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We establish that two-dimensional dipolar quantum gases admit a universal description, i.e., their thermody-
namic properties are independent of details of the interaction at short distances. The only relevant parameters are
the dipole length as well as the scattering length of the combined short-range plus dipolar interaction potential.
We derive adiabatic relations that link the change in the thermodynamic potentials with respect to the scattering
length and the dipole length to a generalized Tan contact parameter and a new dipolar contact, which involves
an integral of a short-distance regularized pair distribution function. These two quantities determine the scale
anomaly in the difference between pressure and energy density and also the internal energy in the presence of
a harmonic confinement. For a weak transverse confinement, configurations with attractive interactions appear,
which lead to a density-wave instability beyond a critical strength of the dipolar interaction. We show that
this instability essentially coincides with the onset of a roton minimum in the excitation spectrum and may be
understood in terms of a quantum analog of the Hansen-Verlet criterion for freezing of a classical fluid.
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I. INTRODUCTION

Interactions in ultracold gases are usually described in
terms of the two-body scattering length a as a single pa-
rameter, which characterizes the complicated and in detail
unknown microscopic interaction. Such a reduced descrip-
tion is possible because at low energies and densities only
two-particle s-wave collisions are relevant. Formally, the true
interaction is replaced by a zero-range pseudopotential whose
strength is adjusted to reproduce a given scattering length
[1]. The consequences of this description for the associated
many-body problem have been elucidated in the independent
works by Tan [2–4] and by Zhang and Leggett [5] in the
case of two-component Fermi gases with a scattering length
that is much larger than the typical interaction range re. They
rely on the existence of a well-defined scaling limit, where
the effective interaction range is taken to zero at a fixed
value of the scattering length a. In this limit, the detailed
form of the combined short-range and van der Waals inter-
action at large separations becomes irrelevant. In particular,
the pseudopotential description leads to set of exact relations
for thermodynamic properties like the internal energy or the
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pressure and also the behavior of the momentum distribution
n(q) at large wave vectors q. Importantly, since these rela-
tions are based on operator identities, they hold for arbitrary
phases of the many-body problem [6]. The temperature and
the strength of the interaction enter only through a single pa-
rameter known as the contact C [2–4]. It is a measure for two
atoms to be in close proximity and thus also determines the
amplitude of characteristic power laws that appear in various
correlation functions at short distances or times [7].

The aim of our present work is to develop an extended
universal description for neutral atoms or molecules with a
permanent magnetic or electric dipole moment. Following the
realization of a chromium BEC [8], the study of ultracold
gases with dipolar interactions has become a major research
field, in particular after both Bose and Fermi gases of dys-
prosium [9,10] and erbium [11,12] have been cooled into
the deeply degenerate regime. In addition, stable quantum
gases of molecules with a strong electric dipole moment have
been created in RbCs [13,14] and NaK [15]. More recently,
considerable interest in dipolar gases has been triggered by
the observation of supersolid phases, in which a periodic
density modulation along the weakly-confined direction of
a cigar-shaped trap appears in a superfluid state beyond a
critical strength of the dipolar interaction [16–18]. A mi-
croscopic description of the superfluid-to-supersolid quantum
phase transition and its connection to a possible roton insta-
bility is still a matter of debate. It will be shown here that
some generic features of this transition can be understood by
a generalization of the classical Hansen-Verlet criterion for
freezing. Moreover, the behavior of the static structure factor
at large momentum is determined by a Tan relation and allows
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to distinguish the transition to a supersolid from that between
a superfluid and a normal, commensurate solid which appears
in 4He.

Due to the long-range nature of the interaction, an ex-
tension of the complete set of Tan relations to dipolar gases
turns out to be possible only in two dimensions, where the
interaction

Vd (r) = d2

r3
(1)

for dipoles aligned perpendicular to their motion is purely
repulsive in addition to some unknown short-range potential.
In this case, two-body scattering at low energies is domi-
nated by the s-wave contribution. Moreover, at the many-body
level, the interaction decays sufficiently fast to give rise to
proper thermodynamics with a finite value of the free en-
ergy per particle in the thermodynamic limit, independent
of the boundary conditions [19]. Neither of these crucial
properties holds in three dimensions: Here, even for aligned
dipoles, the long-range potential −2d2 P2(cos θ )/r3 depends
on the angle θ between the direction of alignment and the
relative separation r. As a result, the angular momentum
l is not conserved. The amplitude for angular momentum
changing collisions vanishes like ∼(k�d )2 in the ultracold
limit k�d � 1 [20], with �d = md2/h̄2 the dipolar length.
However, due to the long-range nature of the interaction, the
phase shift δ0(k) ∼ ln 1/(k�d ) for s-wave scattering diverges
at low energies, while the phase shifts δl (k) = −ãl k for finite
angular momenta start at linear order for arbitrary l , with
effective scattering lengths ãl � �d/l2 that decay only slowly
with increasing l [21,22]. Hence, unlike the case of isotropic
short-range interactions with a van der Waals tail, the s-wave
scattering length is not sufficient to describe the two-body
interaction of dipolar gases at low energies in three dimen-
sions and no universal description of the thermodynamics and
short-distance correlation functions exists.

This paper is structured as follows: We begin in Sec. II
by considering the strictly two-dimensional dipolar gas where
the confinement length lz is much smaller than the dipolar
length �d . Based on the solution of the associated two-body
scattering problem in Sec. II A, we derive the short-distance
properties of the many-particle wave function in Sec. II B and
discuss the short-distance properties of the pair distribution,
which involves a generalized version of the Tan contact C.
In Sec. II C, we discuss the related adiabatic relations and, in
particular, define a new dipolar analog D of the contact param-
eter. Moreover, using an extension to dipolar interactions of an
approach due to Fisher and Hohenberg [23], explicit results
for both contact parameters are derived in the low-density
limit at zero temperature. In Sec. II D, the two independent
contact parameters are linked to universal relations for the
pressure and the virial theorem. In Sec. II E, we discuss the
behavior of the momentum distribution and the static structure
factor at large wave vectors. Based on previous numerical
results, quantitative results for the dipolar contact covering
the full range of dimensionless coupling constants

√
n�d are

presented in Sec. II F. In Sec. III, we proceed to discuss the
quasi-two-dimensional limit, where the motion is restricted
to the lowest transverse eigenstate while the associated con-
finement length lz is still considerably larger than �d . In this

limit, the form of the interaction potential (1) holds only at
large distances, crossing over to an attractive interaction at
separations below lz. The presence of attractively interacting
dipoles in this case opens the possibility for an instability of
the homogeneous superfluid into phases with spatial order. In
Sec. III B, it is shown that the onset of a roton minimum in
the excitation spectrum coincides with the quantum version
of the Hansen-Verlet criterion, which provides an empirical
criterion for the point at which a fluid phase becomes unstable
towards a phase with broken translation symmetry. Moreover,
in Sec. III C, we derive exact results for the behavior of the
static structure factor at large wave vectors. They allow to dis-
tinguish the transition to a supersolid phase that is caused by
partially attractive interactions from the transition of a homo-
geneous superfluid to a commensurate, nonsuperfluid crystal,
which appears both in strictly two-dimensional dipolar gases
and also in 4He at high pressure due to purely or dominantly
repulsive interactions. The paper is concluded by a summary
in Sec. IV. There are three appendices that discuss an exam-
ple potential that gives rise to universal dipolar scattering,
derive the adiabatic relations, and generalize the universal
relations in two dimensions to general repulsive power-law
interactions.

II. UNIVERSAL RELATIONS FOR STRICTLY
TWO-DIMENSIONAL DIPOLAR GASES

In this section, we derive universal relations for a Bose gas
with dipolar interactions in the limit where scattering is purely
two-dimensional in nature. The many-body Hamiltonian of
such a system with N particles is

Ĥ = − h̄2

2m

N∑
i=1

∇2
i +

∑
i< j

V (ri − r j ). (2)

Here, V (r) is the complete effective interaction as truncated
to motion in the plane. For separations r > Re larger than
a short-distance range, the potential is assumed to be of
the pure dipolar form given in Eq. (1) while for r < Re, it
changes to an unknown short-range form. As discussed by
Büchler et al. [24], the short-distance cutoff in the presence
of a transverse confinement with oscillator length lz is of
order Re � (lz/�d )4/5�d . The existence of a proper zero-range
scaling limit thus requires a tight transverse confinement with
an associated length lz considerably smaller than the dipolar
length �d . In this limit, both the scattering length a2 associated
with the full two-body interaction V (r) and also the dipolar
length �d are much larger than Re (note that the scattering
length in two dimensions is denoted by a subscript a2).

Throughout the paper, we consider a system of bosons,
where only s-wave scattering is relevant at low energies.
However, our results on the short-distance correlations and
their connections to thermodynamic properties also hold for
two-component Fermi gases with only minor modifications
by factors of two. In fact, the latter problem is of relevance
not only in the context of ultracold atoms but also arises
in two-dimensional electron gases (2DEG). As discussed by
Spivak and Kivelson [25], a realization of a two-component
Fermi gas with dipolar interactions is provided by a 2DEG in
a MOSFET device with a ground plane at a distance d̃ . The
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interaction between the electrons in the 2DEG is then of a pure
dipolar form at distances larger than d̃ with an effective dipole
moment d2

eff = 4e2d̃2/ε, where ε is the dielectric constant of
the host semiconductor. Since the electrons are in an equal
mixture of spin-up and spin-down state, scattering appears
both in a relative singlet state associated with even angular
momenta m or in relative triplet states, which involves odd
m. At low densities, where the Fermi wave vector kF obeys
ln(1/kF �eff

d ) � kF �eff
d , the s-wave contribution dominates and

thus electron-electron interactions in a relative triplet state be-
come irrelevant. More generally, however, the scattering phase
shifts δm(k) ∼ k�d associated with the long-range dipolar in-
teraction in two dimensions are of the same order for arbitrary
finite angular momenta m �= 0 [26,27]. A proper discussion of
the electronic many-body problem at realistic densities, where
kF �eff

d � (4/rs) (d̃/aB)2 is much larger than one, thus requires
to include all possible values of m. Here, aB = h̄2ε/me2 is the
effective Bohr radius and rsaB = 1/

√
πn [28].

A. Two-body scattering

Before turning to the full many-body problem, we consider
the two-body problem with the pure dipolar potential Vd (r).
The scattering wave function may be expanded in partial
waves as ψ (r) = 1√

r̃

∑
m eimϕφm(r̃), where m ∈ Z is the in-

teger angular momentum and ϕ the angle in the 2D plane.
Introducing r̃ = r/�d as the dimensionless radius and k̃ = k�d

as the corresponding relative wave vector, the Schrödinger
equation for the relative motion reads[

− d2

dr̃2
+ m2 − 1

4

r̃2
+ 1

r̃3
− k̃2

]
φm(r̃) = 0. (3)

The low-energy scattering properties are dominated by the
s-wave solution. The associated scattering-phase shift δ0(k)
has a logarithmic dependence on momentum, which is char-
acteristic for short-range interactions in two dimensions [29].
It is parametrized by a scattering length a2 defined by the
dominant first term in the expansion

cot δ0(k) = 2

π
ln

ka2eγE

2
− 4α

π
(k�d ) ln2 ka2 + O(k), (4)

where γE ≈ 0.577 is the Euler constant and α is a posi-
tive numerical factor of order one. Note that for a dipolar
interaction in two dimensions, the standard effective-range
expansion does not hold [30]. The subleading term in the
scattering phase shift (4) is therefore not of the usual form ∼k2

but is nonanalytic ∼|k| in the momentum and also contains
an additional logarithmic factor [31]. The numerical factor
exp (γE )/2 in the leading contribution has been chosen such
that no corrections of order k0 are present. While this factor
is often absorbed in the definition of a2 (see, for example,
Ref. [32]), our convention for the phase shift (4) ensures that
the asymptotic form limr→∞ limk→0 φ(r) ∼ ln(r/a2) of the
two-body wave function at zero energy has no corrections
of order O(r0). The scattering states φm at small energies
can be determined analytically in terms of modified Bessel
functions [26]. For a pure dipolar interaction, one thus obtains
ad

2 = e2γE �d [26], as mentioned above. In order to deal with
the realistic situation of an additional short-range part of the
interaction at distances below the potential range Re, it is suf-

ficient to add the irregular solution in a pure dipolar potential
with a prefactor ln(a2/ad

2 ). As a result, the two-body wave
function is of the form

φ(r) = 2K0

(√
4�d

r

)
− ln

(
a2

ad
2

)
I0

(√
4�d

r

)
. (5)

An example of a potential that gives rise to this universal
scattering form is discussed in Appendix A. At short distances
r � �d , the regular and irregular parts scale as an exponential
with (r/�d )1/4 exp[∓√

4�d/r], which follows from a WKB
approximation [33]. An important point to note is that the
singular behavior ∼1/rn with n > 2 of the dipolar potential
at short distances dominates both the kinetic energy and the
angular momentum contribution [33,34]. As a result, the phys-
ically meaningful and relevant parameter is the full scattering
length a2 of the combined short-range plus dipolar potential
in addition to the dipolar length �d .

B. Pair distribution function and contact

A systematic method that connects the short-distance prop-
erties of a many-body system and two-body wave functions in
vacuum is the operator product expansion (OPE) [6,7,35,36].
For power-law interactions, this technique has been used pre-
viously in the Coulomb problem in Ref. [37]. Here, we follow
a more intuitive approach that relies on the short-distance
factorization of many-body wave functions. Specifically, we
consider the pair distribution function g(r), which describes
the probability density of detecting pairs of particles separated
by a distance r. Its formal expression

g(R, r) = N (N − 1)

n2

∫
dX |
(R − r

2
, R + r

2
, X)|2 (6)

contains the N-particle wave function 
 in position space,
where we introduce the short-hand X = (r3, . . . , rN ) for co-
ordinates that are integrated over. We also use relative and
center-of-mass coordinates r and R for the first two parti-
cle coordinates. For a homogeneous system, there will be
no dependence on R. The basic assumption, which can be
proven formally within the OPE, is that whenever two particle
coordinates are close to each other, the wave function should
approach the relative two-body solution up to a factor that
remains finite at r = 0. The many-body wave function thus
factorizes according to

lim
r1→r2


(r1, r2, X) = φ(r)A(R; X), (7)

where φ(r) is defined in Eq. (5) and A(R; X) is a remain-
der that does not depend on the relative coordinate r. Using
Eq. (7) in the definition of the pair distribution function gives
the universal short-distance behavior

lim
r→0

n2g(R, r) = |φ(r)|2
(2π )2

C(R), (8)

where we introduce the contact density C(R)

C(R) = (2π )2 N (N − 1)
∫

dX |A(R; X)|2. (9)

For a pure dipolar interaction a2 = ad
2 , the pair distribu-

tion function is exponentially suppressed for r � �d . In the
actual relevant situation of an interaction which differs from
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FIG. 1. Schematic plot of the pair distribution function for a
system with combined dipole and short-range interaction (red line).
For comparison, we also include the restricted case of a pure dipole
interaction without a short-range part, for which a2 = e2γE �d (blue
line). For distances that are small compared to the interparticle sep-
aration 1/

√
n but still larger than the potential range Re, the pair

distribution function is universal [Eq. (8)], with a magnitude set by
the contact (9).

the 1/r3-behavior at short distances, however, g(r) diverges
exponentially near the origin, which is a consequence of the
presence of the irregular solution I0 in Eq. (5). The resulting
overall form of the pair distribution function is illustrated
in Fig. 1, where the continuous blue line denotes the case
of a pure dipole interaction, while the red line qualitatively
describes the realistic situation of a combined dipole and
short-range interaction. In observables that involve an integral
over the pair distribution function, the exponential divergence
of g(r) at short distances must of course be canceled, as
will be shown explicitly in Eq. (16) below. In the limit of
separations r � �d but still much smaller than the average
interparticle distance, the pair distribution function exhibits a
logarithmic dependence g(r) ∼ ln2(r/a2), which is the stan-
dard result for a two-dimensional system with finite scattering
length [38,39]. Note that this latter regime only exists in the
low-density limit

√
n�d � 1, where the dipole length is much

smaller than the interparticle separation.
As indicated in Fig. 1, the pair distribution function has a

universal form also at large distances: At zero temperature and
for any compressible fluid phase, it approaches the asymptotic
value one from below with an inverse cube power law

lim
r→∞ g(r) = 1 − ξ

2π
√

2 nr3
+ . . . (10)

This dependence is a consequence of the nonanalytic behav-
ior S(q → 0) = |q| ξ/

√
2 + . . . of the static structure factor

at small momentum that defines the characteristic length ξ .
The large-distance result (10) then follows using the standard
connection:

S(q) = 1 + n
∫

dr e−iq·r(g(r) − 1) (11)

between the static structure factor and the pair distribution
function. A quite general upper bound on the length ξ has
been derived by Price [40] using a combination of the f -sum
rule and the compressibility sum rule. Defining κ̃ = ∂n/∂μ as
an effective compressibility, it reads

ξ � h̄

√
κ̃

2mn
. (12)

Within a single-mode approximation, where the density fluc-
tuation spectrum at long wavelengths is exhausted by a single
collective mode, the bound becomes an equality. In this case
the length ξ = h̄/

√
2mcs is uniquely determined by the speed

of sound cs.

C. Adiabatic relation

In the zero-range limit a2, �d � Re, all information on the
interaction is contained in the total scattering length a2 and
the dipolar length �d . One may therefore consider the change
(A denotes the area of the system)

d� = −SdT − PdA − Ndμ + Xa d (ln a2) + Xd d (ln �d ),
(13)

of the grand canonical potential � = −PA in response to
changes of these two parameters, which defines two extensive
quantities Xa and Xd . They are the generalized forces con-
jugate to the variables ln a2 and ln �d in �(T, A, μ, a2, �d ).
In physical terms, Xa and Xd describe the work done on the
system under changes in the scattering length or the dipole
length at fixed temperature T , area A, and chemical potential
μ. As shown in Appendix B, these forces are related to the
contact parameter defined in Eq. (9) in the following manner:

Xa

A
= ∂ε

∂ (ln a2)

∣∣∣∣
�d

= h̄2

4πm
C (14)

Xd

A
= ∂ε

∂ (ln �d )

∣∣∣∣
a2

= D , (15)

where the partial derivatives of the energy density ε = E/A
are taken at fixed dipole length and scattering length, respec-
tively, as well as at fixed entropy S, particle number N , and
area A, and where the quantity D is defined in terms of the
pair distribution function as follows

D = d2

2

∫
dr

n2g(r) − |φ(r)|2
(2π )2 C

r3
. (16)

The first expression (14) is the standard Tan adiabatic the-
orem in two dimensions, generalized to the situation where
the scattering length also includes the contribution from the
dipolar interaction. It establishes the fact that the contact is
finite and positive also in the presence of dipolar interactions.
As a result, the energy is an increasing function of the scat-
tering length [2]. The second relation is new and specific for
gases with dipolar interactions. More generally, as shown in
Appendix C, Eq. (16) may be extended to repulsive inverse
power law potentials of the form 1/r2+σ with arbitrary val-
ues σ > 0. Equation (15) defines a dipolar analog D of the
contact, which may be negative in general as shown below
but is always finite. Indeed, the second term in the integral
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in Eq. (16) precisely cancels the short-distance divergence of
the pair distribution function, Eq. (8), and thus renders the
expression finite and independent of short-distance details. As
will be shown in Eq. (28) below, the dipolar contact D may
be understood as a nonanomalous contribution measuring the
deviation in the difference P − ε between pressure and energy
density due to the fact that a 1/r3 interaction violates scale
invariance explicitly. The adiabatic relations (14) and (15) are
stated for a homogenous system, however the extension to
inhomogeneous or few-body states is straightforward. In this
case, the pair distribution function g(R, r) and both contact
densities C(R) as well as D(R) depend on the center-of-mass
coordinate R. Upon integration over R, they give rise to ex-
tensive values of Xa and Xd .

For a vanishing dipolar interaction, the full scattering
length a2 reduces to the two-dimensional scattering length
of the short-range potential. The first adiabatic relation (14)
then coincides with the standard adiabatic relation for bosons
with short-range interactions [39]. Since the pair distribution
function in this case behaves as

n2g(r)|d=0 = ln2(r/a2)

(2π )2
C + O(r2) (17)

at short distances, the integral in Eq. (16) converges. The
dipolar contact density D thus vanishes as O(d2) (with log-
arithmic corrections in na2

2, see below), as expected. In the
opposite limit of a negligible short-range contribution, the
scattering length a2 = ad

2 � �d is fixed at the value obtained
for a pure dipolar interaction. It is then no longer an indepen-
dent thermodynamic variable separate from �d . As a result, the
derivative with respect to �d gives a single adiabatic relation
that is the sum of (14) and (15). Using the fact that the second
term in the integral of Eq. (16) is finite for a pure dipolar inter-
action and cancels the contact term stemming from Eq. (14),
one obtains

D̃ = ∂ε

∂ (ln �d )

∣∣∣∣
a2=ad

2

= d2

2

∫
dr

n2g(r)

r3
, (18)

which is just the interaction energy density. This result can
also be obtained directly using the Hellmann-Feynman theo-
rem.

As emphasized above, the thermodynamic relations (14)
and (15) hold for arbitrary states of the many-body problem,
both at vanishing and at finite temperature. The calculation of
the associated contact coefficients requires, however, a quanti-
tative solution of the many-body problem, which is in general
possible only numerically. Explicit results can be derived at
zero temperature and low densities and also in the nonde-
generate limit by means of a virial expansion, following the
approach in Ref. [41] for the two- and three-body contacts of
Bose gases with short-range interactions in three dimensions.
In order to determine the contact densities C and D in the
ground state at low densities, we use an approach due to
Fisher and Hohenberg [23]. Based on results by Popov [42],
they showed that for a quite general form of the two-body
interaction, the dependence μ(n) of the chemical potential
on the density n at small densities can be obtained from a

perturbative solution of the implicit equation

μ = n|t (0, 0, E = μ)| = 4h̄2n/m

| cot δ0(k =
√

mμ/h̄2) − i|
, (19)

which involves the two-body T matrix at vanishing total
momentum evaluated at a finite energy E = μ in the center-
of-mass frame.

In the presence of long-range dipolar interactions, the ef-
fective range expansion of the scattering phase shift in Eq. (4)
gives rise to an equation of state at low densities of the form

n(μ) = mμ

4π h̄2

{
1

ε(μ)
+ 8I

π
ε(μ)

(
1 + ε(μ)

2

)

+ α�d

√
mμ

h̄2

1

ε2(μ)
+ . . .

}
, (20)

where ε−1(μ) = ln[4h̄2/(mμa2
2e2γE +1)]. The first term is the

universal result for the chemical potential of a Bose gas with
scattering length a2 [23,43]. In addition, we also include the
leading and universal logarithmic corrections in the small
parameter ε(μ) � 1 with I = 1.0005 a numerical constant,
which were determined by Mora and Castin [44]. These cor-
rections are not contained in the Fisher-Hohenberg ansatz
(19). In the ultralow density limit, where ε(μ) � 1, the equa-
tion of state only depends on the low-energy scattering length
a2 [45], and there is no separate dependence on the dipole
length �d . The correction in Eq. (20) proportional to

√
n�d

arises from the long-range nature of the dipolar interaction
and becomes relevant beyond the limit of ultralow densities.
In particular, for a pure dipolar gas with a2 = ad

2 , this term
is larger than the Castin-Mora correction for mμa2

2/h̄2 �
2 · 10−4. This corresponds to densities

√
n�d � 10−3, which

covers the relevant range in Fig. 3 below. The fact that the
equation of state of a 2D Bose gas with dipolar interactions
differs substantially from the case of short-range interactions
in this regime of densities has indeed been observed in nu-
merical calculations by Astrakharchik et al. [45]. The contact
parameter can be determined from Eq. (19) or (20) using

ndμ = dP − sdT + h̄2

4πm
C d (ln a2) + D d (ln �d ), (21)

which follows from the definition of the contacts (13) and the
Gibbs-Duhem relation. At low densities, the resulting contact

C(a2) =
(

4πn

ln
[
4e−2γE

/(
na2

2

)])2

+ · · · (22)

only involves the scattering length and—apart from the log-
arithmic factor—essentially vanishes with the square of the
density. The dipolar contact arises from the contribution ∼�d

in Eq. (20) and is given by

D = −16h̄2α

5m

π3/2n5/2�d

ln1/2
[
4e−2γE

/(
na2

2

)] + · · · (23)

It is negative but vanishes faster with density than C. A
similar behavior is found in the two-body limit, where a
bound state of the combined short-range plus dipolar in-
teraction exists whenever a2 > ad

2 [46]. Using the adiabatic
relation ∂E/∂ (ln a2) = h̄2C/(4πm), the resulting (integrated)
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contact C2−body = 32πe−2γE /a2
2 is positive while D2−body =

−const × h̄2/(m�3
d ) is negative with a numerical prefactor

const of order one. In the special case of a pure dipole interac-
tion, where a2 = ad

2 ∼ �d , only the dipolar contact remains.
At ultralow densities, it is determined by the perturbative
result (22) apart from a trivial factor, i.e.,

D̃ = h̄2

4πm
C
(
a2 = ad

2

)
. (24)

D. Pressure relation and virial theorem

The adiabatic relations give rise to two additional exact
expressions for the pressure in a uniform situation or the
total energy in a harmonic trap. First, we derive the pressure
relations for a uniform gas. To this end, we write the grand
canonical potential in dimensionless form

�(T, μ, A, 1/a, 1/�d )

= kBT �̃

(
μ

kBT
,

h̄2/mA

kBT
,

h̄2/ma2
2

kBT
,

h̄2/m�2
d

kBT

)
. (25)

This relation implies the scaling law

�(λT, λμ, A/λ,
√

λ/a2,
√

λ/�d ) = λ�(T, μ, A, 1/a2, 1/�d ).
(26)

Taking the derivative of this expression with respect to λ and
evaluating the result at λ = 1 gives(

T
∂

∂T
+ μ

∂

∂μ
− A

∂

∂A
− 1

2

∂

∂ (ln a2)
− 1

2

∂

∂ (ln �d )

)
� = �.

(27)

Using (T ∂
∂T + μ ∂

∂μ
− A ∂

∂A − �)� = −T S − μN + PA −
� = PA − E , we obtain a relation for the pressure:

P = ε + h̄2C
8πm

+ D
2

. (28)

For vanishing dipolar strength d2 → 0, the expression reduces
to the 2D Tan relation [4,47,48]

P(�d = 0) = ε + h̄2C
8πm

. (29)

As noted above, the remaining contact term ∼C arises as an
anomaly due to the fact that a zero-range interaction in two
dimensions is scale invariant only at the classical level. The
invariance is broken in the quantum theory where the coupling
constant becomes scale-dependent [48]. In the opposite limit
of a dipolar interaction without a short-range part, the result

P
(
a2 = ad

2

) = ε + D̃
2

(30)

is equivalent to the virial theorem for a pure power law inter-
action ∼1/r3 since, as pointed out in Eq. (18), D̃ is just the
interaction energy density.

A different version of the virial theorem can be derived for
dipolar gases that are confined by a harmonic radial trapping
potential Vext (r) = mω2r2/2 with frequency ω (for simplicity,
we assume an isotropic trap, however the final result holds
also in the anisotropic case). The associated grand canonical

potential can then be written in dimensionless form as

�(T, μ, ω, 1/a, 1/�d )

= kBT �̃

(
μ

kBT
,

h̄ω

kBT
,

h̄2/ma2
2

kBT
,

h̄2/m�2
d

kBT

)
. (31)

A similar scaling analysis as above gives(
T

∂

∂T
+ μ

∂

∂μ
+ ω

∂

∂ω
− 1

2

∂

∂ (ln a2)
− 1

2

∂

∂ (ln �d )

)
� = �.

(32)

Using (T ∂
∂T + μ ∂

∂μ
− 1)� = −T S − μN − � = −E and

that the partial derivative of the grand canonical potential with
respect to the trapping frequency is equal to the derivative of
the energy (at fixed entropy), we obtain(

ω
∂

∂ω
− 1

2

∂

∂ (ln a2)
− 1

2

∂

∂ (ln �d )

)
E = E . (33)

Now, using ω∂E/∂ω = 2〈Vext〉, we obtain the virial theorem

E = 2〈Vext〉 − h̄2

8πm

∫
R
C(R) − 1

2

∫
R
D(R). (34)

Again, the first two terms are the standard virial theorem for
2D quantum gases [4,47–49]. For a pure dipolar interaction,
the virial theorem reduces to

E = 2〈Vext〉 − 1

2

∫
R
D̃(R). (35)

This result can be compared with a virial theorem by Góral
et al. [50] that was derived for trapped single-component
dipolar Fermi gases in three dimensions in the semi-
classical Thomas-Fermi limit. For spin-polarized fermions,
there is no short-range contribution to the interaction energy
and the virial theorem reported in Ref. [50] involves the
3D interaction energy associated with the long-range part
−2d2 P2(cos θ )/r3 of the 3D dipolar interaction. Their result
is consistent with Eq. (35) which applies in the presence of
a tight confinement along the z-direction. Note, however, that
the dipolar contact (18) is effectively evaluated with g(r) ≡ 1
in Ref. [50]. Due to trap average, the 1/r3 divergence of the
dipole potential (1) at short distances is removed and thus the
integral is finite despite neglecting short-range pair correla-
tions.

E. Momentum distribution and static structure factor

The short-distance factorization of the many-body wave
function (7) also determines the high-momentum tails of vari-
ous correlation functions, such as the momentum distribution
and the static structure factor. Specifically, the momentum dis-
tribution is given by the Fourier transform of the one-particle
density matrix:

n(q) = n
∫

d (ra, rb, r2, . . . , rN ) e−iq·(ra−rb)

× 
∗(ra, r2, . . . , rN )
(rb, r2, . . . , rN ), (36)

which is a dimensionless quantity that is normalized to the
density via

∫
q n(q) = n. The dominant singularity at short

distances arises from configurations in which both coordinates
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FIG. 2. Asymptotic high-momentum tail of the momentum dis-
tribution for a pure dipolar interaction as extracted from Eq. (37).

ra and rb approach any of the other N − 1 integration coor-
dinates simultaneously. Using Eq. (7), this gives rise to the
high-momentum behavior

lim
q→∞ n(q) =

∣∣∣∫ dr e−iq·r φ(r)

2π

∣∣∣2
C. (37)

For quantum gases with short-range interactions, the
two-body wave function at large momentum is φ(q) =
2π/q2. The momentum distribution thus exhibits a power-
law C/q4 tail which in fact holds in any space dimension
[3,5,38,39,47,51,52]. In the presence of dipolar interactions,
this behavior remains valid for momenta q�d � 1, where
φ(r) may be replaced by the form φ(r) = ln(r/a2) valid in
the regime �d � r � 1/

√
n. For a pure dipolar gas, φ(r)

becomes exponentially small at distances r < �d . The mo-
mentum distribution is then exponentially suppressed at high
momenta as well. Remarkably, it exhibits a nontrivial os-
cillatory structure arising from the Fourier transform of the
modified Bessel function K0 in Eq. (5). This is shown in
Fig. 2 where the effective strength of the 1/q4 tail at high-
momentum for the pure dipolar gas is depicted as a function
of the dimensionless momentum q�d in a double-logarithmic
plot. It exhibits a crossover from a power-law tail in the regime√

n � q � 1/�d to exponential suppression for q�d � 1. In
practice, an observation of this peculiar behavior requires
dipolar lengths �d of the order μm, which is significantly
larger than the values that have been realized so far. In the
presence of an additional short-range interaction, the expo-
nential divergence of the two-body wave function (5) at short
distances leads to a high-momentum tail that depends strongly
on a cutoff. In contrast to the thermodynamics, the behavior
of the momentum distribution at large wave vectors is then no
longer universal.

An analogous crossover is seen in the Fourier transform
of the pair distribution function, which determines the static
structure factor (11). The short-distance result for the pair
distribution function in Eq. (8) implies the large-momentum
behavior

lim
q→∞[S(q) − 1] = C

(2π )2n

(∫
dr e−iq·r|φ(r)|2

)
. (38)

In an intermediate momentum region
√

n � q � 1/�d , the
logarithmic dependence of the pair distribution function gives
rise to a power-law momentum tail

S(q) − 1 = C
4πnq2

ln
qa2eγE

2
+ . . . , (39)

which is modified by a logarithmic factor. For even larger
momenta q � 1/�d , this tail will be exponentially suppressed.
The domain of validity

√
n � q � 1/�d for the expression

(39) shows that the power-law decay is accessible only in
the low-density regime

√
n�d � 1, where the details of the

long-range dipole potential are not important. The power-law
tail (39) predicts a negative correction below q < 2e−γE /a2

while above that, the structure factor is larger than unity.
Thus, a maximum appears at q̄ = 2e1/2−γE /a2 which equals
q̄ ≈ 0.58/�d in the case of a pure dipolar interaction. Such
a nonmonotonic behavior has been observed in numerical
calculations of the static structure factor of pure dipolar sys-
tems by Astrakharchik et al. [53] close to the transition to
a crystalline phase at high density

√
n�d � 20. This will be

discussed in more detail in the following.

F. Numerical values of the dipolar contact
for pure dipolar interactions

The result in Eq. (23) for the dipolar contact D only covers
the limit of ultralow densities. In order to determine the con-
tact quantitatively over a wider range—at least for a system
with pure dipolar interactions, where D → D̃—we apply the
adiabatic derivative (18) to the numerical results obtained
in Ref. [53]. As shown in Fig. 3, the dimensionless dipolar
contact increases monotonically with the ratio of the dipolar
length �d and the average interparticle spacing, ranging over
almost six orders of magnitude in a relevant range of densities.

In the low-density limit
√

n�d � 1, the contact (24) fol-
lows the logarithmic dependence (22) derived in Sec. II C. In
the opposite high-density limit

√
n�d � 20, the system forms

a regular triangular lattice. The asymptotic dependence of
the dipolar contact is then determined by the purely classical
energy density of the crystal:

D̃crystal = n

2

∑
R �=0

d2

|R|3 = h̄2n

m�2
d

(n�2
d )3/2 × 1

2

∑
R �=0

1

n3/2|R|3 .

(40)

The sum runs over the sites R of a triangular lattice and the
factor 1/2 avoids double-counting. For a triangular lattice,
which is the configuration with the lowest ground state energy
for purely repulsive interactions, the last numerical factor is
4.4462, which agrees with the corresponding constant a1 =
4.43(1) obtained numerically in Ref. [53]. Note that for a
given density and strength d2 of the dipolar interaction, D̃crystal

is independent of h̄. Quantum corrections to this purely clas-
sical energy arise from the zero point motion of the crystal.
This leads to an additional contribution to the energy per par-
ticle of order ε̃phon � h̄cs/b ∼ n5/4 because the sound velocity
scales like cs ∼ n3/4, while the lattice constant decreases like
b ∼ 1/

√
n with density. The resulting quantum corrections

to D̃crystal, which are of order O(n(n�d )5/4), are quite small,
however. Indeed, as shown in Fig. 3, the full result hardly
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FIG. 3. Contact of a pure dipolar gas as extracted from the QMC
calculations in Ref. [53] as a function of the dimensionless ratio of
dipolar length and interparticle separation

√
n�d . The blue line indi-

cates the contact in the fluid phase and the red line in the crystalline
phase, with an intermediate transition region between the two phases
shown in gray. The exact result for the high-density limit is indicated
by the blue dashed line.

differs from the dashed blue line representing the contribution
(40) even in the regime close to the transition.

In the context of the fluid-to-crystal transition found nu-
merically in Refs. [24,53], two points merit further discussion.
First of all, in two dimensions and in the presence of dipolar
or even longer-range interactions, a direct first order transition
from a fluid to a crystalline phase has been excluded by Spivak
and Kivelson on quite general grounds [25,54]. Indeed, such a
transition requires a positive value of the surface tension. For
interactions decaying like V (r) ∼ 1/rn at large distances with
n � 3, however, the fluctuation contributions to the surface
tension in d = 2 become negative for large domain sizes [54].
As a result, one expects an inhomogeneous stripe or micro-
emulsion phase intervening between the fluid and crystalline
ground states. Such phases have been predicted for fast rotat-
ing gases in the presence of dipolar interactions by Cooper
et al. [55,56]. In a nonrotating situation, where the projection
to the lowest Landau level does not apply, they are difficult
to resolve in numerical simulations, however, because in the
special case of dipolar interactions the characteristic domain
sizes are expected to be larger than the microscopic length
scales �d or 1/

√
n by an exponentially large factor. To account

for the presence of such intermediate phases, in Fig. 3 we
have left open a finite interval in the vicinity of the critical
dimensionless coupling

√
n�d � 18.

As a second point, we note that starting from a homo-
geneous fluid, the point of instability towards phases with a
nontrivial modulation of the density may be inferred from
an empirical criterion that only involves knowledge of the
static structure factor. In classical liquids, this is known as the
Hansen-Verlet criterion. It states that freezing appears when
the dominant first peak of the static structure factor reaches a
critical value S(q0) = 2.85 [57]. As discussed by Babadi et al.
[58], a modified version of this criterion turns out to deter-
mine the limit of stability also for various two-dimensional
quantum fluids at zero temperature. Since configurations with
a strongly inhomogeneous density are suppressed in quantum

mechanics, the associated critical value S(q0) is substantially
lower than the classical Hansen-Verlet value. Surprisingly, it
does not change much with particle statistics or the specific
form of the repulsive interactions. In the particular case of
Bose fluids with dipolar interactions, the value extracted from
the numerical results in Ref. [53] is S(q0) � 1.7 [58] (an even
smaller value S(q0) � 1.4 applies for dominantly repulsive
Bose fluids in d = 3 like 4He [59]). In the following section,
we will show that, at least for quasi-two-dimensional dipolar
gases, the Hansen-Verlet criterion essentially coincides with
the appearance of a roton minimum in the excitation spectrum.
With increasing strength of the dipolar interaction, the super-
fluid therefore becomes unstable towards a ground state with a
density wave rather than staying in a homogeneous phase with
a well-defined roton minimum, a scenario that also appears to
be realized for dipolar gases in a cigar-shaped trap [60,61].

III. EXACT RELATIONS FOR QUASI TWO-DIMENSIONAL
DIPOLAR GASES

The results derived in the previous section apply for dipolar
gases in the limit Re, lz � a2, �d , where the solution of the
two-body problem takes the form (5) appropriate for scatter-
ing in two dimensions. In practice, such a strong confinement
has not yet been reached. Indeed, typical dipolar lengths are
below 100 aB and are thus much smaller than the transverse
confinement lengths on the order of lz � 0.5 μm. In such a
case, the short-distance behavior is determined by a solution
of the full three-dimensional Schrödinger equation in the pres-
ence of both a short-range and the dipolar potential:

V (r) = Vsr (r) + d2

r3

(
1 − 3z2

r2

)
− 8πd2

3
δ(3)(r) . (41)

Here, the attractive delta-function term is a dipolar contribu-
tion to the short-range interaction which—in contrast to the
contribution Vsr (r)—is known explicitely in analytical terms.
It is specific to the case of magnetic point dipoles and arises
from the short distance behavior of the magnetic field whose
space integral over a sphere of arbitrary small radius must
yield the enclosed dipole moment, ensuring that div B ≡ 0
holds globally [62].

As discussed in the introduction, the associated scattering
problem even at low energies cannot be reduced to s-wave in-
teractions only and thus is not universal. Nevertheless, a num-
ber of exact results can be obtained for the weakly-confined
dipolar gas, where the motion along the confined z direction
is restricted to the lowest transverse single-particle eigen-
state. This requires the chemical potential to obey the con-
dition μ � h̄ωz, which excludes a high-density crystalline
phase as discussed in the previous section. We note that the
assumption μ � h̄ωz even for the tightly confined directions
is not obeyed for dipolar gases in cigar-shaped traps realized
so far [16–18]. Nevertheless, a number of features like the
absence of a homogeneous superfluid with a well-defined
roton minimum and the finite maximum value of the static
structure factor right at the transition point are common with
those of our two-dimensional model system studied in the
following. On a qualitative level, this can be understood by
the fact that the presence of excited states for the trans-
verse motion, which may be due to either thermal effects or
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interactions, may be accounted for by a renormalization of the
dimensionless coupling constant g̃2 introduced below, see, for
example, Ref. [63].

A. Effective dipole interaction and stability

The contribution to the effective two-body interaction
Vdd(q) that results from projecting the three-dimensional dipo-
lar interaction (41) onto the lowest transverse oscillator level
is [56,64]

Vdd(q) = −gdd
2

√
π

2
(qlz )eq2l2

z /2erfc

(
qlz√

2

)
. (42)

Here, following the notation in Ref. [32], we have introduced
a coupling constant gdd

2 = (h̄2/m)g̃dd
2 with a dimensionless

factor g̃dd
2 = √

8π�d/lz for dipolar interactions, which is much
less than one in practice. The effective interaction Vdd(q) is
always negative and approaches the constant value −gdd

2 in
the limit qlz � 1. In physical terms, this describes attractive
head-to-tail collisions between aligned dipoles with an effec-
tive 3D scattering length −�d . In the opposite limit qlz � 1,
the projected dipolar interaction Vdd(q) ∼ −2πd2q vanishes
with a linear slope, reflecting the repulsive d2/r3 potential at
distances much larger than lz.

The total momentum-dependent interaction Vtot (q) = g2 +
Vdd(q), which arises from the combination of a short-range
part described by an associated scattering length as via g2 =
(h̄2/m)

√
8πas/lz [32] and the magnetic dipolar potential gives

rise to a thermodynamically stable low-density gas provided
that as > 0. Here, stability is understood in the minimal sense
that the density response function χ (q) which describes the
change in energy

E [{δnq}] = E0 + 1

2

∫
q
χ−1(q) |δnq|2 + . . . (43)

associated with small fluctuations δnq around a homogeneous
fluid state is positive in the limit q → 0, where χ (q) → κ̃ =
∂n/∂μ. In physical terms, κ̃ > 0 is guaranteed by a positive
value of the effective scattering length for head-to-head col-
lisions between aligned dipoles. It is important to note that
this is a weaker condition compared to the case without a con-
fining potential, where the effective scattering length aeff

s =
as − �d for head-to-tail collisions must be positive [65]. For
quasi-2D systems, aeff

s may become negative despite overall
stability. It is the presence of attractively interacting dipoles
in a weakly confined configuration with lz � �d that opens
the possibility for an instability of the homogeneous super-
fluid into phases with spatial order. The resulting supersolid
phase arises through the formation of a mass density wave
with many particles per unit cell. Such phases have been
termed cluster crystals and they arise generically for interac-
tions whose Fourier transform is negative in a range near the
ordering wave vector q0 [66].

B. Static structure factor and Hansen-Verlet criterion

In the following, we consider the Hansen-Verlet criterion
for weakly confined dipolar gases in two dimensions and
show that the appearance of a roton minimum essentially co-
incides with the point where the homogeneous fluid becomes

FIG. 4. Static structure factor of a weakly interacting Bose gas
as predicted from Bogoliubov theory. Parameters are chosen such
that a roton minimum just appears in the excitation spectrum and the
dominant peak in the static structure factor at qlz � 1.3 has reached
the critical Hansen-Verlet value 1.7.

unstable towards a state with a periodic density wave. This
result indicates that the roton instability, where the excitation
gap vanishes at some finite momentum q0, is preempted by
a transition to a phase with a finite density modulation. It
is important to note that, in contrast to the transition to an
incompressible, commensurate crystal in the tightly-confined
limit discussed in the preceding section, the validity of a
Hansen-Verlet criterion for transitions into a phase with bro-
ken translation invariance in the presence of long-range and
partially attractive interactions has not been studied before and
is thus not a priori evident. In particular, the criterion does not
fix the nature of the spatial order beyond the instability nor
does it provide a microscopic description of the underlying
first-order quantum phase transition.

As noted above, for purely repulsive interactions, the
Hansen-Verlet criterion states that the dominant peak in the
static structure factor reaches a critical value S(q0) = O(1) of
order one at the transition to a phase with an inhomogeneous
density, where O(1) � 1.7 in the specific case of 1/r3 inter-
actions in two dimensions. The relevance of this criterion for
weakly confined dipolar gases in the limit μ � h̄ωz can be
tested easily at the level of a Bogoliubov approximation by
noting that the resulting static structure factor

SBog(q) = [1 + 2n0 Vtot (q)/εq]−1/2 (44)

is completely determined by the effective interaction and the
condensate density n0 (εq = h̄2q2/2m is the single particle
energy). Based on the expression (42) for the momentum
dependent interaction, Fig. 4 shows the static structure factor
at a dimensionless dipolar interaction strength n0l2

z g̃dd
2 = 1

and a negative effective short-range interaction n0l2
z g̃eff

2 =
−0.5. This parameter regime corresponds to the onset of
the roton minimum in the excitation spectrum which—within
Bogoliubov theory—is given by the single-mode expression
Eq = εq/S(q) [67]. In Fig. 5, we show the associated stabil-
ity diagram. Here, the blue line marks the roton instability,
where the excitation energy reaches zero at finite momentum
q0 due to a formally divergent value of the static structure
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FIG. 5. Stability diagram of the weakly confined dipolar Bose
gas as obtained within a Bogoliubov approximation. The blue line
marks the region in parameter space in which the gas is stable
(indicated by the blue and brown shaded regions). The orange line
shows the onset of the roton minimum, and the green line marks the
Hansen-Verlet criterion.

factor. Remarkably, the line where the excitation spectrum
Eq starts to develop a roton minimum (orange line) essen-
tially coincides with the Hansen-Verlet criterion S(q0) � 1.7
(green line). This suggests that—in contrast to the case of
4He—a homogeneous superfluid with a well-developed roton
minimum exists at most within a small range of parameter
values: near the point where the roton minimum starts to
develop, a first-order transition to a supersolid appears which
exhibits a mass-density wave but still retains long range phase
coherence.

Remarkably, this scenario for the transition to a super-
solid state is observed experimentally with dipolar gases in
a cigar-shaped trap, where the chemical potential is larger
than the zero-point energy even along the two tightly-confined
directions. The expression (42) for the momentum-dependent
interaction therefore does not apply quantitatively. Neverthe-
less, the Bragg scattering data by Petter et al. [60] show that
upon lowering the short-range scattering length towards a
critical value of order O(�d ), only a rather shallow minimum
develops in the excitation spectrum near qlz � 1.3 before the
system undergoes a transition to a supersolid phase with a
finite density modulation along the axial direction.

A detailed analysis of the superfluid-to-supersolid tran-
sition has been achieved in the recent measurements by
Hertkorn et al. [61] of the structure factor of a dipolar gas of
dysprosium in a cigar-shaped trap. By averaging around 200
in situ images of the atomic density, the finite-temperature
static structure factor S(q, T ) = 〈|δnq|2〉(T )/N is inferred
from the observed shot-to-shot density fluctuations δnq. Due
to the cigar-shaped trap, the fluctuations are strongest along
the axial direction, with the dominant peak shifting towards
larger values of the longitudinal momentum as the transition

to a supersolid phase at a critical value of the short-range
scattering length is approached. At the relevant temperature
T � 20 nK of the experiment, the maximum peak value of
around S(q0, T ) � 260 appears at a wave vector q0 � 2π ×
0.29 μm−1 [61]. To compare with the Hansen-Verlet criterion,
an estimate of the critical height of the dominant peak at
zero temperature may be obtained by using the Bogoliubov
approximation

SBog(q, T ) = SBog(q) coth
βEq

2
(45)

with the additional assumption that the dispersion Eq does not
depend on temperature. The thermal factor near the maximum
of the structure factor is in the range 50–100, which corre-
sponds to a critical peak height at zero temperature in the
range between 2.6 and 5.2. This is larger than the value 1.7
obtained by applying the Hansen-Verlet criterion in the case
of the tightly confined and purely repulsive dipolar gas in two
dimensions. Given that a number of assumptions enter into
the extrapolation of the experimental data to zero temperature,
this is not an unreasonable deviation. In addition, it should
be emphasized that the maximum peak height Smax(q0) of the
zero temperature structure factor in the quantum version of
the Hansen-Verlet criterion is not universal. Instead, in gen-
eral the number depends on dimensionality and the detailed
form of the interaction. What the Hansen-Verlet criterion says,
however, is that Smax(q0) is a constant of order one for any
first order quantum phase transition between a fluid phase
and one with a periodic modulation in the density. This ap-
pears to be the case also for the superfluid-to-supersolid phase
transition of dipolar gases in a cigar-shaped trap. Indeed, ex-
perimentally, after crossing the transition at the critical value
of the short-range scattering length, the dominant peak in
the static structure factor is observed to decrease [61] within
the supersolid phase, where the spacing of the droplets is close
to 2π/q0. The roton instability predicted by the Bogoliubov
approximation, where the static structure factor diverges at
some finite momentum q0, is thus preempted by the spatially
ordered supersolid phase.

C. Static structure factor beyond Bogoliubov theory

In order to determine to which extent features in the static
structure factor provide information about the nature of the
instability towards inhomogeneous phases that remain valid
beyond the Bogoliubov approximation, we first note that the
associated high-momentum tail

lim
qlz�1

SBog(q) = 1 − 4
√

2πn2aeff
s

lzq2
+ . . . (46)

is determined by the effective scattering length aeff
s = as − �d .

The trivial asymptotic limit S(q) = 1 is thus approached from
above provided aeff

s < 0 is negative. It turns out, however,
that the Bogoliubov approximation does not account for the
correct asymptotic behavior of the static structure factor at
large momentum. In fact, the tail of S(q) for large in-plane
momenta q probes dipoles at lateral separations ρ that are
much smaller than the vertical displacement in the transverse
direction. This can be seen from the definition of the static
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structure factor in terms of the pair distribution function

S(q) = 1 + n3

∫
dρ e−iq·ρ

∫
dz(g(ρ, z) − 1). (47)

In the limit qlz � 1, the dominant contribution comes from
dipoles with lateral separation |ρ| � lz, which is averaged
over the direction z of the dipoles. Quite different from the
fluid-to-crystal transition discussed in Sec. II.F, which is
driven by purely repulsive interactions, the dipoles now may
interact attractively. In particular, for distances below lz the
transverse confinement is not felt and the scattering problem
is of a three-dimensional nature with an effective negative
scattering length aeff

s < 0, which describes the strength of
head-to-tail collisions. For length scales considerably larger
than the dipole length �d , the interaction is well described by
a pseudopotential description based on the standard Bethe-
Peierls boundary condition. As a result, the short-distance
behavior of the pair distribution function is of the form dis-
cussed by Tan [2] or Zhang and Leggett [5]

g(ρ, z) ∼
(

1

r
− 1

aeff
s

)2

. (48)

Performing the Fourier transform in Eq. (47), the structure
factor

S(q) − 1 ∼ 1

8n3q

(
1 − 4

πqaeff
s

+ . . .

)
(49)

exhibits a high-momentum tail analogous to the one obtained
for Bose gases in three-dimensions [68]. This result holds for
wave vectors larger than the inverse oscillator length 1/lz,
yet smaller than inverse dipole length 1/�d , beyond which
the details of the interaction at short distances become im-
portant. With lz/�d � 150 in current experiments [60], this is
a broad window. Independent of the sign of aeff

s , the static
structure factor thus always approaches unity from above as
1/q. For negative values aeff

s < 0, which is the case relevant to
current experiments [60,69], also the subleading contribution
is positive. As a result, the static structure factor exhibits
a monotonic decay from its dominant peak at q0lz = O(1)
towards the limiting value one, as shown in Fig. 4. This is
quite different from the situation found with purely repulsive
interactions, where S(q) exhibits both a minimum and a max-
imum at wave vectors beyond

√
n, see, for example, Ref. [53]

and the discussion at the end of the previous section.
The Bogoliubov approximation (46), by contrast, fails to

correctly describe the asymptotic form of the static struc-
ture factor (49) and only captures the subleading contribution
∼1/q2, missing the exact behavior (49) that always ap-
proaches unity from above. A similar situation is also found
for Bose gases with pure short-range interactions and in the
absence of a confinement [68].

IV. SUMMARY

In summary, we have shown that tightly confined dipolar
gases admit a universal description that extends those de-
veloped by Tan and by Zhang and Leggett in the case of
short-range interactions. The description is based on only
two experimentally tunable parameters, the two-dimensional
scattering length and the dipolar length scale. The associated

adiabatic derivatives of the grand canonical potential define a
generalized contact parameter and an additional dipolar ana-
log of the contact. These two contact parameters determine
thermodynamic relations such as the pressure of a homoge-
nous system as well as the virial theorem in a trapped gas.
Explicit results for both contacts have been given for zero
temperature in the limit of low densities. In addition, we have
discussed the behavior of the momentum distribution n(q) and
the static structure factor at large wave vectors. The standard
C/q4 tail in n(q) for short-range interactions is replaced by a
more complicated structure, exhibiting a characteristic mini-
mum around q�d � 10.

The results presented in the first part of this paper apply
in the limit of strong transverse confinement, a limit that has
not yet been realized experimentally. In the second part, a
number of results of a rather general nature have been derived
for dipolar gases in a quasi-two-dimensional configuration. In
particular, the high-momentum behavior of the static structure
factor allows to distinguish the density wave instability in
weakly confined dipolar gases from those in dense quantum
liquids. Specifically, in the former case one expects a mono-
tonic decay from the dominant peak in the static structure
factor towards the asymptotic value of unity. Moreover, it
has been shown that the appearance of a roton minimum in
the excitation spectrum essentially coincides with the point
where dipolar gases become unstable towards a density wave
instability according to the empirical Hansen-Verlet criterion
for freezing, originally developed for fluid-to-solid transi-
tions with dominantly repulsive short-range interactions. With
increasing strength of the dipolar interaction, the roton insta-
bility predicted within Bogoliubov theory is thus preempted
by a first-order transition to a state with a nonvanishing
density modulation. The observation that the Hansen-Verlet
criterion apparently describes a number of generic features
which are observed in the superfluid-to-supersolid transition
of dipolar gases in a cigar-shaped trap is quite remarkable and
deserves further investigation.
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APPENDIX A: TWO-BODY SCATTERING IN SOFT CORE
PLUS POWER-LAW POTENTIALS

It is instructive to discuss an example for the two-body
scattering problem with a power-law potential together with a
nonuniversal short-range part. In this Appendix, we consider
the analytically soluble case of scattering from a combined
potential-well plus power-law interaction

V (r) =
{−V0 r < R

d2

r3 r � R
(A1)

with V0 > 0, and link the microscopic parameters R and V0 to
the universal scattering parameters a2 and �d = (md2/h̄2)1/2.
The total scattering length a2 has a shape resonance whenever
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parameters are chosen such that the low-energy scattering
state can interact with a bound state at threshold.

The regular solution of the s-wave scattering equation (3)
in the region r < R reads

ψ
(1)
0 (r) =

√
k′r J0(k′r) (A2)

with k′ = √
k2 + k2

s , where ks =
√

2μV0/h̄2. Outside the po-
tential well, two regions exist in which analytical results for
the low-energy scattering can be obtained. First, for R < r �
1/k, we neglect the kinetic term in Eq. (3), which gives

ψ
(2)
0 (r̃) = c1

√
r

�d
K0

(√
4�d

r

)
+ c2

√
r

�d
I0

(√
4�d

r

)
, (A3)

with two matching coefficients c1 and c2. At very large dis-
tances r � �d , by contrast, the dipole interaction is negligible,
and the solution of the Schrödinger equation is

ψ
(3)
0 (r) = c′

1

√
kr J0(kr) + c′

2

√
kr Y0(kr). (A4)

The two limiting solutions (A3) and (A4) overlap in a region
R, �d � r � 1/k [26]. Matching the solutions in this region
gives

c′
1 = 1

2
√

k�d

(
ln

2e−2γE

k�d
− γE

)(
c1 − 2

π
c2

)
, (A5)

c′
2 = π

4
√

k�d
c1, (A6)

which gives the scattering length in terms of the coefficients
c1 and c2:

a = e2γE �d e−2c2/c1 . (A7)

Indeed, this identity links the wave function (A3) with appro-
priate normalization to the universal two-body wave function
(5). Without the irregular solution c2 = 0, the scattering length
is the dipolar scattering length ad

2 discussed in the introduc-
tion. In our model, the coefficients c1 and c2 are, in turn,
determined by matching the wave functions at the short-range
boundary r = R:

c1

=
√

ks�d I1

(√
4�d
R

)
J0(ksR) − √

k3
s R3I0

(√
4�d
R

)
J1(ksR)

I1

(√
4�d
R

)
K0

(√
4�d
R

)
+ I0

(√
4�d
R

)
K1

(√
4�d
R

) ,

(A8)

c2

=
√

ks�d K1

(√
4�d
R

)
J0(ksR) + √

k3
s R3K0

(√
4�d
R

)
J1(ksR)

I1

(√
4�d
R

)
K0

(√
4�d
R

)
+ I0

(√
4�d
R

)
K1

(√
4�d
R

) .

(A9)

The full expression for the scattering length is thus:

a = e2γE �d exp

[
−2

√
ks�d K1

(√
4�d
R

)
J0(ksR) + √

k3
s R3K0

(√
4�d
R

)
J1(ksR)

√
ks�d I1

(√
4�d
R

)
J0(ksR) − √

k3
s R3I0

(√
4�d
R

)
J1(ksR)

]
. (A10)

As a check, consider the limit R � �d with V0 fixed, in which
the functions K0 and K1 are exponentially suppressed and
the functions I0 and I1 are exponentially divergent, with all
other terms in Eq. (A10) finite. Indeed, this is the limit in
which the short-range potential is negligible compared to the
dipole interaction, and the expression for the scattering length
reduces to the scattering length of the pure dipolar potential,
add = e2γE �d . In the opposite limit R � �d (again keeping V0

fixed), where the dipolar potential is negligible, we reproduce
the standard result for the scattering length of a potential well,

a = R exp

[
J0(ksR)

ksRJ1(ksR)

]
. (A11)

This result is derived from Eq. (A10) by noting that the func-
tion I1 is subleading compared to K1 and I0, which have limits
of

√
R/2�d and 1, respectively, while K0 has a logarithmic

divergence that changes the prefactor.
Figure 6(a) shows the scattering length for one particular

potential with R = 0.5�d as a function of the scaling variable
ks�d that sets the depth of the potential. Red points in this
figure mark the parameters values corresponding to a scatter-
ing length a = 3add . Figure 6(b) shows the scattering wave
functions corresponding to these parameter values. The wave
functions take a universal form for r > R but are nonuniversal
below that with a number of nodes that increases with the
number of bound states. Note that it is possible to choose

the parameters of this potential in such a way that the wave
function does not contain any nodes, which might be useful
for numerical simulations. From Fig. 6, it is apparent that with
decreasing range R, the resonances are more widely spaced
and become narrower since the dipolar potential forms an
increasingly strong tunneling barrier, until for vanishing R the
scattering length is constant and equal to add , as discussed
above. A scaling limit for the potential (A1) requires to take
R → 0 and V0 → ∞ such that (A10) is kept fixed.

APPENDIX B: DERIVATION OF THE ADIABATIC
RELATIONS

In this Appendix, we present the derivation of the adiabatic
relations (14) and (15) using the short-distance factorization
of the many-body wave function (7). We begin by considering
two energy eigenstates of the Hamiltonian (2) with different
total scattering length and dipole strength, denoted by an in-
dex α and β, respectively: Ĥα|
α〉 = Eα|
α〉, and Ĥβ |
β〉 =
Eβ |
β〉. The difference in energy is

(Eα − Eβ )〈
β |
α〉 = 〈
α|Ĥ
β〉 − 〈Ĥ
α|
β〉

=
∫ ′

d (r1, r2, X)

{
− h̄2

2m

N∑
i=1

[

∗

α∇2
i 
β − 
β∇2

i 
∗
α

]
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FIG. 6. (a) Scattering length of a combined dipole and short-range potential with range R = 0.5�d as a function of the potential depth
V0 = h̄2k2

s /m. The shape resonance occurs whenever a new bound state appears near threshold. The red dot marks the values at which the
scattering length is equal to a = 3add . (b) First five wave functions with scattering length a = 3add . The vertical black lines indicates the range
R = 0.5�d .

+
N∑

i< j

[
Vα (ri − r j )


∗
α
β − Vβ (ri − r j )
α
∗

β

]}
. (B1)

The prime on the integral denotes a restriction to a domain
that excludes short-distance regions where two particle coor-
dinates are close to each other, |ri − r j | < ε. The hypothesis
is that if the system is universal, we are free to exclude this
region in Eq. (B1) and then take the limit ε → 0 such that the
result is independent of ε. Applying the divergence theorem
at the short-distance boundaries gives

(Eα − Eβ )〈
β |
α〉 = N (N − 1)

2

∫ ′
d (R, X)

{
−2π h̄2ε

m

× [

∗

α

∂
β

∂r − 
β
∂
∗

α

∂r

]
r=ε

+
∫ ′

r

[
Vα
∗

α
β − Vβ
α
∗
β

]}
.

(B2)

For small variations δa2 = a2,α − a2,β and δ�d = �d,α − �d,β ,
the boundary term in Eq. (B2) is evaluated using Eq. (7) along
with the relation

ε
[
φ∗

α

∂φβ

∂r − φβ
∂φ∗

α

∂r

]
ε
= −δa2

a2
+ δ�d

∫ ∞

ε

dr
|φ(r)|2

r2
. (B3)

Substituting this result in Eq. (B2) and varying with respect
to the universal parameters ln a2 and ln �d , we obtain the
adiabatic relations for the energy density ε = E/A stated in
Eqs. (14) and (15).

APPENDIX C: UNIVERSAL RELATIONS FOR GENERAL
POWER LAW POTENTIALS

In this Appendix, we show that the results derived in sec-
tion II may be generalized to repulsive inverse power law
interactions in two dimensions of the form

Vσ (r) = C2+σ

r2+σ
, (C1)

where σ > 0 is arbitrary. The length scale of the power-
law part is �σ = (mC2+σ /h̄2)1/σ with an associated scattering

length aσ
2 = �σ exp[2(γE − ln σ )/σ ]. The potential (C1) in-

cludes several important special cases: The limit σ → 0
describes a repulsive scale-invariant 2D generalization of the
integrable Calagero-Sutherland-Moser problem in 1D [21,70],
σ = 1 is the dipolar potential discussed in this paper, σ = 3
is a quadrupole potential, σ = 4 is a repulsive van der Waals
potential that describes the interaction between Rydberg states
[71], and the limit σ � 1 essentially describes the hard-core
limit [72]. The restriction to σ > 0 ensures proper extensive
thermodynamics [19] and implies that at large distances the
potential is subleading compared to the kinetic term, such that
the scattering properties are still determined in terms of the
characteristic length �σ as well as the total scattering length
a2 of the combined short-range plus power-law potential. This
excludes the case of the Coulomb interaction potential with
σ = −1, where a homogeneous, neutralizing background is
needed for stability and a separate set of universal relations
has been derived previously by the present authors [37].

The central assumption as before is the separability (7) of
the many-body wave function at short distances with a relative
part (r̃ = r/�σ )

φ(r) = 2

σ
K0

(2σ−1

r̃σ/2

)
− ln

( a2

aσ
2

)
I0

(2σ−1

r̃σ/2

)
, (C2)

which follows from the regular and irregular solution of
the two-body scattering problem at low energy. The short-
distance behavior of the pair distribution function is still
given by the form (8) with a contact C as defined in Eq. (9).
For a pure power-law interaction, the pair distribution func-
tion is then exponentially suppressed near the origin as
exp(−2σ−1/r̃σ/2), otherwise it diverges as exp(2σ−1/r̃σ/2).
The long-distance asymptotic form (10) that depends on the
compressibility remains unchanged.

Considering a change in the grand canonical potential,

d� = −SdT − PdA − Ndμ + Xa d (ln a2) + Xσ d (ln �σ ),
(C3)
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the corresponding adiabatic relations read

Xa

A
= ∂ε

∂ (ln a2)

∣∣∣∣
�σ

= h̄2

4πm
C, (C4)

Xσ

A
= ∂ε

∂ (ln �σ )

∣∣∣∣
a2

= σDσ , (C5)

where we define a generalized power-law contact

Dσ = C2+σ

2

∫
dr

n2g(r) − |φ(r)|2
(2π )2 C

r2+σ
. (C6)

Furthermore, we note the pressure relation

P = ε + h̄2C
8πm

+ σDσ

2
(C7)

and the virial theorem

E = 2〈Vext〉 − h̄2

8πm

∫
R
C(R) − σ

2

∫
R
Dσ (R). (C8)

As before, for a pure power-law interaction, where the scat-
tering length is proportional to the length scale set by the
power-law part, the two contact parameters do not appear
independently in the thermodynamic relations. Instead, they
involve the interaction energy

D̃σ = ∂ε

∂ (ln �σ )

∣∣∣∣
a2=aσ

2

= C2+σ

2

∫
dr

n2g(r)

r2+σ
. (C9)

At very low densities n�2
σ � 1, the explicit form is

D̃σ = h̄2

4πmσ
C
(
a2 = aσ

2

)
, (C10)

where the low-density contact is given by Eq. (22).
At very large densities, we have D̃σ = h̄2n

m�2
σ

(n�2
p)(2+σ )/2aσ

with aσ = 4.4462, 2.8915, 2.3595, and 2.07043 for σ =
1, 2, 3, and 4 in a triangular lattice.
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