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Non-Fermi liquids (NFLs) are a class of strongly interacting gapless fermionic systems without long-lived
quasiparticle excitations. An important group of NFL models feature itinerant fermions coupled to soft bosonic
fluctuations near a quantum-critical point and are widely believed to capture the essential physics of many
unconventional superconductors. However, numerically, the direct observation of a canonical NFL behavior in
such systems, characterized by a power-law form in the Green’s function, has been elusive. Here, we consider
a Sachdev-Ye-Kitaev (SYK)-like model with random Yukawa interaction between critical bosons and fermions
(dubbed the Yukawa-SYK model). We show that it is immune from the minus-sign problem and hence can be
solved exactly via large-scale quantum Monte Carlo simulation beyond the large-N limit accessible to analytical
approaches. Our simulation demonstrates that the Yukawa-SYK model features “self-tuned quantum criticality”;
namely, the system is critical independent of the bosonic bare mass. We put these results to the test at finite N,
and our unbiased numerics reveal clear evidence of these exotic quantum-critical NFL properties—the power-law
behavior in the Green’s function of fermions and bosons—which propels the theoretical understanding of critical

Planckian metals and unconventional superconductors.
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I. INTRODUCTION

The non-Fermi liquid (NFL) is a state of gapless fermionic
matter that does not have long-lived quasiparticles due to its
strongly interacting nature [1,2]. It is widely believed to be
the microscopic origin of the “strange metal” state observed
in a broad range of materials, such as Cu-based [3] and Fe-
based [4,5] high-temperature superconductors, heavy-fermion
compounds [6,7], and recently in twisted two-dimensional
(2D) heterostructures [8,9]. Additionally, the understanding
of the unconventional superconducting phase in these systems
naturally hinges on the understanding of the NFL ‘“normal
state.” Moreover, recently from studies of the Sachdev-Ye-
Kitaev (SYK) models [10-13], it has been realized that NFLs
host a hidden connection between strange metals [14] and
states of holographic quantum matter that saturate the upper
bound for quantum chaos, opening an entirely new avenue in
understanding the behavior of NFLs [15].

The term “non-Fermi liquid” captures the failure of the
conventional perturbative approach in treating interacting
fermion systems with weak interactions, which poses a chal-
lenge in the theoretical understanding of such systems. In
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a general context, NFL behavior often occurs via electron
interactions mediated by gapless bosonic modes [16-27] that
render the electrons incoherent. Such gapless bosons typically
arise in the vicinity of a quantum-critical point (QCP) or in
quantum gauge theories. Despite the simplicity of the setup,
the analytical solution to these models remains challenging
due to the lack of a natural small control parameter. Advances
have been made via modifying the model to a large N limit,
with N being the number of fermion flavors and with a leap of
faith that the same physics holds down to N = O(1), while
these large-N approaches face important subtleties in two
spatial dimensions [28].

Along a separate path, there has been great progress on
the numerical front in recent years, in particular, in a designer
Hamiltonian of critical bosons Yukawa coupled to Fermi sur-
faces [27,29,30]. Recent results in minus-sign-problem-free
quantum Monte Carlo (QMC) simulations [23-27,30] have
shown strong evidence of NFL states in a range of such
boson-fermion models with gapless bosons from nematic [31]
and ferromagnetic [23,32] quantum-critical points and with
gauge fields [26,33,34] (see Ref. [27] for a recent review). It is
now possible to obtain accurate and reliable information about
the scaling behaviors in the close vicinity of these QCPs,
testing and improving our theoretical knowledge about these
challenging problems.

To reveal NFL physics in numerics, this class of models
require tuning the mass of the boson to a critical value, while
away from the QCP the system restores Fermi liquid behavior.
However, the precise determination of the quantum-critical
point and the region of the NFL are subject to finite-size
effects, and the position of the QCP is not universal, but
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system dependent. Moreover, recently it was found that to
reveal the clear signature of a NFL in fermion self-energy
in these QCP systems, one would also need to control the
strength of the effective coupling between fermions and
bosons, as well as deduct the non-negligible thermal contri-
butions to the fermionic self-energy [32]. These difficulties
make it harder to directly reveal the scaling form of the NFL
self-energies in these systems.

Recently, a class of SYK-like models featuring random
Yukawa interactions between bosons and fermions has been
put forward to analyze the NFL pairing problem [35-38].
Analytically solvable in a large-N limit similar to the SYK
models, the “Yukawa-SYK model” takes a different approach
from the perturbative one to address the interacting fermion
system by eliminating kinetic energies from the outset. Physi-
cally, such a theoretical approach is of relevance to systems
where the Fermi energy is small, e.g., systems with low
electron density such as SrTiO; and Moiré flat band systems
such as twisted bilayer graphene [39—41]. The Yukawa-SYK
models have been shown to be maximally chaotic [42] and
thus likely to admit a holographic dual description. Compared
with the SYK models that only involve interacting fermions,
the inclusion of a dynamical bosonic degree of freedom in
the Yukawa-SYK model makes it ideal to model strongly
interacting fermionic systems near a QCP.

Unlike finite-dimensional models with quantum-critical
points, within large-N approximation these models have been
shown to “self-tune” to quantum criticality; that is, the system
becomes critical due to the strong mutual feedback between
the bosonic and fermionic sectors, independent of the bosonic
bare mass. In addition, the pairing behavior at large N has
been analytically studied [35-37]. Depending on details of the
Yukawa coupling, these models show either exotic pairing of
incoherent fermions or a NFL phase that is stable to pairing
down to 7 = 0. While the onset temperature of pairing may
be finite, the feedback effects of pairing fluctuations to the
fermion Green’s function are small [~O(1/MN)], without
affecting the NFL behavior of the normal state.

As in the original SYK model, these analytical results of
the NFL behavior are formally obtained by using the replica
trick and then taking the replica-diagonal ansatz. This is
equivalent to replacing the quenched disorder with annealed
disorder, which is usually justified by the fact that replica-
nondiagonal processes are suppressed by 1/N [15]. However,
the validity of this ansatz is far from obvious [43], since
it is not clear whether the summation of the subdominant
processes, each small in 1/N, is convergent. If the system
breaks replica symmetry, the true ground state is then a spin
glass. For example, replica symmetry breaking occurs in the
bosonic SYK model [44,45], and in fact it has been shown
recently that similar situations occur for all random interacting
bosonic models [43]. On the other hand, for the fermionic
SYK model, there is now strong numerical and analytical
evidence that a glass phase is absent and the NFL state persists
down to T = 0 [44-46]. For this reason the validity of the
large-N analytical result of the Yukawa-SYK model needs to
be carefully investigated, especially since the model involves
both fermions and bosons. To this end, unbiased numeric
calculations, similar in spirit to the aforementioned critical
bosons Yukawa coupled to Fermi surface systems [23-27,29—
31,33,47], are highly desirable.

With this motivation in mind, here we address such a timely
issue by showing that at finite N the Yukawa-SYK model
can be exactly solved by determinantal QMC (DQMC) sim-
ulations, thanks to the bosonic degree of freedom. A simple
extension of the original model, introducing an antiunitary
time-reversal symmetry, eliminates the minus-sign problem
without altering the essential physics. To enable a direct com-
parison with QMC, we numerically solve the self-energies of
the Yukawa-SYK model within large N at finite temperatures
with discrete imaginary time steps. At low temperatures, this
indeed agrees with the analytical solution of the Schwinger-
Dyson equations with an emergent time-reparametrization
symmetry. This emergent symmetry indicates that the effect
of thermal fluctuations can be easily incorporated in the time
domain (see Refs. [32,48] for subtleties in the frequency do-
main), enabling a direct identification of the NFL behavior at
finite temperatures.

In this paper, we found that as one progressively in-
creases N, the Green’s functions from QMC simulations do
approach the large-N result and display self-tuned criticality
and NFL behavior with power-law self-energies. Additionally,
we found that as N increases, the QMC result with different
realizations of the random interaction self-average (i.e., the
variance of the Green’s function) decreases with increasing N,
and we obtained a good match with the large-N results. This
is strong evidence that the system is free from glassy behavior
at least within the temperature range accessible to QMC. By
comparing with large-N results, we analyze the behavior of
finite-N corrections and show that it is consistent with those
by processes suppressed by 1/N, including processes involv-
ing replica-off-diagonal fluctuations and pairing fluctuations.
By contrast, we consider a model [35] in a similar form with a
crucial difference that the random coupling is of a lower rank.
In such a model with less randomness, replica-off-diagonal
processes are less suppressed. We numerically show that the
bosonic Green’s function exhibits glassy behavior.

II. THE MODEL

The model studied here describes M quantum dots, each
hosting N flavors of fermions interacting with N2 flavors of
matrix bosons via all-to-all random Yukawa interactions. The
Hamiltonian of this Yukawa-SYK model is given by

M N 1 .
i
=Y 3 3 (Gt nturchantiacins
i,j=1a,p=1 m,n MN
N
L, mg o,
w2 5+ ek 0
o, f=1
where the random  coupling between  fermion
and  boson  satisfies (tio.jp) = 0, (tia, jpliy.15) =

(8ay 8ikdpsd i +8a58i16ﬂy8jk)a)3. This model is very similar
to that studied in Ref. [35], the only difference being that
here the random coupling #;,, js has a higher rank than that
in Ref. [35] that does not depend on « and B. As we will
see in Sec. III, the high-rank randomness of the Yukawa
coupling t;4 ;g is crucial for stabilizing the non-Fermi liquid
behavior. g is the canonical momentum of ¢, 4. Hermiticity
of the first term requires ¢op = —@g,. As schematically
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FIG. 1. Yukawa-SYK model. There are M quantum dots labeled
by {i, j}, and each dot has N flavors labeled by {«, 8}. Bosons are
given by antisymmetric fields ¢,g. Fermions are coupled to bosons
through a random Yukawa coupling to jg-

depicted in Fig. 1, here (o, B) are flavor indices, and (i, j)
are site indices. o° is the Pauli matrix in the fermion spin
space for each flavor. In the absence of a chemical potential
term p = 0, the model has an exact particle-hole symmetry
under ¢ — c'. The general case with u # 0 has also been
recently analytically solved at the N,M — oo limit [38],
and numerical studies are needed. Importantly, this model
has a time-reversal symmetry ¢’ — c'ic”KC, where K is the
complex conjugation operator, which guarantees the absence
of the minus-sign problem of the QMC simulation. For the
sake of simplicity we set wy = 1 as the energy unit throughout
the paper. The only other energy scale in Eq. (1) is the bosonic
bare mass my. We refer to situations with small and large
wo/my as “weakly coupled” and “strongly coupled.”

In the N - 0o, M — oo limit, the ground state of the
system has been analytically solved [35,36], and the ground
state is found to be a non-Fermi liquid. The large-N result
is based on the assumption that the replica symmetry of the
random model is unbroken. In this paper we verify the validity
of the non-Fermi liquid solution by examining and extrap-
olating the system behavior at finite N, M. For such N, M,
analytical calculations are uncontrolled. Fortunately, due to
the time-reversal symmetry in our designer Hamiltonian in
Eq. (1) there is no minus-sign problem (the proof of this is
given in Appendix A 3).

A. Normal-state results at N, M — oo

Before demonstrating our QMC results for the Yukawa-
SYK model, we first briefly review the theoretical results at
the N, M — oo limit. In this limit one can show that the effec-
tive action has a saddle point given by the Schwinger-Dyson

equations

n(‘sz)—4M 3TZG(' 12./2)G ¢ (iom + i2:/2)
i82) =— ) 4 iy — 12, /2)Gp(ioy + i€2,/2),

S(iom) = — T Y Gy(iS)G(in — i), )

where ¥ and IT are fermionic and bosonic self-energies, re-
spectively, and G¢(iwy,) = [iw, + S(iwy)] " and G,(iQ2,) =
[Q2 + (i) + m(z)]_] are fermionic and bosonic Green’s
functions, respectively.

At T =0, it was found [35,36] that for my ~ wy and
w, Q2 K wy the self-energies are given by

x,  1—x

() = —Gp(w) ' = icsgn(w)|wl oy,
Q) = Gy(Q) ' = —mi + ¢ 2a(@)Q)' )™, (3)

where ¢ is a nonuniversal O(1) constant, and 0 < x < 1/2 is
determined by

A 1jx -2

N 1 +sec(mx) @)
and
. T(—x)
() = 4rD(=2x) ©)

Compared with the results in Ref. [35], Eq. (4) is different
by a factor of 2 because of the addition of the spin degree
of freedom m,n = 1/] in the Hamiltonian in Eq. (1). In
particular, at M = N, one finds x &~ 0.098, and for 4M = N,
x ~ 0.231.

From Eq. (3) we have

mi —TI(Q =0)=0, (6)

indicating that the boson is critical. This was argued in
Refs. [35,36] to be true for an arbitrary m(z). No matter what
the bosonic bare mass is, the system renormalizes it to zero via
interaction effects. For this reason we dub this phenomenon
“self-tuned quantum criticality.” This feature is certainly not
present in any finite-dimensional models such as those of
critical bosons coupled to Fermi surface systems [16-27,30—
33,47,49] discussed in Sec. I.
In the time domain, by a Fourier transform we obtain [50]

(7, ) o |t — 7|7 @29,
Gy(t, %) o |t — T,
(1, %) o |t — 7| T sgn(r — 7),
Gr(t, %) o |t — 2" 'sgn(r — 7). (7
It is known that at a finite but low temperature 7 = 1/8 <
wr [10-13], the long-time correlated behavior persists, and
it was found [35,36] that for the present model wyp = a)g /mg.
One can accordingly obtain the fermionic and bosonic Green’s
functions through a reparametrization symmetry transforma-

tion T — f(r) =tan(wt/B) [10-13], and we have, at low
temperatures and long-time limit,

- 1—x
(ﬂ Sin(ﬂf/ﬂ)) 7

T 2x
0 (e v

G(z,0)
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FIG. 2. Theoretical result of (a) G; and (b) G at N = 4M — oo,
wp = 1, my = 2, and various temperatures. Here, we show them in
log-log plots. The auxiliary dashed lines, whose slopes are 1 — x and
2x, respectively, show that G¢(z, 0) (m)“ and G(7,0)
)2){

(m att — g, when g is large enough.

To enable a direct comparison with the QMC data, we de-
veloped an iterative algorithm to solve the nonlinear equation
in (2) numerically at an arbitrary temperature. To ensure the
convergence of the iterations, the temperature dependence of
I1(0) was fixed using analytical results obtained in Ref. [36].
As we shall see, the QMC simulations for the bosonic sector
are performed on a time lattice with lattice constant At, and
the Matsubara frequencies are compact and defined in a fre-
quency Brillouin zone w,,, 2, € (=7 /A1, w/At). We have
incorporated the compactness of the frequency domain within
our numerical solution of Eq. (2) as well, which ensures a
better match with QMC results especially at large frequencies.

In Fig. 2 we plot the behavior of G and G, at N = 4M,
wo =1, my =2, and different temperatures from iterative
theoretical calculation; in particular, we see that at 8 = 256
(T = ﬁ), the results match well in the long-time limit with
the approximate result obtained using time-reparametrization
symmetry, exhibiting self-tuned criticality and NFL behav-
iors. This result will be compared with numerical ones in
Sec. I11.

150 T T T Y Y

——4M = N

—=—-M =N

100

Be

50p

0 N N N N N N

0 0.2 0.4 0.6 0.8 1 1.2 1.4
wo/mo

FIG. 3. Inverse transition temperature . from NFL to supercon-
ductivity as a function of the ratio wy/mg for N = 4M and N = M,
obtained from solving Eq. (10) at large N.

B. Pairing at N, M — oo: Mean-field theory

It is straightforward to see that the leading pairing in-
stability mediated by the critical boson mode is toward a
spin-singlet, intradot, and intraflavor channel:

A~ ek )

Within mean-field theory, the pairing behavior is described by
the Eliashberg equation

Alioy) = QT Y Gy(i)|G (i + i) Aliw, + i),
n

(10)
where the 1/MN factor given by the two Yukawa interaction
vertices has been canceled by the summation of the site and
flavor indices of the internal fermions.

At T = 0, plugging in the analytical results in Eq. (3), we
have

A(w) = /wﬂ s A (11)
w) = —— .
a(x) Jo 27 o — o' '/ |Z

where A is the order of magnitude of the frequency-dependent
gap A(w) that serves as an infrared cutoff of the Green’s
functions and wy ~ myg is an ultraviolet cutoff scale for the
low-energy quantum-critical NFL behavior.

At finite temperatures, we can solve for the critical temper-
atures 7, using the normal-state results numerically obtained.
To that end, we numerically solve Eq. (10) as an eigenvalue
problem. As the temperature lowers, the eigenvalues of the
kernel increase, and 7. corresponds to the temperature at
which the largest eigenvalue approaches 1. For reference,
we plot B, (T, = i) as a function of the ratio wy/my for
N =4M and N = M in Fig. 3. We see that as the dimen-
sionless coupling constant wq/my decreases, . increases (7
decreases) in both cases. This is consistent with the fact that
like wg/my, the typical scale of the NFL behavior decreases as
wr Jwy ~ (wo/mp)?, and that T, < wp is an instability of the
NFL.
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FIG. 4. QMCresults at N =4M, my =2, wy = 1, and § = 16 for M = 2, 3, 4. (a) Green’s function of fermions G¢(z, 0) versus 7 in the
range of T € [0, B]. Blue, red, and yellow dots are DQMC data, and the black dashed line is the large-N result. (b) Green’s function of bosons
Gyp(7, 0) versus t in the range of T € [0, B]. (c) and (d) The same as above, but in a special log-log scale as in Fig. 2. The convergence towards
the large-N results as (M, N) increase is obvious. In (a)—(d), the error bars denote the variation of the Green’s function for different disorder
realizations. The progressively smaller error bars as M increases indicate that the randomness of the coupling self-averages.

At finite N, M, a true phase transition to a supercon-
ductor is absent. Yet, pairing fluctuations, which become
stronger upon lowering temperatures, do contribute to the
fermion Green’s function, making the fermions more incoher-
ent. In the Yukawa-SYK model, such effects are suppressed
by O(1/MN) but can be detected at small M, N and at low
temperatures where pairing susceptibility x, 2 MN. A true
finite-temperature phase transition to superconductivity, on
the other hand, can be obtained by a finite-size extrapolation
of the pairing susceptibility in the QMC simulations. How-
ever, the calculation of such observables is beyond the scope
of this work. In this paper, we focus on the NFL normal state,
although we will discuss signatures of pairing fluctuations in
G/ obtained by QMC.

We end this section on large-N results by summarizing the
system behavior in three different regimes. At high temper-
atures T > wp, the system behaves as trivial free fermions
and bosons. At T < wyp the system behaves as a quantum-
critical NFL, with a pairing instability at 7. < wp. Such a
system behavior has also been discussed extensively in Ref.
[36]. For finite N the pairing transition does not occur, but
pairing fluctuations become important in the low-temperature
regime.

III. NUMERICAL RESULTS
A. NFL Green’s functions

In this section, we report the key numerical findings in this
paper, the NFL Green’s function and self-tuned quantum crit-
icality at finite values of (M, N). We choose wg = 1, my = 2,
such that the dimensionless coupling wg/myg is reasonably
weak, and the pairing fluctuations discussed in Sec. IIB do
not significantly modify the normal-state NFL behavior.

Figure 4 demonstrates the fermion and boson Green’s func-
tions obtained in QMC simulation. We focus on G; and Gy
obtained with N =4M, wy =1, and my =2 at B = 16 for
M =2, M =3, and M = 4, respectively. Each data point is
obtained by averaging over 20 disorder realizations in {#jy jg}.
Figures 4(a) and 4(b) are plotted in linear scale, and one can
see that the QMC curves are progressively close to the large-N
curve as N increases. In Figs. 4(c) and 4(d), we present G, and
Gy versus /[ B sin(r T /B)] in a log-log scale, as suggested in
Eq. (8). It is clear that the QMC results match very well with
the large-N result and approach the latter as N increases. The
(rather small) error bars in Fig. 4 denote the variance of the
QMC results with different realizations of random couplings
[51]. We see that such variance decreases upon increasing N.
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FIG. 5. (a) and (c) show G, and G of 20 different disorder realizations with M =N =9, B = 24, my = 2, and wy = 1. The Green’s
functions are very close to each other. (b) and (d) present the difference between theoretical (large N) results G™(8/2, 0) and QMC numerical
simulation data G(8/2, 0). It is clear that as M (NN) increases, the distance between QMC and analytics gradually reduces. The relative standard
deviations in the QMC data are also decreasing. The parameters are set at M = N, B = 24, my = 2, and wy = 1.

This is consistent with the self-averaging behavior of disor-
dered systems and indicates that our values of M = 3, N = 12
and M =4, N = 16 can be reasonably regarded as close to
“large N.”

To further quantify the extrapolation to large N, we simu-
lated the model for N = M; such a parameter choice allows
us to go deeper into the M sequence, and the smaller system
size also allows us to go to lower temperatures. In Figs. 5(a)
and 5(c), we plot the QMC data of G,(t,0) and G(z, 0)
withM =N =9, 8 = 24, my = 2, and wy = 1, averaged over
20 disorder realizations. As before, we see the self-averaging
behavior of disorder realizations. In Figs. 5(b) and 5(d), we
plot the distance between the QMC disorder averaged Green’s
functions Gb(g, 0) and Gf(g, 0) and those from the large-N

analytical calculation GbTh(é, 0) and G}h(ﬁ, 0). As1/N — 0,

indeed G»(£,0) approaches its large-N value. This indicates
that the replica-off-diagonal fluctuations are small and sup-
pressed by 1/N. As a result, glass behavior is absent in this
model at least down to 8 = 24. In the meantime, Gf(g, 0) is
quite close to its large-N value but remains slightly smaller up
to N = 9. Contrasting the behaviors of G, and Gy, it is tempt-
ing to attribute the deviation of Gy to pairing fluctuations. This
is consistent with the facts that pairing fluctuations makes the
fermions more incoherent and that 7 = 1/24 is quite close
to the critical temperature 7. = 1/36, as shown in Fig. 3 for

the case of N = M. We expect that as N further increases,
the effect of pairing fluctuations will be suppressed and the
pairing transition at N = oo is mean-field-like. A detailed
study of the pairing transition is needed.

‘We emphasize that the randomness of the Yukawa coupling
is crucial in stabilizing the NFL behavior. To demonstrate this,
in Appendix C we consider a very similar model, in which
the random coupling ¢#; is of lower rank and does not depend
on «, 8. This model was analyzed by one of us [35] using
the Schwinger-Dyson equation at large N, and the analytical
results are practically identical to those here. However, our
QMC studies have found that its low-temperature phase is
actually a spin glass, as the bosonic Green’s function has
a large static component. Somewhat counterintuitively, the
glass phase absent in our present model is realized in such a
“less random” model. Indeed, one can show that in this model,
certain replica-off-diagonal diagrams that are not suppressed
by 1/N survive the disorder averaging (see Appendix C),
thanks to the lower-rank randomness in the Yukawa coupling,
and are expected to drive the glass transition [52]. Therefore
the random coupling taken in Ref. [35] needs to be modified
to the present higher-rank form.

It is also interesting to investigate the evolution of finite-
N corrections as a function of temperature. In the original
SYK model, it is well known that the strength of replica-
off-diagonal fluctuations increases with lowering temperature
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FIG. 6. QMC results of (a) G, and (b) Gy at M =4, N = 16,
my = wo = 1, and B = 16, 20, 24. In log-log plots, we see that as
increases, large-N results are basically unchanged, while curves of
the QMC simulation progressively deviate from the large-N value
due to increasing finite-N corrections.

as ~1/Nlog*(T), which has led to initial speculations of
a glass transition at exponentially low temperatures. On
the other hand, the strength of pairing fluctuations also
increases with lowering temperature. To enable a clear anal-
ysis of the fluctuation effects, we numerically simulated the
intermediate-coupling regime of our model with wy = my =
1. Shown in Fig. 6, we see that in this case the devia-
tion between numerical and large-N results is indeed more
pronounced and increases upon lowering the temperature.
Furthermore, the finite-N corrections modify G, upward and
Gy downward. The upward deviation in Gy, is consistent with
replica-off-diagonal fluctuations, since they make G, more
static, just as in a glass transition. On the other hand, the
downward deviation in Gy is likely to predominantly come
from pairing fluctuations.

B. Self-tuned quantum criticality

As discussed in the Sec. II A, the self-tuned quantum crit-
icality occurs independently of the bare boson mass my, at
least at the large-N limit. We numerically tested this expecta-

tion in QMC simulation with M = 4, N = 16. The results are
shown in Fig. 7. As a comparison with our interacting model,
Fig. 7(a) shows the bare boson Green’s function generated
from H, in Eq. (AS5) where the mass is my = 1 and 8 = 16.
With such a mass term, the Green’s function clearly exhibits
exponential decay in imaginary time to G(t = $/2,0) = 0.
We can see it from the log-log plot: At the far left of the curve
T — 8, which corresponds to the long-time limit, the value
of In[Gy(7, 0)] decays rapidly. However, once coupled with
fermions in our model, as shown in Figs. 7(b) (my = wy =
1, averaged over 20 realizations) and 7(c) (my = 2wy = 2,
averaged over 20 realizations), with different masses while
keeping the M = 4, N = 16 and B = 16, the boson Green’s
functions become critical. The Green’s functions G, in imagi-
nary time in both cases do not decay exponentially, but instead
are well consistent with the power-law form of Eq. (8). In
Figs. 7(b) and 7(c), besides the QMC data, we plotted a red
dashed line, which is the large-N result. The data in Fig. 7(c)
turn out to be very close to the theoretical result. Remarkably,
here we see that it does not require tuning the bare mass my
for the system to exhibit quantum-critical behavior, therefore
exhibiting the self-tuned quantum criticality, consistent with
analytical predictions at large N.

IV. DISCUSSION

In this paper, we performed unbiased sign-problem-free
quantum Monte Carlo simulations of the Yukawa-SYK model
and reported direct evidence of self-tuned quantum-critical
and NFL behaviors. We believe that such SYK-like models
provide a new venue to construct analytical solvable models
for strange metals and unconventional superconductors. Our
work serves as a starting point to further analyze such models
beyond the analytical large-N limit, in a numerically unbiased
manner. Further studies in several further directions are in
order.

First, the numerical framework developed here allows one
to incorporate the Hubbard U interaction at half-filling with-
out the fermion sign problem. From a theoretical point of
view, such a generalized model likely exhibits a strange-metal
to Mott insulator transition. It will also be interesting to study
whether a spin-glass phase can be realized in between, resem-
bling the phase diagram of the underdoped cuprates. Second,
recent works have revealed exotic quantum phase transitions
between a strange metal and a trivial insulator as one varies
the filling [38], but analytical results have only been obtained
in the weak-coupling limit. It is an open question whether
more exotic phases exist at stronger coupling. Finally, the
quantum dot model studied here can be generalized to a lattice
model [53-55], in which more thermodynamical and transport
properties can be examined.

In terms of numerical methodologies, the present work
opens the directions of combining the randomness and all-
connected models in the study of correlated electron systems,
hence greatly broadening the scope of the correlated and
itinerant systems. The Yukawa-SYK model and its QMC
simulation provide a concrete example of NFL and give us
the chance to have a systematic comparison with the large-N
analytical calculation. Therefore one can certainly foresee
that more realistic and insightful NFL lattice models will
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FIG. 7. Self-tuned quantum criticality with different boson
masses in log-log plots. (a) G,(t, 0) from a free-boson model with
mo =1 and B = 16. The exponential decay in imaginary time is
evident with In[G,(tr = B/2)] ~ —7. (b) and (c) show the G,(z, 0)
from the Yukawa-SYK model in Eq. (1) with different mass my = wy
(b) and my = 2wy (c) with wy =1 at M =4, N = 16 and g = 16.
Blue circles are DQMC data, and the red dashed lines are the large-N
result. Power-law decay of G, at low temperatures and long-time
limit is clear to see in the log-log plots. These results reveal the
self-tuned quantum criticality in our system.

eventually be solved with unbiased quantum many-body nu-
merics like the one presented here.
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APPENDIX A: DQMC METHODOLOGY

The model described in Eq. (1) can be solved under the de-
terminant quantum Monte Carlo (DQMC) framework [27,56—
59]. DQMC is the method of choice to study interacting
electron systems and has been used extensively in the past
few decades in addressing problems such as the Hubbard [58],
t — J [60], and Kondo lattice [61] models; lately, some great
progress has been made in extending the DQMC scheme to
interacting topological states of matter [62,63], duality and
QCP beyond the Landau-Ginzburg-Wilson paradigm [64,65],
and, more relevant to this work, the designer Hamiltonians of
critical bosons coupled to fermions via Yukawa interactions
[23-25,27,29,30,47,49,66—68]. In this Appendix, we will elu-
cidate the DQMC setting for the model in Eq. (1) in detail.

First, the partition function reads

Z = Tr{e P} = Tr{(e 27 )l

= f(l_[ d¢aﬂ> Trr (11 "'¢NN|(€7ATH)LT|¢11 < dNN),
apf

(AD)

where we divide the imaginary time axis into L, slices, 8 =
L, x At. Let the bosonic configuration at each time slice,
O = (P11.0, P12.05 - -+ s DNV-1).1, PNN1), serve as the com-
plete basis of imaginary time propagation in the path integral,;
then

L,
7 = / (Hd&H) TrF(3>1|e_ATH|<T>LT)<i>Lt

=1

e—mﬁ ’ &)L,—l)

o (Byle | D). (A2)
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With the help of Suzuki-Trotter decomposition of the Hamil-
tonian in Eq. (1), one has

e—ArI‘? ~ e_Arﬁfbe_At]:Ib, (A3)
where
M N 1) .
i
Hyp = Z Z Z ———tlia, jpPupCriOrnCpins (A4
i,j o, mn MN
N
H, = Z 1 +m_g¢2 (A5)
b= o b o Tap

a,f=1

are the fermion-boson coupled term and the bosonic term,
respectively.

1. Bosonic part

Sine we use the space-time arrangement of the bosons (B}
to span the configuration space, we need to first express the
canonical momentum 7,4 in Eq. (AS) in this configuration
space. To this end, we first use the coherent state path integral
dTtap €% |7T0p); (A6)

Gup) = J%_n/

then the momentum term in the partition function can be
expressed as

N 1 o
(@ le" 207 |¢) = Efd” TG —p)- ST AT

(¢'-¢)*
~ Ce™  2ar

(A7)

’

where C is a constant and / and !’ are two consecutive time
slices along the imaginary time axis. The partition function
then becomes

Lr N 2 N 2
my o Gapi—Pup.ir)
X CLT ( 1_[ g_ATTO aﬂJ) ( 1—[ e 2Ag
I=1 a,p=1 LI a

x TrF{e*ATHfb((DLr) .. e*ATHfh(@l)}’ (A8)

W

where the first () in WV, contains the spatial boson interaction
and the second () in W), contains the temporal boson inter-
action, ([, [’) stands for the nearest-neighbor interaction in the
imaginary time direction, and the Trg in Wy, is the fermion
trace we will deal with in Appendix A 2. It is now clear that
the Monte Carlo sampling is performed in the bosonic field
{CT)} space of dimension N x N x L; or MN x MN x L. if
one considers the random hopping f,4 in Hy, and the config-
urational weight is composed of the bosonic part WV, and the
fermion determinant Wp;,.

2. Fermion determinant

For a specific bosonic configuration, the fermion determi-
nant is of quadratic form and can be evaluated as that of the

free system, following the standard expression
Try {e” T Ehits o= Xi 6jB"v"af} =Det(I+ ¢4 ®). (A9)

For the imaginary time propagation in the fermion trace in
Eq. (A8), we define

L

BhAt hAT) = [] e 27 @), (A10)
I=l+1
where
- i
V((Dl) = mgzzxz by (tia,jﬁ¢aﬂ,l)MNxMN° (A] 1)

It is interesting to note that in the conventional Hubbard-type
model setting, there also exists a fermion hopping matrix on
the exponential form, but since here we only have fermions
Yukawa coupled with the bosonic field, the hopping matrix
is reduced to an identical matrix, and the interaction matrix
V(®;), which depends on the space-time configuration of
the bosonic field {531}, contains both the randomness in the
hopping matrix o5, , ® (¢ j)uxm and the bosonic fluctuation
matrix (¢eg,1)nxn- In this way, after tracing out the fermion
operators c;im and cgj,, the resulting fermion determinant is
the determinant of matrices with size MN x MN and block
diagonal in the fermion spin space of o’*.

With these notations prepared, finally the partition function
in Eq. (A8) can now be written as

L.

Z:/]—[d&:,

=1

L e A "5 42 N Gapi~buprr)
x C** l_[ e 2T 2 Papi l_[ e At
I=1 a,p=1 (L) o, p=1

Whs
x Det[1 4 B(L, Az, (L, — )A7)---B(A7,0)]. (A12)
Wrsp

This is the partition function describing the SYK-Yukawa
model in Eq. (1), and we can now simulate it in DQMC.

3. Free from sign problem

As aforementioned, the partition function in Eq. (A12)
is free from the minus-sign problem in the protection of a
time-reversal symmetry [69]; that is, the Hamiltonian is in-
variant under such a symmetry operation. This can be easily
demonstrated as follows.

First, we note that

M N .
! 0
Hpy=Y_ Y \/TNfia,jﬂ%ﬂCmCﬁn

i,j=1a,p=1

l T
mh‘a,.fﬁ%ﬁcmcm (AL3)

and the time-reversal symmetry operator is 7 = io, K. Its

operation works as T¢, T ' = Uypcn, Tel TV =U? cf

m mn-n’

TiT ' = —i,where m,n =1 / |, U = ioy; then

M N .
—1 l T
THRT =" > _mtia,1ﬂ¢aﬂcai¢cﬁjL

ij=1a,p=I
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i ,
+ mtia,jﬂ¢wﬁcliTcﬂjT = Hpp. (Al4)
Therefore Hy is invariant under 7.

Next, notice that V (®;) is block diagonal in the space of
m, n =%, | ; then the fermion determinant can be written as

Det[1 + B(8, 0)]
= Det[1 + B"(8, 0)] Det[1 + B*(B, 0)]
= Det[1 + B"(B, 0)] Det[T (1 + B*(8,0))T'1*
= Det[1 + B'(8, 0)] Det[1 + B (8, 0)I*

= | Det[1 + B (8, 0)])°, (A15)

and it is positive definite. Also note that the boson weight W,
is positive definite as {®} is the eigenstate of H}, in space-time.
So the entire configurational weight is positive definite, and
there is no sign problem for the simulation.

4. Update and measurement

Another important ingredient in any Monte Carlo simula-
tion is the update scheme between configurations; here, since
the bosonic fields are continuous variables, we have to adapt
to the local update with the Metropolis-type acceptance rate.

The ensemble average of physical observables can be ex-
pressed as

N Tr{e"m 0) L A 5
0= = | (ﬂdd>z>7?c<0>c o)

(A16)
where At? systematical error comes from the Trotter de-
composition and the weight and expectation value for each

bosonic field configuration C are

WY Det[1 + Bc (B, 0)]

Pe = _ : . (A17)
¢ [ (T, &)W Det[1 + Be(B,0)]
(O)e = Tr{Uc(ﬁ,At)OUc(f, 0)}’ (A8)
Tr{Uc(B, 0)}
where
b ~
O(hat oty = ] e deV@r, (A19)

I=L+1

Here, € has 2 x M x N components, and so does the dimen-
sion of matrix V. After tracing out the quadratic fermions
¢ in Eq. (A19), one arrives at the B([,At, [} At) matrix in
Eq. (A10), and the evaluation of the fermion determinant
follows from there down to Eq. (A12). The detailed deriva-
tion of physical observables, exemplified by the equal time
and imaginary time displaced fermionic Green’s functions, is
given in Appendix B.

Moreover, since the coupling matrix #; in Hy;, is subject
to randomness, the aforementioned Monte Carlo sample is
performed for each disorder realization. Therefore, besides
the Monte Carlo average over a fixed disorder configuration,
the final physical observables such as the fermion and boson
Green’s functions are the disordered averaged quantities.

APPENDIX B: MONTE CARLO MEASUREMENTS
The ensemble average of physical observables, in the

DQMC formalism, can be calculated as

~ 0 N A A
(O)c = PP In Tr[Uc (B, ©)e"’Uc(x, 0)]],=0
0
= o InDet(1+ Be(B, 1)e"’Be(t, 0)]l,=0
n

d
= 5 Trin{1+ Be(B, 1)e"Be(t, 0)]l,=0
n

= Tr[Bc(t, 0)(1 + Bc(B, 0))'Be(B, 1)0]
= Tr[(1 — (1 + Be(z,0)Bc(B, 7))~ O] (B1)

in the case of the equal time fermionic Green’s function,
O =¢'0¢. Ue and B¢ are defined in Egs. (A19) and (A10),
respectively.

For the imaginary time displaced fermionic Green’s func-
tion, Gy ;;(1,0) = (ci(t)c;(O)), where i, j encapsulate the dot
flavor and spin indices in the Hamiltonian in Eq. (1) and the
imaginary time T € [0, 8], it can be evaluated in DQMC as
Te(Ue(B, 1) & Ue(x, 0)))

Tr(Uc(B, 0))
_ Tr{Uc(B. 0) (U ' (x,0)é; Uel(x, 0)]52}

Tr{Uc (B, 0)}

Tr{Uc (B, 0) &é'
— ZBC(T, O)ikw
. Tr{Uc (8, 0)}

= [Be(z, 0)(1 + Be(B,0) ',

where the intermediate steps in Eq. (B2) are given explicitly
in Ref. [58].

(ei(T)e}(0)) =

(B2)

APPENDIX C: SPIN-GLASS BEHAVIOR
IN A LESS-RANDOM MODEL

We construct a model in a similar form in which the ran-
dom coupling is of a lower rank,

N

M N .
! ¥
H= Z Z Z (\/Wti,j(/l)aﬁcia;mo—rfz,ncjﬁ;;z)

i,j=la,f=1 mn

(1 2 My,
+ Yy <5naﬂ + 7%), (C1)
o,f=1

where the random coupling between fermion and boson is
realized as (t;;) = 0, (t;;tx) = b1 + (Si,(Sjk)a)g. Still, for the
sake of simplicity we set wy = 1 as the energy unit throughout
the paper, and the temperature scale is then T = wy/B. qp is
the canonical momentum of ¢, . Hermiticity of the first term
requires @op = —Pgy-

In Fig. 8, we show the static component (with w, = 0)
for bosonic Green’s function Gy(w,). In the large-N limit,
this component can be regarded as an Edwards-Anderson
order parameter of the spin-glass phase [45]. As N increases,
the static component, along with its variance for different
disorder realizations, increases with the increase in N at
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FIG. 8. DQMC results of Matsubara Green’s function G, at M =
N, my =wy =1, and B = 16. We plot the zero-frequency compo-
nent and its error bars. Glassy behaviors are seen.

M =N, B =16, and my = wy = 1, which is indicative of
spin-glass behavior.

To analytically understand the difference between the
models in Egs. (C1) and (1), we find that due to the
lower-rank random coupling in Eq. (C1), certain replica-off-
diagonal fluctuations are not suppressed by large M, N. At low

iy

jB

FIG. 9. A Feynman diagram involving replica-off-diagonal pro-
cesses that are not suppressed by 1/MN in the model given by
Eq. (C1). The two fermion loops carry different replicon indices.

temperatures, these processes are responsible for driving a
spin-glass transition and developing a replica-off-diagonal
Edwards-Anderson order parameter. We show an example of
such a diagram in Fig. 9; a systematic study of the glass
transition is given in Ref. [52]. Such processes vanish in the
large-M, N limit of the model (1) studied in the main text.
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