PHYSICAL REVIEW RESEARCH 3, 013175 (2021)

Information geometric inequalities of chemical thermodynamics

Kohei Yoshimura

! and Sosuke Ito®!2

' Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0031, Japan
2JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

® (Received 17 May 2020; revised 5 November 2020; accepted 18 January 2021; published 23 February 2021)

We study a connection between chemical thermodynamics and information geometry. We clarify a relation
between the Gibbs free energy of an ideal dilute solution and an information geometric quantity called an
f divergence. From this relation, we derive information geometric inequalities that give a speed limit for
the changing rate of the Gibbs free energy and a general bound of chemical fluctuations. These information
geometric inequalities can be regarded as generalizations of the Cramér—Rao inequality for chemical reaction
networks described by rate equations, where un-normalized concentration distributions are of importance rather
than probability distributions. They hold true for damped oscillatory reaction networks and systems where the
total concentration is not conserved, so that the distribution cannot be normalized. We also formulate a trade-off
relation between speed and time on a manifold of concentration distribution by using the geometrical structure
induced by the f divergence. Our results apply to both closed and open chemical reaction networks; thus they
are widely useful for thermodynamic analysis of chemical systems from the viewpoint of information geometry.

DOLI: 10.1103/PhysRevResearch.3.013175

I. INTRODUCTION

The history of chemical thermodynamics originates around
the middle of the nineteenth century [1,2]. The chemical re-
action in an ideal dilute solution is one of the main subjects
in chemical thermodynamics. For example, the static nature
of an ideal dilute solution under near-equilibrium conditions
has been well studied since then. After the invention of an
area of mathematics called chemical reaction network theory
(CRNT) around the 1970s [3,4], its dynamic properties have
also been well investigated [5]. One of the most important
results of CRNT is that a class of chemical reaction networks
called a complex balanced network has a Lyapunov function,
which can be associated with thermodynamic quantities such
as the Gibbs free energy [3,6,7]. This Lyapunov function is
called the pseudo-Helmbholtz function, and its time derivative
is connected to the entropy production rate [8,9].

On the other hand, thermodynamics for stochastic pro-
cesses have been well studied as stochastic thermodynamics
[10-13]. In stochastic thermodynamics, physical quantities
are given by probabilities, and we can discuss relations
between thermodynamics and information theory [14-26] be-
cause probability plays a crucial role in information theory
[27]. For example, in recent years, stochastic thermodynamics
met a branch of information theory called information geom-
etry [28-34], and its importance has been verified in recent
studies of thermodynamic uncertainty relations [35-43]. An
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information geometric quantity called the Fisher informa-
tion gives several geometric bounds such as the Cramér-Rao
bound [27-29], and these bounds indicate thermodynamic
uncertainty relations in stochastic thermodynamics [33,44—
48].

Although the analogy between stochastic thermodynamics
and chemical thermodynamics has been studied [8,9,11,49—
57], connections between chemical thermodynamics and in-
formation theory are still vague because rate equations which
govern chemical reactions are based on un-normalized con-
centration distributions rather than probability distributions.
Nevertheless, a few research efforts have been conducted from
the perspective of a connection between chemical thermody-
namics and information theory [9,58], focusing on the fact
that the pseudo-Helmholtz function has a similar form to the
Kullback-Leibler divergence, which plays a fundamental role
in information theory.

In this paper, we clarify a connection between chemical
thermodynamics and information theory from the viewpoint
of information geometry. In information geometry, f diver-
gence is well studied as a measure of the difference between
two positive measures. The two positive measures do not have
to be necessarily normalized like probability distributions,
and the Kullback—Leibler divergence may not be well de-
fined for them. We show that the pseudo-Helmholtz function
is given not by the Kullback—Leibler divergence, but by an
f divergence. Because the pseudo-Helmholtz function is a
representative quantity of a chemical reaction system, this
connection reveals how an information geometric concept
plays a fundamental role in chemical thermodynamics. Intro-
ducing a generalization of the Fisher information from an f
divergence and an averagelike quantity which is more suit-
able to chemical reaction networks than the ordinary average,
we obtain a generalization of the Cramér—Rao inequality to
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CRNT. This generalized Cramér—Rao inequality indicates the
speed limit for the changing rate of the Gibbs free energy
in terms of the fluctuation of the chemical potential. We nu-
merically confirm the inequalities for a damped oscillatory
reaction network, specifically the Brusselator model [59], and
a system where the sum of concentrations is not conserved so
that the distribution cannot be normalized. We also examine
the geometry of concentration distributions. We formulate
trade-off relations between time and speed in terms of in-
formation geometry. The trade-off relations are numerically
illustrated by solving an association reaction.

This paper is organized as follows. In Sec. II, we
formulate chemical reaction networks and introduce the
pseudo-Helmholtz function. Section III extends the formula-
tion to open chemical reaction networks (CRNs). Section IV
is an introduction to information geometry of both probability
spaces and positive measure spaces. We discuss mathematical
properties of an f divergence and the connection between
the Fisher information and an f divergence. Section V gives
information geometric inequalities, which are the main results
of this paper. We show that the speed limits for the changing
rate of the Gibbs free energy and more general observables
are given by the intrinsic speed, the Fisher information, for
both closed and open cases. Also, we indicate that the speed
limit is regarded as a generalization of the Cramér—Rao in-
equality. In addition, we examine the geometrical structure of
concentrations and reveal trade-off relations between speed
and time. In Sec. VI, we confirm our main results through
three characteristic models of chemical reaction networks. A
conclusion and a further perspective of research are given in
Sec. VIL

II. THERMODYNAMICS OF CLOSED CHEMICAL
REACTION NETWORKS

A. Kinetics of chemical reaction networks

In this paper, we consider the thermodynamics of a di-
lute solution with the temperature and pressure kept constant.
Since the solvent is dominant, the volume is regarded as a
constant. In this chapter, we focus on closed systems.

We consider a CRN consisting of N species of molecules
{Xi}i=1.2...n in a closed vessel. A CRN is defined as a set of
M reactions

N o N
3
Z VipXi /f ZKipXis (1)
i=1 =1
where reactions are labeled with p = 1,2, ..., M, stoichio-

metric coefficients v;, and k;, are non-negative integers,
and k;t are rate constants. The reactions are assumed to be
reversible. In the closed CRN, the time evolution of X;’s
concentration [X;] is described by the following rate equation:

dXi] <
= = /;w,-p —Vip),, )

where J, is the reaction rate of the pth reaction. According
to the Waage—Guldberg law of mass action [60], the reaction
rate J, is given by

Jy=J5 — J,, 3)

p

with

—.

N
IE=kr [ [xae. gy =k [ )
i=1

i=1

where J: and J are the forward and reverse reaction rates,

respectively. Using the coefficients in Eq. (2), we define the

stoichiometric matrix of the CRN as a N x M matrix with

its (i, p) element S;, := «;, — v;,, Which corresponds to the

change in [X;] when one unit of the pth reaction proceeds.

The rate equation can be written briefly in vector notation as
d[X]

el SJ. ()

The rate equation (2) has a priori conserved quantities. If
£ € RY satisfies

S =0", (6)

ie., £ € ker ST = {v | STv = 0}, the time derivative of £ - [X]
is zero

d
XD = sy =o, )

where the superscript T means transposition. Thus £ - [X] is
conserved. We call a left null vector of a stoichiometric matrix
a conservation law. Note that a closed CRN has at least one
conservation law, corresponding to the conservation of the
total mass.

B. Equilibrium conditions

In thermodynamics, it is postulated that a closed system
relaxes to equilibrium, at which a certain free energy is min-
imized depending on the condition. In the present case, the
function to be minimized is the Gibbs free energy; thus the
equilibrium distribution [X]®! is defined as a distribution that
minimizes the Gibbs free energy.

Since the solution is supposed to be dilute, the Gibbs free
energy per unit volume G and the chemical potentials p; are
expressed as

N N
G =) wlX]—RT ) [X]+ Go, ®)
i=1 i=1
3G .
Wi = X1 = u;(T)+ RT In[X;], &)

where Gy is a constant, R is the gas constant, and u; are the
standard chemical potentials, which are independent of the
concentration [2,8,9]. It is plausible to call G the Gibbs free
energy because the volume does not change.

Possible values of the concentration are restricted because
the concentration changes obeying the rate equation. This can
be seen by integrating the rate equation. Let s, be the pth

column vector of the stoichiometric matrix, S = (s, ..., Su).
Then [X] at ¢ is obtained as
t
X] = [Xo + f drJ (10)
0

M t
=[Xlo+Y_ (/0 dt J,,>sp, (11)
p=1
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where [X]o is the initial concentration. Thus a change in
concentration [X] — [X]o must be a linear combination of
{So}p=12,..m- So a set of concentrations that [X] may reach
is given by

S([Xlo) == {[Xlo+ SE | E e RY}NRY,,  (12)

where RY, is the set of N-dimensional vectors with non-
negative elements. This set is called the stoichiometric
compatibility class [5], and £ is the extent of reaction.

A necessary condition for equilibrium can be obtained as
the derivative of the Gibbs free energy with respect to &,
vanishes for all p,

Za[X] G
agp £ 9E, o

l

= Z Sipii = [(n)'S], =
(13)

So the equilibrium distribution [X]®? satisfies

N
> (17 + RT In[X;]*)S;, = 0. (14)
i=1

Note that this means that the equilibrium chemical potential
n4is a conservation law.
On the other hand, the equilibrium state is often character-
ized by the detailed balance, which is based on kinetics,
+ _ —
Jy=J,. (15)

The consistency between the thermodynamic condition of
equilibrium (13) and this detailed balance condition leads to a

relation
kT ([LOTS)
£ _ = =0 16
- exp( - ) (16)

which is called the local detailed balance property. It can be
regarded as a bridge between thermodynamics and kinetics.

C. Gibbs free energy with divergence

From Eq. (13), u® is a conservation law; therefore p® -
[X] is time invariant

d
SR IXD) = (rH'SJ =0. (17)

So the Gibbs free energy at equilibrium G®*¢ can be expressed
as

N
G = p X —RT ) [XiI+ Gy (18)
i=1
N

= - [X] = RT ) _[XiI + Go (19)
i=1
for a concentration [X](# [X]°?) at an arbitrary time, namely,

in the same stoichiometric compatibility class as [X]®. As a
result, we obtain the expression

G—-G™

N N
— (@ — p) . [X] — RT Z[X,-] +RT Z[Xi]eq (20)

i=1 i=1

[X3]

f-divergence

D([X} [[[X]e9) = %

Rate equation

toichiometric
compatibility class

[X4]

FIG. 1. Schematic of a stoichiometric compatibility class and the
f divergence for N = 3. This f divergence gives the difference of the
Gibbs free energy (G — G*)/RT.

N
[Xi]

— RT X,]1n
by which a function is usually defined as

[X:]
(X1

— [Xi] + [X; ]eq> (1)

N

D(IXIIXI) := ) ([Xi] In

i=1

— X1+ [XJ@Q).
22)

This suggestive form has been known for more than a half
century, and D([X]||[X]®?) is called the pseudo-Helmholtz
function [3], Shear’s Lyapunov function [6,7], or the relative
entropy [9] (see Fig. 1). In terms of information geometry
[28], it is regarded as an f divergence of a positive measure
space. As we will see in Sec. IV, an f divergence is non-
negative and equal to zero if and only if the two arguments
coincide. Therefore G is greater than or equal to G®, and
G = G* only in equilibrium, [X] = [X]*.

It is also known that the Gibbs free energy of a closed
system never increases under the mass-action Kinetics; that is,
it is a Lyapunov function of a closed CRN. To show this fact,
we calculate the time derivative of the Gibbs free energy

dG d[X] T
L —p-——— =u'syJ. 23
il ekt (23)
From the local detailed balance property [Eq. (16)], 'S can
be transformed as
N
(1'S), = (1°TS), + RT In | J(xa1%
i=1
Kt T, X"
= —RTIn 2 H’N—‘
ko TTi Xl
+
= —RTIn-2. 24
n 7 (24)
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By substituting this into Eq. (23), we have

dG Jr
= —RT T —J)l i\ 0. 25
- Z( )In 7 (25)

The last inequality follows from the fact that the signs of
J; —J; and In(J;f/J) are always the same for all p. Since
dG/dt is negative unless the detailed balance is satisfied,
and G is always not less than G®l, hence G decreases to
G*®4 monotonically. Here, we point out two facts. First, the
left-hand side of the inequality in Eq. (25) coincides with
the opposite sign of the entropy production rate, which we
define in the next section. Thus the inequality expresses the
second law of thermodynamics. Second, the left-hand side is
also represented by the f divergence D between J© and J~

dG
= —RT[DUT|IJ7)+ DU IITH)]. (26)

D. Entropy production rate and affinity

We can formulate the second law of thermodynamics in a
CRN [9]. Here, we review a few important points. The entropy
production rate ¢ due to chemical reactions is given by

+
o_RZ(ﬁ I, )ln—. (27

p=1

So it coincides with —(1/T)dG/dt in closed CRNs. As we
explained in the preceding section, the entropy production rate
is always positive except for the equilibrium state, and that
indicates the second law of thermodynamics.

The affinity F, of a reaction is defined as follows [61]:

N N
F, = Z Viplti — ZKipMi = _(”'TS),D' (28)
i—1 i—1

The affinity corresponds to the energy difference between
the reactant and product of the pth reaction. From the local
detailed balance property [Eq. (16)], one can rewrite it as

J+
F, =RTIn 2. (29)
Ty
Thus the entropy production is expressed as the sum of the
product between the reaction rate and the affinity

M
To =Y JF, (30)

This expression shows that there is an analogy with stochastic
thermodynamics of master equations [62].

III. THERMODYNAMICS OF OPEN CHEMICAL
REACTION NETWORKS

We have already seen the connection between the Gibbs
free energy G and the f divergence D in closed CRNs. On
the other hand, in open CRNs, the Gibbs free energy is not
directly related to the f divergence, even in a CRN called a
complex balanced network where the f divergence becomes a
Lyapunov function. This is because the chemical potential at a
steady state is not a conservation law in general. However, we

can associate the Gibbs free energy with the f divergence. In
this section, we formulate open CRNs and associate the Gibbs
free energy with the f divergence in two ways: the method
already known and the one we newly propose, respectively.

A. Setup for open CRNs

Let {Y;};=12,.n be the chemical species that are ex-
changed with the environment and {X;};—; 2.y be the other
internal species. The former are assumed to be chemostatted;
that is, their concentrations are constant.

The CRN consisting of these species is expressed as

N N
D vipXi+ ) vk
i=1 j=1

- N N
k:i ZK,‘pX,' + Z K(N+j)pY_j. (€2))
°i=1 =1

The stoichiometric matrix S = (k;, — vip)os, ,{,Vfw can be
decomposed into N rows of X part and N’ rows of Y part

X
s=(&): (32)

WhereS?; = Kip — Vip (l = 1, 2, . ,N) andS}(p = K@(j+N)p —
vij+nyp (G=1,2,...,N’). Hereafter, for an N +N' row
quantity Q, let QX be the first N rows and QY be the re-
mainder as in the above case. Since the concentrations of the
chemostatted species are assumed to be constant, the dynam-
ics are expressed by the following rate equation:

dlZ] _ d ([X]\ _(SXJ
wea)=67) Gy
where [Z]" = (X" [Y]").J, =JF —J, and
N M
75 =1 [T Ty roee, (34)
i=1 =1
N jM
I =k [Tt [Try po. (35)

i=1 j=l1

A steady state is defined as a state at which the concentration
does not change in time, SXJ =0.
In open CRNS, £ - [Z] is not necessarily conserved even if
£ is a conservation law, i.e., £7S = 0" holds. Since we have
d
(12D = ()Y, (36)
£ - [Z] is conserved if £% belongs to ker(SX)T. Thus a conser-
vation law £ leads to a conserved quantity if £ is an element
of the linear space (ker(SX)" x RY") Nker ST =: Ly, where
x means the direct product between two linear spaces.

B. One way to associate G with D

One way to associate the Gibbs free energy with the f di-
vergence is to decompose a basis of the space of conservation
laws ker ST. This formalism is based on Rao and Esposito’s
paper [9]. It can be used only when the steady state is detailed
balanced.
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To construct the desired basis, we exploit the linear space
Lx. Let {ka}xle.z,...,/\x be a basis of Lx; then we obtain a
basis of ker ST by adding some vectors {(A‘Y } =12, Ay The
former vectors lead to quantities £ . [Z] that are conserved in
an open CRN. We call them X-conservation laws and the latter
XY-conservation laws. XY-conservation laws £* are usually
called broken laws because the remainder, X-conservation
laws, are always true conservation laws. However, since an
XY-conservation law might be a true conservation law, we do
not use the conventional terminology.

From the local detailed balance condition [Eq. (16)], we
have the following relation [see Eq. (24)]:

Jt
(u'S), = —RT In = (37)
‘]p
So if we suppose the steady state to be detailed balanced
J;“ = Jp‘, i.e., be an equilibrium, the chemical potential at
equilibrium ! becomes a conservation law. Then we can
expand it with the prepared basis as

Ay Axy
p ="l D 0 (38)

A=1 Ay=1
A function G is defined by

Axy

Gi:=G— ) fi, (2], (39)

Ay=1

which is called the transformed Gibbs free energy in Ref. [9].
From Eq. (8) and the expansion of u®? in Eq. (38), we see that

N+N'

G =Y ([Zilwi — RTIZ) + Gy

i=1

A
- (ueq AR PR AR [X]).

Ax=1

(40)

Since the concentrations of the chemostatted species are con-
stant, [Y ;] coincide with [Y;]°. Therefore we have

N
G = Y (IXil (i — 11{") = RT[X;]} + const (41)
i=1

—RT%) (XTI x4 1x00) + const
= a ; n@ ; ; const,

(42)

where we use the fact that RT[X]® is constant. Since the last
constant term is equal to G; at equilibrium, we write it as gj"*.
We finally obtain the following equation as in the closed CRN:

G = G;" + RTD(X]||[X]*). (43)

As shown in Ref. [9], G; gives a bound to the irreversible work
to manipulate nonequilibrium distributions. Its time derivative
also provides the nonadiabatic entropy production rate as we
will see later. The arbitrariness about the choice of the basis
yields only a constant term [51]. However, we note that it is
only defined for CRNs that relax to detailed balanced steady
states. Therefore, if one uses G, the number of systems that

can be examined with the f divergence, or in other words, the
relative entropy, would be limited.

C. Another way to associate G with D

We newly propose another way of association, which is
simpler and more widely applicable than the preceding one.
Letting [Z]*® be the concentration at a steady state and pu* =
(us 4+ RT In[Z;]*)i=1,.. n+n be the chemical potential, we
define

.....

Go:=G—nu”-[Z]. (44)

Since [Y] coincide with [Y;]* as in the detailed balanced
case, we have

N
Ga = Y (X — 1§°) — RT[X,]} + const (45)
i=1

N
= Y (Xl — 1) — RTIX;] + RT[X,1"} + G5
i=1

(46)

= G5’ + RTD(X]|I[XT™), (47
where G5° is G, at the steady state.

G, is defined for general steady states and coincides with

G up to a constant if the steady state is detailed balanced. In
fact,

Gr =G —p-[Z] (48)
Ax

=Gi— ) i1zl (49)
Ax=1

and £* - [Z] are constants, so G, — G; = const. Thus G, is a
generalization of G;; then we denote G, as G and call it the
transformed Gibbs free energy.

The transformed Gibbs free energy we introduce here can
be defined for open CRNs that do not satisfy detailed balance.
Not all CRNs have steady-state solutions, but our definition
in Eq. (44) enables us to study a much broader class of open
CRNss than the previous one in Eq. (39) does. G, also has the
merit that it removes the arbitrariness in the choice of the basis
as G;. For open CRNs with multiple steady states, one can
define the transformed Gibbs free energy by choosing a steady
state in Eq. (44). Remarkably, the following results hold re-
gardless of the choice of the steady state. We comment that
CRNs that do not have steady-state solutions are outside our
framework. They include open CRNS that sustain oscillations.

D. Entropy production rate and affinity

The entropy production rate o and the affinity F, of an
open CRN have the same form as those of a closed one. The
entropy production rate of an open CRN can be decomposed
into the adiabatic and nonadiabatic parts o, and o, [8,9],
which are defined as

0 = 0y + Opa, (50)

M +,s8
oA :=RZJpln#, (51)
p=1 L
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M + 7—.ss

J
Ona :=R§ JyIn 2L (52)
— Jodp
p=1 o

where J;E’“ are the reaction rates at the steady state. The
time derivative of the transformed Gibbs free energy gives
the minus sign of the nonadiabatic entropy production rate
dG/dt = —Toy,. If the steady state is detailed balanced, or
equivalently, J;*SS = J,* holds, dG/dt can be written by the
f divergence between the reaction rates as in the closed case

d
_d_f —RTIDUTIJ )+ DU DL (53)

IV. INFORMATION GEOMETRY

Information geometry deals with a manifold of probability
distributions p = (p;)i=12...N € ]R’;'O that satisfy the normal-
ization condition Zf\/: ,pi =1, or a manifold of positive
measures on a discrete set m = (m;)i—1 2. .N € R’;’o, which
does not have to be normalized [28]. The former manifold is
called a probability simplex, and the latter is called a positive
measure space. We use the term “distribution” for either a
probability distribution or a positive measure in this section.

A. f divergence

A divergence D(-||-) is a measure of the separation between
two distributions m and nr that satisfies the following condi-
tions [28]:

(i) D(m(ln) > 0;

(i) D(m|n) =0 <= m = n; and

N
(111) D(m|m + dm) = % Z g,-jdmidmj + O(dmz)’ and
i,j=1
the matrix (g;;) 1<, j<n 15 positive definite.

Note that a divergence is similar to a distance function but
itis not really a distance function because it is not symmetric:
D(m|n) # D(n|m).

One of the well-known divergences is the f divergence
[63], which has the following form:

N
n;
D(m|lm) = ;mf(m) (54)
The function f has to fulfill some conditions. For both kinds
of manifold, f should be a convex differentiable function
which satisfies f(1) = 0. If one chooses f(x) = —Inx, D be-
comes the Kullback—-Leibler divergence. For positive measure
spaces, the condition f'(1) = 0 is imposed additionally. f is
called a standard convex function when f”(1) = 1 holds.
The non-negativity of an f divergence is easily proved. Let
p and ¢ be probability distributions in a probability simplex.
From Jensen’s inequality, we have

N N
Zp,-f(%> > f(Zp,»fo) = f(1)=0. (55
i=1 ! i=1 !

Therefore an f divergence on a probability simplex is non-
negative and equal to zero if and only if p = q. On the other

hand, for a positive measure manifold, since f is convex
and f'(1) =0, f takes the minimum value 0 at x = 1. Thus
f is non-negative, and so is an f divergence since all the
coefficients of f are positive. An f divergence is zero if and
only if f(n;/m;) =0 for all i. This is equivalent to the two
distributions being the same.

B. Fisher information

Letting 6 be the parameter of distributions and D be a
divergence, the Fisher information Z(0) [28] is defined as

i dm; dm;
TO) = ) 8ij—p o (56)

i,j=1

d 0
gij = 77 —Dn|m) (57)

Bmi 3mj

n=m
In information geometry,

N
ds* := Y gijdmidm; ~ 2D(m|m +dm)  (58)

ij=1

is interpreted as the square of the line element between two
close distributions. If the distributions are parametrized by the
time ¢, the Fisher information becomes

N
dm; dm; dsz_
0=} &t =5 (59)

ij=1

so we define the intrinsic speed on the manifold ds/dt as

ds = I(t). (60)

dt

An f divergence with a standard convex function leads to
gij = mi’lé,- j» where §;; is Kronecker’s delta; then the Fisher
information always has the unique form

N

1 dm[ 2
I0)=>) %(Te) . 61)

i=1
A significant fact related to the Fisher information is the
Cramér—Rao inequality for a probability distribution p(6) [29]

Var(0) > (62)

1
Z®)’
where 0 isA an unbiased estimatog of 6 (that is, (§) =
va:] pi(0)0; = 6 holds) and Var(f) is the variance of 6,
(O = (0)a)")s-

V. INFORMATION GEOMETRY IN CHEMICAL
THERMODYNAMICS

A. Geometrical structure of chemical thermodynamics

A set of concentrations can be interpreted as a positive
measure space in both closed and open CRNs. The mea-
sures are concentrations [Z], and the measurable set is the
index set of species. This space is thought to have the
a priori f divergence, with its standard convex function
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f)=—Inx+x—1,

X/
D(X]|I[X]) = Z[X ]f<[ ])

= Z ([Xl-] n 5 x [Xf]>, (63)
&\ ) |

because G of a closed CRN and G of an open CRN are
described by the f divergence as

G = G + RTD([X]|I[X]*9) (64)
and
G = G* + RTD(IX]|I[XT*). (65)

Let us confirm that f is a standard convex function. It is obvi-
ously smooth, and it is convex because f”(x) = 1/x*> > 0. It
is readily seen that the values at x = 1 are f(1) = f'(1) =0
and f”(1) = 1. Hence f is a standard convex function.

As we pointed out in Sec. IV, a divergence gives a
geometrical structure to a manifold, namely, a metric g;;.
An f divergence always provides the metric of the form
gij = 6;ym; ! Therefore manifolds of concentration distribu-
tions are considered to be equipped with the metric g;; =
8ij[Xi17". The metric is given naturally with respect to only
internal species. This is because the concentrations of the
chemostatted species are kept constant and do not appear
in the divergence in Eq. (65). It is possible to extend the
metric as g;; = 8;;[Z;]7" fori, j € {1,2,...,N + N}, but we
just neglect the chemostatted species in this paper when we
consider the geometrical structure of CRNs. Hence we only
say here that the concentration distributions of closed and
open CRNs have completely the same metric g;; = §; J-[Xi]_l
where i, j € {1,2,...,N}.

Before stating our main results, we denote a few direct
consequences of the geometrical structure. First, the square
of the line element between the equilibrium concentration and
a concentration close to it is related to the Gibbs free energy.
If a concentration is close to equilibrium [X] = [X]® 4 §[X],
the Gibbs free energy is expressed as G = G* 4+ §G with a
small deviation §G. From Eq. (64), we obtain the expression
of the square of the line element ds*> = 2D([X]|I[X]%9) by the
Gibbs free energy

5 2
ds® = —68G. (66)

RT
So the Gibbs free energy difference corresponds to the square
of the distance from the equilibrium concentration under near-
equilibrium conditions. This is true for open CRNs; that is,
the fluctuation of the transformed Gibbs free energy from the
steady-state value §G corresponds to ds” between the steady
state and a concentration nearby ds> = (2/RT)8G. Note that
although the relations hold only under near-equilibrium or
near-steady-state conditions, our results in the following
sections apply to far-from-equilibrium systems except for

Eqgs. (74)-(76).

Second, we can consider the Fisher information of chemi-
cal reaction networks. Since the metric is §;;/[X;] for closed
and open CRNs and d[Y,]/dt = 0, the Fisher information

Z(t) is defined for both types of CRN as

Yoo rdixa?
I@t) = Z m(%) ) (67)
i=1

It is also represented as

M
1 dF,
()= —— —L. 68
@ RT lpdz (68)

We prove that this formula is true in both cases. Because
(d/dt)yIn[X;] = (1/RT)(dw;/dt), Z(t) is transformed as fol-
lows:

N
1 d[X;] du;
T4) = — el
@ RT; dr dt

Ly s, 70

zlpl

(69)

If the CRN is closed, that ends the proof since F,, = —(n'S) -
On the other hand, if it is open,

N+N' M

duz
I(t) = — Z > S (71)
i=1 p=1
M
1 dF,
= —— —J,, 72
RT £ dt r (72)

where we used the fact that the chemical potentials of the
chemostatted species do not change in time.

From the expression of the entropy production rate
[Eq. (27)], which is valid for closed and open CRNs, Eq. (68)
is also written as

ldo 1 -dJ,

It)=———+ — —L2F,. 73
() 2 T &T " (73)

Therefore the Fisher information is associated with the en-
tropy production rate with the additional term. Furthermore,
under near-equilibrium conditions, Z(¢) is directly given by
do /dt with an error of higher order in 8J. That is,

I(t) = _Ldo + 0(8J%) (74)
2R dt

is obtained. This is because the affinity is proportional to
the reaction rate under near-equilibrium conditions. It can
be proved as follows. J7 + can be decomposed into the equi-
librium values J; ¢ = Jp_ *4 =: J; and the fluctuations 8.JF
as Jr =J1 + SJj. Then the affinities are obtained as F, =
RTJ,/J5" + o(J,), where J, = 817 — 8J . So, we have

M
dJ Jy dJ,
Z a o= LRy (75)
p=1 p=1

M
1d T do
= 55(2%) =24 7®

By substituting this into Eq. (73), we obtain the equality in
Eq. (74).
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B. Speed limit on the Gibbs free energy

We describe the main result in this section as follows. We
state, discuss, and prove our assertion for closed CRNs. Then
we obtain the same result in subsystems and open CRNs.
This is because the discussion becomes concise without loss
of generality in closed CRNs. This method of description is
followed in the next section.

To state our main results, we define the concentration inte-

gral {-) of a quantity ¢ = (q1, q2, - - . ,qN)T as
N
=Y alXil (77)
i=1

A concentration integral coincides with an average if the
weight is normalized. It might be possible to use not the con-
centration but the normalized concentration [X;]/ Z?[:I[Xi]
or the mole fraction as the weight. However, usually neither
of them obeys any tractable differential equations such as the
rate equation. Since we would like to consider time evolution,
we use a concentration integral.

We further define the chemical variance of a chemical
potential {Au?) as

=

(AR™) = (=) =Y (i VX (78)

i=1

where (p — p®9)* means the vector [(u; — ;) izt 2, v It
is a variancelike quantity but differs from a variance in two
aspects. One is that the weight is not normalized; namely, it is
defined by the concentration integral. The other is that what is
subtracted from the chemical potential p is not an average but
the equilibrium chemical potential p®d.

One of our main results is the fact that the time derivative
of the Gibbs free energy is bounded above by the product
between the Fisher information and the chemical variance of a
chemical potential. First, for closed CRNs, it is the inequality

’ VIOV (Ap2), (719)

where |-| means the absolute value. This inequality gives an
upper bound of the speed at which the Gibbs free energy
decreases with the information geometric quantity, the Fisher
information Z(¢). The inequality is rewritten equivalently as

1 (dG ,
I(t)( )S«Aﬂ ), (80

which is similar to the Cramér—Rao inequality [Eq. (62)]. We
define a function of a quantity ¢, a reference value g, and the
time ¢ as

v(t, 9) == VIV (g —)?), 1)

where (q — ¢7)2 = [(g; — q,')z]i:hz.___,N; then Eq. (79) can be

rewritten as

dG .
‘E‘ < vult, 1), (82)

The proof of Eq. (79) is straightforward. From Eq. (64), we
have

(83)

e 5
=3 ), (84)

then, using the Cauchy—Schwarz inequality, the inequality is
obtained as follows:

dG N d[X]
ar| Z = ar Y Xl = 1) (85)
YO rapx\e | & 2
< ;m( dr ) Z[Xi](,ui—,bbi ). (86)

i=1

Here, we do not use any approximation or assumption of near-
equilibrium; thus the speed limit holds far from equilibrium.

The above discussion can be extended to subsystems. If
we are concerned with some specific species S = {X;}iea, C
{Xi, X5, ..., Xy}, where Ag is the index set of S, we can
define the partial Gibbs free energy Gy as

Gs _RTZ<[X]1 [;]gq

i€As

[Xi]+ [X; ]eq> 87)

The inequality in Eq. (79) also holds for this partial Gibbs free
energy

dG
< VIOV(ARD)s =t vus(e, p*),  (88)
where
1 [X;]
Ts(t) := < > , (89)
ZA [Xi]
s = (i — Y IX. (90)

i€Ag

The partial Gibbs free energy can show nontrivial behavior,
e.g., oscillation, even in a closed CRN, while the Gibbs free
energy of a total system decreases monotonically. Hence this
bound [Eq. (88)] also becomes a nontrivial one. The proof is
almost the same as that of Eq. (79).

Furthermore, the speed limit obtains in even open CRNs
for the transformed Gibbs free energy G. The time derivative
of G is bounded above as the Gibbs free energy of closed
systems was by the Fisher information and the deviation of
chemical potential

dg
T < Vs (O (e — 1) Ds,, oD
where Sx = {X;,..., Xy} and (u — p*)?> is the vector

[(u; — /Lf»s)z],-zl,z _____ ~an- Since the transformed Gibbs free
energy is given by the f divergence, one can prove the in-
equality in Eq. (91) easily. This inequality obtains in any open
CRN which has a steady-state solution.
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We comment on the experimental importance of the speed
limit. The inequality in Eq. (79) can be written as follows:

1 ‘E < é 92)
J&ap2ylde | = ar

The denominator of the left-hand side is seen as the entire
driving force of the CRN, and the numerator is the corre-
sponding changing rate. Thus the ratio itself can be interpreted
as something like the transport coefficient in the linear re-
sponse theory. The inequality in Eq. (92) shows that it is
suppressed by the intrinsic speed on the stoichiometric com-
patibility class ds/dt. Hence, if ds/dt of a CRN is small,
we can see that the CRN responds weakly to a change in
chemical potentials. Since the intrinsic speed ds/dt needs
only the current concentration and the concentration’s time
derivative, it is experimentally obtained more easily than the
transport-coefficient-like quantity that needs a standard chem-
ical potential or equilibrium concentration. In addition, it is
remarkable that the information geometric speed ds/dt can
be defined and considered in CRNs with multistability and
sustained oscillation, though these systems are out of the
range of our study.

C. Generalized Cramér-Rao inequality for chemical reaction
networks

We consider the result in the previous section further. If we
use the original definition of the Gibbs free energy [Eq. (8)],
the time derivative of G is given by

N
dG d[X;]
— = — Wi, 93
dt = dt ” ©3)
while in Eq. (84) there is an additional term

— Z?’:I(d[Xi]/dt)/qu. This is because p® satisfies Eq. (13)
and thus is orthogonal to d[X]/dt = SJ. Hence it is crucial
for the speed limit [Eq. (79)] that u®! is a conservation law.
This suggests that we can make use of conservation laws to
evaluate the time derivative of a concentration integral.

For example, letting g be a conservation law, we can add
0 = —q - (d[X]/dt) to the time derivative of {(q))

d d[X] d[X]

E«Q» =q Te

Then, we obtain the following inequality in the same way as
the proof of Eq. (79):

d
E((q»‘ SVIOVLG — ) = v, D), 95)

or equivalently,

(94)

=@—q9-

1
@)
We may call this inequality the generalized Cramér—Rao in-
equality for CRNs. Equation (95) reveals the fact that the
Fisher information acts as a speed limit not only on the Gibbs
free energy but also on general quantities.
We can construct the g (=: g™") that minimizes v, (¢, -).
We introduce a diagonal matrix X

Xij = 6;[Xil; o7

d 2
(E«"») < (g —q)*). (96)

X1/2q

[Xs] ]

< X1/2 qmin

>

ker ST

’f
‘f
(4

Stoichiometric
compatibility class

FIG. 2. Geometric picture of ¢ and other quantities appearing in
Sec. VC for N = 3. g™", which makes the right-hand sides of the
inequalities in Eqgs. (95) and (96) smallest, is obtained as a projection
of g onto ker ST, which is perpendicular to the stoichiometric com-
patibility class. It is not the orthogonal projection in the Euclidean
space. Instead, X'/?q is orthogonally projected to X!/2g™.

then we can rewrite (g — g)*)) as

N
Y (g — @)Xl = X' (qg — @)II? (98)
i=1

= IX"2q = X'2q1%, (99
where ||| is the Euclidean norm. Since the linear space that

X!/2g belongs to is

X2 ker ST := {X'/?¢ | € € ker ST}, (100)

we see that Eq. (99) is smallest when X!/2g is the orthogonal
projection of X'/2q onto X'/2ker ST (see Fig. 2). There-

.....

X!/2ker ST, g™" is given by

A
qmil’l — X—l/2 Z(Xl/ZzA . Xl/zq)xl/;e)u (101)

A=1

[(€%) Xq]€".

M>

(102)

>
Il

1
These results can be restricted to subsystems as in Eq. (88).

For a subset of species S, we have

< Vs, q) (103)

= VIs) [Y (g — @RIl (104)
ieAg

The right-hand side is minimized when g; = q;‘““ for all i €
Ag.
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Under near- equilibrium conditions, it can be proved that
19 coincides with ™" within an error of second order of the
deviation A[X] := [X] — [X]®. For any £ € ker ST,

X' — ped)) - X2

_RTZX]in[X]eq ;

(105)

(106)

= RT Z E([Xi] = [X1%) + O(ALX])
i=1

(107)

= RT AL - [X]) + O(A[X]?), (108)
and £ - [X] does not change in time; therefore X'/2(u — p°9)
is approximately orthogonal to X'/?ker ST. This means that
X2 is orthogonally projected to X'/2u®d e X'/?ker ST;
therefore we see that p® ~ ™" Then the speed limit
[Eq. (79)] is the tightest Cramér—Rao bound under near-
equilibrium conditions with an error of second order of the
concentration deviation.

Finally, let us extend the results to open CRNs. For a
quantity ¢ € RV a speed limit on the change in (gq)) is
given by

(109)

because d[Y;]/dt = 0. Thus it is bounded by quantities re-
lated to the 1nternal species

— q»‘ S Vs (O (g — 9,

where g is an element of ker(SX)T x RY". The generalized
Cramér—Rao bound for an open CRN is also obtained as

1 (d, \° - -
0 (E«q») < (@ =) ) s«

(110)

(111)

D. Geometry of stoichiometric compatibility class

In addition to the above results, we consider an information
geometric aspect of stoichiometric compatibility classes. Both
closed and open CRNs are considered in the same notation
because the chemostatted species do not affect the geomet-
rical structure. A concentration distribution is confined to
a stoichiometric compatibility class. We can consider this
confinement to be a consequence of constraints 2 [X] =
L*(const), besides the discussion in Sec. II. This is reminis-
cent of the situation of probability distributions where they are
restricted by the normalization condition ), p; = 1. In fact,
this constraint is a key to deduce basic results in information
geometry, such as Cencov’s theorem [28,64]. On the other
hand, the more generic restrictions of chemical reactions need
a nontrivial extension of information geometry.

We indicate an information geometric characterization
of stoichiometric compatibility classes. Let r; := /[X;] and

a} := /L*/|€*|. Note that L* can be always non-negative by
choosing £* properly. Then the metric with respect to r; is the

Euclidean because
N

ds* = Z [—d[X] = Z(Zdrl

If L* # 0, the constraint on concentration distributions be-
comes

(112)

N 2

af i
> senh)( =) =1 (113)
, a;
i=1 i
which is an equation of a quadric surface, such as an ellipsoid
or a hyperboloid. If L* = 0, the constraint represents a cone
that contains the origin [X] = 0 as a specific case of quadric
surfaces. This consideration shows that the stoichiometric
compatibility class can be considered as the intersection be-
tween such quadric surfaces and the positive orthant.

We also consider the geometry of reaction dynamics on a
stoichiometric compatibility class. The length £ of the path
between the concentration at r = 0, [X],—o, and that at r = 1,
[X];=:, is defined as

Yoo fdixi
E—/ —dt / ;ﬁ( dt)dt (114)

From the speed limit on the Gibbs free energy [Eq. (79)], the
transport-coefficient-like quantity gives a lower bound to £

1 dG
[,2/ —‘—dt. (115)
o V{ap2)ldt
Moreover, applying the Cauchy—Schwarz inequality to £, we
obtain the inequality

£ < 27C, (116)

where C is called the thermodynamic cost and is defined as

1 T
C .= 5/0 dtZ(1).

Here, 1/2 is a conventional coefficient like the 1/2 in the
action of a free particle in analytical mechanics. As shown
in Sec. VA, under near-equilibrium conditions, the Fisher
information of a closed CRN is expressed as

(117)

1 do
I(t) = ——— + o( A[X]?);

11
2R dt (118)

thus its integral is

T — J—
f arzy= JU=0=0C=0 L Axp).
0 2R

Since this quantity has the same dimension as reaction rates
J, and d[X;]/dt, it may represent how fast the system relaxes
in the time interval t even far from equilibrium. Hence we can
interpret C as the mean relaxation rate. Then, we have a more
informative expression of the inequality in Eq. (116),

EZ
> —.
25

(119)

(120)
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It shows a trade-off relation between time and the mean re-
laxation rate in CRNs. One might think that £ and C have
the same information because they differ just by the powers
of integrands except for the coefficients. However, we cannot
derive such a connection between £ and the entropy produc-
tion rate, so the two quantities represent different aspects of a
system.

Apart from the dynamics, one can define the shortest dis-
tance between two distributions [X] and [X'] in the same
stoichiometric compatibility class as

T ds R A
D= inf/ —p =inf/ Z-(-”) di, (121)
vy Jo dt Yy Jo P Vi dt

where the infimum is taken over the paths of concentra-
tion distribution that satisfy the initial and final conditions
and are contained in the same stoichiometric compatibility
class as [X] and [X'], namely, {y : [0, ] — S(X]) | y(0) =
[X], y(r) = [X']}. Since the shortest distance always serves
as a lower bound of the length £, another trade-off relation
obtains

D2
> —.

T
Although this inequality is a weaker bound than Eq. (120), it
gives a lower bound to the mean relaxation rate C > D?/2r,

which needs only information of the time interval and the
initial and final distributions.

(122)

VI. EXAMPLES

Through three examples of CRNs, we check our results: the
speed limits [Eqgs. (79) and (88)], the generalized Cramér—Rao
inequality [Eq. (95)], and the trade-off relations [Eqgs. (120)
and (122)].

A. Speed limit in damped Brusselator

The first example is the Brusselator [59,65], which is a
notable model of oscillating reactions such as the Belousov—
Zhabotinsky reaction. We consider the following CRN:

A =X,
2X+Y = 3X,
X+B=Y+A.

(123)

Then the concentrations obey the rate equations below:

d[X]
dt
d[Y]
dr
d[A]
dr
d[B]
dr

=J1 -/,

=—Jh +J,
(124)

=—-Ji + 4,
= —J,
where

Ty = kAl — & [X], (125)

Concentration
—
N A N 0 o

(=]
L

10 20 30 40 50 60
Time

(=]

FIG. 3. The time evolutions of X’s and Y’s concentrations ob-
tained by integrating Eq. (124) with the parameters ki =1 x
1073,k =k =k, =1L kf =1x 1072, ky =1 x 1074, [X]p =
1, [Y]o =6, and [A]p = [B]p = 1 x 103. They oscillate and then
relax to equilibrium.

Jr = KIXPIY] - k5 [XP, (126)

J3 = ki [X1[B] — k3 [YI[A] (127)

In a usual Brusselator model, the change in two species, X
and Y, is of interest, so the others are assumed to be constant
because of the abundance. On the other hand, because we
consider the system to be closed, we do not set [A] and [B]
constant, but sufficiently large to observe the damped oscilla-
tion of [X] and [Y].

While the Brusselator exhibits a damped oscillation of con-
centration as in Fig. 3, |dG/dt| is suppressed by v, (t, u°) as
shown in Fig. 4. The speed limit [Eq. (79)] is verified for the
damped oscillatory CRN. Also the inequality for the partial
Gibbs free energy [Eq. (88)] can be confirmed. Focusing on
S = {X, Y}, we show its appearance in Fig. 5.

There are situations where two curves are close, i.e., the
inequality is tight. That occurs when the chemical potential
changes exponentially. Because we used the Cauchy—Schwarz

4
10 Vi1, )
dG
. 10° dt
£
H
@ 10?
o
=]
[8a)]
10"
10° . . . . .
0 10 20 30 40 50 60

Time

FIG. 4. The speed limit [Eq. (79)] with respect to the reaction
system (123). The speed of the Gibbs free energy change cannot
exceed v, (f, u°9).
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10°]
Vu,S(t»p‘eq)
10 ___|d4Gs
g 10! @
5
é 10°]
qd) 18
S107] Yfr
. V
107 . . . . .
0 10 20 30 40 50 60

Time

FIG. 5. The speed limit [Eq. (88)] for a subset S = {X, Y}. The
speed of the partial Gibbs free energy change also does not exceed
the corresponding function vy, g(¢, p°4).

inequality to prove the speed limit in Eq. (86), equality holds
when there exists a constant « such that for all i,

L dXd ay/[Xil (i — i%).

128
VIXi] dt (129
This is equivalent to
d eq ’ eq
o (i =) = o (i = 1), (129)

where o' = RT«. Thus the equality holds when the devia-
tion of the chemical potential w; — ufq is proportional to the
exponential function e*’. If the constant o’ is negative, this
condition means an exponential decay to equilibrium. Under
near-equilibrium conditions, the system is assumed to relax to
equilibrium exponentially. Hence p® should be the minimizer
of the speed limit. We proved that p® ~ g™" under near-
equilibrium conditions in Sec. V C. Therefore the equality
condition is consistent with the previous discussion.

B. Generalized Cramér—Rao inequality in a model where the
total concentration does not conserve

We confirm the validity of the generalized Cramér—Rao
inequality [Eq. (95)] furthermore by observing the following
CRN:

2A = B,

(130)
A+B=B+C.
This CRN is simple but sufficient to break the conservation of
total concentration as shown in Fig. 6. Note that the preceding
Brusselator model looks complicated but preserves the total
concentration, [X] + [Y] 4+ [A] + [B]; thus the concentration
can be normalized by dividing this constant.
The stoichiometric matrix is

-2 -1

S=11 0o 1,
0 1

(131)

1.0+

~.al
..
~

-
.-
.-
-

0.8-

—ar N
0.64 [B]
— ]
- [A] + [B] + [C]

0.4-

Concentration

0.2
0.0-
1072 107! 10° 10" 10°
Time

FIG. 6. The time evolution of the concentrations in the CRN in
Eq. (130) calculated with the parameters ki =k; = kf =1, k; =
1 x 1073, [Alp = 1, and [B]y = [C]y = 1 x 1073. The total concen-
tration [A] + [B] + [C] (dashed line) is not constant.

so that the conservation law is only

1
e=|2 (132)
1

up to a scale factor. Therefore [A] + 2[B] + [C] =: L be-
comes a constant instead of the total concentration.
If wesetq = (1,1, 1), (gq) is the total concentration

() = [A]+[B] +[C]. (133)
The projection g™" is given by
D L
" = g = 6 (34

C4™Xe  [Al+4[B]+IC]

where a denominator £' X¢ appears, unlike in Eq. (102), be-
cause X'/2¢ is not a unit vector here. Then the change in the
total concentration is bounded as in Fig. 7. To compare with
the tightest bound v,(7, g™"), the bound given by the trivial
conservation law g = 0, v,(z, 0), is presented together.

10*

—-—= vq(2,0)
10 vq(?, Gmin)
d{qy

10°4—

1072

1074

10°° : : :
1072 107! 10° 10! 10°
Time

FIG. 7. Bounds on the changing rate of the total concentration
{q). The bound given by g™" is much tighter than that given by

qg=0.
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3.04

[\S)
()]
|
=

[\S)
o &
=

Concentration
— —_
S

o
W

0.0 4

0.2 04 0.6 0.8
Time
FIG. 8. The time evolution of the concentrations in the associ-

ation reaction. The parameters are set to k™ =k~ =1, [A]gp = 2.9,
and [B]y = 0.05.

C. Trade-off relations on stoichiometric compatibility class

We illustrate our discussion in Sec. V D by considering the
following association reaction:

2A = B. (135)

For this CRN, shown in Fig. 8, we can obtain the distance
D analytically. We denote the conserved quantity [A] 4 2[B]
as L. For new variables r; = 24/[A] and r, = 2./[B], we can
write the metric and the constraint as

ds® = (dr)> + (dr,)?, (136)
(_) . (_) 1 137
2L V2L)

Because this constraint represents an elliptic, the
coordinate can be parametrized by a parameter 6
as(r,ra)izo = (2¥/Lcos6y, V2Lsin6)),  (ri, )= =
(24/L cos 65, /2L sin ). Then the distance is obtained as

D /Ozde dry 2+ dr\?
| do do

(138)
92 1
=2JL f do,[1— 3 cos2 6 (139)
0,
_ 2~/Z’E<92; L) —E<91; i) . (40
V2 V2

where E(x; k) := f; dO~/1 — k? cos? 0 is the incomplete el-
liptic integral of the second kind.

We introduce the following notation to check the trade-off
relation for time 7 and time interval t:

t+7 dS
L.(t) = dt' —, 141
(1) / o (141)
1 t+7
C.(t) == E/ dt'Z(t), (142)
t
+t ds
D,(t) := inf dt'—, 143
() II;/[ ar (143)

0.1004
0.0951
0.0904
0.085- — 7=0.1
. 2
0.080. L (t)"/2C(t)
D-(t)*/2C,(t)
0.0 02 0.4 0.6 08

FIG. 9. The trade-off relations in Eqs. (120) and (122) are veri-
fied for the CRN in Eq. (135). For fixed T = 0.1, £2/2C; and D?/2C,
give a lower bound. Because the concentration change is monotonic,
L. and D, give the same bound.

where the infimum is taken over p’s that satisfy y(¢) = [X],
and y(t + 7) = [X],+. and are contained in the same stoichio-
metric compatibility class as [X],. For the fixed time interval
7 = 0.1, the trade-off relations are shown in Fig. 9. Since
the relaxation is monotonic, the length £ and the distance D
should coincide with each other. In Fig. 9, £.(¢)*/2C.(¢) and
D, ()? /2C. () are actually the same.

VII. CONCLUSION

We have studied thermodynamics of chemical reaction net-
works in terms of information geometry. We have revealed
that geometrical structure and the Fisher information can be
obtained in CRNs by using information geometry. Then we
have derived speed limits in CRNs, e.g., Egs. (79), (91), and
(95). Our results are not restricted to near-equilibrium condi-
tions but hold even if the CRN is open or far from equilibrium.
This broad range of application shows the universality of the
speed limit. It has been shown that the speed limit can be
interpreted as a generalization of the Cramér—Rao inequality
[Eq. (96)] outside probability spaces. These results are mainly
based on the form of the Gibbs free energy that includes the
f divergence D([X]||[X]®?) and the conservation quantities
dwelling in a CRN. We have further obtained a trade-off rela-
tion [Eq. (120)] between time and speed in CRNs examining
the geometry of stoichiometric compatibility classes.

Our study provides a new perspective on chemical ther-
modynamics in terms of information geometry. It offers a
framework to analyze the thermodynamic profile of biological
systems. The use of information geometric measures such as
the intrinsic speed ds/dt or the length of reactions £ would
bring a new perspective to informatic aspects of biology. Our
results can be used if one can obtain the concentration distri-
bution, so the range of application would be wide.

There is a more theoretical question. Though the informa-
tion geometry of chemical thermodynamics is brought by the
f divergence, one can ask whether there are more fundamental
reasons why information geometry is applicable to CRNs.
CRNs are just a kind of dynamical system and have nothing
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to do with probability in its formulation. However, the fact
that they can be studied by using information geometry, which
is usually useful in probability theory, would be a clue to
investigate the link between various dynamical systems in
nature and information.
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