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Open system dynamics from thermodynamic compatibility
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Thermodynamics entails a set of mathematical conditions on quantum Markovian dynamics. In particular,
strict energy conservation between the system and environment implies that the dissipative dynamical map
commutes with the map of the system’s unitary evolution. Employing spectral analysis, we prove the general
form of the ensuing master equation. The obtained structure extends thermodynamical considerations to dy-
namical processes. Comparing this form with master equations obtained from microscopic derivations allows
validating their compatibility with thermodynamics. It predicts that coherence is not generated spontaneously
under steady-state transport. Moreover, for a bipartite system-environment it singles out the global master
equation as the thermodynamically compatible choice for nondriven systems, as well as supplying insight into
the validity of the secular approximation.
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I. INTRODUCTION

The generic dynamics of an open quantum system directs
the system towards a thermal equilibrium state. Theoretically,
this phenomenon is described within a physical theory which
constitutes a dialog between quantum mechanics and thermo-
dynamics. As most physical theories, such a theory should
be formulated in terms of a set of postulates. Our present
goal is to identify a minimal set of postulates, based on both
thermodynamics and quantum mechanics principles, and infer
the system dynamics from the axiomatic description.

The physical world of an open system is embedded within
a composite system including the environment as well, which
is described within an extended Hilbert space [1,2]. The com-
posite dynamics are unitary and are generated by the global
Hamiltonian

Ĥ = ĤS + ĤSE + ĤE , (1)

where ĤS and ĤE are the system and environment free Hamil-
tonians, with an interaction term ĤSE .

Two possible approaches to obtain the reduced description
of the system have been put forward. The first follows a
microscopic derivation, employing a series of approximations.
There are many variants of the microscopic derivation, which
differ by the approximations employed, their range of validity,
and specific physical models [1–24]. The original microscopic
derivations were based on either a collision model [25] or
the weak coupling limit, introduced by Redfield [26] and
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Wangsness and Bloch [27]. Compatibility with thermody-
namics has been shown in the weak coupling derivation of
Davies [9] as well as by Dümcke for the collision model [28].
However, the validity of this approach is restricted by the
approximations conducted.

An alternative approach, which we follow here, is ax-
iomatic. The formalism originated in the seminal work of
Gorini, Kossakowski, Lindblad, and Sudarshan (GKLS) lead-
ing to the general form of a Markovian master equation
[29,30]. The GKLS equation has been intensively employed;
nevertheless, it does not guarantee consistency with thermo-
dynamics. We show that by adding postulates to the ones
employed to obtain the GKLS structure [30], compatibility
with thermodynamic principles is guaranteed.

The postulates are as follows:
Postulate 1. The dynamical map is a completely posi-

tive trace-preserving (CPTP). A thermodynamic idealization
considers a large stationary thermal environment. This obser-
vation has been translated to Postulates 1 and 2; first, initially
the system and environment are uncorrelated, leading to a
CPTP map [31]

ρ̂S (t ) = �t [ρ̂S (0)]

= trE (Û (t, 0)ρ̂S (0) ⊗ ρ̂E (0)Û †(t, 0)). (2)

Here, trE signifies the partial trace over the environment de-
grees of freedom, and Û is the evolution operator of the
composite system, generated by Eq. (1).

The CPTP map is contracting, meaning that the dis-
tance between any two states decreases: S (ρ̂S||ρ̂ ′

S ) �
S (�t ρ̂S||�t ρ̂

′
S ), where S is the relative entropy (or Kullback-

Leibler divergence) [32]. Repeated application of the map,
such as in the Markovian case (Postulate 4), leads the system
state towards a fixed point. This behavior is in accordance
with the second law of thermodynamics, which implies that
the system monotonically approaches the steady state.
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Postulate 2. The environment is initially in a stationary state
with respect to the environment’s free Hamiltonian ĤE . In the
thermodynamic limit, we can extend this condition to all times.

Postulate 3. The fixed point of the dynamical map is a ther-
mal state. This postulate is related to the zeroth law, implying
that the map has a single fixed point ρ̂

eq
S . Invariance of ρ̂

eq
S and

the contraction property then imply that successive applica-
tions of the map will monotonically lead to equilibrium [33],

S
(
ρ̂S

∣∣∣∣ρ̂eq
S

)
� S

(
�t ρ̂S

∣∣∣∣ρ̂eq
S

)
. (3)

Postulate 4. The dynamical map �t is Markovian. This
postulate originates from the idealization that the environment
remains stationary. It is physically motivated by the separation
of timescale between a sluggish system and a fast environ-
ment. Mathematically, this means that the map satisfies the
semigroup property �t = �t−s�s, which in turn allows us to
express the map in terms of the dynamical semigroup gen-
erator �t = eLt [1,34–36]. The differential form of the latter
relation gives the master equation

d

dt
ρ̂S (t ) = L[ρ̂S (t )]. (4)

Postulates 1 and 4 suffice to show that the GKLS form is the
most general mathematical structure of the generator of the
quantum dynamical semigroup [29,30].

Postulate 5. Strict energy conservation. A thermodynamic
idealization assumes that energy does not remain trapped in
the interface between the system and environment. Hence any
change in the energy of the system is mirrored by a reverse
change in the environment. This condition can be formulated
by the relation

[ĤSE , ĤS + ĤE ] = 0, (5)

commonly termed strict energy conservation (SEC) [37]. This
idealization is compatible with the thermodynamic limit, in
which the interface energy is negligible with respect to bulk
energy. An immediate consequence of Postulate 4 is that any
state which is of the form f (ĤS + ĤE ) is an invariant of the
global dynamics [37–39]. When the environment remains in
a stationary and thermal state ρ̂th

E = Z−1
E e−βĤE throughout the

dynamics (a specific case of Postulate 2), the global invariant
must be ρ̂th = Z−1e−β(ĤS+ĤE ), which is consistent with the
zeroth law. In turn, the associated reduced system state is
trE (ρ̂th) = ρ̂th

S , which motivates Postulate 3.
The question arises, Under these postulates, what is the

general structure of the dynamical equations of motion? We
will show that the SEC together with the other postulates
impose further restrictions on the structure of the GKLS form,
following with a discussion of the physical relevance of these
postulates. A primary result of this study is that the SEC
along with an initial stationary environment imply that the
dynamical map of the open system �t commutes with the
isolated map US . As a result, the generators commute as well.
In turn, this sets the Lindblad jump operators of the master
equation, and the thermal fixed point of the map imposes that
the kinetic coefficients satisfy detailed balance.

II. RESTRICTED STRUCTURE OF THE DYNAMICAL MAP

The restrictions imposed on the structure of the master
equation are obtained from the spectral properties of the dy-
namical map and its generator. The analysis relies on the
following theorem:

Theorem 1. Let Ĥ [Eq. (1)] be the time-independent
Hamiltonian of the composite system, with [ĤSE , ĤS + ĤE ] =
0, and let the initial state ρ̂E (0) be a stationary state of
ĤE ; then the dynamical maps �t , Eq. (2), and US[ρ̂S (0)] =
ÛS (t, 0)ρ̂S (0)Û †

S (t, 0) commute:

US[�[ρ̂S]] = �[US[ρ̂S]], (6)

where ÛS (t, 0) = e−iĤSt/h̄ is the free propagator of the system
and Û (t, 0) = e−iĤt/h̄.

The proof is based on the Kraus decomposition of the
dynamical map and relies on the fact that the environment is
initially stationary and the SEC condition. The detailed proof
is presented in Appendix A. We emphasize that Theorem
1 applies even for non-Markovian dynamics [40], arbitrary
coupling, and a wide range of environments of any size.
An analogous theorem has been obtained [41,42] in quan-
tum thermodynamic resource theory for a thermal operation
[37–39,43,44].

For Markovian dynamics the theorem implies that the gen-
erators also commute

HS[L[ρ̂S]] = L[HS[ρ̂S]], (7)

with HS[ρ̂S (t )] = −ih̄−1[ĤS, ρ̂S (t )]. Such generators and the
associated maps are termed superoperators, as they map op-
erators to operators. Mathematically, this means that their
domain is the Hilbert-Schmidt space [20,45–50], which is de-
fined as the vector space of all system operators {X̂ } endowed
with an inner product (X̂i, X̂ j ) ≡ tr(X̂ †

i X̂ j ). This property al-
lows us to invoke the spectral properties of vectors in Hilbert
space, implying that when HS and L commute, they share a
common set of eigenoperators [8].

We now employ the spectral properties of L to construct
the master equation in the GKLS form. We start by determin-
ing the eigenoperators of the system’s free dynamics. These
operators satisfy the eigenvalue type equation

USĜk = e−iλkt Ĝk, (8)

where λk = −λ−k and real, since the generator is anti-
Hermitian.

It is convenient to classify the eigenoperators of US into
two classes: unitary invariant and unitary noninvariant oper-
ators. The unitary invariant operators satisfy USĜk = Ĝk and
therefore have degenerate eigenvalues. As a result, they can
be spanned by the energy projection operators of ĤS: {�̂n =
|n〉〈n|}. The unitary noninvariant operators are transition oper-
ators between energy states {F̂nm = |n〉〈m|}, with n �= m. Their
corresponding eigenvalues are the Bohr frequencies between
energy levels |n〉 and |m〉: λk = ωnm = (εm − εn)/h̄. In the
following, we replace the double index by a single index k
which runs over all the transition operators.

The generator can be decomposed into a “unitary” part and
a dissipative part L = iH + D. SEC implies that both H and
D commute with HS except for special cases [51]. As a result,
the unitary part is also composed of the invariant set {�̂}.
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Physically, this means that the environment imposes a shift
to the bare energy spectrum, commonly known as the Lamb
shift [52,53]. The next step is to construct D from the same
set of eigenoperators.

To simplify the analysis, we first consider the case when
there is no degeneracy in the spectrum of US except for the
unitary invariant subspace. This corresponds to an energy
spectrum where no two Bohr frequencies are the same. This
condition as well as relation (A1) entails that

D∗[F̂k] ∝ F̂k and D∗[�̂k] =
∑

j

a j�̂ j, (9)

where D∗ denotes the adjoint (Heisenberg representation) of
D, and similarly for all the superoperators.

We start the derivation from the form introduced by Gorini
et al. [29] (also see Ref. [2]). Utilizing Postulates 1 and 4, they
obtain an equivalent form of the GKLS structure

D∗[•] =
N2−1∑
i, j=1

ai j

(
Ŝ†

j • Ŝi − 1

2
{Ŝ†

j Ŝi, •}
)

, (10)

where {Ŝ} constitutes an orthonormal operator basis, such that
one of the basis operators is chosen to be proportional to
the identity and all other operators are traceless. In addition,
the coefficient matrix a = [ai j] is Hermitian and positive. We
choose the basis {Ŝ} to be composed of the transition opera-
tors {F̂ } and orthonormal operators from the unitary invariant
subspace {Ĝ}; these can be chosen as matrices which are
proportionate to the diagonal generalized Gell-Mann matrices
[54–56]. In the general form of Eq. (10), all the possible
combinations of Ŝi, Ŝ j in this basis exist. However, only cer-
tain terms are compatible with Eq. (6) and the eigenoperator
condition equation (9). Employing the property that F̂k are
transition operators, we can obtain the diagonal form of the
GKLS equation (cf. Appendixes B–D)

D∗[•] =
M∑

k=−M

γk

(
F̂ †

k • F̂k − 1

2
{F̂ †

k F̂k, •}
)

−
N∑

n=1

λn[V̂n, [V̂n, •]], (11)

where M = N (N − 1)/2, with dim(ĤS ) = N , F̂ †
k = F̂−k , and

γk = akk with γ0 = 0. The unitary invariant operators {V̂ }
are linear combinations of the projection operators {�̂} with
real coefficients. The final restriction on the structure of D∗
can be imposed by the fixed thermal state of the dynamical
map (Postulate 3). The steady-state condition infers that the
kinetic coefficient satisfy detailed balance γk/γ−k = e−h̄ωkβ

(cf. Appendix E). Detailed balance only fixes the ratio be-
tween pairs of kinetic coefficients. To completely determine
their value, one can rely on a microscopic derivation which
complies with the structure [2,9,28,57] of Eq. (11), or on a
numerical calculation. Alternatively, a different fixed state can
be chosen, leading to a different ratio between the pairs of
kinetic coefficients.

Overall, the dissipator [Eq. (11)] is composed of two
contributions. The first sum induces transitions between
eigenstates of ĤS , with probabilities that satisfy detailed

balance, while the second term describes pure dephas-
ing. Utilizing the spectral decomposition of the system
Hamiltonian, the dephasing term can be expressed sim-
ply as a sum of double commutators of functions of the

Hamiltonian −∑
i [ fi(ĤS ), [ fi(ĤS ), •]]. This is in contrast to

the microscopic derivation, which originates from a perturba-
tion treatment in the system-environment coupling, for which
pure dephasing appears only beyond fourth order in the pertur-
bation expansion [58]. Here, the pure-dephasing term emerges
naturally from the unitary invariant set.

Considering the case where a degeneracy in {F̂ } exists,
the eigenoperators of D will become a linear combination
of the degenerate set. As a consequence, the master equation
may include cross terms of the form F̂ r

i • F̂ r
j with i �= j. In

this case, there is an additional degree of freedom which
allows imposing further restrictions which will determine the
Lindblad jump operators. For example, in a transport scenario
between two baths one can impose the condition of a vanish-
ing current in the limit of zero internal coupling [59–61]. In
this scenario, it has been shown that the resonance condition
leads to quantum correlations between the two baths [61]. The
additional freedom in the choice of the dephasing term (either
local or global) in Eq. (11) can eliminate this correlation so as
to comply with the assumption of independent baths.

III. CRITICAL ANALYSIS OF THE PHYSICAL
IDEALIZATIONS

The time-reversal symmetry breaking is the main con-
flict between thermodynamics and quantum mechanics. The
theory of open quantum systems resolves this conflict by
imposing a partition between a small system and a large
environment [62]. In this paper we focus on an isothermal
partition which allows heat transport, while maintaining the
integrity of the system and environment. This idealization is
reflected by Postulates 1 and 4.

The validity of this idealization has to be confronted
with reality. Typically, open system processes are of Marko-
vian nature. Even for non-Markovian dynamics the common
approach is to embed the system in a larger Markovian frame-
work [63,64]. This motivates the a priori postulation of the
semigroup property. The postulate contradicts the principle
of unitary evolution; nevertheless, up to a coarse-grained
timescale it fits the observed reality. In addition, the Marko-
vian property implies that the composite state must remain
separable throughout the evolution [62], which enables a local
description of the system.

Our construction relies on a CPTP map which leads to
a GKLS form. The complete positivity property is related
to the separability of the composite state at the initial time.
This assumption has been criticized as nonphysical [65,66]. In
response to the criticism, justifications for the CPTP property
have been presented [32,67].

The strict energy conservation condition is also a thermo-
dynamic idealization, leading to Eq. (7). This condition is
satisfied asymptotically in the weak coupling limit and the
low-density collision model [25,28]. Moreover, we will show
that for Markovian dynamics, it is implicitly satisfied when
the unitary and dissipative maps commute.
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In the Markovian regime, commutation of the dynam-
ical maps is synonymous with the commutation of the
corresponding generators and vice versa. Many master equa-
tions satisfy this property, for example, the GKLS master
equation of Alicki, where detailed balance was imposed
[4,46]. In addition, the popular Davies construction, which is
based on the Born-Markov-secular approximation, also satis-
fies the commutation property [2,9,68]. The critical question
is, do these master equations comply with the SEC condition?

Addressing this issue, we study the reverse condition: Does
commutation of the generators imply the SEC condition? For
Markovian dynamics, by expanding the infinitesimal maps �ε

and US (ε, 0) and demanding that they commute, we obtain
strict conditions on the generators. These are fulfilled natu-
rally when the SEC condition is satisfied (cf. Appendix F for
further details). The analysis also allows for some nonphysical
exceptions.

IV. DISCUSSION

The discipline of open quantum systems faces the chal-
lenge of assessing the multitudinous microscopic derivations.
Different subfields have varying traditions leading to different
variants of the master equation [1–24]. There is a need for
both unification and classification of validity of the various
approaches.

A major line of research approached this problem by
constructing analytical models and comparing them to numer-
ically “exact” simulations [59–61,69]. General conclusions
are then inferred from a specific model. The drawback of
this approach is that it heavily relies on solvable models.
Almost exclusively, the chosen environment is a bosonic nor-
mal mode bath or can be shown to be equivalent to such a
bath [70]. The drawback of this environment model is that
its ergodic properties are weak [71]; for example, it does
not fulfill the eigenvalue thermalization hypothesis [72–75].
This stems from the property that the normal model structure
lacks an internal mechanism for self-equilibration. In compar-
ison, the axiomatic approach presented in this paper addresses
this issue from a broad dynamical perspective. The validity
regime of the master equation is solely determined by the
basic postulates and is independent of the studied model. As
a consequence, we can verify the thermodynamic validity of
various master equations.

In addition, it has been observed that in many cases the
validity of the GKLS form exceeds the range imposed by
the microscopic derivations [76]. This means that by refitting
the kinetic coefficients the equations can be employed to
describe physical reality accurately [77,78]. This observation
agrees with our resulting structure [Eq. (11)].

The postulates presented here overlap with the paradigm
of quantum thermodynamic resource theory [37–39,43,44].
The main difference in the approaches is the Markovian as-
sumption (Postulate 4), which allows us to attain a dynamical
theory. A second difference concerns Postulate 2, where we
assume that initially the environment state is a stationary, not
necessarily thermal, state.

The formal construction also sheds light on unresolved
issues in the discipline of open system dynamics. Master
equations are typically of either a local or global character.

The local approach assumes that the environment couples
only locally to a part of the system, while in the global ap-
proach, the environment couples to global degrees of freedom
of the whole system. The two approaches have been studied
thoroughly, and their validity has been a subject of much
debate [59,60,78–83]. In the construction presented the gener-
ator coincides with the global master equation, meaning that
the unitary noninvariant operators {F̂ }, which constitute the
jump operators of the master equation, are eigenoperators of
the “global” system propagator and not solely of a subsystem.

The origin of this property can be traced back to the
strict energy conservation condition. For instance, consider a
bipartite system, composed of a part that interacts with the
environment Ĥ (e)

S and a passive part Ĥ (p)
S . When the two parts

interact, the system Hamiltonian reads ĤS = Ĥ (e)
S + Ĥ (p)

S +
Ĥ (i)

S . When |Ĥ (i)
S | 
 |Ĥ (e)

S |, |Ĥ (p)
S |, it would seem appropriate

to describe the dynamics by a local master equation, where
the generator acts only on a part of the system. However,
this construction violates strict energy conservation since the
internal and external interaction terms do not commute. In
contrast, a global master equation manifests strict energy con-
servation for the combined system. It has been shown recently
that thermodynamics consistency can be restored by adding a
resource, a work term to compensate for interaction [81]. For
example, an additional local dephasing term on the passive
system would do the job.

The role of the secular approximation has been debated
[9,11,12,84–87]. Typically, this approximation is justified
only when the coarse-graining time is much larger than the
timescale related to the difference between the system’s Bohr
frequencies. However, in many physical systems, such as in
many-body systems, the level spacing can decrease to a point
where the secular approximation breaks down. In these cases,
it is not clear how to proceed and obtain a GKLS master
equation from first principles. As a consequence of the SEC
condition (Postulate 5), the present construction does not re-
strict the magnitude of the Bohr frequencies and determines
the unitary noninvariant Lindblad jump operators uniquely,
as long as the Bohr frequencies remain nondegenerate. In
addition, such an interaction implies that the Hamiltonian
in the interaction representation relative to the bare system
environment Hamiltonian is stationary.

The present analysis can be extended to transport phe-
nomena, where the primary system is coupled to several
environments characterized by different temperatures. In this
case, we relax Postulate 3 and can combine different environ-
ments which are all together in a stationary state. Theorem 1
remains valid under these conditions leading to a GKLS gen-
erator (10) with kinetic coefficients that are combinations of
the detailed balance coefficients of individual environments.
As a result, the system steady state lacks coherence in the
energy basis. This observation has been noticed in the analysis
of a three-qubit absorption refrigerator [88]. In contrast, the
local treatment exhibits coherence [89].

In analogy to strict energy conservation, other conserved
properties could also be incorporated in the GKLS struc-
ture, such as conservation of the number of particles. This
would result in a modification of the detailed balance
conditions [57].
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Our current result can also be extended to the non-
Markovian regime. The commutativity of the free and open
dynamical maps holds for the general case (Theorem 1). This
implies that a time-dependent generator of non-Markovian
dynamics will be characterized by an equation similar to
Eq. (11), where the time dependence is absorbed in the kinetic
coefficients [40]. This issue needs to be addressed in a future
study.

In the Markovian regime, the commutativity of the unitary
and dissipative parts of the master equation infers that if
there is no degeneracy in the noninvariant subspace of the
unitary part, the dissipative part is diagonalizable. This leads
us to conjecture that there are no exceptional points, i.e., non-
Hermitian degeneracies in the dissipative spectrum [90–93].

Returning to thermodynamics, the SEC condition unam-
biguously defines the heat current as Q̇ = 〈L∗[ĤS]〉, since
the change in energy of the system corresponds to energy
transferred to the environment. This heat transport accounts
for entropy production in the environment 
SE due to energy
transfer. Additional entropy production is generated by loss
of coherence and mutual information [94–96]. Work can be
included within this framework by partitioning the “system”
into a primary system and control system. Work is then iden-
tified with the energy transfer between the control and the
primary system that conserves entropy. By considering a large
control quantum system, the semiclassical limit leads to an
extension of the current analysis, including explicitly time-
dependent Hamiltonians [97].

The considered postulates reflect idealization of reality and
are therefore restrictive. Nevertheless, for any GKLS master
equation which represents reality, we can invert the viewpoint
and find an environment and interaction term which lead to the
same reduced dynamics. This viewpoint may allow us to sim-
plify the thermodynamic analysis and lead to further insights.

To summarize, the theme of this paper is the formula-
tion of thermodynamic principles in terms of mathematical
statements imposed on the quantum dynamical map. Through
spectral analysis we have obtained a restricted structure of the
master equation which by construction complies with thermo-
dynamics. This structure can be employed as an independent
validator of open system dynamics which are obtained by
means of physical approximations.
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APPENDIX A: PROOF OF THEOREM 1

We provide a detailed proof of Theorem 1, which leads to
the spectral analysis presented in the main text.

Theorem 1. Let Ĥ be the time-independent Hamiltonian
of the composite system, with [ĤSE , ĤS + ĤE ] = 0, and let
the initial state ρ̂E (0) be a stationary state of ĤE ; then the

dynamical maps �t and US commute:

US[�[ρ̂S]] = �[US[ρ̂S]]. (A1)

Proof. We first introduce some notations: The free propaga-
tors of the environment and composite (uncoupled) system are
given by ÛE (t, 0) = e−iĤE t/h̄ and ÛSE (t, 0) = e−i(ĤS+ĤE )t/h̄;
moreover, the spectral decomposition of the environment
Hamiltonian reads ĤE = ∑

i ci|χi〉〈χi|. Since the initial state
of the environment is stationary with respect to ĤE , it can
also be expressed as ρ̂E (0) = ∑

i λi|χi〉〈χi|. To simplify the
notation, in this proof we emit the time dependence of the
propagators and maps; nevertheless, it should be clear that
they induce a time translation from initial time (t ′ = 0) to time
t ′ = t .

Utilizing the spectral decomposition of the environment’s
initial state, any quantum dynamical map can be expressed in
a Kraus form [31]

ρ̂S (t ) =
∑

i j

K̂i j ρ̂S (0)K̂†
i j, (A2)

where K̂i j = √
λi〈χ j |Û (t, 0)|χi〉 with

∑
i j K̂†

i j K̂i j = ÎS . In
the Heisenberg representation the dynamical map becomes
ÔH

S (t ) = �∗[ÔS] = ∑
i j K̂†

i j ÔS (0)K̂i j , where the superscript
H and asterisk designate operators and superoperators (dy-
namical maps) in the Heisenberg representation and ÔS is a
system operator.

Using the Kraus representation, the product of dynamical
maps is explicitly expressed as

U∗
S [�∗[ÔS]] = Û †

S

(∑
i j

K̂†
i j ÔSK̂i j

)
ÛS

=
∑

i

λi〈χi|Û †
S Û †ÔS

∑
j

|χ j〉〈χ j |ÛÛS|χi〉

=
∑

i

λi〈χi|Û †
S Û †ÔSÛÛS|χi〉, (A3)

where the second equality is achieved by identifying the en-
vironment identity operator ÎE = ∑

j |χ j〉〈χ j |. Inserting the

identity operator ÛEÛ †
E = ÎE twice, we obtain

U∗
S [�∗[ÔS]] =

∑
i

λi〈χi|ÛEÛ †
SEÛ †ÔSÛÛSEÛ †

E |χi〉

=
∑

i

λi〈χi|Û †
SEÛ †ÔSÛÛSE |χi〉. (A4)

The second equality is obtained by utilizing the eigenvalue
equation ÛE |χi〉 = e−icit/h̄|χi〉 for the eigenstates {|χi〉}. Next,
strict energy conservation implies that [Ĥ, ĤS + ĤE ] = 0,
which in turn implies that the associated propagators satisfy
[Û , ÛSE ] = 0. This relation leads to the final form

U∗
S [�∗[ÔS]] =

∑
i

λi〈χi|Û †Û †
SE ÔSÛSEÛ |χi〉. (A5)
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Following a similar derivation, the product in reverse order of
the dynamical maps gives

�∗[U∗
S [ÔS]] =

∑
i j

K̂†
i jÛ

†
S ÔSÛSK̂i j

=
∑

i

λi〈χi|Û †Û †
SEÛE ÔSÛ †

EÛSEU |χi〉

=
∑

i

λi〈χi|Û †Û †
SE ÔSÛSEU |χi〉, (A6)

where the last equality stems from the commutativity of local
operators of the system and environment [ÛE , ÔS] = 0.

Finally, Eqs. (A5) and (A6) imply the desired result

U∗
S [�∗[ÔS]] = �∗[U∗

S [ÔS]]. (A7)

�
From the equivalence of the Schrödinger and Heisenberg

representations we can infer that � and US commute. In
Hilbert-Schmidt space this relation is simply expressed as
[ŨS, �̃] = 0, where superoperators in Hilbert-Schmidt space
are denoted with a superscript wide tilde.

This result is quite general, as the proof employed only
Postulate 4 of strict energy conservation and the property
that environment is stationary. A short proof for thermal op-
erations E has been derived previously [41]. For an initial
thermal environment the thermal operation coincides with the
dynamical map �t .

Consequences of the commutation relation [ ˜US, ˜�] = 0 on the
semigroup generators

If � is a semigroup map, the generator is defined
by L[ρ̂S] = limε→0

1
ε
(�ε[ρ̂S] − ρ̂S ) [35]. This definition to-

gether with Theorem 1 implies the commutativity of US with
the generator of the dynamical map L. We define the Lamb
shift as H − HS , which typically commutes with HS and D
[2]. Alternatively, the Lamb shift can be incorporated into
ĤS , which infers that H = HS . The ambiguity in the system
energy results from the possibility of accounting for a part
of the interface energy within the system Hamiltonian. This
property and the fact that HS is an analytical function of
US (time-independent Hamiltonian) imply that HS commutes
with D and L, or alternatively,

[H̃S, D̃] = 0, [H̃S, L̃] = 0. (A8)

In general, L̃ is non-Hermitian, which does not guarantee
a spectral decomposition [49,50]. However, these relations
imply that L̃ and D̃ are diagonalizable (normal).

APPENDIX B: MATHEMATICAL CONSTRUCTION OF
THE QUANTUM DYNAMICAL SEMIGROUP GENERATOR

AND THE ORTHOGONALITY OF THE LINDBLAD
OPERATORS

This Appendix includes a summarized textbook construc-
tion of the general form of the generator L; for further details,
see Chap. 3.2 of Ref. [2], which is in the spirit of the original
work of Gorini, Kossakowski, and Sudarshan [29]. We utilize
a number of the intermediate results of this proof in the main
derivation.

We begin by introducing an orthonormal operator basis {Ŝ}
for the system’s Liouville space. The operators of the basis are
chosen such that a single operator is proportional to the iden-
tity ŜN2 = (1/N )1/2 ÎS and the others are traceless. Utilizing
the completeness relation and the inner product in Liouville
space, the Kraus operators [Eq. (A2)] can be expressed as

K̂μν =
N2∑

k=1

(Ŝi, K̂μν )Ŝi. (B1)

Substituting (B1) into the dynamical map equation (A2), we
obtain

�t [ρ̂S (0)] =
N2∑

i, j=1

ri j Ŝiρ̂S (0)Ŝ†
j , (B2)

where

ri j =
∑
μ,ν

(Ŝi, K̂μν )(Ŝ j, K̂μν )∗. (B3)

The coefficient matrix r = [ri j] can be shown to be Hermitian
and positive.

Next, we introduce the following coefficients:

aN2N2 = lim
ε→0

rN2N2(ε) − N

ε
, (B4)

aiN2 = lim
ε→0

riN2 (ε)

ε
, (B5)

ai j = lim
ε→0

ri j (ε)

ε
,

where i, j = 1, . . . , N2 − 1, and the operators Ŝ =
(1/N )1/2 ∑N2−1

i=1 aiN2 Ŝi, R̂ = 1
2N aN2N2 ÎS + 1

2 (F̂ † + F̂ ), and

Ĵ = 1
2i (F̂

† − F̂ ), with F̂ = 1√
N

∑N2−1
i=1 aiN2 F̂i.

Substituting the coefficients of Eq. (B4) into the generator
of the dynamical semigroup L[ρ̂S] = limε→0

1
ε
(�ε[ρ̂S] − ρ̂S )

and expressing the result in terms of Ŝ, R̂, and the Hermitian
operator Ĵ , the generator can be written as

L[ρ̂S (t )] = − i[Ĵ, ρ̂S (t )] + {R̂, ρ̂S (t )} +
N2−1∑
i j=1

ai j Ŝiρ̂S (t )Ŝ†
j .

(B6)

This form must preserve the trace of the density matrix
trS (L[ρ̂S (t )]) = 0, which implies that R̂ = − 1

2

∑N2−1
i, j ai j Ŝ

†
j Ŝi.

Inserting this relation into Eq. (B6) leads to the form originally
obtained by Gorini, Kossakowski, and Sudarshan [29]

L[ρ̂S (t )] = −i[Ĵ, ρ̂S (t )]

+
N2−1∑
i, j=1

ai j

(
Ŝiρ̂S (t )Ŝ†

j − 1

2
{Ŝ†

j Ŝi, ρ̂S (t )}
)

. (B7)

The GKLS form is obtained by basis transformation which
diagonalizes the coefficient matrix a. The relations defined in
Eq. (B4) and the properties of the coefficient matrix c imply
that a = [ai j] is also Hermitian and positive. As a conse-
quence, it can be diagonalized by a similarity transformation
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u†au = diag(λ1, . . . , λN2−1). Introducing a new set of oper-

ators {L̂}, satisfying Ŝi = ∑N2−1
k u∗

ik L̂k , and expressing L in
terms of these operators leads to the final general GKLS form

L[ρ̂S (t )] = − i[Ĵ, ρ̂S (t )]

+
∑

k

λk

(
L̂k • L̂†

k − 1

2
{L̂†

k L̂k, •}
)

. (B8)

APPENDIX C: RESTRICTION ON THE MASTER
EQUATION

We begin our analysis by building upon the construction
of Appendix B. Equation (B7) implies that in general the
dissipator (in the Heisenberg representation) can be expressed
as

D∗[•] =
N2−1∑
i, j=1

ai j

(
Ŝ†

j • Ŝi − 1

2
{Ŝ†

j Ŝi, •}
)

. (C1)

As mentioned in the main text, we choose the basis {Ŝ} to
be composed of the transition operators {F̂ } and orthonormal
operators from the unitary invariant subspace {Ĝ}. We denote
this basis by F.

The unitary invariant operators {G} are generally a lin-
ear combination of the energy projection operators Ĝ j =∑

k g jk�k . We can therefore express D∗ in the form of
Eq. (C1) with jump operators from the basis k = {F̂ } ⋃{�̂}.
In this basis, by expressing the transition and projection op-
erators in terms of the eigenstates of ĤS we obtain a sum of
typical terms of the form

D∗
nmn′m′ [•] ≡ Ŝ†

j • Ŝi − 1
2 {Ŝ†

j Ŝi, •}
= |n〉〈m| • |n′〉〈m′| − 1

2 {|n〉〈m||n′〉〈m|′, •} (C2)

for n, m, n′, m′ ∈ 1, . . . , N . For a general operator |k〉〈l| in K,
Eq. (C2) becomes

D∗
nmn′m′ [|k〉〈l|] = δmkδln′ |n〉〈m′|

−δmn′ 1
2 (δm′k|n〉〈l| + δnl |k〉〈m′|). (C3)

Assuming the spectrum of US is nondegenerate, the com-
mutativity of D̃ and H̃S [Eq. (A8)] implies the eigenoperator
condition

D∗[F̂k] ∝ F̂k . (C4)

This induces strict restrictions on the components D∗
nmn′m′

which can appear in D∗. To analyze which components con-
tribute to D∗, it is convenient to represent the dissipator in
Liouville space. The elements of the superoperator in Liou-
ville space in the basis F are defined as di j = tr(Ŝ†

i D[Ŝ j]).
Since {F̂ } are eigenoperators of D∗, D̃∗ obtains the form

D̃∗ =
[

̃v 0
0 
̃i

]
, (C5)

where 
̃v is diagonal and 
̃i is a diagonalizable matrix. The
form of D̃∗ highlights that the unitary invariant and noninvari-
ant components are independent,

D∗[�̂n] =
∑
nm

bnm�̂m. (C6)

Relations (C4) and (C6) greatly restrict the term D∗
nmn′m′

included in the dissipator. We analyze the different cases:
For n �= m′ only the first term in Eq. (C2) contributes; con-
dition (C4) then implies that n = k and m′ = l . Hence, for
n �= m′, only terms of the form D∗

kkll contribute to D∗. One
can maybe suspect that somehow a combination of terms can
cancel each other allowing for condition (C4) to be satisfied
without nulling D∗

nmn′m′ components which do not comply
with Eqs. (C4) and (C6). However, this cannot be, since
each component is associated with a different nondiagonal
matrix element di j ≡ dklk′l ′ = tr(|l〉〈k|D[|k′〉〈l ′|]) with k �= k′
and l �= l ′. When m = n′ and k = l (substituting the projec-
tion operator �̂k into Dnmmm′ ), Eq. (C6) infers that we must
have m = n′. Thus only terms of the form D∗

kllk contribute
to D∗.

Overall, the restrictions imply that only two possible com-
ponents can contribute to the sums D∗

kkll and D∗
kllk , leading

to a restricted form of Eq. (C7). Substituting the transition
operators F̂k into D∗ and demanding that the eigenoperator
condition holds leads to the following master equation:

D∗[•] =
M∑

k=−M

γk

(
F̂ †

k • F̂k − 1

2
{F̂ †

k F̂k, •}
)

+
N∑

i, j=1

αi j

(
�̂i • �̂ j − 1

2
{�̂i�̂ j, •}

)
, (C7)

where M = N (N − 1)/2, F̂ †
k = F̂−k , and γk = akk with

γ0 = 0.

APPENDIX D: PROPERTIES OF THE MATRIX α

To study the properties of the matrix α, we first analyze
certain elements of the r matrix. This is achieved by building
upon the general construction presented in Appendix B.

We choose the orthonormal basis {Ŝ} to be composed of
the transition operator of {F̂ } and an orthonormal set {Ĝ}
which spans the unitary invariant space of US . Specifically,
we choose the basis of the unitary invariant subspace {Ĝ} to be
proportionate to the diagonal generalized Gell-Mann matrices
[54]. As required, the Gell-Mann matrices are traceless, but
may have to be renormalized. We therefore scale them so
the basis F has the same properties as {Ŝ} in Appendix B.
The identification of {Ĝ} with the Gell-Mann matrices (up
to a constant) allows us to express the unitary invariant basis
operator in terms of the energy projection operators

Ĝk =
∑

l

gkl�̂l , (D1)

where the weights gkl are real.
We utilize this relation to analyze the properties of coeffi-

cients ri j . Inserting Eq. (D1) into the coefficients ri j [Eq. (B3)]
associated with Ŝi, Ŝ j ∈ {Ĝ} leads to

rGiGj =
∑
μ,ν

(Ĝi, K̂μν )(Ĝ j, K̂μν )∗

=
∑
l,l ′

gil g jl ′
∑
μ,ν

(�̂l , K̂μν )(�̂l ′ , K̂μν )∗. (D2)
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Utilizing the inner product in Liouville space, the sum over
inner products can be expressed as

� ≡
∑
μ,ν

(�̂l , K̂μν )(�̂l ′ , K̂μν )∗

=
∑
μν

〈l|K̂μν |l〉〈l ′|K̂†
μν |l ′〉. (D3)

Substituting the explicit form of the Kraus operators K̂μν =√
λμ〈χν |Û (t, 0)|χμ〉 [Eq. (A2)] leads to

� =
∑
μν

〈i, χν |Û (t, 0)|χμ, i〉〈 jχμ|Û (t, 0)|χν, j〉

=
∑

ν

〈i, χν |Û (t, 0)|i〉
(∑

μ

|χμ〉〈χμ|
)

〈 j|Û (t, 0)|χν, j〉

= trE (〈i|Û (t, 0)|i〉〈 j|Û (t, 0)| j〉) = �∗. (D4)

The third equality is implied by the completeness relation and
the definition of the partial trace. The fourth equality stems
from the unitarity of the propagator. Equation (D4) implies
that � is real.

We can now conclude that the coefficient matrix of the
unitary invariant subspace rinv = [rGiGj ] is a real Hermitian
matrix, or equivalently, a symmetric matrix. As a result, the
associated coefficient matrix ainv = [aGiGj ] [Eq. (B4)] is also
symmetric. In the main text the coefficient matrix α is ob-
tained by a basis transformation, from {Ĝ} to {�̂}; this implies
that α can be diagonalized by a similarity transformation by
means of an orthogonal matrix Q: QT αQ = diag(λ1, . . . , λN ).
The property that the elements of Q are real implies that any
operator of the form V̂n = ∑

n Qni�̂n is Hermitian.

APPENDIX E: DETAILED BALANCE BY MEANS
OF THE GENERATOR’S FIXED POINT

The fixed point of L determines a detailed balance relation
between two dependent coefficients γk and γ−k , Eq. (C7). To
show this property, we calculate the action of the generator on
the fixed point and enforce the condition for which L[ρ̂th

S ] =
0. The fixed point ρth

S = Z−1
S e−βĤS trivially commutes with

ĤS , which simplifies the invariance condition to D[ρ̂th
S ] = 0.

The dissipative term is composed of two sums. The first
sum includes the unitary noninvariant operators {F̂ } of US and
induces transitions between the energy levels. The second sum
is composed of unitary invariant operators and generates pure
dephasing. For simplicity we introduce a short notation for
these sums, D = Dn + Di. The pure-dephasing component of
the dissipator Di is composed of energy projection operators
{�̂}. With the help of the relation

�̂
†
k�̂r�̂l − 1

2 {�̂†
k�̂l , �̂r} = 0, (E1)

we can infer that Di[ρ̂th
S ] = 0. In turn, the invariance condition

then becomes

Dv[e−βĤS ] = 0. (E2)

The Lindblad jump operators of Dn are transition operators
between the energy levels of ĤS . This property implies that

[ĤS, F̂nm] = −h̄ωnmF̂nm, (E3)

where ωnm = (εm − εn)/h̄ is the Bohr frequency between en-
ergy levels |n〉 and |m〉. Utilizing the commutation relations
and the Baker-Campbell-Hausdorff formula, we deduce that

F̂nme−βĤS = e−βĤS F̂nme−β h̄ωnm . (E4)

We now utilize this relation to calculate D[e−βĤS ] assuming
general kinetic coefficients.

The kth term of Dv is constructed from two terms Dk
v =

Bk
v + B−k

v (recall that k runs over double indices n and m) with

Bk
v[e−βĤS ] = γk

(
F̂nme−βĤS F̂ †

nm − 1
2 {F̂ †

nmF̂nm, e−βĤS }) (E5)

and

B−k
v [e−βĤS ] = γ−k

(
F̂ †

nme−βĤS F̂nm − 1
2 {F̂nmF̂ †

nm, e−βĤS }). (E6)

With the help of relation (E4) and its Hermitian conjugate we
find that

Bk
v[e−βĤS ] = γk (e−βωnm F̂nmF̂ †

nm − F̂ †
nmF̂nm)e−βĤS ,

B−k
v [e−βĤS ] = γ−k (eβωnm F̂ †

nmF̂nm − F̂nmF̂ †
nm)e−βĤS . (E7)

Since terms Dk
v and Dk′

v are independent, condition (E2) trans-
lates to N (N − 1)/2 independent requirements

Dk
v[e−βĤS ] = Bk

v[e−βĤS ] + B−k
v [e−βĤS ] = 0. (E8)

Inserting Eq. (E7) into condition (E8) leads to the detailed
balance relation between the kinetic coefficients

γk = γ−keβωnm . (E9)

APPENDIX F: COMMUTATIVITY OF DYNAMICAL MAPS
AND STRICT ENERGY CONSERVATION CONDITION

This Appendix analyzes the connection between commu-
tativity of the open (Markovian) and isolated dynamical maps
and the condition of strict energy conservation. Specifically,
assuming commutation of the dynamical maps, we find the
associated restrictions on the composite (environment and
system) and system Hamiltonians.

Consider an open system with dynamics of a Markovian
nature which originate from a general composite Hamiltonian
Ĥ ′ with an arbitrary interaction. In general, [Ĥ ′, ĤS] = X̂ ,
for some global operator X̂ . The semigroup property then
implies that �nτ = (�τ )n, where n ∈ N. This apparently can-
not be correct for an arbitrary coarse-graining time τ , since
for small enough τ the Markovian assumption breaks. There-
fore, in the present description, τ must be greater than (but
on the order of) the timescale associated with the decay of
correlations in the environment. Typically, in the Markovian
regime the environment’s intrinsic timescale is the fastest one:
τ 
 h̄/||ĤS||, h̄/||ĤSE ||. Hence the total propagator can be
approximated by

ÛS (τ, 0) ≈ Î − i

h̄
ĤSτ, Û (τ, 0) ≈ Î − i

h̄
Ĥ ′τ. (F1)

Utilizing these relations, the commutation relation of the “in-
finitesimal” maps becomes

�τ [US (τ, 0)[ρ̂]] − US (τ, 0)[�τ [ρ̂]]

= ϒτ 3 + �τ 4 + O(τ 5),
(F2)
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where the initial state is denoted by ρ̂ ≡ ρ̂S (0) ⊗ ρ̂E (0). The
first- and second-order terms vanish, and the higher-order
terms are given by

ϒ = i

h̄3 trE ((Ĥ ′ + ĤS )ρ̂X̂ − X̂ ρ̂(Ĥ ′ + ĤS )),

� = 1

h̄2 trE (X̂ ρ̂Ĥ ′ĤS − Ĥ ′ĤSρ̂X̂ ). (F3)

We keep track of terms up to fourth order in τ to
be consistent with the linearization of the propagators,
Eq. (F1). In the applied Markovian framework, the higher-
order terms, ϒ and �, must vanish when the maps commute.

In turn, this imposes two strict conditions on the form
of the general Hamiltonian Ĥ ′, Eq. (F3). We find that if
an arbitrary system state ρ̂S (t ) and a stationary environ-
ment state ρ̂E are considered, except for pathological cases
[that satisfy Eq. (F3)], the commutativity of the maps im-
plies that X̂ must vanish and strict energy conservation
holds [98].

Overall, in the Markovian regime, excluding pathological
cases, commutativity of �t and US (t, 0) implies that the com-
posite dynamics are generated by a strict energy-conserving
Hamiltonian. In addition, it reflects time-translational sym-
metry [99]. Hence there is a close connection between strict
energy conservation and the commutativity property of the
dynamical maps.
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