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Heterogeneous excitable systems exhibit Griffiths phases below hybrid phase transitions
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In d > 2 dimensional, homogeneous threshold models discontinuous transition occur, but the mean-field
solution provides 1/t power-law activity decay and other power laws, and thus it is called mixed-order or
hybrid type. It has recently been shown that the introduction of quenched disorder rounds the discontinuity
and second-order phase transition and Griffiths phases appear. Here we provide numerical evidence that even in
case of high graph dimensional hierarchical modular networks a Griffiths phase in the K = 2 threshold model is
present below the hybrid phase transition. This is due to the fragmentation of the activity propagation by modules,
which are connected via single links. This provides a widespread mechanism in the case of the threshold type of
heterogeneous systems, modeling the brain, or epidemics for the occurrence of dynamical criticality in extended
Griffiths phase parameter spaces. We investigate this in synthetic modular networks with and without inhibitory
links as well as in the presence of refractory states.
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I. INTRODUCTION

Phase transitions in genuine nonequilibrium systems have
often been investigated among the reaction-diffusion (RD)
type of models exhibiting absorbing states [1,2]. In many
cases mapping to surface growth, spin systems, or stochastic
cellular automata has been used. Criticality allows us to define
universality classes, defined by the scaling exponents, which
have been explored in homogeneous systems [3,4]. In hetero-
geneous network models the situation is less clear. Hybrid
phase transition (HPT) means that at the transition point the
order parameter exhibits a jump, in conjunction with critical
phenomena related to it. It can mean avalanches of activity
at the transition point with power-law (PL) size distribution,
for example. Such types of transitions have been known for a
long time [5], for example, at tricriticality [6,7], but had not
been the focus of research and the term appeared later. HPTs
have been found in network science in the case of k-cores [8],
interdependent networks [9], and multiplexes [10].

The “mixed-order” name for the same phenomena in statis-
tical physics arose some years ago [11] by the exactly soluble
one-dimensional Ising model with long-range interactions. It
is also known to appear in nonequilibrium models, exhibiting
a transition to absorbing states [12]. Further examples include
critical models at extended surface defects [13,14] and syn-
chronization [15–17].

Criticality is a ubiquitous phenomenon in nature as systems
can benefit in many ways from it. As correlations and fluctu-
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ations diverge [18] in neural systems, working memory and
long connections can be generated spontaneously [19] and the
sensitivity to external signals is maximal. Furthermore, it has
also been shown that information-processing capabilities are
optimal near the critical point. Therefore, systems tune them-
selves close to criticality via self-organization (SOC) [20,21],
presumably slightly below to avoid blowing overexcitation.
Besides, if quenched heterogeneity (which is called disorder
compared to a homogeneous system) is present, rare-region
effects (RRs) [22] and an extended semicritical region, known
as a Griffiths phase (GP) [23], can emerge. RRs are very
slowly relaxing domains, remaining in the opposite phase than
the whole system for a long time, causing slow evolution of
the order parameter. In the entire GP, which is an extended
control parameter region around the critical point, susceptibil-
ity diverges and autocorrelations exhibit fat-tailed, power-law
behavior, resulting in bursty behavior [24], frequently ob-
served in nature [25]. Even in infinite dimensional systems,
where mean-field behavior is expected, Griffiths effects [26]
can occur in finite time windows.

It is known that strong disorder can round or smear phase
transitions [22]. According to the arguments by Imry-Ma [27]
and Aizenman-Wehr [28], first-order transitions do not exist
in low-dimensional disordered systems. It has recently been
shown [29,30] that this is true in genuinely nonequilibrium
systems [1,4].

Experimental and theoretical research provide evidence
that the brain operates in a critical state between sustained
activity and an inactive phase [18,31–36]. Criticality in gen-
eral occurs at continuous, second-order phase transitions. On
the other hand, metastability and hysteresis are also com-
mon in the brain behavior. They are related to the ability
to sustain stimulus-selective persistent activity for working
memory [37]. The brain rapidly switches from one state to
another in response to stimulus, and it may remain in the
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same state for a long time after the end of the stimulus. It
suggests the existence of a repertoire of metastable states.
Several models have described this [38,39]. It introduces an
apparent contradiction, because metastability and hysteresis
occur in general at first-order, discontinuous phase transitions.
But the brain can operate at different regimes close to the
critical point, which can provide the desired advantages for
biological systems. Another possible resolution for the above
controversy is the operation at a transition of hybrid type. It
has also been suggested in a recent theoretical work [40].

Threshold types of systems, like the integrate-and-fire
models of the brain [41], are also suggested to describe other
phenomena, like power grids [42–44], crack and fracture for-
mation [45], contagion [46], etc. In these models HPT can
emerge naturally, and thus the present results can also be
relevant.

Heterogeneity effects are very common in nature and re-
sult in dynamical criticality in extended GPs, in the case of
quasistatic quenched disorder approximation [47]. This leads
to avalanche size and time distributions, with nonuniversal
PL tails. It has been shown within the framework of modular
networks [47–49] and a large human connectome graph [50].
In this study we reuse the hierarchical modular network of
Ref. [48] and provide numerical evidence that above the GP
a HPT emerges. Metastable states and hysteresis behavior
can also be found; thus this system can oscillate between
up and down states, depending on the level of oscillations,
without the need of oscillators at the nodes, as in the case
of the Ginzburg-Landau theory, suggested to model cortical
dynamics [51]. By extending our model we will show that the
proposed mechanism is very general, providing an explana-
tion for the observed wide range of scale-free behavior below
the transition point.

II. MEAN-FIELD APPROXIMATION

Discrete threshold models can be defined as two-state sys-
tems: xi = 0, 1 (inactive, active) at sites i, with a conditional
activation rule, depending on the sum of activity of neighbors
compared to the threshold value K :∑

j

x jwi, j � K, (1)

where wi, j is the weight of the link connecting site j to i. In
interacting homogeneous systems wi, j is just the adjacency
matrix element, Ai, j , which is 1 if nodes are connected or 0
otherwise. To describe stochasticity this activity creation can
be accepted with probability λ, competing with an activity
removal process of probability ν. The mean-field description
of the threshold model of N nodes can be obtained in a similar
way as in the case of RD systems [52]. That work is defined
on the lattice, but we can apply it for other graphs. In Ref. [52]
it was shown that a discontinuous jump occurs in mean-field
models of the n > m RD systems, in which n neighboring
particles are needed for creation and m neighbors for removal.
Here we don’t have diffusion and particles, but the activity can
be considered as site occupancy, and we can map the thresh-
old model with K = 2 to an RD system with n = 2 active
neighbors necessary for creation and m = 1 for spontaneous
removal. In the presence of inhibitions n > 2 is needed for

creation at nodes with negatively weighted incoming links,
which increases the inactive phase.

In the mean-field approximation the probability of site
activity is ρ, and two active neighboring sites can occur in
a (N − 1)(N − 2)/2 way; thus the creation rate in case of a
global acceptance probability � is

1
2 (N − 1)(N − 2)�ρ2(1 − ρ). (2)

Let us call �(N − 1)(N − 2)/2 = λ. For a full graph of N
nodes we can set up the rate equation

dρ

dt
= λρ2(1 − ρ) − νρ, (3)

which in the N → ∞ limit provides λc = 0, but for finite
graphs λc > 0. In the steady state we have

λρ2(1 − ρ) − νρ = 0. (4)

By imposing the condition

ν = 1 − λ, (5)

we obtain

λρ(1 − ρ) − (1 − λ) = 0, (6)

which can be solved as

ρ = λ ±
√

λ2 − 4λ(1 − λ)

2λ
. (7)

The solution is real and positive if

λ > λc = 4/5, (8)

providing a threshold within a system of size N

�c = 8

5(N − 1)(N − 2)
(9)

and an order parameter for � → �+
c

ρc = 1/2. (10)

It is important to realize that in the N → ∞ limit �c → 0,
thus there is no inactive phase in the thermodynamic limit.
But as real systems are always finite sized, we can observe this
hybrid phase transition in them even in the mean-field limit.
A similar phenomenon has recently been reported in conta-
gion models [53]. Furthermore, in the case of the presence
of inhibitory couplings the HPT at finite transition rate may
survive the N → ∞ limit in high dimensional systems.

At this transition point we can determine how the density
approaches ρc:

ρ(t ) − ρc ∼ t−1. (11)

Thus here we find PL dynamical behavior even though the
transition is discontinuous, as in other known hybrid or mixed-
order transitions. For λ < λc we have a ρ = 0 stable solution
and exponentially decaying activity. Right above the transition
the steady-state density vanishes with a square-root singular-
ity as in the case of k-core [8] or multiplex percolation hybrid
transitions [10]:

(ρ − ρc) ∝ (λ − λc)1/2, (12)
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but unlike the contact process [54] near multiple junctions
[12], or the Kuramoto model with uniform frequency distri-
bution [15], which thus belong to another hybrid universality
class. In the following sections we investigate what happens
to this HPT if we implement the threshold model on a hierar-
chical modular network (HMN).

III. THRESHOLD MODEL ON HIERARCHICAL
MODULAR NETWORKS

In this section we describe the HMN models we use for the
simulations. It is important to note that we believe that hierar-
chy is not relevant, but that modularity is what enhances RRs
as in case of the study [49]. The models are motivated by brain
networks originating from Kaiser and Hilgetag, who per-
formed numerical studies to investigate the effects of different
topologies on the activity spreading [55]. Their hierarchical
model reflects general features of brain connectivity at large
and mesoscopic scales, where the nodes were intended to
represent cortical columns instead of individual neurons. The
connections between them were modeled excitatory, since
there appears to be no long-distance, inhibitory connections
within the cerebral cortex [56].

The network was generated beginning with the highest
level and adding modules to the next lower level with random
connectivity within modules. Kaiser and Hilgetag explored
hierarchical networks with different numbers of hierarchical
levels and numbers of submodules at each level. The total,
average node degree was set to a fixed value, motivated by
comparative experimental studies. However, they investigated
different topologies by varying the edge density across the
levels. All the tested HMNs were small-world type, i.e., they
exhibited infinite topological dimensions.

The spreading model they investigated was a two-state
threshold model, in which nodes became activated with prob-
ability λ, when at least K of their directly connected node
neighbors were active at the same time or spontaneously
deactivated, with probability ν. Note that this model is very
similar to RD models known in statistical physics [3,4], with
a synchronous cellular automaton (SCA) update. Without loss
of generality this algorithm produces faster dynamical scaling
results for threshold models than those with random sequen-
tial updates.

In this paper we investigate versions of HMNs, which
possess increasing edge density from top to bottom levels.
Clearly, such topologies can be expected to be more suitable
for activity localization and for RR effects.

One can also make a correspondence with the spatially em-
bedded networks [57]. These networks have long links, with
algebraically decaying probabilities in the Euclidean distance
R as

p(R) ∼ R−s. (13)

We added random long links by level to level from top to
bottom, similar to in Ref. [48]. The levels l = 0, 1, . . . , lmax

are numbered from bottom to top. The size of domains, i.e.,
the number of nodes in a level, grows as Nl = 4l+1 in the case
of the four-module construction, related to a tiling of the 2D

0 500 1000
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j

FIG. 1. Plot of the adjacency matrix of an N = 1024-sized sam-
ple of the HMN2d graph. Black dots denote connections between
nodes i and j. The four-level structure is clearly visible in the blocks
along the diagonal; additional long-range edges are scattered points
around it.

base lattice, due to the rough distance level relation:

pl = b

(
1

2s

)l

. (14)

Here b is related to the average degree 〈k〉 of nodes, which
was prescribed to be 〈k〉 = 12 for this construction.

We connected nodes in a hierarchical modular way as
if they were embedded in a regular two-dimensional lattice
(HMN2d) as shown by the adjacency matrix in Fig. 1, sim-
ilarly as in Ref. [48]. The four nodes of the level l = 0
were fully connected. The single connectedness of the net-
works is guaranteed by additional linking of these four-node
modules, by two edges to the subsequent ones: the first and
the last nodes of module (i) to the first node of module
(i + 1). Accidental multiple connections were removed, and
self-connections were not allowed. Note that the single con-
nectedness at low level does not result in stable steady states
in case of the threshold value K = 2.

The in-degree distribution of four randomly selected
graphs with N = 4096 nodes can be seen in Fig. 2. The lowest
in-degree is always kin

i � 5. The modularity quotient of the
networks is high: Q > 0.9, defined by

Q = 1

N〈k〉
∑

i j

(
Ai j − kik j

N〈k〉
)

δ(gi, g j ), (15)

where Ai j is the adjacency matrix and δ(i, j) is the Kronecker
delta function. The Watts-Strogatz clustering coefficient [58]
of a network of N nodes is

C = 1

N

∑
i

2ni/ki(ki − 1), (16)

where ni denotes the number of direct edges interconnecting
the ki nearest neighbors of node i. C = 0.295 is about 10
times higher than that of a random network of the same size
Cr = 0.0029, defined by Cr = 〈k〉/N . The average shortest
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FIG. 2. In-degree distribution of four randomly selected l = 5
HMN2d graphs.

path length is defined as

L = 1

N (N − 1)

∑
j �=i

d (i, j), (17)

where d (i, j) is the graph distance between vertices i and j. In
the case of this typical network L = 6.74, about twice larger
than that of the random network of same size: Lr = 3.615,
following from the following formula [59]:

Lr = ln(N ) − 0.5772

ln〈k〉 + 1/2. (18)

So this is a small-world network, according to the definition
of the coefficient [60]:

σ = C/Cr

L/Lr
, (19)

because σ = 5.363 is much larger than unity.
We estimated the effective topological dimension using the

breadth-first search (BFS) algorithm: d = 4.18(5), defined by
N (r) ∼ rd , where we counted the number of nodes N (r) with
chemical distance r or less from the seeds and calculated av-
erages over the trials. Note that this is just an estimate for the
finite-sized graph, because we know that d → ∞ is expected
for s = 3. It renders this model into the mean-field region,
because for threshold models the upper-critical dimension is
dc � 4. Still, due to the heterogeneous structure, we find very
nontrivial dynamical GP scaling behavior, as will be shown in
the following sections.

IV. DYNAMICAL SIMULATIONS

Time-dependent simulations were performed for single ac-
tive seed initial conditions. It means that a pair of nodes is
activated at neighboring sites: xi = xi+1 = 1, in an otherwise
fully inactive system. It can trigger an avalanche, a standard
technique in statistical physics to investigate critical initial slip
[2]. We measured the spatiotemporal size s = ∑N

i=1

∑T
t=1 xi
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100

p(
s)

0.31 l=6
0.315 l=6
0.32 l=6
0.32 l=5
0.322 l=6
0.325 l=6
0.33 l=6
s−1.39(1)

s−1.56(1)

s−2.02(1)

FIG. 3. Avalanche size distributions at different λ branching
rates, denoted by the symbols, in the presence of excitatory links
in the HMN2d with l = 5, 6 levels. From top to bottom curves:
λ = 0.33, 0.325, 0.322, 0.32 (l = 5 cyan and l = 6 green), 0.315,
0.31. Dashed lines show PL fits for the tails: s > 1000 at λ = 0.315,
0.322, 0.33.

and the duration of the avalanches (T ) for tens of thousands
of random initial conditions: both initial sites and initial graph
configurations. The graphs we investigated had l = 4, 5, 6, 7
levels, containing N = 1024, 4096, 16 384, 65 536 nodes, re-
spectively. The average node degree was 〈k〉 	 12, after the
low-level linking and the removal of accidental multiple
edges. The ratio of short and long links was 	0.6.

We have set ν = 1 − λ and updated the sites at discrete
time steps, i.e., set the state variables x′(i) = 1 if it was
inactive x(i) = 0 and the sum of active neighbors

∑
j x( j)

exceeded K = 2 with probability λ or to x′(i) = 0 with prob-
ability 1 − λ if it was active x(i) = 1. Following a full sweep
of sites we wrote x(i) = x′(i) for all nodes, corresponding to
one Monte Carlo step (MC); throughout the study we measure
time in MCs units. We have measured the density of active
nodes ρ(t ) = 1/N

∑N
i=1 xi.

A. Excitatory model

The simulations were run for T = 107 MCs, or until the
system goes to a fully inactive state, corresponding to the
end of the avalanche. We computed the probability density
functions of avalanche sizes p(s) and final survival time dis-
tributions p(t ). We repeated these simulations for different
λ branching rates by increasing its value. As Fig. 3 shows
we don’t see exponential decays as should be in the inactive
phase of a mean-field model. Instead, there are PL-like tails
for λ > 0.31, modulated slightly by oscillations, which is a
well-known phenomenon when discrete spatial periodicity is
present, here the size of the modules. The slopes of the PL
tails vary from τ = 2.02 to τ = 1.39 as we increase λ from
0.315 to 0.33.

Nonuniversal PL tails are more clearly visible on the
avalanche survival time distributions plotted on the graph,
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t−0.172(1)

t−0.41(1)

t−0.73(1)
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FIG. 4. Survival probability of the activity at different branching
rates in the K = 2 threshold model with excitatory links. From top to
bottom curves: λ = 0.33, 0.325, 0.322, 0.32 (l = 5 and l = 6), 0.315.
Dashed lines show PL fits for the tails: s > 104 at λ = 0.315, 0.32,
0.322, 0.33.

shown in Fig. 4. Here we can observe a greater variation
moving from λ = 0.315 with δ = 1.80(1) to λ = 0.33 with
δ = 0.172(1). The avalanche duration distributions can be de-
duced from these curves as the time integral, thus δ is related
to the duration exponent of P(t ) ∝ t−τt as

τt = 1 + δ. (20)

These nonuniversal PLs suggest that Griffiths effects are
present, as reported in Ref. [48] for this model at different
parameters. By repeating the simulations at different sizes:
l = 5, 6 the distribution curves do not change within the er-
ror margin, and this size invariance implies the presence of
real GPs.

The seminal experiments by Beggs and Plenz [31] reported
neuronal avalanches with size (s) dependence, defined as ei-
ther the number of electrodes with suprathreshold activity or
the sum of the potentials, according to a power law, p(s) ∝
s−1.5. For the duration distribution of such events P(t ) ∝ t−2,
PL tails were observed. These exponents are in agreement
with the mean-field (MF) exponents of the directed percola-
tion (DP) criticality: τ = 3/2, τt = 2; see Ref. [3]. Mean-field
exponents are expected to occur if the fluctuation effects are
weak, when the system dimension is above the upper critical
dimension dc.

On the other hand, Palva et al. [61] have found that
source-reconstructed M/EEG data exhibit robust power-law,
long-range time correlations and scale-invariant avalanches
with a broad range of exponents: 1 < τ < 1.6 and 1.5 < τt <

2.4. These broad range exponent results have also been found
in a recent cortical electrode experiment study on rodents
[62]. An obvious explanation for this wide spread of criti-
cal exponents can be heterogeneity, which in the GP causes
nonuniversal dynamical exponents [48,63–65].
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0.53 l=5
0.53 l=6
0.52 l=5
0.51 l=5
0.50 l=6
0.50 l=5
s−1.168(1)

s−1.651(5)
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FIG. 5. Avalanche size distributions at different λ branching
rates, denoted by the symbols, in the presence of inhibitory links in
HMN2d with l = 5, 6 levels. From top to bottom curves: λ =0.55,
0.54, 0.53 (l = 5 green and l = 6 cyan), 0.52, 0.51, 0.50 (l = 5
triangle and l = 6 diamond). Dashed lines show power-law fits
for the tails of λ = 0.55, 0.51 cases, for t > 1000. Inset: over-
lapping avalanches case for half-filled initial condition at λ =
0.51, 0.515, 0.52, 0.525 (bottom to top symbols).

B. Inhibitory model

Although inhibitory links are not expected at long range
links of the brain [56], we believe that our synthetic model
may describe smaller cortical scales as well. As well, in-
hibitory mechanisms can occur in other phenomena with
threshold dynamics. In the case of power grids, for ex-
ample, feedback is applied to prevent catastrophic blackout
avalanches, or in models of social/epidemic contagion, nodes
with inhibitory properties may also exist. For simplicity we
modeled the inhibitions by the introduction of links with neg-
ative weight contribution (wi, j) in the threshold comparison
rule given by Eq. (1), although we think our results are easily
transferred to the case of inhibitory nodes. As in Refs. [64,65],
we randomly flipped the sign of 20% of the edges after the
generation of the network.

The same analysis resulted in similar behavior as for the
excitatory case. One can see p(s) distributions with nonuniver-
sal PLs ranging from λ = 0.5 with τ = 1.651(1) to λ = 0.55
with τ = 1.168(1) (Fig. 5). Finite-size dependence is not vis-
ible by changing the size from N = 4096 to N = 16 384.

Usually it is believed that overlapping avalanches distort
the scaling behavior. From the point of view of statistical
physics, this would contradict universal asymptotic scaling
behavior. Indeed we can see the same cumulative p(s) dis-
tribution tails even in the case of starting the system from
half-filled active state as shown in the inset of Fig. 5. The
only difference is that the tails are shifted to larger s values
following an initial growth, which might not be observed in
the case of short time measurements.

The p(t ) decays show GP behavior from λ = 0.505 with
δ = 1.10(3) to λ = 0.52 with δ = 0.70(3) (Fig. 6). These
values do not correspond to the ends of the GP; we did not aim
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FIG. 6. Survival probability of the activity at different branching
rates and ν = 1 − λ for the K = 2 threshold model with levels: l =
5, 6 for the case with 20% of inhibitory links. From bottom to top
symbols: λ = 0.5, 0.505, 0.510, 0.515, 0.520 (l = 5 purple cross and
l = 6 blue circle), 0.525 (l = 5 brown cross and l = 6 brown circle).
Dashed lines are PL fits for the tails of λ = 0.505, 0.52 curves.

to determine them precisely as the exponents are nonuniversal.
Furthermore, as we will show in Sec. V the determination of
the upper limit of the GP, corresponding to the critical decay,
is almost impossible with numerical simulations. Again the
τ and the τt = 1 + δ values lie within the range obtained by
experiments.

C. Inhibitory-refractory model

Finally, we extended the inhibitory case study with the
possibility of refractory states. Refractorieness means that,
following an activation, nodes cannot fall back immediately
to the inactive state on the next update; instead they stay for
time 	t in a refractory state. Thus they cannot be reactivated
by the neighbors they excited. This refractoriness is generic
in excitable systems and has been used in most of the neural
studies [18,66,67]. One of the consequences of refractoriness
is to induce oscillatory dynamics if 	t is large enough and the
spreading properties resemble annular growth, corresponding
to dynamical isotropic percolation (DIP) [4]. However, real
DIP occurs if reactivation is not possible, i.e., in the limit
	t → ∞, and in a high dimension the avalanche scaling
exponents of DIP are the same as those of DP [4,68]. Thus
analytic studies or simulations in high dimensions do not show
differences. In the extensive GP simulations we used 	t = 1,
but in the inset of Fig. 7 we show oscillatory activity behavior
of a single run for 	t = 10, λ = 0.8, and l = 6.

In Ref. [65] the GP behavior of the inhibitory-refractory
threshold model was investigated on a large human con-
nectome graph numerically. Nonuniversal p(s) decays were
reported with 1.4 < τ < 1.91. Here we can see this in the
range λ = 0.39 with τ = 1.96(2) to λ = 0.43 with τ =
1.39(1).

The avalanche survival probabilities (see Fig. 8) exhibit
PL decay from λ = 0.40 with δ = 0.92(1) to λ = 0.43 with
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FIG. 7. Avalanche size distributions at different λ branching
rates, denoted by the symbols, in case of the refractory model, in the
presence of inhibitory links in HMN2ds with l = 5, 6 levels. From
bottom to top symbols: λ = 0.39, 0.40 (l = 5 left triangle and l = 6
up triangle), 0.41, 0.42, 0.43. Dashed lines are PL fits for the tails
of λ = 0.39, 0.4, 0.41, 0.43 cases for t > 1000. The inset shows the
oscillatory behavior of ρ(t ) of a single run for 	t = 10.

δ = 0.39(1), so the duration exponent varies continuously:
1.39(1) � τt � 1.92(1). Note that for similar models in
Refs. [66,67] complex phase diagrams and nonuniversal PLs

100 101 102 103 104 105 106

t
10−5

10−4

10−3

10−2

10−1

100

p(
t)

0.40 l=6
0.41 l=5
0.41 l=6
0.42 l=5
0.42 l=6
0.43 l=6
t−0.92(1)

t−0.726(3)

t−0.39(1)

100 101 102

t, r

10−5

10−3

10−1
ρ

FIG. 8. Survival probability of the activity at different branching
rates λ for the levels l = 5, 6, in the case of the inhibitory-refractory
model. From bottom to top symbols: λ =0.40, 0.41 (l = 5 and
l = 6), 0.42 (l = 5 light green and l = 6 dark green), 0.43. Dashed
lines show PL fits for t > 1000 for the λ = 0.4, 0.41, 0.43 cases.
Inset: ρ(t ) at λ = 1, l = 7 averaged over 105 realizations. Blue
boxes: excitatory; red diamonds: inhibitory. Black bullets: BFS ρ(r)
results. Dashed lines are PL fits for the initial regions: 1 � t <

10) resulting in effective dimensions: deff = 1.84(3) (excitatory),
deff = 1.19(1) (inhibitory), d = 4.18(5) (graph dimension estimated
for 5 < r < 10).
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ρ
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FIG. 9. Evolution of ρ(t ) for different λ in case of starting from
fully active state in the excitatory model with levels: l = 5, 6. From
bottom to top symbols: λ = 0.30, 0.32, 0.321 (l = 6), 0.322, 0.322
(l = 6), 0.325, 0.33, 0.34 (l = 6), 0.35, 0.4, 0.5, 0.6, 0.7.

have also been found and the possibility of GP has been
pointed out.

V. STEADY-STATE SIMULATIONS

In order to determine the steady-state behavior we first
performed long runs, up to T = 108 MCs, by starting the
system from fully active state or from randomly half-filled
activity: ρ(0) = 0.5. Figure 9 shows the results for the excita-
tory model. At λ = 0.3 the activity density falls exponentially
fast to zero. We can see nonuniversal PL tails for 0.32 � λ <

0.33, in agreement with the seed simulations. At λ = 0.33 the
density does not saturate to a constant value. Examining it
on log-lin scale and performing an average over thousands of
independent samples it turns out that even the λ = 0.34 curve
decays very slowly. Only for λ � 0.35 can we can saturation,
corresponding to an active steady state, thus, we estimate
λc = 0.345(5). We plotted the steady-state saturation values
in Fig. 10.

The same analysis has been done for the inhibitory and
refractory-inhibitory cases, and one can observe the shift of
λc to higher values as the consequence of the model modi-
fications. We show the results for the inhibitory network in
Fig. 11. Again, slow activity decays were observed, ending
up with visible PL tails for 0.51 � λ � 0.54, while satura-
tion starts from λc � 0.80(1). The saturation value is ρc =
0.685(1), so the discontinuity is large. In the region 0.54 <

λ < 0.80 the curves do not saturate up to T = 108 MCs, nor
do they reach a scaling region. They belong to the inactive
phase, but it is very difficult to distinguish them from other
(logarithmic) decay forms.

We can see large jumps at the transition points in all cases,
suggesting a discontinuous transition above the GP. It is very
hard to locate the exact location of the transition points as sta-
bility disappears very slowly. This suggests that at the critical

0.3 0.5 0.7 0.9
λ

0

0.5

1

ρ

inhibitory−refractory
inhibitory
excitatory

100 102 104 106 108

t
0

0.2
0.4
0.6
0.8

1

ρ

FIG. 10. Steady-state behavior for the excitatory, inhibitory, and
refractory-inhibitory cases. Inset: evolution of ρ in an inhibitory
HMN2d with N = 4096 for different initial activity densities: ρ(0) =
0.0005, 0.001, 0.01, 0.1, 1 (bottom to top curves).

point logarithmic decay occurs like in case of the disordered
DP [22].

We have also tried to start from other initial conditions than
the full and single seed ones. As the inset of Fig. 10 shows
we can see different saturation values for ρ(0) < 0.1, which
means we have multistability in case of low initial densities.
This is the consequence of the fact that for low ρ(0) only
parts of the graph can be activated. Even though the networks
are simply connected and the lowest in-degree is kin

i = 5, not

100 101 102 103 104 105 106 107 108
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100

ρ(
t)

0.51 l=6
0.51 l=7
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0.52 l=7
0.53 l=6
0.53 l=7
0.54 l=6
0.55 l=5
0.56 l=5
0.60 l=5
0.78 l=5
0.80 l=5
0.85 l=6
0.90 l=6
0.999 l=6

FIG. 11. Evolution of ρ(t ) for different λ, shown by legends
in the case of starting from active states in the inhibitory model.
Thick, normal, and thin lines correspond to l = 7, l = 6, and l = 5,
accordingly. From bottom to top curves: λ = 0.51, 0.52, 0.53, 0.54,
0.55, 0.56, 0.6, 0.78, 0.8, 0.85, 0.9, 0.999. The graph shows results
with initial condition ρ(0) = 0.5 for λ � 0.6, except for λ = 0.51,
l = 7. In all the other cases ρ(0) = 1 is applied.
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all nodes have two incoming links from the same neighbor,
which is necessary for the activation. These nodes cannot be
activated by a neighbor if they are on the “border” of an active
territory, thus the graphs are practically fragmented from the
activity point of view. This provides a mechanism for the
emergence of GPs even in high dimensions, without breaking
the conjecture provided in Ref. [47], according to which GPs
and similar RR effects do not exist in networks with an infinite
topological dimension.

Furthermore, we can see the emergence of discontinuous
transition with multistable states, which can be considered
bistable, for initial excitation with node fraction ρ(0) > 0.1
converging to an “up” activity value, or by activation of single
nodes, converging to a “down” value.

VI. CONCLUSIONS

In conclusion we provided numerical evidence that strong
heterogeneity effects in networks, coming from the modular
structure, can result in a GP even if the topological dimension
is high, where mean-field scaling would be expected. This is
the consequence of fragmented activity propagation caused
by the modular topology and the threshold. We can define
effective dimensions of the these graphs by running seed
simulations with λ = 1, ν = 0 and measuring ρ(t ) ∼ t deff . For
this compact growth ρ(t ) ∼ N (r), so deff provides an estimate
for the dimensionality, similarly to the BFS algorithm. This
is reminiscent of similar methods, for instance, computing the
spectral dimension of a network from random walk simula-
tions [69–72]. While the topological dimension is a purely
structural measure, deff , as well as the spectral dimension are
observables of processes operating on networks, providing
insights into dynamical signatures of localization, slowing
down and dynamical fragmentation. However, it has recently
been shown that in models of HMNs the spectral dimension

is not defined [73], thus our deff can be a candidate to clarify
relation of structure and slow dynamics. The inset of Fig. 8
shows that an initial scaling can be fitted for the excitatory
case with ρ(t ) ∼ t1.84(3), while for the inhibitory case ρ(t ) ∼
t1.19(1). Thus these effective, activity dimensions are less than
dc, much smaller than the topological dimension obtained by
the BFS, which is also shown on the graph as the function of
r.

Furthermore, the threshold-type models allow for the pos-
sibility to observe hybrid phase transitions, where order
parameter discontinuity and multistability can coexist with
dynamical scaling in a GP, thus they can model brain criti-
cality as well as up/down states. External activation can then
push the model among the multistable states if it is poised near
the transition point.

The investigated K = 2 discrete threshold model results
can obviously be extended for higher K values, and we expect
to find similar behavior in continuous, integrate-and-fire type
models on modular networks. Conversely, by duplicating the
links we get back effectively the contact process [54] without
RR effects and GPs. For neural systems our results imply that
the functional and structural connectivity can be different. The
effects of inhibition and refractive states have also been stud-
ied and emergence of oscillatory states has been shown. Our
model results are applicable to a wide range of phenomena,
like power grids, crack and fracture dynamics, and contagion.
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