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High-purity pulsed squeezing generation with integrated photonics
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Squeezed light has evolved into a powerful tool for quantum technology, ranging from quantum-enhanced
sensing and quantum-state engineering based on partial postselection techniques. The pulsed generation of
squeezed light is of particular interest, as it can provide accurate time stamps and a physically defined temporal
mode, which are highly preferred in complex communication networks and large-scale information processing.
However, the multimode feature of pulsed squeezing limits the purity of the output state, negatively impacting
its application in quantum technology. Previous demonstrations and analysis of pulsed squeezing focus on
single-pass configurations and synchronously pumped free-space cavities. In this paper, we propose a different
approach to generate pulsed squeezing with high temporal purity, where a parametric down-conversion process
in integrated photonic cavities is pumped by a single-pass pulse. We show that the effective mode number of
the output pulsed squeezing approaches unity. Such a high-purity squeezed light can be realized with broad
parameters and a low pump power, providing a robust approach to generating large-scale quantum resources.
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I. INTRODUCTION

Non-Gaussian states are indispensable resources required
by quantum information processing to demonstrate quan-
tum advantage [1]. Partial detection of squeezed light is
one of the most important optical approaches to generate
non-Gaussian states [2–6]. Optical cat and kitten states have
been generated based on photon-number subtraction from a
single-mode squeezed vacuum [7–10]. In principle, arbitrary
non-Gaussian states, including the Gottesman-Kitaev-Preskill
(GKP) state for cluster-modal quantum computing [11–17],
can be generated based on the Gaussian-boson-sampling
(GBS) configuration and the photon-number-resolving (PNR)
detection [18,19]. One critical requirement to implement par-
tial detection of squeezed light is that all photons must be in
the same spectral-temporal mode. Otherwise, unconditioned
Gaussian modes will be mixed with the target non-Gaussian
mode, thus decreasing the purity of the output state. Com-
mon techniques utilized for single photons, such as spectral
filtering and postselection within a small time window, cannot
be applied for the squeezed light due to the excessive loss.
Improved pulsed squeezing also finds applications beyond
engineering of non-Gaussian states of light. For example,
imaging of delicate biological samples can benefit from
pulsed squeezing by improving the sensitivity beyond the
standard quantum limit [20].
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One standard configuration to implement pulsed squeezing
is the single-pass parametric down-conversion [21–25]. This
process intrinsically involves multiple modes in both space
and time, which all have significant squeezing and energy
[26]. Synchronously pumped parametric down-conversion in
free-space cavities has also been proposed for pulsed squeez-
ing [27,28]. However, the generated squeezing still contains
significant multimode contribution. It also requires that the
pump repetition rate matches the cavity free-spectra range
(FSR), which is challenging for integrated cavities with a
large FSR. While the complex shaping of local oscillators can
be utilized to improve the measured squeezing level [29], it
does not work well on non-Gaussian state generation through
partial detection, which requires the separation of different
modes. Therefore, a different approach to generating pulsed
squeezing with high purity is highly desired to further improve
the capability of photonic quantum information processing.

In this paper, we analyze pulsed squeezing with an
unexplored configuration: the cavity-enhanced parametric
down-conversion with a single-pass pulsed pump. Such con-
figuration is well positioned for pulsed squeezing generation
with integrated photonic cavities, with the FSR much larger
than the bandwidth of the pump pulse. The Bloch-Messiah
approach is used to decompose the input-output relation into
independent squeezing modes [30,31]. We demonstrate that
the effective mode number at the output can approach unity,
showing there is only one dominant spectral-temporal mode.
Unlike the single-pass pulsed squeezing [26], this approach
does not require the delicate shaping of the pump, making its
experimental implementation robust.

II. THEORETICAL MODEL

The proposed configuration is shown in Fig. 1 and con-
sists of a photonic ring cavity evanescently coupled to a bus
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FIG. 1. Proposed configuration for high-purity pulsed squeezing
generation: parametric down-conversion in a photonic ring cavity
with a pulsed pump. The solid line represents the bus waveguide with
signal coupling rate γc; the dotted line represents the virtual waveg-
uide for the intrinsic loss channel with loss rate γi. The dotted arrows
indicate the input vacuum âin and â(i); the solid arrows indicate the
output mode âout and â(e).

waveguide. Phase-matching condition is satisfied for the
degenerate parametric down-conversion between the pump
mode centering at frequency 2ω0 and the signal mode cen-
tering at frequency ω0. The input pump pulse with a center
frequency 2ω0 is launched into the cavity through the bus
waveguide.

The dynamics of the intracavity signal mode â can be
described by the equation of motion [32,33]

dâ

dt
= i

h̄
[Ĥ, â] − γ

2
â + √

γiâ
(i) + √

γcâin (1)

with intrinsic loss rate γi, bus waveguide coupling rate γc, total
cavity decay γ = γi + γc, and noise operators due to intrinsic
loss â(i) and bus waveguide âin. The Hamiltonian Ĥ can be
written as

Ĥ =h̄ω0

∫
dωâ†(ω)â(ω)

+ ih̄κ

2

∫∫
dωdω′â†(ω)â†(ω′)ε(ω + ω′) + H.c.

(2)

with κ the single-photon coupling rate for paramet-
ric down-conversion. The intracavity pump field ε(ω) is

written as

ε(ω) = Ep(ω)
√

γpc

−i(ω − 2ω0) + γp/2
(3)

with the bus waveguide coupling rate γpc and total decay rate
γp for the pump mode, and the spectrum amplitude of the
input pulse Ep(ω). Utilizing Fourier transformation, Eq. (1)
can be further expressed in the frequency domain

0 =
∫

dω′
[
i(ω − ω0) − γ

2

]
δ(ω − ω′)â(ω′)

+
∫

dω′κε(ω + ω′)â†(ω′)

+ √
γiâ

(i)(ω) + √
γcâin(ω).

(4)

By including the complex conjugation, we can rewrite Eq. (4)
into the following equivalent matrix form

0 =
(

D E
E† D†

)(
â(ω)
â†(ω)

)

+ √
γi

(
â(i)(ω)
â(i)†(ω)

)
+ √

γc

(
âin(ω)
â†

in(ω)

)
,

(5)

where the diagonal matrix D(ω,ω′) = [i(ω − ω0) −
γ /2]δ(ω − ω′) shows the effect of frequency detuning
and energy damping, and the matrix E (ω,ω′) = κε(ω + ω′)
shows the nonlinear interaction enhanced by the pump. The
output field can then be derived based on the input-output
theory

(
âout (ω)
â†

out (ω)

)
=

[(
I

I

)
+ γc

(
D E
E† D†

)−1](
âin(ω)
â†

in(ω)

)

+ √
γcγi

(
D E
E† D†

)−1(
â(i)(ω)
â(i)†(ω)

)
.

(6)

Through the derivation, we assume that the intrinsic loss
of the photonic cavity is Markovian and can be modeled as a
virtual waveguide with the input mode â(i) and output mode
â(e) (dashed line in Fig. 1) [33,34]. Then Eq. (6) is converted
to the symplectic form

⎛
⎜⎜⎝

âout (ω)
â†

out (ω)
â(e)(ω)
â(e)†(ω)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

[(
I

I

)
+ γc

(
D E
E† D†

)−1] √
γcγi

(
D E
E† D†

)−1

√
γcγi

(
D E
E† D†

)−1 [(
I

I

)
+ γi

(
D E
E† D†

)−1]
⎞
⎟⎟⎠

⎛
⎜⎜⎝

âin(ω)
â†

in(ω)
â(i)(ω)
â(i)†(ω)

⎞
⎟⎟⎠

=
⎛
⎝

√
γc

γ
−

√
γi

γ√
γi

γ

√
γc

γ

⎞
⎠

⎛
⎜⎜⎝

[(
I

I

)
+ γ

(
D E
E† D†

)−1]
0

0

(
I

I

)
⎞
⎟⎟⎠

⎛
⎝

√
γc

γ

√
γi

γ

−
√

γi

γ

√
γc

γ

⎞
⎠

⎛
⎜⎜⎝

âin(ω)
â†

in(ω)
â(i)(ω)
â(i)†(ω)

⎞
⎟⎟⎠.

(7)

The Bloch-Messiah decomposition means that an arbitrary Gaussian transformation can be represented by two passive linear-
optical interferometers (P and Q in our case) with parallel squeezing transformations. This allows us to rewrite the core matrix

[(I
I) + γ ( D E

E† D† )
−1

] into a combination of a set of single-mode squeezers (Bogoliubov transformations) placed between two
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multiport interferometers [30,31]:

[(
I

I

)
+ γ

(
D E
E† D†

)−1]
=

(
P

P∗

)
⎛
⎜⎜⎜⎜⎜⎝

cosh ξ1 eiθ1 sinh ξ1

... ...

cosh ξn eiθn sinh ξn

e−iθ1 sinh ξ1 cosh ξ1

... ...

e−iθn sinh ξn cosh ξn

⎞
⎟⎟⎟⎟⎟⎠

(
Q†

QT

)
.

(8)

Therefore, the overall input-output relation is modeled
as a multimode optical parametric amplifier sandwiched by
two beam splitters with reflectivity R = γc/γ (Fig. 2). The
spectral-temporal shape of the characteristic input mode of
each single-mode squeezer (bin,k) is determined by the unitary
transformation Q:

b̂in = Q†

(√
γc

γ
âin(ω) +

√
γi

γ
â(i)(ω)

)
. (9)

Each characteristic mode undergoes independent squeezing

b̂out,k = cosh ξkb̂in,k + eiθk sinh ξkb̂†
in,k, (10)

where ξk and θk are the squeezing amplitude and phase of
the kth mode. After mixing with vacuum at the second beam
splitter, the variance of the squeezed quadrature of the kth
mode is 〈[

	Xk

(
θk − π

2

)]2〉
= 1

2

(
γi

γ
+ γc

γ
e−2ξk

)
. (11)

This result is identical to the continuous-wave-squeezing
(CW-squeezing) process [32], where the maximum squeezing
is limited by the intrinsic loss of the cavity. Overcoupled
cavity (γc � γi) is required to realize high squeezing. The
effective mode number K can be directly calculated from the
squeezing amplitude ξk:

K =
(∑

k sinh2 ξk
)2

∑
k sinh4 ξk

. (12)

Higher mode number K implies a lower purity [35]. Since
the squeezed light includes multiphoton components, the
definition of purity is more general than the one for the single-
photon case, where only the first-order term is considered.

Our derivation assumes that the pump is below threshold
so that all the output modes are still squeezed vacuum. The
pump threshold can be determined when the gain for any
intracavity mode is equal to the amplitude loss rate γ /2. By

FIG. 2. Equivalent photonic circuit of parametric down-
conversion in a photonic cavity with pulsed pump.

rewriting Eq. (1) into the rotation frame â → âeiω0t and taking
the average on the initial vacuum state, we can express the
classical dynamics of the intracavity field as

〈 ˙̂a〉 = −γ

2
〈â〉 + E〈â〉∗. (13)

The solution to Eq. (13) has the form 〈 ˙̂a〉k = Skeλkt , where λk

and Sk are the kth eigenvalue and eigenstate of matrix E [27].
We label the eigenvalue with the largest modulus as λ0. As
λ0 can always be made a real number by adjusting the global
phase, the criteria for the threshold pump becomes λ0 = γ /2.
It is noteworthy that the eigenstates of the intracavity modes
(decomposition of matrix E ) are different from the charac-
teristic modes obtained at the output with the Bloch-Messiah
decomposition of the core matrix in Eq. (7).

III. NUMERICAL SIMULATION

As can be seen from the last section, all critical properties
of the output state depend on the distribution of squeezing
amplitude ξk . In order to get further insight, the generation
of pulsed squeezing in photonic ring cavities is investi-
gated numerically. Without loss of generality, we assume
the input pump has a Gaussian spectrum shape Ep(ω) ∝
e−(4 ln 2)(ω−ω0 )2/δ2

with the full-width half-maximum (FWHM)
δ. The threshold condition needs to be determined first. Using
the condition λ0 = γ /2, we obtain the relation between the
intracavity threshold power Pth and the pump bandwidth δ

(Fig. 3). Here we assume that the pump and signal modes

FIG. 3. The intracavity pump threshold power Pth with depen-
dence on the pump bandwidth δ. The power is normalized with CW
intracavity threshold Pth,CW = εγ 2/8κ2, with ε being the absolute
permittivity. The inset is the log-scale plot. This figure assumes
γp = 2γ .
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FIG. 4. The spectral amplitude (solid) and phase (dashed) of the
first three characteristic modes near pump threshold. This figure
assumes γp = 2γ and δ = 2γp.

have the same quality factor, thus γp = 2γ . Monotonic decay
of the intracavity threshold power Pth with respect to the
pump bandwidth δ can be observed, due to the contribution
from multiple pump-frequency components. Compared with a
continuous wave (CW) pump, the intracavity threshold power
can be decreased by three orders of magnitude, making this
scheme highly power efficient.

Through the Bloch-Messiah decomposition of Eq. (7), we
can obtain the spectral shape (Fig. 4) and squeezing amplitude
(Fig. 5) of each characteristic mode. Then the squeezing level
can be estimated with Eq. (11). The squeezing level of the

FIG. 5. (a) Squeezing levels of the first characteristic mode with
different intracavity power Pcav and intrinsic loss γi. (b) Squeez-
ing levels of high-order characteristic modes with intracavity pump
power at Pcav = 0.99Pth. This figure assumes γp = 2γ and δ = 2γp.

FIG. 6. (a) Effective mode number K as a function of intracav-
ity pump power Pcav/Pth with different pump bandwidth δ/γ . This
figure assumes γp = 2γ . (b) Effective mode number K as a function
of pump bandwidth δ/γ with different pump cavity bandwidth γp.
This figure assumes Pcav = 0.99Pth. (c) Effective mode number K
as a function of pump cavity bandwidth γp. This figure assumes
Pcav = 0.99Pth and δ = 16γ . (d) FWHM of the first characteristic
mode 	 as a function of pump bandwidth δ with different pump
cavity linewidth γp. This figure assumes Pcav = 0.99Pth.

first characteristic mode is plotted in Fig. 5(a). As expected,
the squeezing level increases with pump power below the
threshold, and lower intrinsic loss leads to higher squeezing.
We further plot the squeezing levels for high-order modes.
Because of smaller optical gain, the squeezing levels for high-
order modes decrease rapidly [Fig. 5(b)]. Based on Eq. (12),
this indicates the output field will have a small effective mode
number as well as a high purity without any filtering and
postselection. When pump power is small, the effective mode
number stays constantly where entangled photon pairs are
generated. With the pump power approaching threshold, the
effective mode number drops to a value limited by the pump
bandwidth [Fig. 6(a)].

We further observe that the effective mode number de-
creases monotonically with both the input pump bandwidth
δ and the pump cavity linewidth γp [Figs. 6(b) and 6(c)].
The signal cavity with a small linewidth γ will function as
a spectral-temporal filter to enhance the first characteristic
mode and suppress high-order characteristic modes. With a
larger input pump bandwidth δ and pump cavity linewidth
γp, the filtering effect is more significant, thus leading to a
smaller effective mode number. This filtering effect is differ-
ent from adding narrow filters after the squeezing generation,
as the parametric down-conversion and the filtering happen
simultaneously in the same cavity. Therefore, no extra loss
will be introduced. This filtering effect can be clearly observed
in Fig. 6(d), where the FWHM of the first characteristic mode
increases rapidly with small pump bandwidths but saturates at
large pump bandwidths.

In order to access the maximum squeezing, the spectral-
temporal shape of the local oscillator must match the first
characteristic mode. Based on the fact that the first character-
istic mode shape is critically dependent on the filtering effect
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FIG. 7. Proposed setup for local oscillator shaping.

of the signal cavity [Fig. 6(d)], we further design an easy and
efficient method for the local oscillator shaping.

As shown in Fig. 7, the generation of the pulsed squeezing
follows the standard configuration, where a strong optical
pulse at the signal frequency is used to generate the pump
pulse for parametric down-conversion. A small portion of the
optical pulse is tapped to serve as the local oscillator. In order
to match the spectral-temporal shape of the first characteristic
mode, the optical pulse simply goes through an optical cavity
with Lorentzian line shape. The cavity linewidth γ f is opti-
mized to obtain the maximum mode overlap and squeezing
level (Fig. 8). With a small pump bandwidth, the system is
in the quasi-CW regime, and a local oscillator without any
mode shaping can achieve near-perfect mode matching. With
a large pump bandwidth, the filtering effect of the signal cavity
is significant. A proper filter cavity for the local oscillator
is required, and near-perfect matching can be achieved. As
a small effective mode number is obtained only with a large
pump bandwidth, this approach for the local oscillator shaping
should be sufficient.

IV. DISCUSSION

While the current analysis is based on degenerate para-
metric down-conversion, the generalization to nondegenerate
cases is straightforward. The dynamics of intracavity modes
for signal â1 and idler â2 can be written as

0 =
∫

dω′[i(ω − ωk ) − γ

2
]δ(ω − ω′)âk (ω′)

+
∫

dω′κε(ω + ω′)â†
l (ω′)

+ √
γiâ

(i)
k (ω) + √

γcâk,in(ω)

(14)

with the index (k, l ) = (1, 2) or (2,1). The Bloch-Messiah
decomposition needs to be applied to the signal and idler
modes simultaneously. All conclusions for degenerate cases
remain valid for nondegenerate cases. The pulsed squeezing
generation with nondegenerate configuration can be realized
with both parametric down-conversion [36] and four-wave-
mixing [37]. For parametric down-conversion, it is easier to
achieve a pump cavity linewidth much larger than its signal
cavity linewidth (γp � γ ), due to the vastly different wave-
lengths. This is beneficial to achieve a smaller effective mode
number. Recent development of aluminum nitride [36,38–40],
gallium arsenide [41], and lithium niobate [42–44] photonics
has made it possible to demonstrate pulsed squeezing with the

FIG. 8. (a) The overlap between first characteristic mode and
the filtered local oscillator with dependence on δ. (b) Measured
squeezing level as a function of δ with filtered (solid blue line) and
perfectly matched local oscillator (dashed orange line). Insets are
enlargements of the intermediate region between quasi-CW pump
and pulsed pump. This figure assumes Pcav = 0.99Pth, γp = 2γ , and
γi = 1/8γ .

proposed method [45]. On the other hand, four-wave mixing
has a wider collection of materials as it does not require
noncentrosymmetric crystal structures. For four-wave mixing,
the pump field in Eq. (3) needs to be modified as

ε(ω) =
∫

dω′
√

γpcEp(ω − ω′)
−i(ω − ω′ − ω0) + γp

2

√
γpcEp(ω′)

−i(ω′ − ω0) + γp

2

.

(15)

Based on Hydex silica glass, single photons have been gen-
erated from nondegenerate four-wave mixing with pulsed
pumps [46]. This corresponds to the case that pump power
is far below the threshold [Fig. 6(a)]. The experimental result
matches our theoretical calculation well [47]. Recently, the
CW-squeezed light has also been achieved with photonic ring
cavities [48,49], which brightens the way toward integrated
pulsed squeezing generation.

V. CONCLUSION

In conclusion, we have proposed an approach to generating
pulsed squeezing with high temporal purity. The parametric
down-conversion in photonic cavities with a single pulsed
pump is analyzed based on the Bloch-Messiah decomposition.
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We show that near-unity effective mode number can be
obtained. A larger pump cavity linewidth as well as a larger
pump bandwidth are preferred to decrease the effective
mode number. As the dependence of the effective mode
number on pump cavity linewidth and pump bandwidth is
monotonic, no delicate balance between the pump power and
cavity linewidth is required, making the approach robust.
An additional benefit is the low pump threshold due to the
contribution from multiple frequency components, leading to
the high power efficiency of this approach. We further design
an easy method to realize optimum matching between the
local oscillator and output characteristic mode for maximum
squeezing measurement. The robustness, high efficiency, and

easy matching of the local oscillator make this approach
promising for large-scale quantum network and complex
quantum state generation.
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