solute was solvated with 1500 water molecules.
The PPPM Ewald method was applied to compute electro-
static interactions and a 14 Å cutoff was used for nonbonded
interactions. All systems were equilibrated for 10 ns, followed
by production runs for 100 ns for smaller charges and 200 ns
for q � 1.0. A number of dipole moments of the solute were
examined by altering the opposite charges while keeping the
distance between them constant (Table I); the charge is given
in elementary charge units e.

We have additionally performed simulations of bulk SPC/E
water at T = 240, 260, 280, 300, 320, 340, 360 K: 4700 wa-
ter molecules were placed in a cubic box with the side length
of 52 Å and simulated for 100 ns in the NVT ensemble
following 10 ns equilibration in the NPT ensemble (at 1 atm
pressure). The integration step was 1 fs and the saving time
was 0.1 ps. The bond angle and the bond distance of water
molecules are kept fixed using the SHAKE algorithm [80].
The PPPM Ewald method was used to compute electrostatic
interactions and a 10 Å cutoff was applied to LJ interactions.

APPENDIX B: LINEAR RESPONSE THEORY

The solute-oxygen RDFs g0s(r) are shown in Fig. 19,
where the distance r is between the geometric center of the

TABLE I. Rotational relaxation time τr , relaxation time of the
electric field τE , the translational diffusion coefficient Dt (Å2/ps) and
the electric field variance [(V/Å)2] for solutes with changing partial
charge q and the corresponding dipole moment m0; T = 300 K.

q (e) m0 (D) τr (ps) τE (ps) Dt 〈(δEs)2〉
0.05 0.5 2.26 0.17 0.1484 0.041
0.1 1.1 2.40 0.31 0.1352 0.048
0.4 4.2 2.71 1.5 0.1577 0.057
0.6 6.3 3.82 3.4 0.1649 0.060
0.9 9.5 8.54 9.7 0.1409 0.114
1.0 10.6 11.58 17.2 0.1299 0.133
1.3 13.7 17.13 18.8 0.1083 0.178
1.4 14.8 23.89 17.8 0.1024 0.205
1.5 15.9 29.22 31.1 0.0949 0.274

solute and the oxygen atom. The RDFs indicate a continuous
compression of the hydration shell as the dipole moment of
the solute is increased. They also indicate anisotropy growing
with increasing charge q, as is seen from a shoulder appearing
in the first peak (blue and green lines in Fig. 19).

The effective solute radius is calculated from the RDF
according to Eq. (15). The radii aeff are plotted in Fig. 20 as
a function of the site charge q. At the smallest charge studied
here, aeff is slightly below the solute-water LJ distance σLJ =
3.783 Å. The effective radius is always below the position of
the first maximum of the RDF also shown in the figure.

The variance of field fluctuations was calculated from
linear response theory as described in Ref. [19] and briefly
reproduced here. The reaction-field static susceptibility χR

follows from the linear-response equation [81]

χR = (β/2)
∫

�

drdr′Eα
μ (r)〈δPα (r)Pβ (r′)〉Eβ

μ (r′). (B1)

The correlation of polarization fluctuations at points r and
r′ in the liquid requires accounting for the presence of the
solute, which imposes strong nonlinear effect on the Gaussian
correlation functions through the requirement for the polariza-
tion field to vanish within the solute [82]. This problem has a
closed-form solution for a spherical dipole [83] with the result

χR = 3

2εs + 1

[
εsχ

L
R + χT

R

]
. (B2)

FIG. 19. RDFs between the dipolar solute and water’s oxygen at
different values of the partial charge q listed in the plot.
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FIG. 20. RDF first maxima (rmax) and effective radii (aeff) calcu-
lated from Eq. (15).

Here, the longitudinal (L) and transverse (T) susceptibilities
are given as reciprocal-space integrals of the squared field
of the solute dipole with the corresponding longitudinal and
transverse dipolar susceptibilities χ

γ
R (k) of bulk polar liquid

χ
γ
R = 1

2

∫
dk

(2π )3
χγ (k)

∣∣Ẽγ
μ (k)

∣∣2
, (B3)

where γ = L, T.
The susceptibility χR corresponds to a unit dipole placed

at the center of a spherical solute with the radius a. The
reciprocal space electric field of the unit dipole is

Ẽμ(k) = −4π j1(ka)

ka
[3k̂(k̂ · ẑ) − ẑ], (B4)

where the dipole is oriented along the z axis (Fig. 18) and j1(x)
is the first-order spherical Bessel function [84]. The longitu-
dinal and transverse components of the field are obtained by
taking the fields projections along the wave vector k̂ = k/k
and perpendicular to it: ẼL

μ = k̂ · Ẽμ and ẼT
μ = Ẽμ − k̂ẼL

μ .
The calculations of χR in Eq. (B3) were done by using the
response functions of bulk SPC/E water calculated from sep-
arate MD simulations [85]

χγ (k) = (3y/4π )Sγ (k). (B5)

Here y = (4π/9)βρm2 and Sγ (k) are the longitudinal and
transverse structure factors of the molecular dipoles in SPC/E
water

SL(k) = 3

N

∑
j,k

〈
(û j · k̂)(k̂ · ûk )eik·r jk

〉
,

ST (k) = 3

2N

∑
j,k

〈[û j · ûk − (û j · k̂)(k̂ · ûk )]eik·r jk 〉, (B6)

where û j are unit vectors of N dipoles located at r j and
r jk = r j − rk .

The relaxation time of electric field fluctuations is cal-
culated as explained in detail in Ref. [19]. This formalism
involves calculation of reciprocal space integrals involving the
longitudinal and transverse projections of the field and the
corresponding projections of the structure factors

τE = τ c
E

2εsIL + ε3
∞IT

2εsJL + ε3∞JT
, (B7)

where Jγ and Iγ (γ = L, T) are given by expressions

Jγ = 6a

π

∫ ∞

0
dk j2

1 (ka)Sγ (k), (B8)

Iγ = 6a

π

∫ ∞

0
dk j2

1 (ka)
(Sγ (k))2

Sγ (0)

1

1 + pk2
. (B9)

The parameter p in Eq. (B9) quantifies the effect of coupled
translational and rotational motions of molecular dipoles [8].
It is given as the product of the self-diffusion coefficient Dt

of water with the rotational time τr : p = τrDt . For SPC/E
water one finds [19] p = 1.5 Å2. Finally, τ c

E in Eq. (B7) is the
dielectric rotational time in Eq. (12) (τD = 6.3 ps is adopted
for the Debye relaxation time of SPC/E water at 298 K [43]).
Finally, the high frequency dielectric constant ε∞ is put equal
to unity in all calculations with nonpolarizable SPC/E water.

APPENDIX C: ROTATIONAL TIME

Here we follow the steps by Nee and Zwanzig [14] to
derive the rotational time affected by electrostatics [Eq. (4)].
The electrostatic torque acting on the solute dipole is

TE = m0 × Es, (C1)

where Es is the electric field of the solvent. In order to produce
a nonzero torque, the field has to be out of equilibrium. To
calculate the retardation of the solute field, one looks for the
frequency-dependent field produced by the probe dipole m0(t )
oscillating with the frequency ω and the amplitude mω [5]

R̃(ω) = χ̃R(ω) · mω. (C2)

The tildes here denote the Fourier-Laplace transforms and
χ̃R(ω) is a second-rank tensor. Note that χR in Eq. (B2) is
the isotropic static limit of the susceptibility χ̃R(ω): χR =
(1/6)Tr[χ̃R(0)].

The torque at time t is given as the inverse time transform

TE (t ) =
∫ ∞

−∞

dω

(2π )
m0(t ) × χ̃R(ω) · mωe−iωt

=
∫ ∞

−∞

dω

(2π )
χ̃R(ω) ·

∫ ∞

−∞
dt ′e−iω(t−t ′ )(m0(t ) × m0(t ′)).

(C3)

Instantaneous rotations of the dipole are described [86] by the
instantaneous angular velocity �(t )

ṁ0 = � × m0. (C4)

The solution of this equation is

m0(t ) = m0(t ′) +
∫ t

t ′
ds �(s) × m0(s) (C5)

This equation is substituted to Eq. (C3) to obtain the linear
response of the torque to the dipole rotation. Two approxima-
tions are applied in the Nee-Zwanzig theory [14]: (i) χ̃R(ω) is
viewed as the isotropic tensor multiplied by a scalar function
χ̃R(ω) and (ii) only the terms linear in � are included (linear
response). The result is

T(t ) = im2
0

∫ ∞

−∞

dω

(2π )
�⊥(ω)

1

ω
[χ̃R(ω) − χ̃R(0)]e−iωt . (C6)
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where �⊥(t ) is the projection of the instantaneous rotation
frequency perpendicular to m0 and �⊥(ω) is its time Fourier
transform.

Equation (C6) has the form of linear friction

T(ω) = −ζD(ω)�⊥(ω) (C7)

with the dielectric friction coefficient

ζD(ω) = m2
0

iω
[χ̃R(ω) − χ̃R(0)]. (C8)

The rotational relaxation time is a sum of the relaxation time
τ 0

r due to vdW interactions and the dielectric friction compo-
nent

τr = τ 0
r + βm2

0

2
Im

χ̃R(ω) − χ̃R(0)

ω

∣∣∣∣
ω→0

. (C9)

The function χ̃R(ω) can be calculated from the time corre-
lation function of the electric field according to the equation
[5]

χ̃R(ω) = 1
3β〈(δEs)2〉[1 + iω�̃E (ω)], (C10)

where �̃E (ω) is the Fourier-Laplace transform of the nor-
malized time correlation function �E (t ) = CE (t )/CE (0) with
CE (t ) given by Eq. (6). Adopting a multiexponential decay for
the field-field correlation function

�E (t ) =
∑

i

aie
−t/τi ,

∑
i

ai = 1, (C11)

one arrives at Eq. (4) with

τE =
∑

i

aiτi (C12)

given as the integral relaxation time of the electric field
(Table I).

APPENDIX D: STATISTICS AND DYNAMICS
OF THE SOLVENT FIELD

It is typically assumed that the statistics of the electric field
created by a dense polar solvent inside the solute is Gaussian.
This is often adopted without testing, but we found here that
one has to discriminate between distributions of the electric
field in the laboratory and body frames of the solute.

The calculations of the field statistics were first done in the
laboratory frame. The results shown in Fig. 5 are for the mean
distribution

p̄ = 1
3 (p(Esx ) + p(Esy) + p(Esz )) (D1)

averaged over three individual distributions of field projec-
tions to reduce sampling errors. The field Es is calculated at
the geometrical center of the solute.

The distribution of the field in the solute body frame is
produced by rotating Es from the laboratory frame to the
body frame with the z axis along the solute dipole (Fig. 18)
for each configuration along the simulation trajectory. The
distributions become Gaussian in this reference frame.
The Gaussian is shifted along the dipole axis to the value
of the average reaction field [20,60] of water (Fig. 21). The
non-Gaussian distribution in the laboratory frame shown in
Fig. 5 is therefore a result of solute rotations, with the maxi-

FIG. 21. Distribution p(Esz ) of the Cartesian projection of Es

on the direction of the solute dipole and the mean distribution
[p(Esx ) + p(Esy )]/2 of the perpendicular (E⊥) projections for the
electric field created by SPC/E water at the geometrical center of
the fused dumbbell solute (points). Calculations are done at q = 1.0
and 1.5, T = 300 K.

mum of the stepwise probability distribution specified by the
magnitude of the reaction field.

The dynamics of the electric field Es was used to calculate
CE (t ) [Eq. (6)] and the integral relaxation time [Eq. (C12)].
The results for the integral relaxation time τE and electric field
variance from MD simulations are summarized in Table I. It
also lists the rotational relaxation time τr and the translational
diffusion coefficient Dt of the dumbbell solute. Both the incre-
ment of the solute rotational time �τr over the hydrodynamic
limit (Fig. 3) and τE (Fig. 6) follow approximately linear
scalings with m2

0. At large values of the solute dipole, we find
�τr ≈ τE as shown in Fig. 22.

APPENDIX E: FORCES AND TORQUES

The force acting on the solute from SPC/E water was
divided into the electrostatic and vdW (LJ) components:
F = FE + FLJ. The electrostatic force is given by the interac-
tion energy of the water electric field with the solute charges
qi, i = 1, 2

FE =
∑
i=1,2

qiEs(i). (E1)

The electric field Es(i) is calculated at each charge qi, in
contrast to the electric field Es considered in Sec. D, which

FIG. 22. �τr vs τE calculated at different values of the solute
dipole moment. The dashed line with the unit slope is drawn to
indicate the equality between two values.
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TABLE II. Variance of the force acting on the dipolar solute from
SPC/E water at T = 300 K. The variance is scaled with β = (kBT )−1

and is separated into the electric and LJ components and the cross-
correlation term (Å−2).

q (e) 〈(δFE )2〉 〈(δFLJ)2〉 〈(δF)2〉 −〈δFE · δFLJ〉
0.05 0.35 71.6 71.0 −0.43
0.1 1.58 70.7 68.00 −2.1
0.4 10.2 110.8 94.0 −13.5
0.6 21.8 167.9 133.7 −28.0
0.9 59.3 345.7 257.0 −74.0
1.0 194.0 548.8 302.4 −220.2
1.3 413.2 1010.6 501.3 −461.2
1.4 544.8 1255.0 588.2 −605.8
1.5 818.6 1647.7 676.8 −894.7

was calculated at the center of the solute. The LJ force FLJ is
given as the gradient of the LJ interaction energy between the
water molecules and two LJ sites within the solute (Fig. 18).
Table II lists the components of the variance

〈(δF)2〉 = 〈(δFE )2〉 + 〈(δFLJ)2〉 + 2〈δFE · δFLJ〉. (E2)

Torques were calculated from the forces acting on the
charges and LJ centers according to the standard equation

T =
∑
i=1,2

si × fi, (E3)

where fi are the forces acting on two interaction sites.
It is important to realize that when the distribution of

forces acting on the solute F = FLJ + FE is Gaussian and
the distribution of the force magnitude F is Maxwellian, the
distribution of torques is not. This is easiest to show for the
magnitude of the torque acting on a given site T = T0 sin θ ,
where T0 = Fs and θ is the angle between the force fi act-
ing on the site and si. One obtains for the distribution of
T assuming that the force F is distributed according to the
three-dimensional (3D) Maxwell distribution

p(T )∝
∫ ∞

0
dT0T 2

0

∫ π

0
dθ sin θδ(T − T0 sin θ ) exp

[
− T 2

0

2σ 2

]
.

(E4)

By integrating this equation, one obtains

p(T, σ ) ∝ Te−T 2/(2σ 2 ). (E5)

The magnitude of the torque is therefore distributed according
to the 2D Maxwell distribution. Figure 23 shows the results
for the electrostatic and LJ torques indicating that this expec-
tation is indeed realized.

To improve the quality of calculations of the torque vari-
ance from simulations, we fitted the distribution of torque
magnitudes produced by MD to a sum of two 2D Maxwell
distributions

p(T ) =
∑
i=1,2

Ai p(T, σi ),
∑
i=1,2

Ai = 1. (E6)

FIG. 23. Distribution of torques from electrostatic (E) and
Lennard-Jones (LJ) interactions for q = 0.6. Also shown is the dis-
tribution of the total torque (Tot); the dashed lines are fits to a single
2D Maxwell distribution [Eq. (E5)]. A linear combination of two
2D Maxwell distributions was used to calculate variances listed in
Table III.

The variance was then calculated as

〈(δT)2〉 =
∫ ∞

0
dT T 2 p(T ) = 2

∑
i=1,2

Aiσ
2
i , (E7)

where δT = T − 〈T〉 = T since 〈T〉 = 0. The total variance
of the torque is separated into the electrostatic and vdW (LJ)
components and the cross term according to Eq. (18). These
components, calculated from MD, are listed in Table III.

APPENDIX F: SPC/E WATER

MD simulations of SPC/E water [79] were carried out at
a number of temperatures listed in Table IV. It presents the
variance of the electric field at the water oxygen atom, the in-
tegral relaxation time of the field fluctuations τE [Eq. (C12)],
and the variance of the torque applied to the center of mass
including its vdW (LJ) and electrostatic components.

The variance of the electric field at the water oxygen is
a linearly decaying function of temperature (Fig. 24). The
relaxation time τE (T ) is compared in Fig. 16 to the Debye re-
laxation time of SPC/E water calculated from MD and fitted to
the Vogel-Fulcher equation [73]: τD(T ) = exp[−2.35 + 961/

(T − 88.2)]. It is alternatively calculated from the continuum
estimate in Eq. (12). The continuum τ c

E is much smaller than

TABLE III. Components of the torque variance (eV2) due to
electrostatic (E) and vdW (LJ) interactions as listed in Eq. (18);
T = 300 K.

q (e) m0 (D) 〈(δTE )2〉 〈(δTLJ)2〉 〈(δT)2〉 −〈δTE · δTLJ〉
0.05 0.5 0.0004 0.038 0.032 0.003
0.1 1.1 0.001 0.039 0.031 0.005
0.4 4.2 0.005 0.083 0.056 0.016
0.6 6.3 0.008 0.132 0.097 0.021
0.9 9.5 0.015 0.264 0.201 0.039
1.0 10.6 0.073 0.321 0.258 0.068
1.3 13.7 0.077 0.528 0.434 0.086
1.4 14.8 0.025 0.554 0.503 0.038
1.5 15.9 0.257 0.861 0.592 0.263

023025-15



TUHIN SAMANTA AND DMITRY V. MATYUSHOV PHYSICAL REVIEW RESEARCH 3, 023025 (2021)

TABLE IV. Properties of SPC/E water calculated from MD at
different temperatures: Variance of the electric field 〈(δEs )2〉 (V/Å)2,
relaxation time τE (ps), and the components of the torque variance
(eV2).

T (K) 〈(δEs )2〉 τE 〈(δTE )2〉 〈(δTLJ)2〉 〈(δT)2〉
240 1.18 34.62 0.2587 0.0011 0.2580
260 1.14 11.68 0.2597 0.0012 0.2591
280 1.09 7.08 0.2608 0.0013 0.2605
300 1.07 4.986 0.2658 0.0012 0.2656
320 1.03 2.986 0.2787 0.0014 0.2789
340 0.99 2.088 0.2851 0.0014 0.2860
360 0.97 1.623 0.2779 0.0013 0.2842

the MD result and τE (T ) from MD falls slightly below the
Debye relaxation time τD(T ) (Fig. 16).

To evaluate the performance of the Nee-Zwanzig equation
for SPC/E water, Fig. 25 shows the calculation of the second
term in Eq. (4) in comparison to the rotational time of SPC/E
water as tabulated in Ref. [67]. We find that Eq. (4) grossly
overestimates the effect of dielectric friction on the rotational
time (filled points in Fig. 25). On the other hand, electrostatic
torque, which is dominating in the overall torque acting on
the water molecule (Table IV), can be used to calculate the
rotational time according to Eq. (21). These results are shown
by the open points in Fig. 25. The agreement with direct
MD calculations is better, but Eq. (21) still overestimates the
rotational time. The reason is likely related to discontinuous
jumps of water molecules speeding up rotations as compared
to rotational diffusion [58].

APPENDIX G: TRANSLATIONAL DIFFUSION
AND SED VIOLATION

The translational diffusion coefficients were calculated
from the velocity autocorrelation functions as described in
Sec. III and are listed in Table I. The diffusion coefficient in
the body frame was calculated by rotating the solute velocity
to the frame with the z axis coinciding with the rotational
symmetry axis of the solute (Fig. 18). Figure 26 shows the
perpendicular, D⊥, and parallel, D‖, projections of the diffu-
sion coefficient in the body frame plotted against the charge
magnitude q. This figure shows that it is the parallel projection

FIG. 24. Variance of the electric field at water’s oxygen in bulk
SPC/E water calculated at different temperatures. The dashed line is
a linear fit through the points.

FIG. 25. τr from MD simulations of SPC/E water [67] (line, MD)
compared to the second term in Eq. (4) calculated from our MD
simulations (filled points, Table IV). Open points show the results
of calculations by Eq. (21).

of the diffusion coefficient that is mostly affected by the solute
dipole.

The results for SED violation are based on two sets of data.
Figure 12 shows the product Dtτr vs the dipole moment of the
solute, where Dt is the translational diffusion coefficient in
the laboratory frame. This plot is based on the data listed in
Table I. In addition, Fig. 13 shows the dependence of Dtτr on
T −1 for the solute with the highest charge ±q placed at the
spherical centers of the dumbbell solute, q = 1.5. These data
are listed in Table V.

APPENDIX H: NON-GAUSSIAN PARAMETER

From Eq. (32), one can calculate the fourth moment of
�rx(t )

〈�rx(t )4〉 =
∫ t

0
dt1 . . . dt4〈ξx(t1) . . . ξx(t4)〉. (H1)

One gets

〈[�rx(t )]4〉 = 12D̄2

[
t2

(
1 − �D2

9D̄2

)

+ �D2

9D̄2

∫ t

0

∫ t

0
dt1dt2〈ux(t1)2ux(t2)2〉

]
. (H2)

FIG. 26. Parallel, D‖, and perpendicular, D⊥, translational dif-
fusion coefficients of the solute calculated in the body frame. The
dashed lines are liner fits through the points.
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TABLE V. Diffusion coefficient Dt (Å2/ps) and the rotational
time τr (ps) for the solute with q = 1.5 at different temperatures.

T (K) Dt (Å2/ps) τr (ps)

245 0.0178 233.2
252 0.0263 144.9
260 0.0362 85.8
267 0.0469 60.3
275 0.0502 54.7
290 0.0768 36.2
300 0.0949 29.2

The average 〈ux(t1)2ux(t2)2〉 in Eq. (H2) is calculated from
the propagator for rotational diffusion P(û1, t1|û2, t2) [12]

〈ux(t1)2ux(t2)2〉 = (4π )−1
∫

û2
1xP(û1, t1|û2, t2)û2

2xdû1û2,

(H3)

where t1 > t2 is assumed. The rotational propagator for a
spherical particle with the rotational diffusion coefficient Dr

can be represented by an expansion in spherical harmonics
Ylm(ûi ) of the unit vectors ûi specifying the solute orientation
[12]

P(û1, t1|û2, t2) =
∑
lm

Ylm(û1)Y ∗
lm(û2)e−l (l+1)Dr |t1−t2|. (H4)

To perform integration over the orientations of the solute
in Eq. (H3), one applies the expansion of the scalar product
ûx = û · x̂ in spherical harmonics

ûx = 4π

3

m=1∑
m=−1

Y1m(û)Y ∗
1m(x̂). (H5)

The result of integration is

〈ux(t1)2ux(t2)2〉 = 1
9

(
1 + e−Dr |t1−t2|). (H6)

One therefore obtains

〈[�rx(t )]4〉 = 12D̄2

[
t2 + �D2

9D̄2

∫ t

0

∫ t

0
dt1dt2e−Dr |t1−t2|

]
.

(H7)

and

〈[�rx(t )]4〉 − 3〈[�rx(t )]2〉2 = 4

3
�D2

∫ t

0

∫ t

0
dt1dt2e−Dr |t1−t2|.

(H8)

By extending this result to three Cartesian components of
the solute displacement, one gets

〈[�r(t )]4〉 − 5

3
〈[�r(t )]2〉2 = 4�D2

∫ t

0

∫ t

0
dt1dt2e−Dr |t1−t2|.

(H9)
Integration over time leads to the non-Gaussian parameter
α2(t ) in Eq. (31)

α2(t ) = 2�D2

15D̄2
f (6Drt ), (H10)

where

f (x) = (x − 1 + e−x )/x2. (H11)

Equation (36) follows from Eq. (H10) by substituting Dr =
(2τr )−1.

[1] A. Einstein, Investigations on the Theory of the Brownian Move-
ment (BN Publishing, Hawthorne, CA, 2011).

[2] R. M. Mazo, Brownian Motion. Fluctuations, Dynamics, and
Applications (Clarendon Press, Oxford, 2002).

[3] E. Frey and K. Kroy, Brownian motion: A paradigm of soft
matter and biological physics, Ann. Phys. 14, 20 (2005).

[4] X. Bian, C. Kim, and G. E. Karniadakis, 111 years of Brownian
motion, Soft Matter 12, 6331 (2016).

[5] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids,
4th ed. (Academic Press, Amsterdam, 2013).

[6] U. Balucani and M. Zoppi, Dynamics of the Liquid Phase
(Clarendon Press, Oxford, 1994).

[7] R. Zwanzig, Time-correlation functions and transport coeffi-
cients in statistical mechanics, Annu. Rev. Phys. Chem. 16, 67
(1965).

[8] B. Bagchi, Molecular Relaxation in Liquids (Oxford University
Press, Oxford, 2012).

[9] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford
University Press, Oxford, 2001).

[10] M. G. Mazza, N. Giovambattista, H. E. Stanley, and F. W.
Starr, Connection of translational and rotational dynamical het-
erogeneities with the breakdown of the Stokes-Einstein and

Stokes-Einstein-Debye relations in water, Phys. Rev. E 76,
031203 (2007).

[11] T. Kawasaki and K. Kim, Spurious violation of the Stokes–
Einstein–Debye relation in supercooled water, Sci. Rep. 9, 8118
(2019).

[12] B. J. Berne and R. Pecora, Dynamic Light Scattering (Dover,
Mineola, NY, 2000).

[13] M. Born, Uber die Beweglichkeit det elektrolytischen Ionen,
Z. Phys. 1, 221 (1920).

[14] T. W. Nee and R. R. Zwanzig, Theory of dielectric
relaxation in polar liquids, J. Chem. Phys. 52, 6353
(1970).

[15] R. Zwanzig, Dielectric friction on a moving ion. II. Revised
theory, J. Chem. Phys. 52, 3625 (1970).

[16] J. Hubbard and L. Onsager, Dielectric dispersion and dielectric
friction in electrolyte solutions. I, J. Chem. Phys. 67, 4850
(1977).

[17] P. Wolynes, Dynamics of electrolyte solutions, Annu. Rev.
Phys. Chem. 31, 345 (1980).

[18] R. Kubo, Some aspects of the statistical-mechanical theory
of irreversible processes, in Lectures in Theoretical Physics
(Interscience, New York, 1959), Vol. 1, p. 120.

023025-17

https://doi.org/10.1002/andp.200410132
https://doi.org/10.1039/C6SM01153E
https://doi.org/10.1146/annurev.pc.16.100165.000435
https://doi.org/10.1103/PhysRevE.76.031203
https://doi.org/10.1038/s41598-019-44517-4
https://doi.org/10.1007/BF01329168
https://doi.org/10.1063/1.1672951
https://doi.org/10.1063/1.1673535
https://doi.org/10.1063/1.434664
https://doi.org/10.1146/annurev.pc.31.100180.002021


TUHIN SAMANTA AND DMITRY V. MATYUSHOV PHYSICAL REVIEW RESEARCH 3, 023025 (2021)

[19] T. Samanta and D. V. Matyushov, Mobility of large ions in
water, J. Chem. Phys. 153, 044503 (2020).

[20] L. Onsager, Electric moments of molecules in liquids, J. Am.
Chem. Soc. 58, 1486 (1936).

[21] M. Berkowitz and W. Wan, The limiting ionic conductivity of
Na+ and Cl− ions in aqueous solutions: Molecular dynamics
simulation, J. Chem. Phys. 86, 376 (1987).

[22] S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell, and S. H.
Lee, Solvent structure, dynamics, and ion mobility in aqueous
solutions at 25◦C, J. Phys. Chem. B 102, 4193 (1998).

[23] S. H. Chong and F. Hirata, Dynamics of solvated ion in polar
liquids: An interaction-site-model description, J. Chem. Phys.
108, 7339 (1998).

[24] J. C. Rasaiah and R. M. Lynden-Bell, Computer simulation
studies of the structure and dynamics of ions and non–polar
solutes in water, Philos. Trans. R. Soc. Lond. A 359, 1545
(2001).

[25] M. G. Kurnikova, N. Balabai, D. H. Waldeck, and R. D.
Coalson, Rotational relaxation in polar solvents. Molecular dy-
namics study of solute-solvent interaction, J. Am. Chem. Soc.
120, 6121 (1998).

[26] P. V. Kumar and M. Maroncelli, The non-separability of “di-
electric” and “mechanical” friction in molecular systems: A
simulation study, J. Chem. Phys. 112, 5370 (2000).

[27] G. Tarjus and D. Kivelson, Breakdown of the Stokes–Einstein
relation in supercooled liquids, J. Chem. Phys. 103, 3071
(1995).

[28] M. D. Ediger, Spatially heterogeneous dynamics in supercooled
liquids, Annu. Rev. Phys. Chem. 51, 99 (2000).

[29] X. Xia and P. G. Wolynes, Diffusion and the mesoscopic hydro-
dynamics of supercooled liquids, J. Phys. Chem. B 105, 6570
(2001).

[30] R. Richert, Heterogeneous dynamics in liquids: Fluctuations in
space and time, J. Phys.: Condens. Matter 14, R703 (2002).

[31] J. Qvist, C. Mattea, E. P. Sunde, and B. Halle, Rotational dy-
namics in supercooled water from nuclear spin relaxation and
molecular simulations, J. Chem. Phys. 136, 204505 (2012).

[32] A. Dehaoui, B. Issenmann, and F. Caupin, Viscosity of deeply
supercooled water and its coupling to molecular diffusion,
Proc. Natl. Acad. Sci. USA 112, 12020 (2015).

[33] A. J. Cross and J. D. Simon, Rotational dynamics of a sol-
vated dipole: A molecular dynamics study of dielectric friction,
J. Chem. Phys. 86, 7079 (1987).

[34] M. Bruehl and J. T. Hynes, Dielectric friction and solvation
dynamics: A molecular dynamics study, J. Phys. Chem. 96,
4068 (1992).

[35] J. B. Hubbard and P. G. Wolynes, Dielectric friction and molec-
ular reorientation, J. Chem. Phys. 69, 998 (1978).

[36] R. S. Hartman, D. S. Alavi, and D. H. Waldeck, An exper-
imental test of dielectric friction models using the rotational
diffusion of aminoanthraquinones, J. Phys. Chem. 95, 7872
(1991).

[37] M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli,
Subpicosecond measurements of polar solvation dynamics:
Coumarin-153 revisited, J. Phys. Chem. 99, 17311 (1995).

[38] M. Maroncelli, The dynamics of solvation in polar liquids,
J. Mol. Liq. 57, 1 (1993).

[39] G. van der Zwan and J. T. Hynes, Time-dependent fluorescence
solvent shifts, dielectric friction, and nonequilibrium solvation
in polar solvents, J. Phys. Chem. 89, 4181 (1985).

[40] E. W. Castner and M. Maroncelli, Solvent dynamics derived
from optical Kerr effect, dielectric dispersion, and time-
resolved stokes shift measurements: An empirical comparison,
J. Mol. Liq. 77, 1 (1998).

[41] G. B. Dutt, G. R. Krishna, and S. Raman, Rotational dynamics
of coumarins in nonassociative solvents: Point dipole ver-
sus extended charge distribution models of dielectric friction,
J. Chem. Phys. 115, 4732 (2001).

[42] B. R. Gayathri, J. R. Mannekutla, and S. R. Inamdar, Rotational
diffusion of coumarins in alcohols: A dielectric friction study,
J. Fluoresc. 18, 943 (2008).

[43] S. Riniker, A.-P. E. Kunz, and W. F. van Gunsteren, On
the calculation of the dielectric permittivity and relaxation of
molecular models in the liquid phase, J. Chem. Theory Comput.
7, 1469 (2011).

[44] H. S. Frank and W.-Y. Wen, Ion-solvent interaction. Structural
aspects of ion-solvent interaction in aqueous solutions: A sug-
gested picture of water structure, Discuss. Faraday Soc. 24, 133
(1957).

[45] S. Mondal, S. Acharya, and B. Bagchi, Altered polar character
of nanoconfined liquid water, Phys. Rev. Research 1, 033145
(2019).

[46] S. Prager, Interaction of rotational and translational diffusion,
J. Chem. Phys. 23, 2404 (1955).

[47] Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky,
and A. G. Yodh, Brownian motion of an ellipsoid, Science 314,
626 (2006).

[48] M. Molaei, E. Atefi, and J. C. Crocker, Nanoscale Rheology
and Anisotropic Diffusion Using Single Gold Nanorod Probes,
Phys. Rev. Lett. 120, 118002 (2018).

[49] J. K. G. Dhont, An Introduction to Dynamics of Colloids, Stud-
ies in Interface Science Vol. 2 (Elsevier Science, Amsterdam,
1996).

[50] H. Goldstein, Classical Mechanics (Addison-Wesley, Reading,
MA, 1964).

[51] A. Rahman, Correlations in the motion of atoms in liquid argon,
Phys. Rev. 136, A405 (1964).

[52] W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C.
Glotzer, Dynamical Heterogeneities in a Supercooled Lennard-
Jones Liquid, Phys. Rev. Lett. 79, 2827 (1997).

[53] L. Berthier and G. Biroli, Theoretical perspective on the glass
transition and amorphous materials, Rev. Mod. Phys. 83, 587
(2011).

[54] A. D. S. Parmar, S. Sengupta, and S. Sastry, Length-Scale
Dependence of the Stokes-Einstein and Adam-Gibbs Rela-
tions in Model Glass Formers, Phys. Rev. Lett. 119, 056001
(2017).

[55] D. Paschek and A. Geiger, Simulation study on the diffusive
motion in deeply supercooled water, J. Phys. Chem. B 103,
4139 (1999).

[56] C. A. Angell, Formation of glasses from liquids and biopoly-
mers, Science 267, 1924 (1995).

[57] I. Chang and B. Sillescu, Heterogeneity at the glass transition:
Translational and rotational self-diffusion, J. Phys. Chem. 101,
8794 (1997).

[58] D. Laage and J. T. Hynes, A molecular jump mechanism of
water reorientation, Science 311, 832 (2006).

[59] N. Galamba, On the hydrogen-bond network and the non-
Arrhenius transport properties of water, J. Phys.: Condens.
Matter 29, 015101 (2017).

023025-18

https://doi.org/10.1063/5.0014188
https://doi.org/10.1021/ja01299a050
https://doi.org/10.1063/1.452574
https://doi.org/10.1021/jp980642x
https://doi.org/10.1063/1.476153
https://doi.org/10.1098/rsta.2001.0865
https://doi.org/10.1021/ja972926l
https://doi.org/10.1063/1.481107
https://doi.org/10.1063/1.470495
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1021/jp004616m
https://doi.org/10.1088/0953-8984/14/23/201
https://doi.org/10.1063/1.4720941
https://doi.org/10.1073/pnas.1508996112
https://doi.org/10.1063/1.452356
https://doi.org/10.1021/j100189a028
https://doi.org/10.1063/1.436652
https://doi.org/10.1021/j100173a059
https://doi.org/10.1021/j100048a004
https://doi.org/10.1016/0167-7322(93)80045-W
https://doi.org/10.1021/j100266a008
https://doi.org/10.1016/S0167-7322(98)00066-X
https://doi.org/10.1063/1.1395563
https://doi.org/10.1007/s10895-008-0337-y
https://doi.org/10.1021/ct100610v
https://doi.org/10.1039/df9572400133
https://doi.org/10.1103/PhysRevResearch.1.033145
https://doi.org/10.1063/1.1741890
https://doi.org/10.1126/science.1130146
https://doi.org/10.1103/PhysRevLett.120.118002
https://doi.org/10.1103/PhysRev.136.A405
https://doi.org/10.1103/PhysRevLett.79.2827
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/PhysRevLett.119.056001
https://doi.org/10.1021/jp984075p
https://doi.org/10.1126/science.267.5206.1924
https://doi.org/10.1021/jp9640989
https://doi.org/10.1126/science.1122154
https://doi.org/10.1088/0953-8984/29/1/015101


DIELECTRIC FRICTION, VIOLATION OF THE … PHYSICAL REVIEW RESEARCH 3, 023025 (2021)

[60] C. J. F. Böttcher, Theory of Electric Polarization, Vol. 1: Di-
electrics in Static Fields (Elsevier, Amsterdam, 1973).

[61] H. J. Bakker and J. L. Skinner, Vibrational spectroscopy as a
probe of structure and dynamics in liquid water, Chem. Rev.
110, 1498 (2010).

[62] D. V. Matyushov and R. Richert, Communication: Temperature
derivative of the dielectric constant gives access to multi-
point correlations in polar liquids, J. Chem. Phys. 144, 041102
(2016).

[63] H. Tanaka, Simple physical model of liquid water, J. Chem.
Phys. 112, 799 (2000).

[64] L. P. Singh, B. Issenmann, and F. Caupin, Pressure dependence
of viscosity in supercooled water and a unified approach for
thermodynamic and dynamic anomalies of water, Proc. Natl.
Acad. Sci. USA 114, 4312 (2017).

[65] P. M. de Hijes, E. Sanz, L. Joly, C. Valeriani, and F. Caupin,
Viscosity and self-diffusion of supercooled and stretched water
from molecular dynamics simulations, J. Chem. Phys. 149,
094503 (2018).

[66] D. Rozmanov and P. G. Kusalik, Transport coefficients of the
TIP4P-2005 water model, J. Chem. Phys. 136, 044507 (2012).

[67] N. Meyer, V. Piquet, J. F. Wax, H. Xu, and C. Millot, Rotational
and translational dynamics of the SPC/E water model, J. Mol.
Liq. 275, 895 (2019).

[68] P. K. Ghorai and D. V. Matyushov, Solvent reorganization of
electronic transitions in viscous solvents, J. Chem. Phys. 124,
144510 (2006).

[69] T. Kawasaki and K. Kim, Identifying time scales for vio-
lation/preservation of Stokes-Einstein relation in supercooled
water, Sci. Adv. 3, e1700399 (2017).

[70] E. A. Carter and J. T. Hynes, Solvation dynamics for an ion
pair in a polar solvent: Time-dependent fluorescence and pho-
tochemical charge transfer, J. Chem. Phys. 94, 5961 (1991).

[71] T. Fonseca and B. M. Ladanyi, Breakdown of linear response
for solvation dynamics in methanol, J. Phys. Chem. 95, 2116
(1991).

[72] D. R. Martin and D. V. Matyushov, Why are vibrational
lines narrow in proteins? J. Phys. Chem. Lett. 11, 5932
(2020).

[73] P. K. Ghorai and D. V. Matyushov, Solvent reorganization en-
ergy in solvents above the glass transition, J. Phys. Chem. B
110, 1866 (2006).

[74] C. G. Gray and K. E. Gubbins, Theory of Molecular Liquids,
Vol. 1: Fundamentals (Clarendon Press, Oxford, 1984).

[75] S. Takashima, Electric dipole moment of globular proteins:
Measurement and calculation with NMR and X-ray databases,
J. Noncrystal. Solids 305, 303 (2002).

[76] S. M. Sarhangi and D. V. Matyushov, Driving forces of protein
diffusivity, J. Phys. Chem. Lett. 11, 10137 (2020).

[77] H. Sillescu, Heterogeneity at the glass transition: A review,
J. Non-Cryst. Solids 243, 81 (1999).

[78] R. Zwanzig, Rate processes with dynamical disorder,
Acc. Chem. Res. 23, 148 (1990).

[79] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The
missing term in effective pair potentials, J. Phys. Chem. 91,
6269 (1987).

[80] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Clarendon Press, Oxford, 1996).

[81] D. V. Matyushov, Solvent reorganization energy of elec-
tron transfer in polar solvents, J. Chem. Phys. 120, 7532
(2004).

[82] D. Chandler, Gaussian field model of fluids with an application
to polymeric fluids, Phys. Rev. E 48, 2898 (1993).

[83] D. V. Matyushov, Dipole solvation in dielectrics, J. Chem. Phys.
120, 1375 (2004).

[84] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1972).

[85] S. Seyedi, D. R. Martin, and D. V. Matyushov, Screening of
Coulomb interactions in liquid dielectrics, J. Phys.: Condens.
Matter 31, 325101 (2019).

[86] L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed., Course of
Theoretical Physics Vol. 1 (Elsevier, Amsterdam, 2007).

023025-19

https://doi.org/10.1021/cr9001879
https://doi.org/10.1063/1.4941089
https://doi.org/10.1063/1.480609
https://doi.org/10.1073/pnas.1619501114
https://doi.org/10.1063/1.5042209
https://doi.org/10.1063/1.3677196
https://doi.org/10.1016/j.molliq.2018.08.024
https://doi.org/10.1063/1.2185102
https://doi.org/10.1126/sciadv.1700399
https://doi.org/10.1063/1.460431
https://doi.org/10.1021/j100159a007
https://doi.org/10.1021/acs.jpclett.0c01760
https://doi.org/10.1021/jp055235h
https://doi.org/10.1016/S0022-3093(02)01255-3
https://doi.org/10.1021/acs.jpclett.0c03006
https://doi.org/10.1016/S0022-3093(98)00831-X
https://doi.org/10.1021/ar00173a005
https://doi.org/10.1021/j100308a038
https://doi.org/10.1063/1.1676122
https://doi.org/10.1103/PhysRevE.48.2898
https://doi.org/10.1063/1.1633545
https://doi.org/10.1088/1361-648X/ab1e6f

