
PHYSICAL REVIEW RESEARCH 3, 013109 (2021)

Violation of fluctuation-dissipation relations for electron transfer in nonpolar solvents
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Nonpolar materials are increasingly employed as media for electron transfer, particularly in applications
related to solar energy conversion. What should be the mechanism of activation for electron tunneling in the
absence of rotating permanent dipoles considered in standard theories is not clear. We suggest that compression
and decompression (density) fluctuations shifting positions of polarizable molecules of the medium is the
mechanism for radiationless transitions. These fluctuations affect the induction interactions between the medium
induced dipoles and the localized electron (induction forces). Solvent reorganization energy must be a signature
of such fluctuations, but it has never been directly measured for electron transfer in nonpolar media. Here,
absorption and emission spectra of a charge-transfer complex are analyzed as functions of temperature in
cyclohexane. Significant reorganization energies, 0.2–0.5 eV, are found. They strongly differ between the ground
and photoexcited charge-transfer states in violation of fluctuation-dissipation relations establishing the basis for
modern theories of electron transfer. The reorganization energies are decaying functions of temperature, also in
violation of the macroscopic fluctuation-dissipation relations.

DOI: 10.1103/PhysRevResearch.3.013109

I. INTRODUCTION

Transfer of electrons between molecules is a process
fundamental to the hopping limit of electron conductiv-
ity [1,2], redox chemistry [3], and biology [4]. It is a
major step in energy chains of mitochondria and in nat-
ural photosynthesis [4,5]. All energy produced by biology
comes, through electron and proton transfer, from the
transformation of the chemical potential of high-energy elec-
tronic states into other forms of energy. Mechanistic issues
related to activated hops of electrons between localized
states within the molecules are still explored, in particu-
lar in application to the transport of electrons in complex
biological systems [6]. At the same time, the demand for
affordable sources of energy drives the research effort to
designing efficient artificial photosynthetic systems [7–9].
They often employ media very different from aqueous so-
lutions in which energy complexes of biology operate and
conventional polar solvents used in classical research of
electron-transfer reactions [10,11]. In particular, the use of
nonpolar materials/solvents for molecular charge transfer
[12–15] and charge transport [16] has become increasingly
widespread since these media avoid substantial solvation ener-
gies of polar solvents trapping electrons at their hopping sites
[17] and thus increase efficiency of solar cells [18].

The theory of electron transfer in nonpolar solvents
involves significant fundamental distinctions from the tradi-
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tional theory adopted for polar liquid solvents [19]. Both the
driving forces promoting electron transfer (induction interac-
tions versus electron-dipole interactions) and thermodynamic
properties of medium fluctuations affecting electron transfer
are different in nonpolar solvents. Spectroscopy of charge-
transfer optical bands has traditionally played a decisive role
in testing theories of electron transfer [20–22]. Here, spec-
troscopy of charge-transfer bands in a nonpolar liquid solvent
is used to elucidate the fundamental differences between elec-
tron transfer in polar and nonpolar solvents. We demonstrate
a dramatic violation of fluctuation-dissipation relations es-
tablishing the foundation of present-day theories of electron
transfer.

Theoretical basis for describing electron transfer between
molecules in polar solvents was established by the Marcus
theory [10]. This is a generic Gaussian model describing the
modulation of electronic energies in molecules by thermally
induced rotations of permanent dipoles in the liquid. It states
that overcoming a gap in energy between two localized states
of the electron is required for electron tunneling and trans-
port. If the equilibrium gap between the donor and acceptor
electronic states is 〈�E〉, the probability of the reaction is
the product of the tunneling probability and the Gaussian
probability of reaching the resonance

kET ∝ V 2e−〈�E〉2/(2σ 2 ). (1)

Here, V in front of the Gaussian probability term is the
electron-transfer matrix element which quantifies the tunnel-
ing probability [23,24].

The rate constant in Eq. (1) is brought to the Arrhenius
form by applying the static limit of the fluctuation-dissipation
theorem (FDT) [25] to the Gaussian width of the energy
gap σ 2 = 〈(δ�E )2〉, δ�E = �E − 〈�E〉. This fluctuation
relation states that the variance of equilibrium thermal
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fluctuations of a macroscopic variable scales linearly with
temperature (Johnson-Nyquist noise [26]).

Rule I : σ 2 = 2λkBT ∝ T . (2)

When this temperature scaling is used in Eq. (1), one arrives
at the Arrhenius law for the rate constant kET.

The proportionality constant between the Gaussian vari-
ance and temperature in Eq. (2) is the Marcus reorganization
energy λ [27]. It enters yet another fluctuation-dissipation
relation connecting the linear response of a system to an ex-
ternal perturbation with thermally induced fluctuations around
equilibrium. This result goes back to the Onsager regression
theorem [28] stating that small fluctuations out of equilibrium
can be viewed as regression from nonequilibrium states exter-
nally driven by small perturbations. In the modern formulation
of the linear response theory [25,29], if the variable A is
driven out of equilibrium by the force f conjugate to A, the
susceptibility χ = �A/ f can be expressed as the variance
of the same variable A scaled with the inverse temperature:
χ = β〈(δA)2〉, β = (kBT )−1.

When applied to the theory of electron-transfer reactions
[20,27], the fluctuation-dissipation relation establishes the
connection between the equilibrium energy gaps for the for-
ward, 〈�E〉1, and backward, 〈�E〉2, transitions with the
Marcus reorganization energy.

Rule II : λ = 1
2 |〈�E〉1 − 〈�E〉2|. (3)

When transfer of the electron is caused by light in opti-
cal charge-transfer transitions, 〈�E〉i are associated with the
maxima of the absorption and emission bands. Equation (3)
then establishes the connection between the reorganization
energy and the Stokes shift of the charge-transfer optical
band [20].

The requirement of linear response of the medium to elec-
tron transfer places one more constraint on the parameters
involved. This is the requirement of equal Gaussian variances
σ 2 for the forward and backward electronic transitions. If one
applies σ 2

1 to the rate of the forward transition 1 → 2 and σ 2
2

to the backward transition 2 → 1, the requirement of using
linear response theories is the equality between them,

Rule III : σ 2
1 = σ 2

2 . (4)

For optical transitions, σi define inhomogeneous broadening
of optical lines. Rule III then implies that the absorption and
emission lines should carry equal widths.

Rules I–III specify the fluctuation-dissipation relations in
application to electron transfer. They are numbered by their
fundamental significance. Rule I is by far most significant for
applications since it brings the electron-transfer kinetics into
the realm of the Arrhenius law. Rule II leads to a practical
recipe [10] connecting the average energy gap for electronic
transitions with the reaction free energy �G of thermally
activated electron transfer

〈�E〉i = �G ± λ, (5)

where “+” is used for the forward reaction 1 → 2 (i = 1)
and “−” applies to the backward reaction 2 → 1 (i = 2). The
reaction free energy for thermal electron transfer is given by

the mean of two average vertical excitation energies

�G = 1
2 (〈�E〉1 + 〈�E〉2). (6)

Finally, rule III allows one to express the activation barriers
for the forward and backward reactions in terms of only two
parameters, λ and �G. The forward and backward rates auto-
matically satisfy the detailed balance.

All three rules in Eqs. (2)–(4) are derived from the same
analytical framework of linear-response theories. It is there-
fore clear that they all should be violated when linear response
is compromised [27]. Before turning to this point, it is first
important to establish which systems and reactions are most
likely to follow such rules.

The Marcus theory of electron transfer has seen its greatest
success in application to reactions in polar liquid solvents
where it has been most extensively tested [11,23]. An impor-
tant physical signature of electron transfer in polar liquids is
the dominance of long-range interactions between the trans-
ferred electron and polar (dipolar) molecules of the solvent.
The number of solvent molecules involved in such interac-
tions is large, which makes the electron-medium interaction
energy a quasimacroscopic stochastic (fluctuating) variable.
The macroscopic limit is where the fluctuation-dissipation
relations are expected to hold exactly. The long range of
the electrostatic interactions with the polar medium is what
ensures success of the Marcus theory from the fundamental
standpoint.

Even though the Marcus theory has been universally suc-
cessful for reactions in polar media, the validity of rules
I–III has not been uniformly tested. Most reactions follow the
Arrhenius law and rule I can be viewed as well supported.
Nevertheless, curved [30–32] and bell-shaped [33,34] forms
of the dependence of the reaction rate on the inverse tempera-
ture have been reported. They received theoretical support in
terms of the dependence of λ on T [34]. Equation (2) holds
as a formal definition of the reorganization energy, but one
often has to account for its temperature dependence, which
makes the actual temperature variation of the reaction rate
non-Arrhenius. Rule II leads to Eq. (5), which has been sup-
ported by numerous observations [35–42] of the bell-shaped
energy gap law, i.e., an inverted parabola predicted by Marcus
for the rate plotted versus the reaction free energy �G [10].
Finally, experimental testing of the validity of rule III is a
challenging problem and there are only a few examples of
charge-transfer spectra when deviations from this prescription
can be separated from other complications [43–45]. More de-
tailed evidence of violation of rule III comes from theoretical
[27,46,47] and simulation [48–50] studies. Such violations of
rule III are detected either as asymmetry in the energy-gap
laws between charge separation and charge recombination
reactions [51] (see Ref. [15] for a recent review) or as band
asymmetry between absorption and emission charge-transfer
optical lines [43,44,52]. The origin of these effects is often
difficult to pinpoint specifically since they can originate ei-
ther from changes in frequencies of intramolecular vibrations
[53–55] (such as the Duschinsky rotation [56]) or from other
not well characterized effects such as the molecular polariz-
ability [27] and, to a lesser extent, from nonlinear solvation
[57,58]. Nonlinear solvation is, however, very significant for
half redox reactions of simple ions [48,50].
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A significant class of electron-transfer reactions where the
fluctuation-dissipation rules are expected to break is electron
transfer in nonpolar media [59,60]. Nonpolar media are de-
fined as those where both the dipole moment of the solvent is
zero and the quadrupole moment does not produce a signifi-
cant reorganization energy. Molecular quadrupoles affect the
solute-solvent electrostatics through molecular orientations,
similarly to the dipoles [61–64], although the component of
the reorganization energy arising from molecular translations
is more prevalent for quadrupoles than for dipoles [65,66].
Nonpolar media present a limiting case for which the stan-
dard models [10] offer no physical mechanism for electron
transfer since there are no permanent dipoles or quadrupoles
to allow nonequilibrium electrostatic fluctuations to overcome
the activation barrier. One needs a nuclear fluctuation shifting
energies of electronic states. Physical interactions allowing
such fluctuations are also electrostatic in character. However,
instead of interactions of the transferred electron with the
permanent dipoles of the medium, the interaction is with
induced dipoles, via the induction forces. The nuclear fluc-
tuations are afforded by translations of the induced dipole,
i.e., through density fluctuations. To study this novel mecha-
nism, two questions are addressed here: (1) How significant is
the solvent reorganization energy that can be gained through
fluctuations of induction interactions? and (2) What are the
observable consequences of a new mechanism of promoting
electron transfer?

The induction interactions decay much faster with the
distance than the electron-dipole interactions and fewer
molecules of the medium are involved. This basic physics
makes the solute-solvent interaction potential a microscopic
variable, instead of a quasimacroscopic variable for polar
interactions, thus invalidating the fluctuation-dissipation rela-
tions strictly applicable in the macroscopic limit [19]. Here,
we support these views by reporting absorption and emission
charge-transfer bands in nonpolar cyclohexane at a number of
temperatures. The mechanism of electron transfer activated by
induction forces is validated.

II. RESULTS AND DISCUSSION

Intramolecular charge transfer can be often viewed from
the electrostatic standpoint as the alteration of the solute
dipole moment from m1 in the initial state to m2 in the
final state; �m = m2 − m1 is the change in the molecular
dipole. The induction interaction between the solute and the
polarizable solvent is the free energy of creating induced
dipoles at the molecules in the liquid carrying the molecular
polarizability α

Fei = −m2
i U, U =

∑
j

v( j), (7)

where

v( j) = (
α
/

r6
j

)
[1 + P2(m̂ · r̂ j )] (8)

and P2(x) is the second-order Legendre polynomial. It is given
as a function of the dot product between the unit vectors m̂
of the solute dipole and r̂ j pointing to the molecule j in the
solvent. The sum in Eq. (7) runs over all N molecules of the
solvent and the solute orientations are averaged in calculating

FIG. 1. Charge transfer in DCVA molecule.

the statistical averages. This is the reason why m̂ carries no
dependence on the charge-transfer state (i = 1, 2).

The instantaneous transition energy is shifted by �Fe =
Fe2 − Fe1 and the average interaction energy in each charge-
transfer state 〈�Fe〉i contributes to the solvent-induced spec-
troscopic shift of the transition band [67,68]. The difference
of equilibrium solvent-induced shifts is the solvent-induced
Stokes shift

〈�Fe〉1 − 〈�Fe〉2 = hνSt
s = 2λ. (9)

As in the standard Marcus formulation [Eq. (2)], the reor-
ganization energy arises from the Gaussian variance of the
solute-solvent interaction energy [19]

λ = 1
2β(δm2)2〈(δU )2〉, (10)

where δm2 = m2
2 − m2

1.
The reorganization energy due to induction interactions

can be calculated by using perturbation formalisms of the
liquid state theory [69]. The resulting expression, derived in
more detail in Appendix A [Eq. (A11)], scales linearly with
the squared molecular polarizability of the solvent α. This
dependence can be cast, by applying the Clausius-Mossotti
equation, in terms of the squared refractive index ε∞ = n2

D
and the packing fraction of the solvent η = (π/6)ρσ 3

s . The
latter defines the fraction of the entire volume � occupied
by N liquid molecules with the diameter σs; ρ = N/� is the
number density of the solvent. Here, we convert the general
perturbation theory to practical expressions applicable to ana-
lyzing spectral shifts in nonpolar solvents.

In many practical situations involving charge-transfer
bands, the dipole moment of the ground state is much lower
than the dipole moment of the charge-transfer state. This is
the situation with the dicyanovinylazaadamantane (DCVA)
molecule [70,71] studied here (Fig. 1). This molecule presents
a clean charge-transfer complex in which both absorption and
emission charge-transfer transitions can be observed with a
negligible mixing from locally excited states. It shows little
solvatochromism of its absorption band suggesting that m1 is
small compared to �m. The energy of the absorption band
hνabs = 〈�E〉1, shifted from the vacuum transition energy
hνabs

0 by the induction stabilization, becomes [Eqs. (A3) and
(A6)]

hνabs = hνabs
0 + �Fe(a1), (11)

where

�Fe(ai ) = − (�m)2

a3
i

ε∞ − 1

ε∞ + 2
. (12)
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Here, ai is the effective radius of the solute for the absorption
(i = 1) and emission (i = 2) transitions. The dipole moments
enter the induction shift as m2

2 − m2
1 and the error of ne-

glecting m1 is of the order m2
1/m2

2. It is offset in practical
calculations by adjusting the effective radii ai.

The timescale of emission in most cases far exceeds the re-
laxation time of the solvent density around the donor-acceptor
complex. The new local structure necessitates a different ef-
fective radius of the solute a2. The energy of the emission line
hνem = 〈�E〉2 is found from the perturbation expansion and
can be written as follows [Eq. (A4)]:

hνem = hνem
0 + �Fe(a2) − 2λ(a2). (13)

The average induction energy �Fe(ai ) in Eq. (12) scales
linearly with α(�m)2, while the reorganization energy, which
arises from the second cumulant of the interaction energy
[Eq. (10)], scales quadratically with this factor. This scaling
allows one to write λ in terms of �Fe(a2)

λ(a2) = β(�Fe(a2))2 f (η, a2/σs), (14)

where f (η, a2/σs) [Eq. (A14)] is numerically calculated in
Appendix A with the use of the Percus-Yevick (PY) solution
for the density structure factor S(k) for the fluid of hard
spheres.

Only the dependence of the reorganization energy on tem-
perature, λ ∝ β, β = (kBT )−1 in Eq. (14), is essential for
the band shape analysis. The proportionality of λ to β is
a nontrivial result. This dependence is canceled out by the
value S(0) ∝ T for solvation in polar solvents dominated by
long-range Coulomb interactions, which translate to small
k-values in reciprocal space when integration is performed.
This does not happen for much more short-ranged induction
interactions and λ ∝ β is preserved (Fig. 6). Further, the
gas-phase energies hνabs/em

0 in Eqs. (11) and (13) are equal
if there is no classical intramolecular reorganization energy
of the solute, but can differ to reflect the Stokes shift from
internal classical vibrations. The solvent-induced Stokes shift
is therefore defined as

h�νSt
s = h(νabs − νem) − h

(
νabs

0 − νem
0

)
. (15)

Equations (11) and (13) are consistent with the result of the
linear (Gaussian) model [Eq. (9)] at a = a1 = a2. In this case,
the term �Fe(a) cancels in the difference of absorption and
emission energies, leaving the solvent-induced Stokes shift
equal to 2λ (rule II). If a1 �= a2, the reorganization energy in
each state can be given as

λi ∝ β(�Fe(ai ))2. (16)

The term (�Fe(ai ))2 [Eq. (12)] absorbs the dependence of λi

on the solute dipole �m, on the solvent refractive index, and
on the effective solute size ai.

The important distinction of solvent reorganization by in-
duction interactions compared to the standard results in polar
solvents [10] is stressed by λi ∝ β in Eq. (16). This result
makes the Gaussian width in Eq. (1) independent of tem-
perature at constant density, in violation of rule I. A small
residual temperature dependence of the Gaussian width is still
preserved through solvent’s expansion when experiments are
done at constant pressure. Rule I is violated because of the
short spatial range of the solute-solvent induction interactions.

Fluctuations of the interaction energy are driven by local
repacking of the molecular repulsive cores. The probability
of such fluctuations is determined by an entropic penalty,
which alters the temperature dependence of the corresponding
variance. In contrast, fluctuations of permanent dipoles in
polar liquids are mostly driven by the enthalpy, even though
translations of permanent dipoles (density fluctuations) are
still mostly responsible for the entropic component of the
activation barrier [34].

Equation (14) is derived for a spherical solute with the
point dipole moment at the center, which changes its magni-
tude through charge transfer. Assuming that the solute radius
a is not altered by charge transfer, the formalism presented in
Eqs. (7)–(12) leads to the violation of rule I while preserv-
ing rules II and III. However, our experimental results show
a clear violation of all three rules. The reason is a strong
dependence of all averages involved on the solute radius a.
The reorganization energy scales as a−9 in Eq. (14) (Fig. 5).
Therefore, changing the solute radius, through solvent’s con-
traction, strongly affects the resulting inhomogeneous width
in the band shape analysis.

The solute radius affecting both the induction-induced
spectral shift �Fe(a) [Eq. (12)] and the reorganization energy
[Eq. (14)] is an effective radius. It is specified in quantita-
tive solvation theories to yield the average interaction energy,
scaling with the distance as r−n, in terms of the effective
interaction radius [19]

1

an−3
= (n − 3)

∫ ∞

0

dr

rn−2
g0s(r), (17)

where g0s(r) is the solute-solvent radial distribution function.
The sensitivity of such an effective radius to the local structure
grows with increasing power n. For instance, the term 1/a3

i
in Eq. (12) is obtained by applying n = 6 in Eq. (17), which
corresponds to r−6 scaling of the interaction of the solute
dipole with the induced solvent dipole in Eq. (8). However,
the scaling with the distance changes for the reorganization
energy. When the induction interaction energy is used to cal-
culate the variance in Eq. (10), one has to take the statistical
average of the squared potential energy scaling as r−12, n =
12. This is the reason for the scaling λ ∝ a−9 for the induction
reorganization energy.

The need to specify an effective solute size does not usually
create significant conceptual problems since this parameter
is typically chosen to fit observations. However, the sensi-
tivity of short-range interactions to the local structure, and
the corresponding sensitivity of λ to the effective radius, pro-
duce a new physical reality since the local structure of the
solvent is altered by charge transfer. This alteration, which
typically amounts to the compression of the solvation shell
upon increasing the charge magnitude [48,72], causes changes
in the effective solute size [73] as described by the continuum
viscoelastic model of solvation [60,74]. That model addresses
the appearance of fast, subpicosecond dynamics caused by
changing solute size [75], but does not clarify the physical
origin of interactions responsible for the Stokes shift and the
reorganization energy. It is this latter problem that is addressed
here. Contraction of the solute size upon changing charge
is reported by simulations even in polar solvents [48,72].
Nonpolar solvents are typically more compressible, due to
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FIG. 2. Normalized absorption (abs.) and emission (em.) spectra
of DCVA in cyclohexane at the temperatures listed in the plot.

generally lower cohesive energy, and the compression effect
must be greater than in polar solvents. A change in the ef-
fective solute size leads to a corresponding change in λ not
anticipated by linear solvation theories. This is the picture
found in this study from the analysis of spectroscopic data
for DCVA recorded in cyclohexane in the temperature range
280–360 K (Figs. 2 and 3).

Ground state absorption spectra were measured with the
Varian Cary 50 UV-Vis Spectrophotometer (Agilent). Steady
state fluorescence spectra were measured using a Photon
Technology International MP-1 Spectrometer and corrected
for the detection system response. Excitation was provided by
a 75 W xenon arc lamp and single-grating monochromator.
Fluorescence was detected at 90◦ to the excitation beam via
a single-grating monochromator and an R928P photomulti-
plier tube operating in the single-photon-counting mode. A
1 cm quartz screw-cap cuvette (Spectrocell) was placed into
a Quantum Northwest Peltier-Based Temperature-Controlled
Cuvette Holder TLC 50 connected to the TC 125 Temperature
Controller. Temperature was calibrated with an alcohol glass
thermometer.

The band shape analysis of experimental data follows the
standard protocol in which the spectral band is given by a vi-
bronic progression of individual excitations inhomogeneously
broadened by the solvent [22,43,76–78] (Appendix B).

FIG. 3. Absorption (red) and emission (green) transition energies
[Eq. (22)] vs T . The results for emission are shifted upward by 0.5 eV
to bring the two lines to the same scale. The dashed lines are fits of
the experimental data (points) to Eqs. (11)–(13) in which the solute
radius ai is adopted as the fitting parameter. The straight dashed lines
shown in the figure require a1 = 5.08 Å and a2 = 3.92 Å.

The Franck-Condon spectral density is given as a Poisson
distribution weighted sum of Gaussian functions

FC(ν) ∝ e−S
∞∑

n=0

Sn

n!
G(〈�E〉 + h(nνv − ν), σ ) (18)

with the Huang-Rhys factor [79] S and the effective frequency
of skeletal intramolecular vibrations νv . The inhomogeneous
broadening of each vibronic line is characterized by the Gaus-
sian width σ

G(x, σ ) = [2πσ 2]−1/2 exp

(
− x2

2σ 2

)
. (19)

Global fits of both the absorption and emission lines
were done for the normalized bands based on the measured
absorption extinction coefficient ε(ν̄) [or ν̄ε(ν̄)] and the emis-
sion band shape Iem(ν̄)/ν̄ accounting for the energy gap
dependence of the transition dipole [22,71,80] [Iem(ν̄) is the
emission flux]. The vibronic progression was modeled with
the same value of the Huang-Rhys factor [3,79] S = 2.51 and
fixed effective frequency [44] ν̄v = 1300 cm−1 of intramolec-
ular vibrations of DCVA for all absorption and emission
bands.

Two major results come from the band shape analysis
based on Eqs. (18) and (19). First, we find a significant reorga-
nization energy of electron transfer in nonpolar cyclohexane,
with the magnitude on par with reorganization energies re-
ported in weakly polar solvents [11]. Second, we report

σ1 < σ2 (20)

in violation of rule III. Here, σ1 refers to the inhomogeneous,
solvent-induced broadening of the charge-transfer absorption
line and σ2 is the corresponding broadening of the emission
line. According to the formal definition of the reorganization
energy in terms of the Gaussian variance [Eq. (2)], we in fact
find

λ1 < λ2. (21)

This result is interpreted as arising from contraction of the
solvation shell of the donor-acceptor complex in the charge-
separated state.

The difference of the first absorption and emission spec-
tral moments provides us with the solvent-induced Stokes
shift h�νSt

s [Eq. (15)] and the corresponding Stokes-shift
reorganization energy λSt = h�νSt

s /2. All three reorganiza-
tion energies are not equal, in violation of rules II and III.
Similar inequality between three alternative definitions of the
reorganization energy was found in non-Gaussian models of
electron transfer [27,49], which can be realized for reactions
with altering polarizability of the donor-acceptor complex,
Duschinsky rotations [55], etc. The important consequence
of theses non-Gaussian models is the replacement of the
Gaussian broadening functions in Eq. (18) with non-Gaussian
functions. Therefore the use of Gaussians is an approxima-
tion of the current analysis. The present experimental results
connect to the previous solvation dynamics studies [60,73,74]
to call for the development of a nonlinear (non-Gaussian)
theory of electron transfer in nonpolar solvents. Since such a
theoretical framework currently does not exist, our estimates
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FIG. 4. Reorganization energies for absorption (red) and emis-
sion (green) transitions and the solvent-induced Stokes shift h�νSt

s

(orange) vs T . The dashed line drawn through the Stokes shift data is
the difference of fitting functions in Fig. 3. Black crosses indicate the
solvent part of the Stokes-shift reorganization energy λSt = h�νSt

s /2,
while black diamonds refer to the total (solvent and classical in-
tramolecular) Stokes-shift reorganization energy λSt

cl [Eq. (23)].

of reorganization energies based on the Gaussian theory of
fluctuating induction interactions [19] are of limited reach.

Figure 3 shows temperature dependent transition energies
hνabs/em calculated from spectral fits. These energies are con-
nected to first spectral moments of charge-transfer bands by
the relation

〈ν〉abs/em = νabs/em ± νvS, (22)

where + and − refer to absorption and emission, respectively,
and νabs/em define the solvent-induced Stokes shift in Eq. (15).
The experimental values νabs/em are fitted to Eqs. (11) and (13)
with �m = 14 D adopted in Eq. (12) according to the distance
between centers of charge localization in the charge-separated
state (Fig. 1) [71]. The solvent-induced shift of the emission
line is produced by Eq. (13). The fit of the experimental first
spectral moments to Eqs. (11) and (13) requires two different
solute effective radii, a1 = 5.08 Å and a2 = 3.92 Å. These
results point to a substantial contraction of the solvation shell
upon charge transfer [60,74]. The reorganization energies cal-
culated from Eq. (14) with the PY structure factor are equal to
λ1 = 0.12 eV and λ2 = 1.1 eV at T = 303 K, which should
be compared to, correspondingly, 0.17 eV and 0.47 eV from
the band shape analysis (Fig. 4). The numbers for emission
suggest that the extent of the solute size contraction might
be overestimated. We remind here that Eq. (14) is derived
within a linear (Gaussian) model of solvation [19] and does
not incorporate the non-Gaussian variation of λ in a consistent
fashion.

As a matter of comparison, the analysis of charge-transfer
solvatochromism in polar solvents within the Onsager model
of dipole solvation [62,81,82] leads to the average solute
radius of a 	 5.37 Å (Fig. 11). An effective radius for dipo-
lar solute-solvent interactions, scaling as ∝ r−3, should be
defined by taking n = 2 × 3 = 6 in Eq. (17). According to
this recipe, it is expected to be larger than the effective ra-
dius for more short-ranged induction interactions in nonpolar
solvents [19], as indeed found from our analysis. We also
find that fits of νabs/em in Fig. 3 produce a nonzero offset
of the gas-phase energies h(νabs

0 − νem
0 ) 	 0.24 eV, which is

attributed to the Stokes shift due to classical intramolecular
vibrational reorganization. This offset is subtracted from the
difference of average transition energies [Eq. (15)] to report
the solvent-induced Stokes shift shown by orange points in
Fig. 4.

The existence of a nonzero h(νabs
0 − νem

0 ) indicates a
possibility of a classical vibrational reorganization energy
contributing to λi and to the corresponding Stokes shift.
Measurements of spectra at varying temperature allow us to
separate this effect by subtracting the gas-phase offset and
producing the solvent-induced Stokes shift h�νSt

s [Eq. (15)]
and the solvent reorganization energy (black crosses in Fig. 4).
This value, 	0.14 eV, is the most reliable estimate of the
solvent reorganization energy produced by our measurements.
At the same time, the reorganization energies λi contain an un-
specified small contribution from classical internal vibrations.
The total Stokes shift due to solvent and these intramolecular
vibrations can be used to characterize the corresponding reor-
ganization energy due to classical solvent and internal modes

λSt
cl = h(νabs − νem)/2. (23)

Those values are shown by black diamonds in Fig. 4. The three
alternative definitions of the reorganization energy satisfy the
inequality

λ1 < λSt
cl < λ2. (24)

Exactly this inequality follows from non-Gaussian models of
thermal electron transfer [27] and corresponding static [43]
and dynamic [46] band shapes. The appearance of this in-
equality from our analysis suggests a universal character of
these non-Gaussian models offering a possibility of mapping
them on the problem of non-Gaussian statistics of electron
transfer in nonpolar solvents.

As mentioned above, two separate values for the solute
size ai lead to substantially different reorganization energies
λi, which separately follow from the band shape fitting and
are shown in Fig. 4. The individual points λi(T ) calculated
from the fits at different temperatures are more scattered than
the average energies shown in Fig. 3 and cannot be used to
establish the temperature dependence of the reorganization
energies (Table II). Given a strong dependence of the effective
solute radius on the local density profile, we anticipate that
testing the explicit temperature dependence λi ∝ β, which is
strictly valid at constant density, will be challenging based on
experiments done at constant pressure. Thermal expansion of
the solvent propagates into a corresponding thermal alteration
of the effective solute radius. Nevertheless, the temperature
dependence of the Stokes shift is well reproduced by the
theory given that individual absorption and emission shifts
shown in Fig. 3 are fitted with temperature-independent effec-
tive solute radii (the sensitivity of 〈�Fe〉 ∝ a−3 to the details
of the density profile is much lower compared to λ ∝ a−9).
The energy scale used in Fig. 4 does not allow one to fully
appreciate the temperature drop of hνSt

s , but it follows the
anticipated T −1 scaling with temperature (Fig. 10).

To the best of our knowledge, this is the first direct mea-
surement of the solvent reorganization energy of electron
transfer in a nonpolar solvent and its temperature dependence
based on spectroscopic measurements of both absorption and
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emission charge-transfer bands. A large value of the reor-
ganization energy, 	0.87 eV, was reported from the top of
the inverted Marcus parabola for bimolecular reactions be-
tween an excited fluorophore and a number of quenchers in
cyclohexane by Chen et al. [37]. The reported reorganiza-
tion energy might still include an unknown intramolecular
vibrational component. More detailed fitting of the energy
gap laws, including quantum intramolecular modes, was re-
cently reported by Holroyd and Miller [13]. They studied the
reaction of electron attachment to naphthalene and t-stilbene
in tetramethylsilane and 2,2,4-trimethylpentane and reported
solvent reorganization energies of 0.31 eV (naphthalene) and
0.14 eV (t-stilbene). These latter results are consistent with the
findings presented here. Much smaller reorganization energies
(	0.02 eV in CCl4) reported by Fleming and co-workers
[60] were measured with a quadrupolar chromophore, in
contrast to a highly dipolar charge-transfer complex used
here.

We need to stress that the theoretical framework outlined
in Eqs. (7)–(12) and given in more detail in Appendix A
is a linear theory leading to the Gaussian probability for
the rate constant in Eq. (1) and, with account for Eq. (5),
to an inverted parabola for the energy gap law. As men-
tioned above, this framework also requires using Gaussian
broadening functions in the band shape analysis [Eq. (18)].
The density contraction resulting in different reorganization
energies in two charge-transfer states is fundamentally a non-
linear phenomenon producing a non-Gaussian statistics of the
energy gap and a skewed inverted parabola for the energy-
gap law [27]. It can be thought of as an analog of altering
force constants in intramolecular reorganization [55] since a
highly nonlinear alteration of an effective repulsion potential
is projected, in liquid-state theories, to an effective (state-
dependent) Gaussian susceptibility [83]. An extension of the
theory beyond the linear framework is still required for a
quantitative analysis.

III. CONCLUSIONS

The band shape analysis of charge-transfer absorption and
emission lines in nonpolar cyclohexane demonstrates a prin-
cipal departure from standard theories of electron transfer
developed for polar solvents [10]. These classical theories
predict that the solvent reorganization energy is proportional
to the Pekar factor [84] c0 = ε−1

∞ − ε−1
s . According to this

prediction, the reorganization energy should drop to nearly
zero values when the static dielectric constant εs becomes
close to ε∞ 	 n2

D in nonpolar solvents. In contrast to this
prediction, we find quite substantial reorganization energies,
λ1 	 0.17 eV and λ2 	 0.47 eV, in nonpolar cyclohexane.
The reorganization energies from the band shape analysis are
roughly consistent with the analytical theory based on the
idea of fluctuating induction interaction of the charge-transfer
complex with the nonpolar solvent. A larger reorganization
energy of the emission band requires a smaller effective solute
radius affected by contraction of the solvation shell upon
charge transfer.

Taken together, the results of the band shape analysis
violate all three fluctuation-dissipation relations [rules I–III
in Eqs. (2)–(4)] on which the Gaussian models of hopping

conductivity and the theory of molecular electron transfer
are based. Violations of the FDT have been anticipated for
systems far from equilibrium [85] when the rules of sampling
established by the Gibbs ensemble do not apply anymore. The
situation is different here. The violation of the FDT comes
from the microscopic nature of the solute-solvent interaction
energy, which, due to its short range, does not follow the sta-
tistical rules derived for macroscopic and quasimacroscopic
thermally fluctuating collective coordinates.

ACKNOWLEDGMENTS

This research was supported by the US Department of
Energy, Office of Science, Office of Basic Energy Sciences,
under Award DE-SC0015641.

APPENDIX A: DERIVATION OF ANALYTICAL RESULTS

Liquid-state perturbation theory [19,69] is used to evaluate
the average and variance of the instantaneous solvent-induced
shift of the transition energy

�Fe = Fe2 − Fe1. (A1)

The perturbation theory evaluates averages 〈�Fe〉i in terms
of the reference average 〈. . . 〉 over the equilibrium con-
figurations consistent with the state in which the induction
solute-solvent interaction is turned off. In this representation,
all the dependence on the electronic state of the charge-
transfer complex is shifted to the dipole moments

〈�Fe〉i = −δm2〈U 〉 − (
2m2

i

/
δm2

)
λ, (A2)

where δm2 = m2
2 − m2

1, U is from Eqs. (7) and (8), and
the reorganization energy is given by Eq. (10) to which we
substitute δm2 = (�m)2 based on the assumption m1 ≈ 0.
Adopting m1 = 0, the shift of the absorption line becomes

〈�Fe〉1 = −(�m)2〈U 〉. (A3)

Correspondingly, we obtain for the emission line

〈�Fe〉2 = −(�m)2〈U 〉 − 2λ, (A4)

where in both equations

〈U 〉 = 4π

3a3
αρ, a−3 = 3

∫ ∞

0

dr

r4
g0s(r). (A5)

Here, the effective radius of the solute a corresponds to n = 6
in Eq. (17). The use of the Clausius-Mossotti equation con-
verts Eq. (A5) to

〈U 〉 = ε∞ − 1

ε∞ + 2

1

a3
. (A6)

The local density profile determined by g0s(r) is different in
each charge-transfer state [48] and one obtains two different
values of the effective radius ai to produce �Fe(ai ) in Eq. (12).

The reorganization energy requires the variance of U in
Eq. (10). The variance can be written [19] as the reciprocal-
space integral involving the density-density structure factor
[29] S(k)

〈(δU )2〉 = ρ

∫
dk

(2π )3
ṽ(k)2S(k), (A7)
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TABLE I. Properties of cyclohexane used in the calculations.

Property σs, Å η α, Å3 ε∞ αp × 103, K−1

5.635 0.519 11.0 2.03 1.23

where ṽ(k) is the spatial Fourier transform of the interaction
energy

ṽ(k) = 4παk3[ f0(ka) − f2(ka)P2(k̂ · m̂)] (A8)

and

fn(ka) =
∫ ∞

ka

dx

x4
jn(x), (A9)

jn(x) is the nth-order spherical Bessel function.
Equation (A7) is further simplified by integration over the

angles of k vectors

〈(δU )2〉 = 8α2ρ

∫ ∞

0
dkk8

[
f 2
0 (ka) + 1

5
f 2
2 (ka)

]
S(k).

(A10)
The reorganization energy is obtained by substituting
Eq. (A10) to Eq. (10)

λ = 4βα2(�m)4

a9
ρJ, (A11)

where

J = a9
∫ ∞

0
dkk8

[
f 2
0 (ka) + 1

5
f 2
2 (ka)

]
S(k). (A12)

Given that S(k) is a function of kσs (σs is the solvent diame-
ter), the integral J is a function of a/σs and the solvent density
affecting the density-density structure factor S(k).

Calculations were done for cyclohexane as a solvent, with
parameters required for calculations listed in Table I [86]. The
hard-sphere diameter σs was calculated from the isothermal
compressibility βT of cyclohexane by using the generalized
van der Waals equation of state [86]. The value σs = 5.635 Å
listed in Table I is consistent with hard-sphere diameters of
other nonpolar liquids, and it falls on a master curve [87]
for σs vs the b1/3: b1/3 = 0.9337 + 0.5828σs + 0.03315σ 2

s ,
where b is the second van der Waals constant in cm3/mol
and σs is in Å. The packing fraction η = (π/6)ρσ 3

s was used
to define the PY structure factor from the solution for the
fluid of hard spheres [69]. Since the PY solution does not
reproduce the experimental compressibility of the liquid, the
packing fraction was adjusted in the PY solution to ensure the
condition S(0) = ρkBT βT . This requires a downward scaling
of η to η = 0.4613. However, the packing fraction listed in
Table I was used in the rest of calculations. Its dependence on
temperature due to solvent expansion was produced by using
the isobaric expansivity αp (Table I)

η(T ) = η(T0)[1 − αp(T − T0)]. (A13)

In addition, the temperature dependence of ε∞(T ) is from
Ref. [88].

Figure 5 illustrates the scaling λ ∝ a−9 introduced in
Eq. (A11) by plotting a9λ versus a at different T . There are
some low-amplitude oscillations coming from the integral J
in Eq. (A12), but the scaling is mostly maintained. Figure 6

FIG. 5. a9λ calculated from Eq. (A11) at the temperature listed
in the plot.

illustrates proportionality of the reorganization energy to the
inverse temperature, λ ∝ T −1. The product T λ(T ) in Fig. 6
changes little when temperature is varied.

The average induction energy in Eqs. (A3) and (A5) scales
linearly with α(�m)2, while the reorganization energy scales
quadratically with this factor. One can rearrange Eq. (A11) for
the reorganization energy is terms of Eq. (14) with

f (η, a/σs) = 3

8πη

(
σs

a

)3

J. (A14)

To provide a numerical estimate, the function f (η, a)
was calculated by performing the numerical integration in
Eqs. (A12) and (A14) with the PY S(k). The function was
fitted to a polynomial

f (η, a) =
2∑

i=0

Ci(η)

a3+i
(A15)

in which the functions Ci(η) are given in the form

Ci(η) = Ai exp[−Biη] (A16)

with Ai = 0.5047, 0.2463, −0.1545 and Bi = 12.14, 3.33,
5.11 for i = 0, 1, 2.

APPENDIX B: BAND SHAPE ANALYSIS

Global fit of both absorption and emission bands to the
same set of parameters was done at each temperature. The
extinction coefficient ε(ν̄) ∝ FC(ν̄) [Eqs. (18) and (19)] was

FIG. 6. T × λ(T ) calculated from Eq. (A11) at the values of the
solute effective radius a listed in the plot.
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FIG. 7. Fits (dashed lines) of absorption (abs.) and emission
(em.) band shapes at T = 303 K (solid lines).

fitted to the vibronic progression of equally spaced lines char-
acterized by the vibrational frequency [44] ν̄v = 1300 cm−1

and the Huang-Rhys factor S = 2.51. A similar functional
form, with separate values of 〈�E〉2 and σ2 for the emis-
sion transition, is used for the reduced emission band shape
[22,78,80] Iem(ν̄)/ν̄, where Iem(ν̄) is the photon flux. The
Huang-Rhys factor S is fixed at S = 2.51 in all fits after
preliminary runs using it as an independent fitting parameter.
Examples of fits are shown in Fig. 7 and the fit results are
listed in Table II. The inhomogeneous width is converted to
the solvent reorganization energy through the relation σ 2

i =
2λikBT .

The appearance of Iem(ν̄)/ν̄ for the emission band shape
accounts for the dependence of the transition dipole on transi-
tion energy [22,52,80] M12 ∝ ν̄−1. In the same approximation,
the extinction coefficient ε(ν̄) needs to be replaced with ν̄ε(ν̄)
to extract the Franck-Condon density [52]. This approach
is sometimes less robust from the practical standpoint since
it enhances the high-frequency noise in the spectra often
affected by locally excited states [45]. Nevertheless, this pro-
tocol was also adopted in our analysis (Fig. 8), and the results
of band shape fitting are listed in the third column of Table II.
In Fig. 9, we compare the first spectral moments hνabs versus
T from two fitting procedures and list Stokes shifts in the
6th column in Table II. Figure 10 shows the solvent-induced

TABLE II. Reorganization energies from absorption and emis-
sion widths λi (cm−1) and half of the Stokes shift h�νSt/2 (cm−1)
from the band shape analysis.

T , K λ1 λ1
a λ2 h�νSt/2 h�νSt/2 a

283.15 1427.9 1670.4 3821.6 2147.6 2214.2
288.15 1437.3 1635.7 3807.7 2132.2 2198.2
295.15 1428.8 1625.5 3747.2 2128.5 2194.7
303.15 1374.1 1610.7 3752.9 2111.1 2178.2
313.15 1331.6 1597.3 3884.1 2095.8 2163.7
323.15 1398.1 1594.1 3790.4 2085.0 2152.0
333.15 1393.0 1586.4 3836.6 2074.5 2141.9
343.15 1397.0 1572.7 3902.3 2055.9 2123.3
353.15 1407.0 1578.4 4091.8 2040.7 2108.4

aCalculated from the fit of ν̄ε(ν̄ ).

FIG. 8. Fit (dashed line) of the absorption (solid line) band shape
at T = 303 K. The experimental extinction coefficient is multiplied
by ν̄ and the function ν̄ε(ν̄ ) is fitted to the right-hand side of Eq. (18).

Stokes shift calculated by two procedures. Overall, the adop-
tion of ν̄ε(ν̄) in the fitting protocol amounts to an upward shift
in both λ1 and the overall Stokes shift. However, this change
does not affect any of our conclusions.

The average absorption and emission energies h〈ν〉abs/em =
〈�E〉i (first spectral moments) are used to determine the tran-
sition energies νabs/em according to Eq. (22), with hνabs/em(T )
shown in Fig. 3. They are fitted to Eqs. (11) and (13) in which
the solute radius ai is considered as a fitting parameter. Since
the PY solution might be too simplified for the experimental
conditions, the function f (η, a/σs) in Eq. (A14) was taken as
a temperature-independent fitting parameter.

This fit produces ai and the vacuum energies νabs/em
0 . They

are shifted by 0.24 eV suggesting that classical intramolecular
modes contribute to the vacuum Stokes shift. When the same
analysis is performed on the data obtained from fitting ν̄ε(ν̄)
for the absorption lines, the vacuum Stokes shift becomes
0.26 eV. This component is subtracted from 〈ν〉abs − 〈ν〉em in
both cases to obtain the solvent-induced Stokes shift plotted
in Fig. 10. A somewhat larger vacuum intercept makes the
solvent-induced Stokes shift lower in the second protocol
adopted for fitting the absorption lines. Note that the values
of the Stokes shift listed in Table II are raw results of the
band shape analysis, which include both the solvent-induced
and classical vibrational contributions to the Stokes shift.

FIG. 9. hνabs(T ) from fitting absorption bands (points). Two pro-
tocols are used in the fits: fitting the extinction coefficient to Eq. (18)
and fitting ν̄ε(ν̄ ) to the right-hand side of Eq. (18). The dashed line
is a linear fit through the points.
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FIG. 10. Solvent-induced Stokes shift from fitting absorption
and emission bands (points) vs temperature. The fitting of absorption
lines was done by either using the extinction coefficient ε(ν̄ ) ∝
FC(ν̄) [circles, Eq. (18)] or the product ν̄ε(ν̄ ) (diamonds). The
dashed lines are linear fits through the points.

According to Eq. (A11), the solvent-induced Stokes shift is
a decaying function of temperature (h�νSt

s = 2λ ∝ β in the
linear (Gaussian) theory).

An alternative estimate of the effective radius of the DCVA
molecule is established from the analysis of the Stokes shift
changing with the solvent polarity in terms of the Onsager
model of dipole solvation [62]

h�νSt
s = 2(�m)2

a3
F (ε∞, εs), (B1)

FIG. 11. Dependence of the Stokes shift of DCVA on
F (ε∞, εs ) [Eq. (B2)] for chloroform, 2-methyltetrahydrofurane,
1,2-dichloroethane, butyronitrile, acetonitrile [71] (in the order of
increasing F (ε∞, εs )). The dashed line is a linear fit through the
experimental points.

where

F (ε∞, εs) = εs − 1

2εs + 1
− ε∞ − 1

2ε∞ + 1
. (B2)

The plot of h�νSt = h〈ν〉abs − h〈ν〉em vs F (ε∞, εs) for a num-
ber of polar solvents [71] is shown in Fig. 11. The effective
radius for �m = 14 D is a = 5.37 Å.
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