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Inferring linear dependence between time series is central to our understanding of natural and artificial
systems. Unfortunately, the hypothesis tests that are used to determine statistically significant directed or
multivariate relationships from time-series data often yield spurious associations (Type I errors) or omit causal
relationships (Type II errors). This is due to the autocorrelation present in the analyzed time series—a property
that is ubiquitous across diverse applications, from brain dynamics to climate change. Here we show that, for
limited data, this issue cannot be mediated by fitting a time-series model alone (e.g., in Granger causality
or prewhitening approaches), and instead that the degrees of freedom in statistical tests should be altered to
account for the effective sample size induced by cross-correlations in the observations. This insight enabled
us to derive modified hypothesis tests for any multivariate correlation-based measures of linear dependence
between covariance-stationary time series, including Granger causality and mutual information with Gaussian
marginals. We use both numerical simulations (generated by autoregressive models and digital filtering) as well
as recorded fMRI-neuroimaging data to show that our tests are unbiased for a variety of stationary time series.
Our experiments demonstrate that the commonly used F - and yx2-tests can induce significant false-positive rates
of up to 100% for both measures, with and without prewhitening of the signals. These findings suggest that many
dependencies reported in the scientific literature may have been, and may continue to be, spuriously reported or

missed if modified hypothesis tests are not used when analyzing time series.
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I. INTRODUCTION

Linear dependence measures such as Pearson correlation,
canonical correlation analysis, and Granger causality are used
in a broad range of scientific domains to investigate the
complex relationships in both natural and artificial processes.
Despite their widespread use, concerns have been raised about
the hypothesis tests typically used to assess the statistical
significance of such measures from time series [1-6]. Specif-
ically, the presence of autocorrelation in a signal—one of two
defining properties of a stationary time series [7,8]—has been
known to bias statistics since the beginning of time-series
analysis [9]. If left unaccounted, this bias yields a greater
number of both spurious correlations and missed causalities
(Type I and Type II errors) due to size and power distor-
tions of the hypothesis tests. With the recent findings [1-6]
suggesting that existing techniques do not adequately address
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autocorrelation, the accuracy of many reported results across
the empirical sciences may be called into question.

The notion that autocorrelation affects the sampling distri-
bution of time-series properties has a long history in statistics,
with research often focusing on the relationship between two
univariate processes. Seminal work by Bartlett [10,11] re-
vealed that autocorrelation can distort the degrees of freedom
available to compute statistics such as Pearson correlation
coefficients. In practical terms, this induces an “effective sam-
ple size,” where the effective number of independent samples
used in computing an estimate is different to the actual length
of the dataset. Two opposing strategies have been proposed
for handling autocorrelation: remove the autoregressive (AR)
components of the time series before computing statistics, or
modify the hypothesis tests that assess the distorted measure-
ments. The former approach, known as prewhitening, involves
filtering the time series in order to render the residuals seri-
ally independent [12]. Prewhitening is known to have many
issues, such as reducing the size and power properties of
hypothesis tests both in theory [13] and in practice, with
simulated [14] and recorded [15,16] time-series data in a
variety of domains. In contrast, the notion of modifying hy-
pothesis tests remains relatively underused in practice, more
often found in applications involving short time series and
high autocorrelation, where the statistical bias of measures
is most pronouced (with or without prewhitening), e.g., in
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fMRI-based neuroimaging [1,2,17], as well as environmen-
tal and ecological studies [18,19]. Indeed, it was not until
recently that the efficacy of a modified z-test for correlation
analysis was demonstrated successfully on fMRI signals [2],
which have been widely characterized using correlation coef-
ficients [20]. Nevertheless, the theory of autocorrelation on
the undirected relationship between bivariate time series is
now well developed. However, the extension of this theory
to multiple time series, and to directed relationships, remains
incomplete.

Motivated to study directed dependencies in economics,
Granger [21] introduced a measure of causal influence be-
tween AR models nearly 60 years ago. Since then, it
has become exceedingly popular, exemplified by more than
100 000 works indexed by Google Scholar that contain the
phrase “Granger causality” (as of June 2020). This impact
is reflected in the measure’s ubiquity in the scientific com-
munity beyond its origins in econometrics, generating highly
influential results on phenomena ranging from brain dynamics
[22-24] to climate change [25,26] and political relationships
[27,28]. Granger causality controls for the confounding past
of a process through linear regression, building statistics and
hypothesis tests via residuals rather than the original pro-
cess. However, researchers are becoming aware that certain
preprocessing techniques that increase autocorrelation, such
as filtering, raise the false-positive rate (FPR) of Granger
causality tests when using the well-established x2- and F-
distributions [3-5]. Even though these empirical studies have
demonstrated that established Granger causality tests have
distorted size and power properties (exhibiting Type I and II
errors), it has remained unclear as to why and how to correct
them. In this paper, we illustrate that these errors are due to
an inflated variance of the null distribution as a function of
autocorrelation remaining in the residuals, in the same way
that bivariate correlation is affected.

In order to unify Bartlett’s earlier investigations on corre-
lation coefficients (under autocorrelation) with more complex
measures such as Granger causality, we must expand the for-
mer body of work to account for multivariate relationships.
One such multivariate generalization of Pearson correlation
is referred to as Wilks’ criterion [29], which quantifies the
relationship between multiple sets of variables, and is A-
distributed for independent observations [30]. In particular,
we are interested in a special case of Wilks’ criterion popu-
larized by Hotelling [31] that focuses on two sets of variables,
referred to as canonical correlation analysis. It was later es-
tablished that, like Pearson correlation, estimates of canonical
correlations are inefficient under autocorrelation [6], introduc-
ing Type I and II errors under hypothesis tests that assume
independence (such as the A-distribution). Instead of deriv-
ing hypothesis tests directly for Wilks’ criterion or canonical
correlations, here we use the equivalent information-theoretic
formulation.

Information theory’s general applicability arises in sim-
ply requiring a probability distribution that can be either
parametric or nonparametric [32,33]. When this probability
distribution is modeled as a multivariate Gaussian, canonical
correlation analysis and information theory overlap because
mutual information can be decomposed into sums involv-
ing canonical variables [34]. Moreover, Granger causality

is now understood as a special case of conditional mutual
information, known as transfer entropy [35-37]. While this
unification provides an elegant perspective, there remains a
clear divide between the theoretical foundations of Bartlett
(and others [38—40]) and the large family of multivariate linear
dependence measures that information theory provides.

In this work we bridge this gap by leveraging the con-
cept of the effective sample size to derive hypothesis tests
for any correlation-based measure of linear dependence be-
tween covariance-stationary time series. This comprises a
large family of well-known statistics based on ratios of gen-
eralized variance—such as Granger causality and mutual
information—that we introduce in Sec. II. To achieve this, we
first provide the one-tailed and two-tailed tests for the sample
partial correlations between two univariate processes under
autocorrelation in Sec. III. Although this result is important
in its own right, in this work we primarily leverage it to
construct the tests for more advanced inference procedures
with multivariate and directed models of observed dynamics.
Following this, we introduce the modified A-test (in Sec. IV),
which we show is suitable for assessing the significance of
any linear dependence measure that can be expressed as a
ratio of generalized variances. Specifically, in Sec. V we use
the two-tailed test to derive hypothesis tests for conditional
mutual information estimates between bivariate time-series
data. We then use the chain rule for mutual information to ex-
tend this result to multivariate time-series data. Finally, since
Granger causality can be expressed as a conditional mutual
information, in Sec. VI we extend our results further to derive
Granger causality tests for both bivariate and multivariate
time-series datasets. More broadly, the modified A-test can
be used for any measure that can be expressed in terms of
conditional mutual information (or, equivalently, Wilks’ cri-
terion or partial correlation), e.g., canonical correlations and
partial autocorrelation [7,8] or information-theoretic measures
(for linear-Gaussian processes) such as predictive information
[41,42] and active information storage [43].

Using numerical simulations throughout Sec. VII, we
validate the modified A-test and characterize the effect of
autocorrelation on both the x2- and F-test. Our experiments
involve generating samples from two first-order independent
AR models and iteratively filtering the output signal such
that the autocorrelation is increased for both time series; this
simulates empirical analysis in practice, and allows for the
process parameters to be modified while ensuring that the
null hypothesis (of no interprocess dependence) is not vio-
lated. We perform these experiments for mutual information
and Granger causality in their unconditional, conditional, and
multivariate forms. Our results generally agree with the hy-
potheses that the FPR of F- and x>-tests can be inflated by
either increasing the autocorrelation (through filtering) or, for
the y2-test, the number of conditionals (through increasing
the dimension of mutual information or the history length of
Granger causality). These experiments mirror empirical appli-
cations where digital filtering is often used in preprocessing
for many purposes, such as handling nonstationary effects,
which inadvertently increases autocorrelation and therefore
the FPRs of unmodified tests. Given minimally sufficient
effective samples, however, we confirm that the modified A-
tests remain unbiased for all scenarios. We thus show that, in
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contrast, the size (Type I errors) and power (Type II errors) of
F-or x>-tests are arbitrarily low for a large class of multivari-
ate linear dependence measures (approximately zero in certain
instances) and overwhelmingly depends on the parameters of
the underlying independent processes. We further demonstrate
that the common approach of prewhitening a signal (in order
to remove the effect of autocorrelation) does not suffice to
control the FPR in almost all cases. Finally, by using a well-
known brain-imaging dataset from the Human Connectome
Project [44], we verify that our previous numerical simula-
tions yield comparable results to experiments on commonly
used datasets. For these experiments, the ¥ 2-tests of mutual
information and Granger causality yield concerningly high
FPRs of over 80% and 65% for a nominal significance of
5%—a 16- and a 13-fold increase—whereas our exact tests
maintain the ideal FPR for all experiments. Open-source
MATLAB code is made available to allow users to perform
correct hypothesis testing for all dependence measures, as
well as the above experiments, at Ref. [45].

Our theoretical and empirical findings suggest that this
work presents the first statistically sound approach for test-
ing the linear dependence between multivariate time-series
data. Given that approaches such as prewhitening and Granger
causality are specifically designed to account for autocorre-
lation, we conjecture that autocorrelation-induced statistical
errors caused by F- or x>-tests (and others) may be even
more prevalent in prior publications than previously suggested
by several authors [1,3,4]. In particular, our case study of
brain-imaging data is concerning, because the neuroscience
community employs techniques such as correlation, mutual
information, and Granger causality in order to infer pairwise
dependence (known as “functional connectivity”). Implemen-
tation of our approach will enable correct inference of linear
relationships within complex systems across myriad scientific
applications.

II. MEASURES OF LINEAR DEPENDENCE
In this work, we focus on multivariate signals,
{(Z,@®),...,Z,(t)}, t =0,£1,£2, ..., €))]

that is, a collection of m series sampled at equally spaced time
intervals. Writing

Z(1t) = (Zi(0), ..., Zu@)), @

we shall refer to the m series as an m-dimensional vector of
multiple time series such that Z(r) € R”.

For the purposes of inferring linear dependence, Z is par-
titioned into one k-variate and one [-variate subprocess [46]:

X
Z— [Y} 3)

reflecting an interest in the relationship between X and Y. The
linear dependence of X on Y (or vice versa) is measured by
a scalar value that quantifies how much the outcomes of Y
reduce uncertainty over outcomes of X. Theoretically, in the
absence of a linear relationship between X and Y (the null
hypothesis, Hy) the reduction of uncertainty is exactly zero,
meaning that ¥ does not linearly predict X at all. In prac-

tice, however, we have access only to a finite-length dataset
with T observations over which to compute the measures,
introducing a variation in statistical estimates and manifest-
ing as nonzero values in the case of no relationship. Here
we present this dataset as an m x T matrix z of consecutive
real-valued samples z(t) € R™ of the process Z (again, this is
partitioned into submatrices x and y). To this end, the aim of
linear-dependence tests is to infer whether there is a statistical
dependence between X and Y based on the sample paths x and
y alone.

We make the typical assumption that the underlying sys-
tem, Z, is a second-order stationary, purely nondeterministic
process [7,8,47]. An important consequence of covariance-
stationarity is that the time series may be represented, after
appropriate mean removal and differencing [48], by the
ARMA model:

P q
Zt)=a)+ ) @WZt —u)+ Yy Owalt —u), (4)

u=1 u=1

where @ and ©® are vectors of autoregressive (AR) and
moving-average (MA) parameters, and a(¢) is uncorrelated
noise (the innovation process). We further assume that the
noise is Gaussian, a(t) ~ N (0, X) for some arbitrary noise
covariance X, meaning that Z is a linear-Gaussian process.

A. Cross-correlation and autocorrelation

For covariance-stationary time series, the relationship be-
tween Z;(t) and Z;(t + u) depends only on the difference in
times ¢ and ¢ 4 u of the observation but not on ¢ itself. Once
the mean has been removed, such processes are fully defined
by their cross-correlation,

V7i©)y;;(0)°
with y;;(u) = cov(Z;(t), Z;(t + u)) the cross-covariance be-
tween Z;(t) and Z;(t + u). If p;;(u) # 0 for any u > 0, then
the univariate process Z; exhibits autocorrelation, and the col-
lection of p;(u) foru = 0, £1, £2, ... is generally called the

autocorrelation function of Z;. The sample cross-correlation
coefficients are computed from time-series data z as

pij(u) = (5)

Cij(“)
J<i(0)c;;(0)

with ¢;j(u) = N~' 3, zi(t)z;(t +u) where N =T — 1 as
an unbiased estimate of the sample cross-covariance.

The first linear dependence measure we discuss is Pear-
son’s product-moment correlation coefficient. For bivariate
(m = 2) processes, we shall write X =X and Y =Y and
denote the cross-correlation between these variables [Eq. (5)]
as pxy(u). Pearson’s correlation coefficient is the lag-zero
cross-correlation pyy = pxy(0), and quantifies the (symmet-
ric) association between paired observations of X and Y. The
sample correlation coefficient is then given by

(6)

rij(u) =

ry = —, ™)

where ¢y, = c,,(0) is the sample covariance, and ¢, = ¢,(0)
and c,, = ¢y, (0) are sample variances [39].
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In order to assess the statistical significance of linear de-
pendence measures, such as the sample correlation coefficient,
we must be able to compute their variance, i.e., Uf(x, y) =
var(r,y). For independent but autocorrelated stationary pro-
cesses, the variance of the sample correlation coefficient can
be estimated (to the first order) as [2,38,39]

T—1
6r e, )~ T™! [1 +2 ; d ; ”rxxw)ryy(u)}, ®)

where r,,(u) and ry,(u) are the lag u sample autocorrelations
[49]. Although we refer to Eq. (8) as Bartlett’s formula, this
first-order approximation is due to Clifford et al. [39], who
presented the variance estimator for spatial autocorrelation
and an estimate of the effective number of independent sam-
ples for correlation coefficients:

A0, y) = 146,72(x, y). )

An important consequence of Eqs. (8) and (9) is that hy-
pothesis tests, such as Student’s ¢-test, should have degrees
of freedom corresponding to the effective sample size of the
analyzed time series (i.e., the effective degree of freedom
[2,11]), rather than the original sample size [39]. That is, if
both X and Y are autocorrelated, then the null distribution for
Iy follows a modified Student’s ¢-test:

nix,y)—2
rxy‘/% ~ i) - 21, (10)

where 7j(x, y) — 2 is the (estimated) effective degrees of free-
dom. An examination of this formula reveals that, when both x
and y are positively autocorrelated, then there are, effectively,
fewer independent observations than in the original dataset
(f) < T); if only one process is negatively autocorrelated, then
there appear to be more independent observations than in
the original dataset (77 > T) [39]. Consequently, when the
modified degree of freedom in Eq. (10) is neglected, inference
procedures can either spuriously identify association (produce
Type I errors) when 7 < T or miss actual correlations (Type
Il errors) when 7} > T.

If either one (or both) of x or y are serially independent,
then the sample correlation coefficients ry, can be tested
against Student’s ¢-distribution with degrees of freedom 7 —
2. Thus, the textbook approach for minimizing the deleterious
effects of autocorrelation is to whiten one of the time series
by filtering any AR components (referred to as prewhitening).
The idea is that, by filtering any AR components, the residuals
become uncorrelated and so statistical tests that have been
developed for independent variables can now be used without
modifying the degree of freedom. In Sec. VIII we discuss this
approach in more detail, showing that linear-dependence tests
applied to signals that have been “whitened” in this way still
exhibit significant statistical bias (in some cases worse than
without prewhitening).

B. Partial correlation

Partial correlation pyy.w measures the association between
X and Y, whilst controlling for any concomitant effect of

another c-variate process W [50,51]. Partial correlation is
estimated by, first, computing the residual processes:

exw =X — X(w), 1

Eylw =y —J(w), (12)

where X¥(w) denotes the linear prediction of x from w via
ordinary least squares. Then an appropriate test statistic for
the null hypothesis Ho:pxy.w = 0 of no relation between X
and Y, above any relationship with W, is the sample partial
correlation:

r _ Zt exlw(t)ey\w([)
Xy-w — .
NN IR0

By contrasting the formulas for sample partial correlation
[Eq. (13)] with sample cross-correlation [Eq. (6)], it is evi-
dent that the former is equivalent to the bivariate correlation
between the residuals, i.e., 1. = Feyweym -

Unlike Pearson correlation, there is a dearth of research
into the null distribution of partial correlation coefficients for
autocorrelated time-series data. As such, our first theoretical
contribution (in Sec. III) is a derivation for the null distribution
of sample partial correlations (13) under autocorrelation, i.e.,
extending the modified 7-test [for bivariate correlation (10)] to
facilitate residual processes.

13)

C. Wilks’ criterion and canonical correlations

Relating two or more sets of variables is achieved similarly
to partial correlation (13), with the exception that the gener-
alized variance is used, rather than the conditional variance
[29,31]. Consider the relationship between the k-variate pro-
cess X and the [-variate process Y, in the context of a c-variate
concomitant process W. To measure their dependence, we use
the same procedure as for univariate processes, except now
the residuals ey, and ey, [from Egs. (11) and (12)] are multi-
variate, making the sample covariance Sy, an m x m matrix,
rather than a scalar value. The generalized sample variance is
the determinant of these sample covariances |Sxyw|, and can
be used to form a special case of (residual) Wilks’ criterion
[29]:

|sxy|w| ) (1 4)
|sx|w||sy|w|

Although in general Wilks’ criterion facilitates any number
of partitions of Z, we will restrict our attention to two par-
titions [referring to the special case in Eq. (14) as Wilks’
criterion when the meaning is clear]. The null distribution of
the ratio of independent generalized variances (14) is known
as Wilks’ A-distribution, with its exact analytic form derived
by a number of authors on the basis of no cross-correlation
and under the hypothesis that each variable within X, Y, or W
exhibits no autocorrelation [30,52]. Hotelling [31] extensively
studied the case of Wilks’ criterion with two sets of variables,
showing invariance under any internal linear transformation
of these sets and a decomposition into canonical correlations
with an asymptotic (x?) null distribution. Much like their
univariate counterparts, however, Hotelling’s canonical corre-
lations have been shown to be inefficient under autocorrelation
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[6]. Consequently, neither approach is suitable for inferring
linear dependence between the majority of time-series data
due to the ubiquity of autocorrelation. In Sec. IV we address
this issue by providing the null distribution to be used in
the presence of autocorrelation [and of course when cross-
correlations are present amongst any two variables, i.e., X;(¢)
and X;(t — u) may covary for any i, j, t, or u]. An application
that is of particular interest is mutual information, which is
equivalent to Wilks’ criterion (14) for Gaussian marginals.

D. Mutual information

Mutual information Zy.yw is a fundamental concept in
information theory—and a building block of many other
measures—that quantifies the amount of information about
a process X obtained by observing another process Y (po-
tentially in the context of a third process W, making it a
conditional mutual information) [33]. In general, information
theory facilitates multivariate analysis by simply requiring
well-defined probability distributions that can be either para-
metric or nonparametric.

When these are normally distributed, mutual information
takes a form that is equivalent to Wilks’ criterion [33,53]:

5 1 Sy )
Tyyiw = —= log (— . (15)
! 2 |sx|w||sy|w|

This formula is asymptotically equivalent to the nested log-
likelihood ratio (LR) of two models [54], and thus we can
use a null distribution also provided by Wilks [55]. Following
Wilks’ theorem [55], under the null hypothesis Hy : Zyx.yw =
0 and with normally distributed marginals, mutual infor-
mation estimates are asymptotically chi-square distributed
[35,53,54],

2T Ty ~ x> (kD). (16)

For limited data, a more precise null distribution can be de-
rived from the standard F'-test, albeit for the more specific
case of no autocorrelation and with one of the processes
being univariate [see Eq. (A4) and surrounding discussion
in Appendix A2]. That is, the mutual information between
an i.i.d. variable X and an [-variate Y, in the context of the
concomitant W, is, under the null hypothesis Ho : Zx.yjw = 0,

T—(U+c+1)

; [exp Leyw) = 11~ F(UL.T = (I +c+1).

a7
The same arguments in Eqs. (15)—(17) hold for unconditional
mutual information fx;y by setting w = ¢ (and ¢ = 0).
Although we found no discussion on autocorrelation-
induced biases of mutual information in literature, statistical
tests will clearly be incorrect if autocorrelation is not taken
into account. This is evident from the well-known result that
mutual information reduces to a function of sample correla-
tion coefficients when the dependent processes are univariate
[56]:

2Ty = —log (1 = 72,,)- (18)

Xy w

Moreover, it is clear by observing the equivalence between
Egs. (14) and (15), noting that mutual information estimates
can be decomposed into sums involving canonical variables
[53].

By deriving the exact hypothesis tests for mutual in-
formation in Sec. V, we provide a critical component of
general-purpose techniques for measuring undirected rela-
tionships between sets of variables. However, mutual infor-
mation was not originally intended to measure autocorrelated
time-series dependencies, nor does it naturally model di-
rected dependencies—this is the intended purpose of Granger
causality.

E. Granger causality

Granger causality was explicitly designed to capture one-
way dependence between stochastic processes by taking into
account the confounding influence of their past (i.e., the auto-
correlation). By considering X as a target (predictee) process
and Y as a source (predictor) process, Granger causality
Fy—xw explicitly aims to measure the causality (predictabil-
ity) in ¥ about X in context of the relevant history of X
(and, potentially, a concomitant process W). Of course, the
use of the term “causality” here refers to Wiener’s definition
(as a model of dependence based on prediction) rather than
Pearl’s (a mechanistic causal effect that can only be inferred
using interventions); see Ref. [57] for a differentiation of these
concepts.

The main assumption underlying Granger causality is that
both X and Y are (vector) AR processes [21,46]. That is,
we assume that X () and Y (¢) are causally dependent on the
following states:

X(t—1) Y@ -1
YO =| : |. 19
X(t—p) Y(t —q)
Under this assumption, the (directed) influence from Y to X is
quantified by conditional mutual information [35]:

X(P)(t) —

JrY—)XIW (P, Q) = ZIX;Y(‘])IX(”)W' (20)

Following Eq. (15), this measure can be estimated as a log-
ratio of generalized variances [46]:

A |S (P) |
Fyxiw(p, ) = log (#> 21

S xpxry@wl

Note that, except for the rather narrow case of k =g =1,
Granger causality is a multivariate measure (using generalized
variances rather than conditional variances).

The AR orders, p and g, of each process are typically
determined by statistical tests such as partial autocorrelation
[8], Burg’s method [58], the Akaike or Bayesian information
criterion (AIC or BIC), cross-validation [4], or active informa-
tion storage [43,59,60]. In this paper, we use Burg’s method
to infer the model order due to its efficiency and stability over
the Yule-Walker equations [58]. Further, using results from
this main text, we discuss the relationship between partial
autocorrelation and active information storage in Appendix E.

In general, hypothesis tests for Granger causality can be
derived from Wilks’ theorem [55]. That is, under the null
hypothesis Ho:Fy—xw(p, g) = 0, estimates of the Granger
causality from Y to X [Eq. (21)] are asymptotically chi-square
distributed [46]:

T Fyoxw(ps @) ~ x*(klg). (22)
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Alternatively, a finite-sample null distribution can be used
if the predictee process is univariate (k = 1). Referring to
Appendix A, the restricted model has p + ¢ + 1 parameters,
and the unrestricted model has p + /g + ¢ + 1 parameters.
Accordingly, we can build the statistic:

T—(p+lg+c+1)
lq

which, according to the standard F-test [Eq. (A4)], is dis-
tributed as

{exp [Fymrw(p, 1 — 1}, (23)

F(q, T —(p+lg+c+1)). 24)

It should be emphasized, however, that the F'-test is suitable
only for serially independent observations. Thus, although the
Granger causality measure explicitly accounts for autocorre-
lation in vector AR processes, the established hypothesis tests
assume either a sequence of completely independent residuals
(the F-test) or infinite data (the y2-test). The null distributions
that we provide in Sec. VI overcome both of these issues, pro-
viding the first valid finite-sample tests for Granger causality.

III. MODIFIED TESTS FOR PARTIAL CORRELATION

In this section, we derive one-tailed and two-tailed tests for
the null hypothesis, Hy : pxy.w = 0, of no partial correlation
between two univariate autocorrelated time series x and y,
given a third (potentially multivariate) process w. These tests
are valid for any covariance-stationary time series X, Y, and
W and sample size T'.

A. Modified Student’s ¢-test for partial correlation

Recall from Eq. (13) that the sample partial correlation is
equivalent to the sample correlation between ey, and ey,
i.€., Fyw = Teyyey,- Obtaining the null distribution for sample
partial correlations between autocorrelated time series can
thus be treated similarly to that of the correlation coefficients
[see Eq. (10)].

A well-known result is that the sample partial correlation
between independent observations is ¢-distributed #(v), under
the null hypothesis Ho:pxy.w = 0, with degrees of freedom
v=T —c—2 and ¢ = dim(w(t)) [61]. As such, the modi-
fied statistic and null distribution is

ﬁ(ex\un eylw) —C—
Tyw

_ 2
1 Fiyw

2 A
~ t[’l(ex\w, e_v\w) —C — 2]

(25)
Here the (estimated) effective sample size f)(eyjw, eyjw) i still
computed from Eq. (9) but with the autocorrelation functions
of the residual vectors ey, and ey, rather than the original
sample paths x and y. Intuitively, this is because ryy., is
itself a sample correlation of these residuals, so it is their
autocorrelation—not that of the original time series—that di-
rectly determines the effective sample size. Another crucial
addition is that the dimension of the conditional process ¢ =
dim(w(¢)) further reduces the number of degrees of freedom
[61], for the same reason as in standard F-tests [4]. When
the residual vectors, ey, and ey, are (serially) independent,
then Eq. (25) becomes equivalent to the standard Student’s
t-distribution for partial correlation.

B. Modified F -test for partial correlation

The Student’s 7-distribution in Eq. (25) allows for one-
tailed (upper or lower) tests for the partial correlation by using
the statistic (the LHS) as an input to the quantile function
of the r-distribution. For two-tailed tests, another common
approach is to square the statistic and, subsequently, the null
distribution. The square of a random variable Z ~ #(v) that
follows Student’s #-distribution (with parameter v) follows an
F-distribution with parameters 1 and v, i.e., Z2 ~F(1,v).
Thus, under the null hypothesis Ho:pxy.w = 0, the square of
the statistic in Eq. (25) (the LHS) follows an F-distribution:

Foyw
Nxy|lw W ~ F(1, nx_v\w)’ (26)

Xy-w

with an effective degree of freedom,
Nyylw = f}(exlw, eylw) —c—2, 27)

obtained from Eq. (9). We refer to the significance test that
uses this distribution as the modified F'-test. Note that a form
of Eq. (26) without modifying the degree of freedom is com-
monly used for testing the coefficient of determination; thus
this approach could also be used for constructing a finite-
sample test of the coefficient of multiple correlation under
autocorrelation.

IV. MODIFIED A-TESTS

Although the modified 7- and F-tests introduced above
are suitable for bivariate correlation-based measures, they are
not appropriate for multivariate (and thus directed) null tests.
Here we introduce the A*-distribution, which can be used for
hypothesis testing all linear dependence measures throughout
this paper.

Recall that, for independent X and Y and W, Wilks’
criterion [Eq. (14)] is A-distributed. The exact form of the
A-distribution has been extensively studied, with known re-
lationships to the F- and beta-distributions [30,52]. The main
purpose of this paper is to derive the finite sample distribution
of such statistics under autocorrelation, i.e., where X (¢) L
Xt —u)andY(¢) )L Y (t — v) for some u, v > 0.

As we will show throughout this work, the distribution
for Wilks’ criterion with two independent but serially corre-
lated processes can be described by products of A-distributed
variables with different effective degrees of freedom. We
denote this distribution as A*(n), with the parameter n =
(ny, ..., np) comprising the degrees of freedom of each in-
dependent A-distribution. That is, Wilks’ criterion is, under
the null hypothesis, A*-distributed:

~ A*(n), (28)
|sx|w||sy|w|
where the A*(r) distribution itself can be described by a
product of independent A-distributed variables:
b

HL,WML~AMJJ) (29)

i=1
Notice that this reduces to the A-distribution for two sets of
independent variables [30]; however, with the A*-distribution
we are able to include the effective sample sizes.
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Although the null distribution for the product of two in-
dependent A-distributed variates is known [30], deriving the
exact distribution for the product of an arbitrary number of
A-distributed variates is nontrivial. Fortunately, a relationship
between the beta-, F-, and A-distributions [30,52] allows
for simple numerical methods. To generate the distribution
A*(n), we could sample beta-distributed variables:

b b
n; 1
Li: ‘/h th‘/lNB A°A ] 30
g 1} wi (2 2) (30)

where B(«, ) is the beta distribution. Equivalently, one could
sample independent F-distributed variables:

b

b
n; .
L = , withU; ~ F(1,n;). 31
E i=1 Ui+ n ( : b

In our experiments (and open-source code), we opt to sample
independent beta-distributed variables and construct the A*-
distribution from their product as per Eq. (30). Throughout
this work, we refer to hypothesis tests that use the A*-
distribution and modify the degree of freedom to account for
autocorrelation as “modified A-tests.”

From the relationship between the beta-, F-, and A-
distributions [see Egs. (29)—(31)], it is clear that the modified
A-test is a generalization of the modified F-test, becoming
equivalent for univariate statistics. For instance, returning to
partial correlation, we have that

|Sxy|w| -1- 72 ~ A*(nxylw)’ (32)

|Sx\w||sy\w| ww
where ny,,, is the effective degree of freedom. Thus, either
the modified F-test or the modified A-test could be used for
univariate statistics (i.e., ratios of conditional variances).

We can now derive explicit hypothesis tests for common
directed and multivariate linear dependence measures using a
similar approach. Note that, although the purpose of this work
is explicitly for linear dependence measures between time-
series data, the modified A-test can be easily extended to more
general likelihood tests for ratios of generalized variances un-
der spatial autocorrelation [39], which is also known to affect
the sampling properties of statistics. We begin by deriving
tests for the (conditional) mutual information between both
univariate and multivariate linear-Gaussian processes.

V. MODIFIED TESTS FOR MUTUAL INFORMATION

In this section, we obtain hypothesis tests for the mutual
information between multiple time series. We first present the
hypothesis tests explicitly for conditional mutual information
for bivariate time series and, by using the chain rule, obtain
the null distribution for the mutual information between mul-
tivariate time series.

A. Two time series

The conditional mutual information for linear-Gaussian
processes [Eq. (18)] is equivalent to the statistic in Eq. (32).
Therefore, estimates of conditional mutual information under

the null hypothesis, Hy : Zx,yjw = 0, are A*-distributed:
exp (—2fx;y|w) =1- rfy_w
~ A*(nxylw)~ (33)

Of course, due to the relationship between the F- and A-
distribution [noted in Eq. (32)], we can construct an equivalent
modified F-test for conditional mutual information:

My [€XP (2 Zeypw) — 11~ F(1, fgyp). (34)

The null distributions we provide above explicitly account
for autocorrelation via the effective degrees of freedom 7,y
and also reduce to the F-distribution for information-theoretic
quantities when observations of the analyzed time series are
independent [cf. Eq. (17) by letting #(x,y) = T']. Further,
when x and y are serially uncorrelated, and in the limit 7 —
oo, Eq. (34) becomes equivalent to the x? null distribution
for mutual information (see the discussion in Appendix A 2).
Thus, the null distribution we present in Eq. (34) is a gen-
eralization of both the standard F-test (which is applicable
only for i.i.d. variables) as well as the asymptotic distribution
(which is applicable only for infinite data).

Although they are special cases of the modified A-test,
there are important distinctions here from the y2-tests (16)
and the standard F-tests (17) for conditional mutual informa-
tion. The first is that we now have an effective sample size
7) that changes depending on the autocorrelation function of
the residuals e,), and e,,. The second is that the degrees
of freedom n,,, is further reduced by ¢ = dim (w(z)), the
dimension of the conditional time series w, which appears in
the finite-sample F -tests but not the asymptotic x >-tests. Both
of these differences introduce a significant bias in the estima-
tion of linear dependence for many real-world applications,
exemplified by the numerical simulations in Sec. VII A.

B. Multiple time series

Mutual information Zy.y;w can also be used to measure the
dependence between multivariate processes X and Y. Here
we apply the chain rule and the results from the previous
section to obtain a partial correlation decomposition that can
be used for constructing a null distribution in the presence of
autocorrelation.

The chain rule provides a decomposition of mutual infor-
mation as a sum of conditional mutual information terms:

koo
5 5 {gh
Legw =222 Tt (35)

That is, mutual information estimates fx;y‘w between a k-
variate process x and an /-variate process y, in the context of
the c-variate concomitant w, can be computed by summing
over conditional mutual information terms [33]. Each condi-
tional mutual information term may be expressed as

s (36)

xylw

Slen _ 5

=7
xylw Xgiynlv

where the conditional for the (g, h)-term is given by

12} X1g—1
vx:gvh,, = Yir-1 | (37
w
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with x., = [x], ... ,x;]/ a g x T matrix when 0 < g < k, and
the empty set, x1., = ¥, when g = 0. Using this notation, we
have an equivalent expression for mutual information as
A |sxy|w|
exp (=2 Ley) = ——2
|sx\w||sy|w|

= 1_[ exp (—2 fifﬁ))
g.h

- ]g‘h[ (1 _ riwi';’;’w)' (38)

Although this equation has a similar form to the well-known
canonical correlation decomposition [30,53], the correla-
tions are over different variables. More importantly for our
purposes, and assuming independence of these partial corre-
lations (see below), its null distribution can thus be obtained
from the A*-distribution:

exp (=2 Leyw) ~ A (Maypu), (39)
with parameter vector
{11} {ki} '
Ryl = (nxylw’ cey ”xy|w) . 40)

The remaining challenge is to compute the effective degree
of freedom, n){c‘i}";, for each independent partial correlation in
Eq. (38). Recall that partial correlation can be computed from
ordinary least squares. The residual vector for the (g, #)-term

in Eq. (38) is
e = x5, (o). an
el = i — 9 (0151 ). 42)
where the hat in £,(-) again denotes the linear prediction of x,
from the input argument. Then the degrees of freedom used in
computing the (g, #) sample partial correlation are
néh = (e, ) — dim (v (1)) — 2. (43)

wylw = M\ Exjv > Eypo xylw

Throughout this analysis, we ordered the summations first
over the dimensions of y, and then over the dimensions of x.
In practice, the order of these operations are arbitrary and was
initially imposed solely for clarity in the chain-rule formula.
It should be noted that the modified A-test assumes both
that the residuals are completely independent and that the
estimated degrees of freedom is approximately correct. If,
instead, the residuals become slightly correlated due to sta-
tistical errors in the regression, the A*-distribution should be
generated by sampling dependent beta- or F-distributed vari-
ables. Further, the effective degree of freedom is a first-order
approximation, which may introduce biases in the hypothesis
tests. Although our numerical simulations in Sec. VII show no
such biases, we discuss the potential solutions in Appendix D.

VI. MODIFIED TESTS FOR GRANGER CAUSALITY

Recall that Granger causality can be expressed as a con-
ditional mutual information [see Eq. (20)]. As such, we can
leverage results from the previous section to introduce its null
distribution. Many other information-theoretic and likelihood
ratio-based measures could be similarly decomposed (from

Wilks’ criterion or conditional mutual information) in order
to derive their finite-sample hypothesis tests.

A. Two time series

We shall first express the Granger causality for bivariate
processes as a sum of conditional mutual information terms
via the chain rule. Let upper indices (without parentheses)
denote a backshifted variable, e.g., X iH=X@ - J) denotes
the variable X (7) lagged by j time indices. Then, by applying
the chain rule (35) to Granger causality (20), we can compute
it as a sum of conditional mutual information estimates:

q
Fovwp @) =23 1,50 (44)
j=1
with the jth conditional as the matrix
x(®
ol =y |, (45)
w

and the limiting case giving y© = ¢, i.e., the empty set.
Again, following Eq. (39) we conclude that under the null
hypothesis Hy : Fy_x(p, g) = 0, Granger causality estimates
are distributed as follows:

exp [—Fymxw (P, @1 ~ A*(yxjw), (46)
where
1 {q} !
Ayor = (n e nl ) (47)

Now, we can use the same approach from Sec. V to obtain
the effective degrees of freedom used in computing Granger
causality estimates. First, the residuals for the jth partial cor-
relation in Eq. (44) are

() _ af 0}
¢ =x— x(vy_m‘w>, (48)

X[vyxqw

Al =y = (o). 49)
Thus the number of degrees of freedom is different for each
term, with the jth number computed as

{} _ 2} {}
ny—))clw - (e e

el ) —dim[v;ﬂx‘w(t)] —2. (50)

Unlike the standard F'-test for Granger causality [Eq. (24)],
the modified A-test takes into account the effective number
of degrees of freedom induced by autocorrelation in both the
predictee and predictor processes, with the two approaches
overlapping only when there is no autocorrelation in the resid-
uals. This indicates that, with limited data, the F'-test can be
used only for assessing the significance of Granger causality
estimates from independent observations (y) to univariate au-
tocorrelated time series (x).

B. Multiple time series

Finally, we present hypothesis tests for the most complex
linear dependence measure in the paper: the Granger causality
from an [-variate predictor process Y to a k-variate predictee
process X, in the context of the c-variate concomitant process
W. By virtue of the chain rule (35), this general expression of
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Granger causality (20) decomposes into three nested sums:

I q
x—>y|w(p (*I) =2 Z Z Z XgV Iv}f”‘w’ &2

=1 h=1 j=I

where the conditional for the (g, /2, j) mutual information term
is

()
xl:g
(@)
ehjy | Vi
o, =1 (52)
Y
w

That is, the (g, A, j) term is the conditional Granger causality
for dimension g of X and the predictor observation j steps
back of the hth subprocess of Y. This is conditioned on
all dimensions and predictor observations below g, &, and
J» as well as on W. Again, following Eq. (39) the distribu-
tion of Granger causality estimates, under the null hypothesis
Ho:Fx—y(p. q) = 0, is given as

exp [-ﬁly—m\w(pa q)] ~ A*(ny—>x\w)7 (53)
where
_ (111 {klgy
Ry xjw = (ny%xlw’ Tt nyﬁ?xlw) :

The effective degrees of freedom are, again, computed from
the residuals, where the residual processes used in computing
the (g, h, j) partial correlation are

(shj}  _ {ghj}

X|Vysxjw )Cg xg(vy—>x|w)’ (54)
{shj}  _ {ghj}
vy ¥ = 9ilv v ) ©5)

The number of degrees of freedom for each term in the
chained sum can then be computed from these residuals:

dim () (1)) —

{ghj}  _ »(,ghj} {ghj}
n 77(6 € ) y—x|w

y—xlw T

2. (56)

X|Vysxjw’ Y [Vysxiw

We note that, although the same p and ¢ are used for each of
the subprocesses of x and y in our presentation, our decompo-
sition facilitates setting an individual history length for each
term in the chained sum. The only difference would be to infer
the optimal history length (p and g) for each residual vector in
the chain.

VII. NUMERICAL VALIDATION

We perform numerical simulations in order to validate the
modified A-test and characterize the effect of autocorrelation
on the (unmodified) F- and x2-tests. The simulations, detailed
in Appendix B 1, involve generating observations from two
first-order independent AR processes and iteratively filtering
the output signal such that the autocorrelation is increased for
both time series.

Following Barnett and Seth [4], we illustrate the finite-
sample effects by generating relatively short stationary time
series with T = 2° = 512 observations from the stochastic
processes to obtain our dataset. We begin by sampling first-
order AR processes to obtain our time-series data, x, y, and w.
Then, to illustrate the effect of higher autocorrelation on the
FPR of both methods, we digitally filter each time series along

the time dimension with two types of low-pass causal filters:
a finite-impulse response (FIR) linear-phase least-squares fil-
ter and an infinite-impulse response (IIR) Butterworth filter.
The filter order is variable, with higher filter orders generally
increasing the autocorrelation of the time series. For each
experiment, we perform 1000 trials and, using the statistical
hypothesis-testing procedure described in Appendix A 4, we
consider the FPR to be the proportion of p-values that are
significant at the nominal level (typically 5% in this paper)
in comparison to the relevant null distribution.

These experiments allow us to study how each test behaves
under increasing levels of autocorrelation of both x and Yy,
whilst ensuring that the null hypothesis (of no dependence)
is not violated. Rather than using a filter, it would of course
be possible to increase the autocorrelation by selecting the
ARMA parameters, ®(«) and O(u), for each lag u. However,
the formulations are equivalent: AR processes are all-pole IIR
filters; MA processes are FIR filters; and ARMA processes are
IIR filters with both poles and zeros. Thus, although these are
identical formulations, we opt for digitally filtering processes
to increase their autocorrelation as this is a common prepro-
cessing step performed by practitioners to remove artifacts
from time series (even differencing the signal is a type of
filter). Moreover, as previously discussed, filtering the signals
has been shown in the past to bias various dependence mea-
sures such as Granger causality [4]. Until this work, however,
it has not been suggested that this bias is a function of autocor-
relation nor has a valid hypothesis test been proposed based on
the autocorrelation function.

A. Mutual information tests for bivariate time series

First, we use this approach to evaluate the performance of
the hypothesis tests on assessing the significance of mutual
information estimates between two independent (but seri-
ally correlated) time series. Our results are shown in Fig. 1,
where the “F-tests” are from the finite-sample distribution
[Eq. (17)], “x~-tests” refer to the asymptotic LR distributions
[Eq. (16)], and the “Modified A-tests” refer to our hypothesis
tests that account for autocorrelation [Eq. (33)]. As the plots
illustrate, both the F-tests and the x2-tests overestimate the
measures for higher filter orders (and therefore higher AR
orders), yielding over 15% of false positives at the nominal
significance of @« = 0.05—approximately three times the FPR
expected from the test. The figures on the right illustrate the
significance level o against the FPR for an eighth-order filter.
From these figures, we can see that the FPR for the x>-tests
is higher than nominal for all significance levels « € (0, 1).
In comparison, the modified A-test procedure yields the ex-
pected FPR for all filter orders.

A filter order of zero in Fig. 1 refers to generating the time-
series data with the first-order AR model (B2) without any
digital filtering. In this case, the x2- and F-tests yielded less
than the nominal 5% FPR. This occurs when the number of
effective samples becomes greater than the original sample
size n(x,y) > T. Referring to Bartlett’s formula (9), this is
due to the product of negative autocorrelation exhibited by
the Y process (induced by ®y = —0.8, indicating an effect of
undersampling) and the positive autocorrelation exhibited by
the X process (induced by ®x = 0.3). Counterintuitively, this
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FIG. 1. Modified tests correctly assess the significance of the
mutual information estimated between two univariate time series
under FIR (a) and IIR (b) filtering. The mutual information was mea-
sured [using Eq. (18)] between independent univariate time series
[generated by Eq. (B2)] after filtering, and tested using the y2-test
[Eq. (16)], F-test [Eq. (17)], and the modified A-test [Eq. (33)]. The
plots show the effect of increasing the filter order on the FPR for both
an (a) FIR filter and (b) IIR filter. The shaded regions on the right
indicate o« = 0.05, whilst the shaded regions on the left show the 95%
confidence interval for the FPR (as defined in Appendix A4). The
subplots on the right capture the FPR for all potential significance
levels o (“Expected FPR”) with an eighth-order filtered signal. An
ideal distribution is where the FPR equals o and thus sits perfectly
on the diagonal, as per our tests.

would imply that the observations are anticorrelated in time.
Such conservative results for the x2- and F-tests are likely to
induce lower statistical power [i.e., a lower true-positive rate
(TPR)] in scenarios when the effective sample size is greater
than the original sample size. To verify this, we performed
1000 trials where there was a small dependence of X on Y
(see Appendix B 1). The TPR was 0.049 (SE of 0.0068) for
the x2-test and 0.1570 (SE of 0.0115) for the modified A-test.
Thus, the power of our hypothesis test is three times greater
than the x’-test in this scenario.

In Fig. 2 we show that increasing the sample size does not
mediate the effect of autocorrelation on the x2- and F-tests.
This is due to the fact that the effective degree of freedom is
always a fraction of the degree of freedom. Thus, regardless of
the sample size, both the asymptotic ( %?) and finite (F) tests
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FIG. 2. Increasing the sample size does not mediate the effect
of autocorrelation on the x2- and F-tests for mutual information.
We perform the same tests as Fig. 1, except with an exponentially
increasing sample size and a fixed eighth-order FIR (a) and IIR
(b) filter. The subplots on the right show the FPR for T = 2'!
samples.

are invalid, unless modified to account for effective sample
size.

B. Conditional mutual information tests for bivariate time series

‘We now extend the previous results by evaluating the effect
of conditioning mutual information between x and y on an
independent, tertiary process w. The FPRs for the y2-tests,
F-tests, and the modified A-tests from these experiments are
presented in Fig. 3, and exhibit similar characteristics to those
of the mutual information tests in Fig. 1. Increasing the filter
order generally increases the FPR for both unmodified tests,
yet the modified A-test remains unbiased, maintaining the
expected FPR of 5%.

As discussed in Sec. V, an important distinction between
the null distributions for mutual information [Eq. (33)] is that
the effective degree of freedom in the A*-distribution not
only includes the effective sample size but also the dimension
of the conditional c. To show the severity of the asymptotic
approximation, we generate the x and y processes and filter
the signal with an eighth-order FIR and IIR filter the same
as before; however, we increase the number of independent
processes ¢ = dim (W (¢)) in the multivariate conditional. The
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FIG. 3. Modified tests correctly assess the significance of the
conditional mutual information estimated between two univariate
time series, conditioned on a third univariate time series; each time
series underwent FIR (a) or IIR (b) filtering. Conditional mutual
information was measured [using Eq. (18)] between two univariate
time series, given a third univariate process [generated by Eq. (B2)
with k = [ = ¢ = 1], after filtering, and tested for significance using
the x2-, F-, and modified A-tests. The subplots on the right show the
FPR for each significance level @ when the signal is filtered with an
eighth-order filter.

result is shown in Fig. 4, where the FPR of the F- and x>-tests
increases somewhat linearly with the dimension; however,
the modified A-test remains unbiased. As evidenced by the
improvement of the unmodified F-test over the x 2-test, this
experiment demonstrates that even when the autocorrelation
function is the same, the dimension of the conditional must
also be included in the hypothesis tests.

C. Mutual information tests for multivariate time series

In this section, we present results for the hypothesis tests of
mutual information between multivariate (m > 2) time series.
The multivariate time series are partitioned into two indepen-
dent sets of processes, X and Y, one with dimension k and one
with dimension [. For each experiment, we let k = [ and use
the state equations in Eq. (B2) to simulate m = k + [ indepen-
dent AR processes for m = {2, 4, ..., 10}. These signals are
then filtered along the temporal dimension using eighth-order
FIR and IIR filters. This signal generation process ensures
that there is no correlation between signals within the same
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(a) FIR filter with c-variate conditional.
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g o / d
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5} < 2
Z s |/
5 0 <1:t; 0
0 50 100 150 200 0 1

Dimension of conditional ¢
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(b) IIR filter with c-variate conditional.

FIG. 4. The FPR of asymptotic tests increase with the dimension
of the c-variate conditional process. The plots are the same as per
Fig. 3, except as a function of ¢ with a fixed eighth-order FIR (a) and
IIR filter (b). The subplots on the right show the FPR for each
significance level o when ¢ = 100.

subprocess, i.e., p;; = 0 for all i, j € [1, m]. The results are
shown in Fig. 5, where increasing the dimension approxi-
mately linearly increases the FPR of the original LR test to
over 70% for both filters (continuing to increase for larger k
and /), yet the modified A-test remains unbiased.

In the tests above, no correlations between subprocesses
were included [e.g., X;(¢) with X;(t — u) for j # i]; however,
an internal cross-correlation between any of these subpro-
cesses may further decrease the size and power of unmodified
tests. Our experiments of Granger causality in the following
sections naturally incorporate examples with correlated sub-
processes in the mutual information calculation.

D. Granger causality tests for bivariate time series

This section examines the performance of each hypothesis
test on estimates of Granger causality using the same (uni-
variate) simulations from Sec. VII A. That is, the bivariate AR
model [Eq. (B2) with k = = 1 and no conditional ¢ = 0] is
simulated to generate 7 = 512 observations of the X and Y
processes, which are then passed through FIR and IIR filters.
Referring to Fig. 6, we perform this with each filter order and
each filter type (FIR and IIR). After generating these sample
paths, the AR order of the predictee, p, and the predictor,
q, were inferred from Burg’s method [58]. We then compute
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FIG. 5. Modified A-tests correctly assess the significance of the
mutual information estimated between two multivariate time series.
The mutual information was measured [using Eq. (38)] between the
multivariate time series [generated by Eq. (B2) with an increasing
dimension k and / of X and Y], passed through eighth-order FIR
(a) and IIR (b) filters, and tested for significance using the x2-test
[Eq. (16)] and the modified A-test [Eq. (39)]. The subplots on the
right show the FPR for each significance level « when k = [ = 3.

Granger causality [via Eq. (44)] and use this estimate to obtain
p-values from the CDFs of the F-distribution [Eq. (24)], the
x2-distribution [Eq. (22)], and the A*-distribution [Eq. (46)].
This is performed 1000 times in order to obtain a FPR of each
approach. Whilst our experiment here is equivalent to a condi-
tional mutual information, unlike the experiments in previous
sections the autocorrelation within the time series naturally
induces a cross-correlation amongst the variables within the
predictor Y@ (¢) and conditional X P(r) processes. The re-
sults shown here illustrate that increasing the autocorrelation
length via filtering increases the FPR of Granger causality
under the F- and x>-tests, particularly when using an IIR
filter. In contrast, the FPR of Granger causality using the
modified A-tests remains mostly unbiased. It should be noted
that, although within the confidence bounds, the FPR of the
modified A-tests appear to be not exact for high-order filters;
sources of error regarding this potential bias are discussed in
Appendix D.

The model order for our experiments above was chosen
using Burg’s method; however, the are numerous approaches
to inferring the “optimal” AR order as outlined in the
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FIG. 6. Modified A-tests correctly assess the significance of the
Granger causality estimated from one univariate time series to an-
other. Granger causality, with history lengths p and g chosen via
Burg’s method, is estimated [using Eq. (44)] between univariate time
series [generated by Eq. (B2)] after smoothing with an FIR (a) and
an IIR (b) filter. Estimates are then tested using the y -test [Eq. (22)],
the F'-test [Eq. (24)], and the modified A-test [Eq. (46)]. The subplots
on the right show the FPR for each significance level o with an
eighth-order filter.

introduction, all of which can result in vastly different model
orders. To ensure our results are not a consequence of poor
model identification, in Fig. 7 we illustrate the FPRs for in-
creasing the predictor history length g from one to 200 (in
increments of 20), whilst holding the autocorrelation length
constant with an eighth-order filter. This effectively introduces
more terms in Eq. (44), causing a larger divergence between
the F-, x2- and modified A-tests. As expected, the FPR of the
x2- and F-tests linearly increases in this range, whereas the
modified A-test remains consistent with the 5% FPR. This
linear increase of the FPR in x2- and F-tests is somewhat
counterintuitive to the notion of Granger causality, where one
may expect that accounting for more history would reduce
spurious correlations. However, the opposite is true, simply
due to a lack of correct finite-sample distributions (in the case
of the unmodified tests).

In Fig. 8 we show the effect of increasing the sample size
for tests on Granger causality estimates. Here we can see
the x2- and F-tests converging for sufficient sample sizes.
Unlike mutual information (from Fig. 2), estimating Granger
causality involves regressing the autocorrelation of the
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FIG. 7. The FPR of the F- and x>-tests for Granger causality
increases with an increasing dependence on the past for time series
generated by an eighth-order FIR (a) and IIR (b) filter. We illus-
trate this by varying the history length of the predictor process, ¢,
from one to 200. The subplots on the right show the FPR for each
significance level o when g =20 (a) and g = 40 (b) to approxi-
mately match the orders chosen via Burg’s method in Fig. 6.

Expected FPR

predictee first, with the variance of these residuals reducing as
the sample size grows. Thus, the effective sample size asymp-
totically approaches the sample size, however, the precise
rate of this convergence depends the autocorrelation function
and may change for every pair of time series. Even for this
simple example, we see that on the order of 100000 samples
are required for convergence, which is not realistic in many
empirical scenarios.

E. Granger causality tests for multivariate time series

Finally, we can evaluate the effect of increasing the dimen-
sionality of both processes on Granger causality inference. In
these experiments, we vary the dimension of the processes X
and Y from one to five. Recall from Eq. (51) that the number
of terms involved in computing Granger causality (and its
null distribution) is the product klg, of the dimensionality
(k, ) and the history length of the predictor (g). Due to the
relatively short time series length of 7 = 512 samples and
high autocorrelation and dimensionality, allowing an arbitrary
predictor history length of ¢ results in the effective sample
size approaching zero for the modified A-tests. Thus, for these
experiments we fix the history length of the predictor to g = 1.
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FIG. 8. The F- and x>-tests converge to the modified A-test for
Granger causality with large sample sizes. This experiment is the
same as Fig. 6, except with an exponentially increasing sample size
and a fixed eighth-order FIR (a) and IIR (b) filter.

The results are shown in Fig. 9, where the x 2-tests inflate
the FPR close to 100% for with higher dimensional processes.
Although our corrected tests perform well for moderate di-
mensionality, when k,/ > 3 with the IIR filter, the FPR of
our modified A-tests begin to have numerical issues. This is
caused by the regression matrix not being well conditioned,
i.e., the ratio of regressors to data points is too high. Nonethe-
less, we can see from the figure that our tests maintain a
low FPR, becoming more conservative when the regression
is ill-posed. Moreover, a poorly conditioned regression can be
easily tested for in practice. So we conclude that with min-
imally sufficient observations, our tests maintain the desired
FPR even for the most general case of multivariate Granger
causality and, when the sample size is simply too small for
reliable inference, our approach flags this as an issue.

VIII. EFFECT OF PREWHITENING

The rationale for applying prewhitening is to remove the
autocorrelation in one time series such that the variance of
computed statistics becomes equivalent to serially indepen-
dent observations [12]. That is, instead of modifying the
hypothesis tests, prewhitening modifies the input time series
and thus the statistics themselves. Prewhitening is typically
attempted by first inferring a model of one time series (x), and
transforming the process x to a residual process ¥ through a
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FIG. 9. Modified A-tests correctly assess the significance of
the Granger causality estimated from one multivariate time series
to another for increasing dimension k, /. Granger causality, with
each predictee history length chosen optimally, is estimated [using
Eq. (51)] between multivariate time series [generated by Eq. (B2)]
after filtering via eighth-order FIR (a) and IIR (b) filters. Estimates
are then tested using the y2-tests [Eq. (22)] and our modified A-
test [Eq. (53)]. The subplots on the right show the FPR for each
significance level « when k = [ = 3.

filter constructed from its model. The same filter (with param-
eters inferred from x) is then applied to the other time series y
to create y. Specifically, assuming any arbitrary ARMA(p, q)
model for time series x, prewhitening involves learning the
parameter vectors ® and © from x, and then filtering the raw
signals through the following equations:

P q
() =x(t) — Z Sx(t —u) — Z OWx(t — u),

u=1 u=1

P q

FO =y =) Syt —u) — Y OWH — w.

u=1 u=1

Using the same linear transformation (filter) for both time
series renders their correlation theoretically invariant [12],
however, the assumption is that ¥ is now serially independent,
and so the variance of sample correlations (for instance) con-
verge to 6,(x,y) = 1/T.

A significant challenge in prewhitening signals is in se-
lecting an appropriate model of the autocorrelation function.
Of course, for the same arguments as presented in Sec. II,

after mean removal and differencing, the most general model
for covariance-stationary time series are ARMA models.
However, inference procedures to learn both the order and
parameters of ARMA models are computationally expensive.
As such, many authors (and textbooks [12]) propose an AR(p)
model would suffice to render the residuals, ¥, independent,
presuming that autocorrelations decay rapidly for stationary
time series. Since this is the same assumption underlying
Granger causality [regarding the residuals on the target after
fitting an AR(p) model], our results from Sec. VIID suggest
that statistics computed from signals prewhitened in this way
will remain biased. In fMRI research, the most popular pack-
ages that are used for preprocessing time-series data (AFNI,
SFL, and SPM) are similarly insufficient for handling auto-
correlation due to their simplistic models [15]. Specifically,
the package AFNI uses an ARMA(1,1) model learned from
each voxel, whereas FSL uses Tukey tapering to smooth the
data (see Appendix D), and SPM uses one global AR(1) model
for all processes. Thus, each package assumes a fixed ARMA
model can describe any arbitrary-order process. This is clearly
insufficient, and if the wrong model is used, the residuals ¥
remain dependent, resulting in an unknown variance of statis-
tical estimates. This is evidenced by consistently high FPRs
in empirical studies [15].

For completeness of this paper, however, we implement
a number of prewhitening schemes in order to illustrate that
such an approach is insufficient for assessing linear depen-
dence between typical time series. Our experiments—on the
same synthetic time series used in Sec. VII—show the effect
of prewhitening univariate signals on the unmodified F-test
for a number of different models: the AR(1) and ARMA(1, 1)
as well as the AR(p) and ARMA(p, ¢g) with the optimal model
orders (p and ¢) learned from data. For the AR(p) model
inference, we allow for p € [1,200] (where the sample size
is T = 512), with the model order selected (and parameters
inferred) using Burg’s method [58]. Given the difficulty of
learning higher-order ARMA(p, g) models, however, we re-
strict our search space, iterating through each potential p, g €
{1, ..., 5} and selecting the model with the lowest BIC score.

Our results for the performance of the F-test on mu-
tual information estimates after prewhitening are shown in
Fig. 10. Contrasting these results to Fig. 1, the only bene-
fit of prewhitening appears to be for the FIR-filtered time
series when an ARMA(p, g) model is used. In almost all
other scenarios, the FPRs are either equivalent to, or worse
than, the original tests. Figure 11 illustrates the effect of
prewhitening on Granger causality F-tests (compare to Fig. 6
without prewhitening). Again, prewhitening appears to serve
no benefit to tests for Granger causality, even for the relatively
advanced ARMA(p, g) model. Concerningly, for IIR-filterd
signals, the FPR increases to over 60% for all ARMA models
with no scenario where the prewhitening approach results
in an FPR within the expected range. In Appendix C we
demonstrate similar results when using BIC and AICc scoring
functions (as an alternative to Burg’s method) to infer AR(p)
models for prewhitening.

It is possible that, with an ideal model, the F- or X2-tests
used for a prewhitened time series may be comparable (in
size properties or FPR) to the modified A-test. However, even
restricting our search space to an ARMA(S, 5) model resulted
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FIG. 10. Prewhitening the time series does not mediate the
bias in F-tests for mutual information estimates after FIR (a) or
IIR (b) filtering. The experiments are as per Fig. 1, with four
prewhitening approaches used: the AR(1), ARMA(1, 1), AR(p), and
ARMA(p, g). For the AR(p) and ARMA(p, ¢) models, the opti-
mal order is inferred from Burg’s method and the BIC score. In
many cases for the IIR-filtered time series, either the AR(p) or the
ARMA(p, q) failed to learn a stable model, and so these trials were
removed, inducing nonuniform confidence intervals (reflected in the
shaded region).

in an approximately 5000-fold increase in computational time
over the modified A-test [62] and, moreover, remained biased
in most scenarios. We conclude that, regardless of the model
selected, the additional burden of prewhitening over using a
modified hypothesis test is unjustified and that the outcome
of unmodified hypothesis tests (with or without prewhitening)
conveys inconsistent information about the underlying depen-
dence structure between time series.

IX. CASE STUDY: HUMAN CONNECTOME
PROJECT DATASET

Studies in computational neuroscience often leverage sta-
tistical analysis in order to formulate and test biologically
plausible models. An important application in this field is the
study of the human brain through fMRI, which is abundant
with short, autocorrelated time series that have been studied
using the measures of interest here [1-5]. As such, it is an
archetypal real-world application to illustrate the issues of
autocorrelation for time-series analysis.
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FIG. 11. Prewhitening the time series does not mediate the bias
in F'-tests for Granger causality estimates after FIR (a) or IIR (b) fil-
tering. The experiments are as per Fig. 6, with four prewhitening
approaches used (as per Fig. 10): the AR(1), ARMA(1, 1), AR(p),
and ARMA(p, gq).

In fMRI research, the blood-oxygen level-dependent
(BOLD) data are translated into a slowly varying (and thus
highly autocorrelated) multivariate time series that traces the
haemodynamic response of different locales (voxels) in the
brain. Digital filtering is then commonly used as a prepro-
cessing step to reduce line noise, nonstationarity and other
artefacts in neuroimaging data. This induces an (either finite
or infinite) impulse response that can increase autocorrelation,
even if the original signals were not serially correlated. To
characterize the FPR of linear dependence measures between
empirical time series, we use completely independent time
series from a widely accessed brain-imaging dataset known
as the the Human Connectome Project (HCP) resting state
fMRI (rsfMRI) dataset [44] (see Appendix B 2 for more de-
tail; time series are selected from different random regions
of interest from different random subjects to ensure inde-
pendence, and then digitally filtered). This process is shown
in Fig. 12, where a sample window of the raw and filtered
data from two independent time series appears on the left
panel.

First, we illustrate the effect of autocorrelation on mutual
information by using a x>-test, with significance level 5%,
computed with 7 = 800 samples of each independent time
series. We begin by estimating mutual information fx;y be-
tween two unrelated time series x and y, sampled from the
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FIG. 12. Application to brain-imaging data, demonstrating our correction for the otherwise dramatic inflation of false-positive rates (FPRs)
of classical hypothesis tests of dependence estimates in the presence of autocorrelation. We perform 1000 experiments with both the x>-tests
as well as the modified A-tests for inferring the significance of two dependence measures: mutual information(between two univariate and
two bivariate processes), and Granger causality. For each of these experiments, we randomly selected two uncorrelated fMRI time series, X
and Y, from the Human Connectome Project [44] (see Appendix B 2 for more details). A sample window of these univariate processes are
shown in the left panel (gray lines), with the common preprocessing technique of band-pass digital filtering later applied to the signals (red
lines). At the bottom of the left panel, we plot the sample autocorrelation function from both the raw and the filtered signal, illustrating the
higher autocorrelation length (and lower effective sample size) induced by digital filtering. The panels on the right show the FPR of each test
applied to the filtered signals as a function of the significance level «. For ideal hypothesis testing, we expect a line along the diagonal (i.e.,
the FPR equals the significance level). The x2-tests illustrate an increased FPR for all measures, as seen by both the plots and the FPR at 5%
significance level. In contrast, our tests remain consistent with the expected FPR.

HCP dataset. We find that the test results are significantly
biased, yielding an FPR of 41.8% (a ninefold increase of the
expected rate). After prewhitening with an AR(p) filter, this
increased to over 88% (not shown in the figure). The modified
A-test demonstrated an FPR of 4.7%, which is well within
the acceptable confidence interval. Next, we perform the same
tests but with the mutual information between two sets of
bivariate time series x and y (k =/ = 2); this yields an 83%
FPR (a 16-fold increase). When we correctly test these same
measurements with the modified A-test [Eq. (39)], we find a
FPR of 5.2%, matching the desired level within the confidence
bounds.

For Granger causality, we perform two different tests:
scenario (i) with the model orders, p and ¢, inferred for
each trial, and scenario (ii) with a fixed p = ¢ = 100 for
all trials. For unrelated signal pairs, the FPR of Granger
causality estimates using the y2-test is 16.9% (with opti-
mal history length around 18), increasing further to 90.5%
after prewhitening with an AR(p) filter. If a longer em-
bedding length of 100 is chosen, the FPR is 66%—more
than 13 times the expected value—increasing to 83.3% after
prewhitening with an AR(p) model. When we test these same
measurements with the modified A-test (46), we find a FPR
of 5.5% and 6.5% for scenarios (i) and (ii), respectively,
completely removing the false-positive bias exhibited by the
Xz-tests.

X. DISCUSSION

We have shown that the autocorrelation exhibited in
covariance-stationary time-series data induces bias in the
hypothesis tests of a broad class of linear dependence mea-
sures. By framing different dependence measures in unified
theoretical terms, we provide the first demonstration of how
Bartlett’s formula can be applied to derive unbiased hypoth-
esis tests, termed modified A-tests, for mutual information
(and, consequently, Wilks’ criterion and Granger causality)
for both univariate and multivariate time-series data. These
measures are used in a wide range of disciplines, model-
ing myriad important processes from anthropogenic climate
change [26] to the brain dynamics of dementia patients [63].
The continued use of flawed testing procedures in empirical
sciences is problematic, making it imperative that the correc-
tions reported here be incorporated into future studies.

The effect of temporal autocorrelation on linear depen-
dence has long been investigated in statistics; however, the
majority of research has focused on simple linear correlations
[1,2,10,11,40], which are restricted to measuring symmetric
bivariate dependence structures. These studies, while rep-
resenting important milestones in inferring the association
between univariate time series, suffer from the inability to
capture both multivariate and directed dynamical depen-
dence. Even though measures such as mutual information
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and Granger causality can model a much richer set of de-
pendence structures in temporal processes, the notion that
their sampling properties could be altered in the presence
of autocorrelation has thus far been largely overlooked. A
major challenge of handling autocorrelation for more in-
volved dependence measures was in extending Bartlett’s
formula to multivariate relationships. Crucially, our approach
facilitates not only independent multivariate relationships but
also correlated multivariate processes. Our results on the
mutual information between multivariate time series used ex-
amples where the subprocesses were all independent. When
extending this approach to Granger causality for arbitrarily
large history lengths and dimensionality, the subprocesses
become inherently correlated (since one subprocess is a
time-lagged version of another, and they involve significant
autocorrelation). This provides strong evidence that our ap-
proach is a generalization of Bartlett’s dependence studies
that is able to handle a much richer class of multivariate
dependency structures beyond those already presented in this
paper.

Granger causality is the de facto measure of directed
dependence between stationary time series. The typical
approach to assessing the significance of (potentially mul-
tivariate) estimates has been via the finite-sample F-tests
[64] or the asymptotic x2-test [46]. In this study, we have
shown that higher levels of autocorrelation (equivalently, a
higher-order autoregression) in the signal inflates the vari-
ance of these statistical estimates, inducing significant bias
for these traditional hypothesis tests. This means that using
these tests induces errors when the predictor process is serially
correlated—precisely the situation that Granger causality was
designed to address. One might logically surmise that this
issue could be mediated by accounting for a longer history
of the process, i.e., conditioning on additional AR variables.
Referring to Fig. 6, we have shown that this will result in the
FPR being even further inflated. This is particularly concern-
ing given that the autocorrelation function is one of the two
properties that define a stationary process [7,8,47]—the other
is its mean, which has no effect on scale-invariant dependence
measures such as Granger causality, mutual information, and
Pearson correlation. Similar to the thinking behind Granger
causality, another common approach to remove autocorre-
lation is prewhitening, which intends to induce a serially
independent process (of residuals) for hypothesis testing. Our
experiments in Fig. 10 and Fig. 11 (as well as Appendix C)
illustrated that many common approaches to prewhitening fail
to control the FPR and, indeed, can further reduce the size
of the unmodified (F and x?) hypothesis tests. We conclude
that the unmodified hypothesis tests cannot be used to reliably
infer the significance of Granger causality or mutual infor-
mation estimates when applied to covariance-stationary time
series and should be replaced with modified tests, such as the
modified A-tests, particularly for limited time-series data.

Prior work [4] had already established that digital filtering
led to biased Granger causality estimates for shorter time
series, yet this effect was not understood nor able to be cor-
rected until now. Due to the widespread use and influence
of Granger causality across fields including neuroscience,
ecology and economics, underlined by any examination of
the literature (see Sec. I), this was a serious deficiency for

directed inference of relationships in time-series analysis.
Much like correlation coefficients, the issue was magnified
in fields dealing with short, highly autocorrelated time series,
as demonstrated in Fig. 12 for computational neuroscience
using fMRI recordings. Many extensions to Granger causality
have been proposed to explicitly model the autocorrelation
function (such as ARMA [65] or state-space Granger causality
[66]). However these approaches are also known to exhibit
significant false-positive biases [67], aligning with our re-
sults in Sec. VIII on the ineffectiveness of prewhitening with
ARMA models. In this paper, we showed that modifying the
effective degrees of freedom of the null distribution suffices to
eliminate the bias across all examined time series, without the
additional burden of inferring complex models or prewhiten-
ing. More advanced methods (such as state-space Granger
causality) may retain other empirical advantages, but their
hypothesis tests are likely to require incorporation of similar
modifications based on effective sample sizes. More broadly,
our results strongly suggest that any hypothesis tests dealing
with time-series analysis should be modified to account for
autocorrelation, regardless of regressing or conditioning on
AR components. The concerningly high FPRs exhibited in
our experiments suggest that relationships established using
previously tested Granger causality estimates should perhaps
be revisited; particularly in fields that have high levels of
autocorrelation and limited data.

Throughout this work, we have made the assumption that
the time-series innovations are Gaussian and that all relation-
ships are linear. Thus, we have only discussed linear-Gaussian
probability distributions for information-theoretic measures.
When instead applied to nonlinear time series, these prob-
ability distributions are often inferred using nonparametric
density estimation techniques such as nearest neighbor or ker-
nel methods [68]. Spurious estimates of the nearest-neighbor
counts have previously been observed for autocorrelated sig-
nals by Theiler [69], who provided a solution by excluding
observations that are close in time. This is now a popular
approach to effectively account for autocorrelation in den-
sity estimation for nonlinear time-series analysis. In fact, in
introducing transfer entropy—now understood as a model-
free extension of Granger causality [35]—Schreiber explicitly
recommended the use of a Theiler window (also known as
serial- or dynamic-correlation exclusion) when kernel estima-
tion methods are used [36]. The Theiler window approach has
been demonstrated to control the FPR for such estimators in
practice [70], yet remains a heuristic with no theoretical guar-
antees and, similar to Pearson correlation, is often neglected in
practical estimation of transfer entropy [71]. We hypothesize
that the methods outlined in our work could be extended
in future to provide a more rigorous approach to handling
autocorrelated nonlinear time series through, e.g., nonlinear
versions of Bartlett’s formula [72], facilitating a broader class
of information-theoretic measures.

Finally, the dependence structure discussed in this work is
assumed to be in the time domain, whereas many empirical
studies are concerned with other forms of dependence that
could similarly bias hypothesis tests. Future work will be
required to consider handling such correlation structures in
a similar fashion to that which we have presented, e.g., spec-
tral models [21] or spatial autocorrelation [39]. Indeed, the

013145-17



OLIVER M. CLIFF et al.

PHYSICAL REVIEW RESEARCH 3, 013145 (2021)

formula for the effective sample size [Eq. (9)] was developed
for spatial autocorrelation and can thus be easily extended
to handle spatiotemporal autocorrelation, allowing for even
broader class of null distributions that can be considered with
the modified A-test.
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APPENDIX A: STATISTICAL HYPOTHESIS TESTS

The linear dependence measures discussed in this paper are
positive real-valued random variables A € R that can be ex-
pressed as the ratio of the generalized variance of two models.
In general, we consider two nested models, the “restricted”
model with py parameters (under which the null hypothesis
Hy is true) and the “unrestricted” model with p; parameters
(under which the alternate hypothesis H; is true). These mod-
els are referred to as nested since py < p; and the restricted
model parameter space is a subset of the unrestricted model
space. The statistics are expressed in terms of the generalized
sample variance of these models:

A= M, (A1)

Is1

where s; is the the residual sum-of-squares for model i and
|s;| is the generalized sample variance. The generalized sam-
ple variance is, asymptotically, inversely proportional to the
likelihood of each model, and so taking the log of the ratio
of generalized sample variances (Al) is equivalent to the LR
between two models (for a large enough number of samples)
[8,65]. For this reason, statistics of the form in Eq. (Al)
appear in a number of linear dependence measures, such as
mutual information (with Gaussian marginals) and Geweke’s
definition of Granger causality [46].

1. Asymptotic likelihood-ratio test

Wilks’ theorem [55] is the basis of the x 2-test, which states
that a test statistic constructed from the LR of nested models
will asymptotically follow a x 2-distribution under the null hy-
pothesis. Since all statistics used in this work fit this definition,
ay 2_test can be used. That is, if the true model is the restricted
model, then as T — o0, the statistic is chi-square distributed:

T log(A) > x2(p1 — po). (A2)

However, as we show throughout the main text, the x 2_test has
a significant bias when applied to limited and autocorrelated
time-series data, which results in a large number of false
positives.

It is important to note that the LR test is but one of
three classical procedures for hypothesis testing maximum
likelihood estimates; the others are the Wald test and the
Lagrange multiplier test [7,8,47]. The three tests overlap be-
cause the null distribution of each asymptotically follows the
x >-distribution. Thus, the same issues hold if one were to use
any test on linear dependence measures unless autocorrelation
is considered in the null distributions.

2. Finite-sample F -test

In regression analysis, the F-test is used to infer the sig-
nificance of nested models of independent observations with
limited data, i.e., the finite-sample null distribution. Using
the same notation as above, we obtain a distribution for the
comparing the nested models:

T —p1 So— S
p1—po  Si

F-statistics can be reformulated as nested ratios of sample
variances through simply rearranging the LHS of (A3):

~F(p1 —po, T — p1). (A3)

T —p

P1— Do
Thus, the F -statistic is a function of the LR of two models and
we can show its asymptotic distribution is chi-square. First, a
Taylor expfmsionA of the LHS of the F-statistic in Eq. (A4)
gives log (A) ~ A — 1. Moreover, for a random variable X ~
F(vi, 12), then Y = lim,,_,~ 11X has the chi-square distribu-
tion x2(v;). Thus, by this asymptotic relationship between the
F- and x2-distributions, we have

[A — 11~ F(pi —po. T — p1). (A4)

. IN d
TILHQO(T — p1)log(A) — (p1 — po) F(p1 — po, T), (AS5)

T log (A) ~ x*(p1 — po)- (A6)

This result is discussed throughout the paper to explain the
diverging behavior between the two tests.

3. Surrogate-distribution tests

Another established approach to empirically generating a
null distribution involves permuting, redrawing or rotating
the observations of one variable x or y and computing the
relevant statistic for each surrogate dataset [4,50,68]. Naive
approaches to permuting or redrawing will completely de-
stroy the autocorrelation profile of that variable, making this
empirical distribution representative of serially independent
observations and similar to the analytic F -distribution.

Indeed, such empirical generation of the CDF via permuta-
tion testing was attempted (for Granger causality) by Barnett
and Seth [4], and shown to incur the same inflated FPR issues
as the F- and y2-tests. Alternatively, constrained realization
approaches [73] can be used to generate surrogate time-series
data that exhibit certain properties (such as the same power
spectra) and have recently been shown effective for handling
autocorrelation in EEG data [74]. Nonetheless, bootstrap tests
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are computationally inefficient and known to exhibit size and
power distortions, however typically less so than asymptotic
tests [75]. As such, we consider a comparison to these empir-
ical approaches outside the scope of our paper.

4. Drawing inferences

Given an estimate A and null distribution (e.g., the F- or
x2-distributions), we use the same general hypothesis testing
procedure for all measures. Here we use the x2-test for A as
an example, however the same applies to all linear dependence
measures, including the A*-distributions, which are numeri-
cally generated.

First, we set an arbitrary significance level «, which is
(ideally) the probability of rejecting the null hypothesis even
if it were true—this is set to 5% in this paper unless stated
otherwise. Then the statistic 7 log (A) is input to the quan-
tile function of the y2-distribution with p; — po degrees of
freedom. The output (the complement of the p-value) is the
probability of measuring that value (or higher) under the null
hypothesis Ho: A = 0. If the p-value is below the significance
level, then we deduce that the measured LR A is significant.
A false positive occurs when the p-value is below the signif-
icance level o but the null hypothesis H, is true, i.e., there
is no actual dependence between the variables A = 0, yet A
is considered significant. Ideally, we expect the proportion of
false positives (the FPR) to match the significance level «,
i.e., one would expect an FPR of 0.05 for a 5% significance
level . This same procedure is used for all linear dependence
measures in this paper, with differing statistics and null distri-
butions.

When the FPR is measured over R trials (usually R = 1000
in this paper), confidence intervals can be determined based
on the binomial distribution of R draws of a random variable
each with o = 0.05 chance of success.

APPENDIX B: EXPERIMENTAL SETUP
1. Numerical simulations

For our experimental validation, we use an AR model sim-
ilar to the example proposed in [4], with two processes X and
Y that have no interdependence, digitally filtered to increase
their autocorrelation. We begin with the m-variate time-series
data z = (z(1), ...,z(T)), i.e., an m x T matrix, where each
realization is generated from a first-order vector AR model:

z(t) =®(1)z(t — 1) +a(t), B1)

with

_[x) _[ex) 0
z“"[y(r)}’ ‘I’(“‘[ 0 <I>y<1>]’ (B2)

and AR parameters ®x (1) = 0.31; and ®y (1) = —0.81,. The
innovations a(t) = (a;(¢t), ..., a,(t)) are uncorrelated with
mean 0 and unit variance matrix var(a(t)) = I,,. The matrix
z is then partitioned into k x T and / x T matrices denoted
x(t) and y(¢). For each measure, we are interested in either the
mutual information between x and y, or the Granger causality
from y to x. If a third (conditional) process w is required
to contextualize these measures (in their conditional forms),
we consider another first-order AR process w again using

Eq. (B1), with w(r) € R¢, ®w (1) = 0.41. and unit variance
innovation process. Each process, x, y, and w, are then in-
dependently filtered with either an FIR or an IIR filter. Both
filters were low-pass, with their cutoff set to a normalized
frequency of 7 /2 radians and a variable filter order.

In our study of the mutual information between bivariate
processes, we inject a causal influence from the univariate
process Y to X in order to test the TPR (i.e., statistical power
of the test). In this scenario, we generate bivariate time-series
data z from same state equations [Eq. (B1)] but with a small
causal influence from Y to X in the AR parameters:

Dx(1)  Dxy (D)
<I>(1>=[XO qj‘YY(l)}

with ®yy (1) = 0.03, whilst ®x (1) = 0.3 and ®y (1) = —0.8,
as per Eq. (B2).

(B3)

2. Human Connectome Project

The HCP rsfMRI dataset [44] comprises 500 subjects im-
aged at a 0.72 s sampling rate for 15 min in the (relatively
quiescent) resting state. This results in 1200 observations of
spatially dense time-series data, which are then parcellated
into 333 regions of interest in the brain. Thus, the dataset
contains 500 subjects with 333 brain regions each, and each
of these regions is associated with a stationary time series
of 1200 observations. The raw (BOLD) data of each region
was then preprocessed by removing the DC component, de-
trending, applying a third-order zero-phase (or forward and
reverse) Butterworth bandpass filter (0.01-0.08 Hz). These
are common techniques used to remove potential artefacts.
We also removed 200 observations from the start and the end
of the time series, in order to minimize filter initialization
effects. This leaves T = 800 observations for the analysis.
In order to build a scenario where the null hypothesis holds,
we conduct experiments on 1000 time-series pairs, selecting
different random regions of interest from different random
subjects, making the corresponding time series completely
independent of one another. The analysis was performed for
mutual information (between both univariate and bivariate
time series) and Granger causality in the same way as dis-
cussed for the simulated time-series experiments above. We
use the same hypothesis testing procedure (discussed above)
with a 5% significance level for the y2-test and our newly
proposed modified A-test.

APPENDIX C: ADDITIONAL PREWHITENING TESTS

This Appendix provides further evidence that standard
prewhitening techniques are insufficient for many covariance-
stationary time series. In the main text, we show that
prewhitening time series is ineffective when the time-series
models are either AR(p) models that are inferred from Burg’s
method or ARMA(p, ¢) models that are inferred from the
BIC score (up to a maximum order of p = g = 5). Here we
extend these results to show that AR(p) models inferred via
the AICc (AIC with small-sample correction) and BIC scoring
functions are also insufficient.

In Fig. 13 we show the extended prewhitening results for
mutual information tests. The algorithm iterates through all
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FIG. 13. Inferring the AR models via AICc and BIC does not
consistently improve prewhitening results for mutual information
tests with FIR (a) or IIR (a) filtering. The experiments are as per
Fig. 1, with two additional prewhitening approaches used: the AR(p)
model inferred from the AICc and BIC scores, respectively.

potential AR(p) models and selects the one that minimises
the AICc and BIC scores (independently). For the FIR-filtered
data, this approach shows a slightly increased FPR above the
nominal value of 5%—this illustrates a marginal improvement
over Burg’s method from Fig. 10. However, for the IIR-filtered
data, the FPR approaches 100% and is significantly worse
than even methods with no or minimal prewhitening [cf.
the AR(1) models or the standard F-test in Fig. 1]. Simi-
larly, prewhitening is shown to be insufficient for Granger
causality tests in Fig. 14, where equivalent experiments were
performed with no major qualitative differences (compared to
Fig. 11).

We do not show any further results for ARMA(p, ¢) mod-
els, e.g., by increasing the maximum order or via a different
criterion because the procedure to learn the parameters of
higher-order ARMA models was too computationally ex-
pensive using the standard functions. Given this constraint,
all information criteria (AIC, AICc, or BIC) often chose
the maximum order in practice, and so using alternative
approaches was redundant. We conjecture that prewhiten-
ing with ARMA(p, g) models may perform favorably to
AR(p) models given the ability to infer arbitrarily complex
models. However, the constraints governed by the their in-
ference procedures makes testing this currently intractable in
practice.
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FIG. 14. Inferring the AR models via AICc and BIC does not
improve prewhitening results for Granger causality tests with FIR
(a) or IIR (a) filtering. The experiments are as per Fig. 6, with two
additional prewhitening approaches used: the AR(p) model inferred
from the AICc and BIC scores, respectively.

APPENDIX D: CONSIDERATIONS AND EXTENSIONS
OF BARTLETT’S FORMULA

In our derivations we use a first-order approximation of
Bartlett’s formula [Eq. (8)], that was originally described for
spatially autocorrelated processes. However, since Bartlett’s
seminal work [10], there have been a number of other
extensions made to his formula as well as techniques intended
to overcome the issues of its empirical computation.

One of the more general cases of Bartlett’s formula is
due to Roy [40], who provided the large-sample distribution
between pairs of sample cross-correlations at differing lags.
Consider the four processes Z;, Z;, Zy, Z;. Let

Ay ok, D) =) pijpu(u +v),

u=—00

(D)

where p;;(u) are the cross-correlation as per Eq. (5), and

sap(0) = T [rap(v) — pap(v)],

as the standard error, with r,;,(v) the sample cross-correlation
in Eq. (6). In general, the asymptotic distribution of the stan-
dard error, s,;(v), is Gaussian with zero mean and covariance

(D2)

Tlim cov(Sap(V), Sge(w))

~ Aw—v(aa d’ ba E) + Aw+v(b7 d5 a, e)
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— Pas(M[Aw(a.d,a,e)+ Ay(b,d, b, e)]

— pae(W)[Ay(b,d,a,d) + Ay(b, e, a, e)]

+ 3 Pas(W)pge(w)[Ao(a, d. a, d) + Ao(a, e, a, e)

+ Ao(b,d,b,d) + Aog(b, e, b, e)]. (D3)

This derivation can be further generalized to the non-Gaussian
case, for instance, by allowing for skewed distributions [76].
More recently, a first-order approximation of this formula was
given by Afyouni et al. [2], which takes the same form as
Eq. (D3), with Eq. (D1) slightly modified.

One consequence of knowing the full covariance structure
[Eq. (D3)] is that such a distribution could further help in
situations when the partial correlation terms that Wilks’ statis-
tic decomposes into are themselves correlated. That is, in the
main text, we provided the variance for each A*-distributed
variable L; (as a beta distribution by assuming independence).
By assuming independence, we were able to obtain the sam-
pling distribution of Wilks’ criterion as a product of these
A*-distributions. However, if the random variables were cor-
related, then we must use the multivariate form of Bartlett’s
formula (D3), which provides the covariance of each variable
L; term with all other variables L; (i.e., we would have n;;
for each i and j, rather than just n;). Accounting for this co-
variance would require knowing the distribution of the general
product of correlated beta-distributions that, to the best of our
knowledge, is not an established result.

Another use case of Eq. (D3) is testing against an alterna-
tive hypothesis [H; : pa»(0) # 0], which is discussed at length
by Afyouni et al. [2] for correlation coefficients. One could
follow the same logic from this paper to provide the alterna-
tive hypothesis test for linear dependence measures based on
Wilks’ statistic.

There are a number of special cases of Roy’s formula that
are worth noting. In the event that we are interested in the
covariance cov(s,,(v), sq.(w)) between cross-correlation es-
timates of two univariate processes Z, and Z; at arbitrary lags
v and w, this is obtained from Eq. (D3) by setting d = a and
e = b, reducing to the results reported in Refs. [77] and [7]
(Theorem 11.2.3). Using this special case, the null distribu-
tion of Pearson (zero-lag) correlation between two univariate
processes var(s,,(0)) can be obtained by setting v =w =
0. Finally, under the assumption that p,,(0) = 0, most of
these terms disappear and we are left with Bartlett’s original
formula [10]:

lim var(sg(0)) ~ lim var(T"* [ra(0)])
T—o00 T—o0

= Z pii(w)p;;(u)

u=—00

(D4)
with a similar form given by a first-order approximation [38]:

var(sgp(0) & T~ )~ (T = [u])paa(1) po (1.

U=—00

(D5)

Due to symmetry of the autocorrelation function about lag-
zero for stationary processes, we can simply sum over the
positive lags in Eq. (DS), u > 0, which was the form used
throughout this paper [see Eq. (8)]. For the exact rela-

tionship between the large-sample approximations and the
first-order approximations, we refer the reader to the dis-
cussions in Refs. [11,38,78]. Bartlett did indeed present a
formula irrespective of sample size [11], which may yield an
improvement for small sample distributions and give minor
practical advantages, however, we did not find this necessary
for any experiments and instead follow the approximations in
Eq. (D5).

Another potential source of error in the sampling distri-
butions come from incorrectly estimating the autocorrelation
function r,,(«). Tapering (also known as data windowing) is
commonly used in practice to regularize the autocorrelation
samples to better estimate their true value [2,51]. These ap-
proaches involve scaling the autocorrelation samples by some
factor, with the maximum lag truncated below the dataset
length. Using this method, we can appropriate Bartlett’s for-
mula to

U
var(sa(O) ~ 142 Y T r @, (06)

u=1

where A(u) are a set of weights called the lag window and
U < T is the truncation point. The lag window comprises
M(u) values that decrease with increasing u; two common ap-
proaches are the Parzen and the Tukey windows (see Ref. [51]
for details). Numerous truncation points U have also been
proposed, e.g., T /4, T/5, ~/T, and 2/T [2].

In the above few sections we outlined a number of potential
factors that could introduce small size or power distortions
in our hypothesis tests. To compare our approach with these
more complex extensions, we ran experiments with the effec-
tive sample size computed from the full covariance matrix
(D3), both with and without tapering. These were computed
for the experiments from Fig. 1, however, as mentioned
above, the product of correlated beta- or F-distributed vari-
ates is unknown and so our modified A-test could not be
performed. Instead, we used the sums of z-transformed partial
correlations (each of which make up the conditional mutual
information term), rather than the products of squared partial
correlations. That is, by transforming each partial correlation,
we expect the sum of these correlation to be approximately
Gaussian. In performing these tests, we found no notable
difference in the FPRs for any of the validation experiments,
suggesting that these additions made no significant difference
towards reducing size or power distortions.

APPENDIX E: PARTIAL AUTOCORRELATION
AND ACTIVE INFORMATION STORAGE

The partial autocorrelation function conveys important
information regarding the dependence structure of an AR
process [7]. For a univariate stationary time series Z, the par-
tial autocorrelation oz (u) at lag u is the correlation between
Z(t) and Z(t — u), adjusted for the intervening observations

ZUVt)y=[Zt —1);...; Z(t —u+ 1)]. Denote Z* as the
process of Z lagged by u time steps and Z* as the history
up until that lag (inclusive) Z® = [Z'; ... ; Z"]. Then, for a

stationary time series, the partial autocorrelation function is
defined by [7]

az(1) = pzz (ED)
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and

az(u) = pypuge-v, u>1. (E2)

Although we use Burg’s method to identify the relevant his-
tory length p for an AR model of Z length for AR models in
this paper, it is common practice to use the partial autocorre-
lation function instead, since az(u#) =0 for u > p [7,8,47].
Again, this is a statistical estimate and thus the order p is
inferred by testing each sample partial autocorrelation & ()
for significance against the null distribution.

Intriguingly, our work reveals a relationship between the
partial autocorrelation function and active information storage
[43]—a recently developed model-free measure for quan-
tifying memory in a process—under the linear Gaussian
assumption. The average active information storage Ay quan-
tifies the information storage in a process. For a p-order
Markov process X, this is quantified by the mutual informa-
tion between the relevant history X P)(¢) and variable X (¢):

Ax(p) = Ix;xﬂ))- (E3)

Since the average active information storage is a specific type
of mutual information, we can use the chain rule to decompose
it into a sum of squared partial autocorrelations:

P
IX;X(’]) = _1/2 Zlog (1 - p?{xu_x(ufl))
u=1

p
~1/2> "log {1 — [ax (w)P?}. (E4)

u=1

This same logic can be straightforwardly applied to other mea-
sures such as excess entropy [41] and predictive information
[42].

In additional to quantifying the memory within a process,
active information storage is often used for inferring the opti-
mal history length for both the Gaussian and non-Gaussian
cases [68]. This is typically achieved by using the x>-test
to infer the significance of increasing the embedding lengths
p. For AR processes with Gaussian innovations, we infer
the embedding length p for X by first taking the difference
8y(u) = A(u + 1) — Ax (u) and then generating a p-value by
testing 2 8x (1) against a x2(1) distribution, which represents
the null hypothesis of no increase in information storage. If
the p-value is below a threshold (say, 5%), then the test is
rejected and the lag is increased u = u + 1. This process is
iterated until the null hypothesis is accepted, at which point we
surmise that the optimal lag p is the one at which dx(p + 1) is
considered insignificant. This approach is similar to using the
partial autocorrelation, as the difference 8y (1) is equivalent to
squared partial autocorrelation up to a factor of two. This can
be seen from Eq. (E4):

Sx(w) =Ax(w+1) — Ax(u)
= —1log{l — [ax (u+ DI*}. (ES)

In contrast to measures of dependence between multiple pro-
cesses, the x>-test appears suitable here (without adjusting
for an effective sample size) for testing éx («) for u > p. This
is because, after the full set of past variables is included in
the regression, any higher order residuals x* — £*(£%")) with
u > p have statistically zero autocorrelation for every lag.
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