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Search with home returns provides advantage under high uncertainty

Arnab Pal ,1,2,* Łukasz Kuśmierz ,3 and Shlomi Reuveni 1,2,†

1School of Chemistry, The Center for Physics and Chemistry of Living Systems, & The Mark Ratner Institute for Single Molecule Chemistry,
Tel Aviv University, Tel Aviv 6997801, Israel

2The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
3Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

(Received 30 June 2020; accepted 8 October 2020; published 3 November 2020)

Many search processes are conducted in the vicinity of a favored location, i.e., a home, which is visited
repeatedly. Foraging animals return to their dens and nests to rest, scouts return to their bases to resupply, and
drones return to their docking stations to recharge or refuel. Yet, despite its prevalence, very little is known about
search with home returns because its analysis is much more challenging than that of unconstrained, free-range
search. Here, we develop a theoretical framework for search with home returns. This makes no assumptions on
the underlying search process and is furthermore suited to treat generic return and home-stay strategies. We show
that the solution to the home-return problem can then be given in terms of the solution to the corresponding
free-range problem—which not only reduces overall complexity but also gives rise to a simple and universal
phase-diagram for search. The latter reveals that search with home returns outperforms free-range search in
conditions of high uncertainty. Thus, when living gets rough, a home will not only provide warmth and shelter
but also allow one to locate food and other resources quickly and more efficiently than in its absence.
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I. INTRODUCTION

Consider a falcon roaming the sky in search of prey well
hidden among the grass below. The falcon will wander around
for a while, but if prey is not found it will eventually return
to its nest empty-handed. Other animals—humans included—
display similar behavior while foraging and when engaged in
search activities [1–3]; and home-return capabilities are now
routinely built into robots and drones to avoid running out of
fuel or battery power. However, while the observation that
most natural search processes are home-bound goes back to
Darwin [4], it is still unclear if this situation merely reflects
the prevalence of permanent dwellings, or rather is a result
of evolutionary convergence to a superior search strategy.
To start answering this question, one must first understand
how being home-bound affects search and the time it takes
to locate a target. In what follows, we analyze this problem
and characterize precisely under which circumstances having
a home allows one to locate food and other resources quickly
and more efficiently than in its absence.

A free-range searcher will set off from a certain location
and look for a target until it is found. In contrast, search with
home returns is a cyclic process which consists of three stages:
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search, return, and home [Fig. 1(a)]. How much time does it
take such a searcher to find its target? At face value, it seems
that this question can be answered by taking advantage of the
existing theory of search [5–12] and first-passage [13–20] and
of recent advancements in our understanding of first-passage
under restart [21–40]. Indeed, search with home returns can
be seen as a regular first-passage process that is restarted by
home returns. However, basic models of first-passage under
restart are a far cry from reality because they assume that
home returns are instantaneous and that home-stays can also
be neglected [21–31].

More sophisticated models of search with home returns
lump together return and home-stay times assuming that the
search stage is followed by some generic delay [32–39]. This
is a step in the right direction: it takes time to get from
one place to another, and time spent home to, e.g., recover,
recharge, or refuel, may not be negligible. However, the time
it takes a searcher to return home will typically depend on the
distance home, as places that are further away take more time
to be reached. Yet, this basic physics is clearly ignored when
assuming that the delay which follows the search stage is
generic and independent of the searcher’s position as it starts
heading back home [41–45]. This nonrealistic modeling as-
sumption is in many ways similar to the complete decoupling
between waiting time and jump length in the continuous time
random walk (CTRW) model [46–49]. In the latter case, the
problem was solved by the development of space-time cou-
pled CTRWs [50] and Lévy walks [51–56], which introduced
explicit correlations between time and distance traveled. In
what follows, we take a similar approach and build a space-
time coupled theory for first-passage under restart. This, in
turn, will be used to describe search with home returns.
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FIG. 1. (a) Free-range search vs search with home returns. The butterfly (free-range searcher) and the bee (searcher with home returns) set
off in search of a flower (target). The butterfly, which has no permanent dwellings, will look for a flower until it finds one. In contrast, if the
bee is unable to find a flower it will return to its hive, spend some time there, and start searching again at a later occasion. (b) Search with home
returns is a cyclic, three-stage process. In the search stage a target is sought for a time that is the minimum of the free-range FPT T and the
restart time R. If T < R, a target is found and the search ends. Conversely, if R � T , no target is found and the searcher heads back home. The
duration of the return stage, τ (�x), is determined by the searcher’s position �x at the end of the search phase. This stage ends when the searcher
is back home. In the home stage the searcher stays home for a time W .

The paper is structured as follows. In Secs. II and III, we
develop a theoretical framework for search with home returns.
We show that this framework provides a practical analysis
tool because it allows one to provide the solution to the home
return problem in terms of the solution to the corresponding
problem without home returns. This useful property is demon-
strated in Sec. IV with the example of diffusive search. In
Sec. V, we build on our framework to reveal a universal phase
diagram for search. In particular, we show that search with
home returns is preferable in conditions of high uncertainty
because it can then reduce the mean time taken to locate a
target. This property is illustrated with the example of drift-
diffusive search in Sec. VI. In Sec. VII, we show that search
with home returns can also reduce fluctuations in the time
taken to locate a target. This feature is illustrated with the
example of a Lévy search in Sec. VIII, and its importance
is discussed. Conclusions and outlook are given in Sec. IX.
Some details and derivations are relegated to the Appendix.

II. A THEORETICAL FRAMEWORK FOR SEARCH
WITH HOME RETURNS

Consider a searcher that starts at the origin (home) of a
(possibly infinite) d-dimensional arena at time zero. In the
absence of home returns, the searcher will locate one of
the existing targets in the arena following a random time
T . This time is a property of the free-range problem, and
we will henceforth refer to it as the free-range first-passage
time (FPT). We will not make any assumptions on the arena,
the search process, or the target distribution that govern T .
However, and in contrast to a free-range search, here we
consider a situation where the searcher returns home if it fails
to locate the target within a time R (possibly random) which
we henceforth refer to as the restart time. Thus, if T < R the
searcher finds the target before it is required to return and the
search process completes. Otherwise, the searcher will stop

looking for the target and start its return back home [Fig. 1(b),
Search].

The time it takes the searcher to return home will typically
depend on the searcher’s position at the end of the search
stage [Fig. 1(b), Return]. For example, the searcher may re-
turn home by moving at a constant speed along the shortest
possible path. The return time is then simply given by the
distance to home divided by the speed of travel. However,
various constraints, e.g., topographic constraints, may force
the searcher to follow a different route and may also affect its
velocity. Such situations will result in more complicated rela-
tions between the position of the searcher and its return time.
To capture this, we allow the return time τ (�x) to be a general
function of the searcher’s position �x. After the searcher returns
home it stays there for some generic time W which can also
be random [Fig. 1(b), Home]. This search-return-home cycle
repeats itself until a target is found at some point during the
search stage.

In what follows, we assume that targets cannot be located
during the return and home phases, which greatly simplifies
calculations. This assumption is revisited and discussed in
Sec. IX. We also assume that search cycles are independent
and statistically identical copies of each other. Thus, each
search cycle starts fresh and with no memory of past events. In
some systems, correlations between consecutive search cycles
may arise. Such correlations are beyond the scope of the
current study and will be treated elsewhere.

The above description allows us to write a renewal equation
for the FPT of search with home returns, which is the time it
takes the searcher to locate a target. Denoting this time by TR,
we have

TR =
{

T if T < R
R + τ (�x) + W + T ′

R if R � T , (1)

where T , R, τ (�x), and W were defined above, and T ′
R is an

independent and identically distributed copy of TR. Taking
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expectations in Eq. (1), we obtain (Appendix A)

〈TR〉 = 〈min(T, R)〉
Pr(T < R)︸ ︷︷ ︸

search

+ 〈I (R � T )τ (�x)〉
Pr(T < R)︸ ︷︷ ︸

return

+ Pr(R � T )〈W 〉
Pr(T < R)︸ ︷︷ ︸

home

,

(2)

where I (R � T ) is an indicator function which takes the value
one if R � T , i.e., with probability Pr(R � T ), and is zero
otherwise; and different contributions to the sum are labeled
according to their source.

The first term on the right-hand side of Eq. (2) gives the
FPT of the searcher in an idealized scenario where return and
home times can be neglected [τ (�x) = 0, W = 0] [26]. The
second term gets its contribution from the time it takes the
searcher to return home and the third term comes from the
time spent at home. Evaluating the first and third terms is
straightforward given the probability distributions of R, T , and
W (Appendix B). The second term is slightly more delicate
because it depends on �x—the random position of the searcher
at the end of the search stage. To evaluate this term, we let
fR(t ) denote the probability density function of the restart time
R. We then observe that

〈I (R � T )τ (�x)〉

=
∫ ∞

0
dt fR(t )〈τ (�x(t ))I (R � T )|R = t〉

=
∫ ∞

0
dt fR(t )Pr(T � t )〈τ (�x(t ))|R = t, T � t〉, (3)

where we have first conditioned on restart happening at time
t , and then on T being either smaller or larger than this time.
Note that a nonzero contribution is obtained only for T � t ,
i.e., only when the target is not found and a return actually
takes place.

To proceed, we define the free-range propagator G0(�x, t ) as
the probability density to find the searcher at position �x at time
t given that it started at the origin. Note that this propagator is
called “free-range” because it is defined in the presence of tar-
gets but in the absence of home returns. Thus, the free-range
survival probability is given by Pr(T � t ) = ∫

D d�xG0(�x, t ),
where D is the available search domain. The internal expec-
tation in Eq. (3) can then be written as 〈τ (�x(t ))|R = t, T �
t〉 = 1

Pr(T �t )

∫
D d�xτ (�x)G0(�x, t ). Substituting this expression

into Eq. (3), we obtain

〈I (R � T )τ (�x)〉 =
∫ ∞

0
dt fR(t )

∫
D

d�xτ (�x)G0(�x, t ). (4)

Equation (4) asserts that the second term in Eq. (2) can be
evaluated given the free-range propagator G0(�x, t ), which in
turn allows full evaluation of the mean FPT.

Starting from Eq. (1) and proceeding similarly to the above,
the distribution of the FPT TR can also be determined. Letting
T̃R(s) = 〈e−sTR〉 stand for the Laplace transform of the latter,
we find (Appendix C)

T̃R(s) = Pr(T < R)T̃min(s)

1 − W̃ (s)
∫ ∞

0 dt fR(t )e−st
∫
D d�xe−sτ (�x)G0(�x, t )

, (5)

with W̃ (s) = 〈e−sW 〉 standing for the Laplace transform of
W , and T̃min(s) = 〈e−sTmin〉 standing for the Laplace transform

of the random variable Tmin = {T |T < R} whose density is

given by fTmin (t ) = fT (t )
∫ ∞

t dt ′ fR (t ′ )
Pr(T <R) = fT (t )Pr(R>t )

Pr(T <R) . Equation (5)
asserts that the distribution of TR can be determined given the
free-range propagator G0(�x, t ), and the random variables R
and W . In addition, all the moments can be computed using
the formula 〈T n

R 〉 = (−1)n dn

dsn T̃R(s)|s=0.

III. EXPONENTIAL RESTART TIMES

So far, we have made no assumptions on the distribution
of the time R which governs restart. In what follows, we
show that much insight can be gained by focusing on the
case where R is exponentially distributed with rate r. Letting
G̃0(�x, r) = ∫ ∞

0 dte−rt G0(�x, t ) and T̃ (r) = ∫ ∞
0 dte−rt fT (t ) =

1 − r
∫
D d�xG̃0(�x, r) stand respectively for the Laplace trans-

forms of G0(�x, t ) and fT (t ) evaluated at r, we find that, in this
case, Eq. (2) boils down to (Appendix D)

〈Tr〉 = 1 − T̃ (r)

rT̃ (r)︸ ︷︷ ︸
search

+ 1 − T̃ (r)

T̃ (r)
〈τ (�x)〉r︸ ︷︷ ︸

return

+ 1 − T̃ (r)

T̃ (r)
〈W 〉︸ ︷︷ ︸

home

, (6)

where 〈τ (�x)〉r ≡ ∫
D d�xτ (�x)φr (�x) is the mean return time

taken with respect to the probability measure φr (�x) =
G̃0(�x, r)/

∫
D d�xG̃0(�x, r). Similarly, the expression for the FPT

distribution can also be simplified to read (Appendix E)

T̃r (s) = T̃ (s + r)

1 − rW̃ (s)
∫
D d�xe−sτ (�x)G̃0(�x, s + r)

. (7)

From Eq. (7) we see that the distribution of Tr can always be
written in terms of the Laplace transforms of the free-range
propagator G0(�x, t ), and the random variables T and W .

IV. DIFFUSIVE SEARCH WITH HOME RETURNS

To illustrate how the framework developed above can be
utilized in practice, we examine a paradigmatic case study.
Consider a one-dimensional (1-d) search process in which
a particle that starts at the origin diffuses until it hits a
stationary target; and let D and L denote respectively the
diffusion constant and the initial distance from the target. In
addition, assume that the process is restarted at a constant rate
r upon which the searcher returns home at a constant speed
vr [Fig. 2(a)]. In what follows, the time spent home will be
neglected because its stand-alone contribution is already well
understood [32–39].

To progress, we recall that the free-range propagator of this
problem is given by [13]

G0(x, t ) = 1√
4πDt

(
e− x2

4Dt − e− (2L−x)2

4Dt
)
. (8)

To get the mean FPT with home returns, we observe that the
time penalty due to a ballistic home return from position x is
given by τ (x) = |x|/vr . Plugging the above into Eq. (6) gives
(Appendix F)

〈Tr〉 = 1

r

(
e
√

τd r − 1
)

︸ ︷︷ ︸
search

+ τb

[
2 sinh (

√
τd r)√

τd r
− 1

]
︸ ︷︷ ︸

return

, (9)
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FIG. 2. (a) An illustration of diffusive search with home returns. (b) The mean FPT 〈Tr〉 from Eq. (9) vs the restart rate r. Here, τd = 1/2
and results are shown for different values of τb [see Eq. (10)]. (c) The scaled optimal restart rate, r∗/r∗

0 , obtained from a minimization of Eq. (9)
vs τb/τd . The scaling predicted by Eq. (12) is seen to hold. Inset shows F (z) from Eq. (11) vs z. The ratio τb/τd sets the solution z∗.

where

τd = L2

D
and τb = L

vr
(10)

stand, respectively, for the diffusive and ballistic timescales in
the problem.

In the limit τb → 0, Eq. (9) boils down to the classical
result for the mean FPT of diffusion with resetting [22], but
we would now like to understand the effect of noninstanta-
neous and space-time-coupled home returns. In Fig. 2(b), we
plot 〈Tr〉 as a function of the restart rate for τd = 1/2 and
different values of τb (see Appendix G for numerical corrobo-
ration of these results). We then observe that diffusive search
with home returns is always superior to diffusive free-range
search—regardless of how slow home returns are. This can
also be seen directly from Eq. (9) by noting that 〈Tr〉 there is
finite for r > 0 but diverges for r = 0 where the searcher does
not return home.

Diving deeper, we observe that two things happen as we in-
crease the ballistic (return) timescale: (i) it takes more time for
the searcher to locate the target, i.e., 〈Tr〉 becomes larger; and
(ii) the optimal restart rate r∗ which minimizes 〈Tr〉 becomes
smaller. The first effect is easy to understand by inspection of
the return term in Eq. (9). Quantitative analysis of the second
effect reveals a nontrivial scaling relation.

When τb = 0, the optimal restart rate r∗
0 can be determined

by minimizing the first term in Eq. (9). One then finds [22]
r∗

0 = z∗2
0 /τd with z∗

0 = 1.593 · · · standing for the solution to
the following transcendental equation 1 − e−z − z

2 = 0. Min-
imizing 〈Tr〉 in Eq. (9) for τb > 0, we find that this result
generalizes to give r∗ = z∗2/τd with z∗ standing for the so-
lution to transcendental equation (Appendix H)

F (z) ≡ 2

z2

1 − e−z − z
2(

1 − 1
z

) + (
1 + 1

z

)
e−2z

= τb

τd
. (11)

Noting that z∗ is uniquely determined by the ratio τb/τd on the
right-hand side of Eq. (11) [Fig. 2(c), inset], we conclude that
r∗/r∗

0 = z∗2/z∗2
0 .

In the limit τb � τd , one has r∗/r∗
0 ≈ 1 by definition.

In the other extreme τb 
 τd , which in turn implies z∗ →
0 [Fig. 2(c) inset]. Expanding F (z) around z = 0, we find
F (z) = 3

2z3 + O( 1
z ) (Appendix I). Equating this with τb/τd on

the right side of Eq. (11) we conclude that [Fig. 2(c)]

r∗/r∗
0 �

{
1 for τb � τd(

3
2z∗3

0

)2/3( τb
τd

)−2/3
for τb 
 τd . (12)

We thus see that the interplay between search and home re-
turns gives rise to a power law which governs the optimal
restart rate for 1-d diffusive search with home returns. Con-
sequently, by substituting Eq. (12) into Eq. (9), we find that
the optimal mean FPT obeys (Appendix J)

〈Tr∗ 〉 ∼
{
τd for τb � τd

τb for τb 
 τd . (13)

And so, while arbitrary restart rates may easily lead to a
situation where 〈Tr〉 
 max(τb, τd ), the optimal mean FPT
asymptotically scales like 〈Tr∗ 〉 ∼ max(τb, τd ).

V. A PHASE-DIAGRAM FOR SEARCH

The above example illustrates a situation where search with
home returns offers significant performance advantage over
free-range search. To generalize, one only needs to observe
that since the mean FPT in Eq. (6) is finite for r > 0 [under
mild regularity conditions: 〈W 〉 < ∞,

∫
D d�xτ (�x)G0(�x, t ) <

∞]—search with home returns offers a huge performance
advantage in all conditions where the mean FPT of the un-
derlying free-range process diverges [Fig. 3(a), left]. This
suggests that search with home returns performs best when
search conditions are at their worst, but how to quantify and
further extend this statement to situations where the underly-
ing free-range FPT has a finite mean is not immediately clear
as either a free-range search or a search with home returns
may perform better [Fig. 3(a), right].

When does the introduction of home returns to a free-range
search process lower the mean FPT to the target? To answer
this question, one should take 〈Tr〉 in Eq. (6) and check when
d〈Tr〉/dr|r=0 < 0, which we find happens when (Appendix K)

CV 2 > 1 + 2〈τ (�x)〉0

〈T 〉 + 2〈W 〉
〈T 〉 . (14)

Here, 〈T 〉 and CV = σ (T )/〈T 〉 are the mean and relative
standard deviation (coefficient of variation) of the free-
range FPT, 〈W 〉 is the mean home-stay time, and 〈τ (�x)〉0 =
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∫
D d�xτ (�x)φ0(�x) = 1

〈T 〉
∫
D d�xτ (�x)G̃0(�x, 0) is the mean return

time in the limit r → 0.
The condition in Eq. (14) relates three dimensionless quan-

tities and reveals that search with home returns outperforms
free-range search in conditions of high uncertainty. Indeed, on
the left-hand side of Eq. (14) stands the CV , which quantifies
the relative magnitude of fluctuations, or uncertainty, around
the free-range mean FPT. These fluctuations need to be large
in order for the introduction of home returns to be beneficial.
On the right-hand side of the inequality stand the relative
mean return time, 〈τ (�x)〉/〈T 〉, and the relative mean home
time, 〈W 〉/〈T 〉, which act as penalties against home returns
and set the bar for the critical magnitude of fluctuations at
which the transition between the free-range phase and home-
return phase occurs. The resulting phase-diagram for search is
graphically illustrated in Figs. 3(b) and 3(c).

VI. DRIFT-DIFFUSIVE SEARCH WITH HOME RETURNS

To demonstrate how the universal result in Eq. (14) mani-
fests itself in a concrete example, we consider a simple model
for search in the presence of guidance cues. Namely, we
consider the same diffusive search with home returns as in
Fig. 2(a) above, but now assume that the particle also drifts at
an average velocity v. Note that, when the particle drifts away
from the target (v < 0), the free-range mean FPT diverges and
search with home returns is always preferable (see discussion
above). We thus focus on the v > 0 case which could, e.g.,
model search in the presence of an attractant (potential field)
that biases the searcher’s motion in the direction of the target.

The free-range propagator of drift-diffusion in the presence
of an absorbing boundary (target) is known to be given by [13]

G0(x, t ) = 1√
4πDt

[
e− (x−vt )2

4Dt − e
Lv
D e− (x−2L−vt )2

4Dt
]
. (15)

To build the search phase space, we first write all terms in
Eq. (14) in terms of the natural parameters of drift-diffusion.
Setting off from Eq. (15), a straightforward calculation gives
〈T 〉 = L/v and CV 2 = 1/Pe, where Pe = Lv/2D is the Péclet
number [13], i.e., the ratio between the rates of advec-
tive and diffusive transport. In addition, we find 〈τ (�x)〉0 =

L
2vr

(1 − e−2Pe − Pe + Pe2)/Pe2, with vr standing once again
for the home-return speed (Appendix L).

When Pe � 1, drift rules over diffusion, which means that
guidance cues towards the target are strong. Uncertainty in
the free-range FPT is then relatively small and the condition
in Eq. (14) cannot be satisfied since CV 2 = 1/Pe � 1. On the
other hand, when 0 < Pe < 1, diffusion rules over drift which
means that guidance cues towards the target are weak. Uncer-
tainty in the free-range FPT is then larger and we find that
the condition in Eq. (14) is satisfied whenever (Appendix L,
Fig. 4)

vr > vG(Pe), (16)

with

G(Pe) = 1 − e−2Pe

Pe(1 − Pe)
− 1. (17)

This means that the introduction of home returns will be ben-
eficial whenever the return speed vr is greater than a critical
speed v∗

r = vG(Pe). Measured in units of the drift velocity v,

Péclet number (Pe) Restart rate
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Free-Range
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v r
 / 

v

10.10.01 10 100
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v /v=4.0, Pe=0.2

v /v=4.0, Pe=1.232

1

1 23

1

2

3

(a) (b)

FIG. 4. (a) The phase space of drift-diffusive search as deter-
mined by Eq. (16). The free-range phase and home-return phase
are separated by G(Pe) from Eq. (17). (b) The mean FPT of drift-
diffusive search with home returns vs the restart rate (see Appendix
M for details and corroboration via numerical simulations). Here,
L = v = 1, and other parameters are set by position in phase-space
(numbered circles). When system parameters belong to the home
return phase, e.g., for curve number (2), the introduction of home
returns decreases the mean FPT to the target. The converse happens
for curves (1) and (3), whose parameters belong to the free-range
phase.
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the critical return speed is uniquely determined by the Péclet
number and hence by the relative uncertainty in the free-range
FPT. When Pe � 1, v∗

r ≈ v, but in the limit Pe → 1, we have
v∗

r ∼ v/(1 − Pe). Thus, as guidance cues (drift) towards the
target become stronger, the return speed must increase sharply
in order for search with home returns to remain beneficial.

VII. OPTIMAL SEARCH WITH HOME RETURNS
REDUCES MEAN AND VARIANCE OF TIME TO TARGET

When fluctuations in the free-range FPT are high such that
the inequality in Eq. (14) holds, the introduction of home
returns is asserted to lower the mean FPT to the target. This,
in turn, implies the existence of an optimal restart rate r∗ > 0
for which the mean FPT, 〈Tr∗ 〉, is minimal. Reduction of the
mean FPT is clearly important, but large fluctuations around
the mean FPT can be deleterious as living organisms rely on
a steady supply of nutrients and other essential resources. To
this end, we now show that optimal search with home returns
provides another important advantage: it reduces the variance
of the FPT to the target.

Fluctuations around 〈Tr∗ 〉 have contributions coming from
all stages of search, but note that those coming from the home
stage are exclusively controlled by the searcher and can thus
be made small. In fact, it is enough to require that σ (W ) �
〈W 〉 to show that the condition in Eq. (14) implies

σ (Tr∗ )2 � 〈Tr∗ 〉2 + 2〈Tr∗ 〉[〈τ (�x)〉∗ + 〈W 〉], (18)

where the mean return time 〈τ (�x)〉∗ is computed like 〈τ (�x)〉0

in Eq. (14), but with respect to the measure φ∗(�x) =
G̃∗(�x, 0)/〈Tr∗ 〉 such that

〈τ (�x)〉∗ = 1

〈Tr∗ 〉
∫
D

d�xτ (x)G̃∗(�x, 0), (19)

where G̃∗(�x, 0) = ∫ ∞
0 dtG∗(�x, t ) and G∗(�x, t ) is the propaga-

tor of the search process with home returns conducted at the
optimal restart rate r∗.

Equation (18) is proven by contradiction. Assume this
equation does not hold, and observe that this implies σ (Tr∗ )2

〈Tr∗ 〉2 >

1 + 2〈τ (�x)〉∗
〈Tr∗ 〉 + 2〈W 〉

〈Tr∗ 〉 . Now, the condition in Eq. (14) asserts that
the mean FPT time 〈Tr∗ 〉 can be lowered by restarting the en-
tire search process at a small rate ε. However, since the search
stage is already being restarted at a rate r∗, the introduction of
an additional restart rate ε amounts to restarting this stage at a
rate r∗ + ε. Contrary to the search stage, the return and home
stages are not restarted at a rate r∗. Thus, one only needs to
consider what happens when both these stages are restarted at
a rate ε.

If the searcher is in the return stage it must have gotten
there due to a restart event. Assuming that this restart event
caught the searcher at some position �x, it will take the searcher
τ (�x) units of time to return home. In this return, the searcher
will take a path that connects �x with the origin (home).
Consider a point �y along this path, and let τ�x(�y ) denote the
remaining return time of a searcher which passes through �y in
his way back home from �x. In general, τ�x(�y ) need not be equal
to τ (�y ), i.e., to the time it takes the searcher to return from �y
when restart happens there. However, demanding that return
times and paths obey τ�x(�y ) = τ (�y ) for every starting point �x

and every point �y along a return path is very natural. Indeed,
this only means that the time it takes the searcher to get back
home from �y does not depend on how it got there in the first
place; and note that, when this is the case, restarting the return
phase has no effect on the overall dynamics. Specifically, if a
restart event catches the searcher during the return phase at a
point �y along a path connecting �x with the origin, the searcher
will take τ (�y ) units of time to return home from �y which is
exactly what would have happened in the absence of a restart
event. We thus conclude that restarting the return phase at a
rate ε has no effect, i.e., it is equivalent to not restarting the
return phase at all.

Now, consider what happens when restart occurs during
the home phase. Since τ (�x = �0) = 0 by definition, the return
time has zero contribution and one then only needs to under-
stand the direct effect restart has on the duration of the time
spent home. Recall that the home phase is on average 〈W 〉
units of time long. Thus, if a restart event occurs during the
home phase it will, on average, force the searcher to spend
an additional 〈W 〉 units of time at home. This time should be
compared with the time the searcher would have spent home
if restart would not have occurred at the moment it did. This
time is known as the residual lifetime of W [57], and renewal
theory teaches us that its mean is given by 〈Wres〉 = 〈W 2〉

2〈W 〉 =
σ 2(W )+〈W 〉2

2〈W 〉 . For example, if W is deterministic, i.e., has zero
variance, 〈Wres〉 = 〈W 〉/2 as restart would on average “catch”
the searcher halfway through its home stay duration. More
generally, 〈Wres〉 can be smaller or larger than 〈W 〉, but note
that when σ (W ) < 〈W 〉 we always have 〈Wres〉 < 〈W 〉. Thus,
when the standard deviation of the home stay time is smaller
than its mean, restart will (on average) tend to prolong home
stays because it “replaces” 〈Wres〉 with 〈W 〉, which is longer.

From the above we conclude that, if the addition of a small
restart rate ε to all stages of search lowers the mean FPT below
〈Tr∗ 〉, then the addition of a small restart rate ε to the search
phase only will also lower the mean FPT. Indeed, restarting
the return phase is equivalent to not restarting it at all. In
addition, not restarting the home phase (instead of restarting
it at a rate ε) will result in shorter home stays [provided that
σ (W ) < 〈W 〉], which will lower the mean FPT even more as
the target cannot be found while sitting at home. We thus
find that 〈Tr∗+ε〉 < 〈Tr∗ 〉, which is, however, in contradiction
to optimality because r∗ is defined to be the restart rate that
brings 〈Tr〉 to a minimum. Concluding, we see that assuming
that Eq. (18) does not hold leads to a contradiction, which
means that this equation must hold.

From the above we draw an important conclusion. While
there is no fundamental upper limit on fluctuations of free-
range FPTs, those of optimal search with home returns must
obey the bound in Eq. (18). Moreover, since 〈Tr∗ 〉 < 〈T 〉 by
definition of the optimal restart rate r∗, we conclude that the
combination of Eqs. (14) and (18) gives

σ (Tr∗ ) < σ (T ), (20)

whenever 〈τ (�x)〉∗ � 〈τ (�x)〉0. The latter condition is expected
to hold in the generic case since a searcher that returns home
from time to time will typically be found closer to home than
one that does not. Thus, in addition to lowering the mean FPT
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to the target, optimal search with home returns also leads to a
net reduction of fluctuations around the mean.

VIII. LÉVY SEARCH WITH HOME RETURNS

To illustrate the double advantage conferred by search
with home returns, we consider a Lévy walker that conducts
search in a finite two-dimensional arena with multiple tar-
gets. Lévy walks [51–55] have been widely applied to model
animal foraging and motion [3,5–8,10,11] because there are
cases where they provide an advantage over diffusive search
strategies [6,10–12,52,58]. It has thus been hypothesized that
natural selection favors Lévy walks, which may explain their
prevalence in nature. In what follows we show that the Lévy
search strategy can be further improved when it is combined
with home returns. We start with a brief review of Lévy walks.

In the basic version of the Lévy walk model, a random
walker travels along a straight line at a constant speed for
some random time. At the end of the excursion, the walker
randomly chooses a new direction of motion and travels along
it (at the same speed) for another random duration before
it turns again. The model is thus characterized by the travel
speed vLW and the distribution of the random times between
turning points. The latter are taken to be independent and
identically distributed, and further assuming a finite mean and
variance leads to motion that is asymptotically diffusive. How-
ever, when considering Lévy walks one is usually interested
in cases where the long-time asymptotics of the travel time
probability density has a power-law form ψ (τ ) ∼ τ−1−α with
0 < α < 2. This form leads to a diverging second moment and
superdiffusive motion.

In Fig. 5(a), we consider an agent whose task is to locate
any one of seven targets that were placed randomly in a square
arena. The agent conducts a Lévy search with home returns. In
the search phase, the agent performs a Lévy walk with vLW =
1. After each step the direction and length of the following
step are chosen at random. The direction is drawn from the
uniform angle distribution, whereas the step length is given
by l = vLW τ , where τ = τ0/Z represents the random duration
until the next turn. Taking Z to be uniformly distributed on the
unit interval (0,1], one can show that ψ (τ ) = τ0/τ

2 (τ > τ0)
which gives α = 1 [56]. The probability density function gov-
erning the step length is then given by ρ(l ) = vLW τ0/l2 for
l > vLW τ0, and we take τ0 = 1. Finally, in order to account
for the finite size of the arena, we note that, if the Lévy walker
arrives at a boundary, its step is truncated and a new step is
generated. Thus, in practice, we consider a truncated Lévy
walk [52].

The Lévy walk described above is restarted at a rate r,
and home returns are performed along the shortest possible
path with a constant return speed vr . To map the phase space
of this search process, we scanned multiple (vr, r) pairs. For
each pair, we simulated N = 106 sample trajectories that end
when any one of the targets is hit during the search stage
(recall that we assume that targets cannot be found during
the return stage). In Fig. 5(b), we plot the mean and standard
deviation of the resulting FPT vs the restart rate for two dif-
ferent values of the return speed vr = 1 and vr = 1.2. When
r = 0, search is conducted in the absence of home returns
and we find that σ (T ) > 〈T 〉. Thus, in this example CV > 1

(a) (b)

(c) (d)

FIG. 5. Optimal search with home returns reduces the mean and
variance of the time to target. (a) Here, this general feature is demon-
strated for an agent foraging within a bounded two-dimensional
arena. The agent performs a truncated Lévy walk with steps taken
from a heavy-tailed distribution ρ(l ) ∝ l−2. The search process is
restarted at a rate r, and home returns are conducted at a constant
speed vr . The process ends when any one of the targets is found.
(b) The mean (circles) and standard deviation (triangles) of the first
passage time vs the restart rate for two different return speeds. (c) The
optimal restart rate for which the mean FPT 〈Tr〉 is minimized vs
the return speed. The critical return speed above which r∗ > 0 is
estimated via Eq. (22). This method gives v∗

r � 1.09 (dashed vertical
line), which is in excellent agreement with independent numerical
simulations of the home-return process for different values of vr

(circles). (d) The mean (circles) and standard deviation (triangles) of
the first passage time under optimal restart vs vr . For vr > v∗

r , both
the mean and standard deviation of the FPT are strictly lower than
those found for free-range search.

and Eq. (14) asserts that the mean FPT can be lowered by
the introduction of home returns; provided the return speed is
high enough (here we take W = 0). Indeed, for vr = 1.2 we
see that the mean FPT is minimized at r∗ > 0. However, the
optimal restart rate for vr = 1 is r∗ = 0, which suggests that
the critical return speed (above which home returns become
beneficial) is somewhere in the range 1 < v∗

r < 1.2.
The critical return speed v∗

r can be determined via numeri-
cal evaluation of the mean return time 〈τ (�x)〉0 in Eq. (14). To
do this, we only need to simulate the search process without
home returns (r = 0). For each linear segment of the Lévy
walk we note two quantities: the segment’s duration τi, and
the average distance of that segment to the home position
(starting point), which we denote as di. Although such an
average distance between a line segment and a point can
in principle be calculated analytically, here we estimate its
value by averaging over ten regularly spaced points along the
segment (faster numerically). We then calculate the average
return distance as

d =
∑

i diτi∑
i τi

. (21)
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The mean return time in Eq. (14) is then given by 〈τ (�x)〉0 =
d/vr , and substituting back into Eq. (14) gives CV 2 > 1 +

2
〈T 〉

d
vr

. Rearranging, we find that the critical return speed is
given by

v∗
r = 2d

σ (T )2/〈T 〉 − 〈T 〉 , (22)

which is uniquely determined by the free-range search pro-
cess.

In Fig. 5(c), we compare the estimate obtained from
Eq. (22) to an independent estimate of v∗

r . The latter is ob-
tained by direct numerical evaluation of the optimal restart
rate. For a given return speed vr , the optimal restart rate
is found in two steps: (1) among the values of r that were
simulated we find the one that gives the shortest mean FPT,
and then (2) we fit a quadratic function to the estimated mean
FPT as a function of r for six to eleven data points (adap-
tive algorithm) around the value found in (1). The quadratic
function is used to predict the values of r∗ and 〈Tr∗ 〉. If the
value of r∗ is predicted to be smaller than or equal to zero we
take r∗ = 0 and the corresponding mean FPT as the optimal.
The critical return velocity can then be determined as the
smallest return velocity for which r∗ > 0. As can be seen,
this method of estimating v∗

r is in excellent agreement with
the prediction coming from Eq. (22). Finally, for the optimal
restart rates found, we plot the mean and standard deviation of
the FPT vs the return speed [Fig. 5(d)]. For vr > v∗

r , the mean
and standard deviation are found to be lower than the values
obtained in the absence of home returns. Thus, optimal search
with home returns reduces both the mean and variance of the
time to target as predicted in the previous sections.

IX. CONCLUSIONS AND OUTLOOK

Search with home returns is widely observed in nature,
but its analysis has so far been challenging. We developed
a theoretical framework for this process and used it to show
that solutions to first-passage problems with home returns can
always be given in terms of solutions to the corresponding
free-range first-passage problems, i.e., those without home
returns. The latter are known for a plethora of cases because
first-passage time problems have been studied for decades;
but even when this is not the case, the framework developed
herein is still useful because it reduces a complicated problem
to a much simpler one. Most importantly, our framework re-
veals a simple and universal phase diagram for search. This, in
turn, can be used to decide under which circumstances search
with home returns is preferable to free-range search.

Our framework advances the field of first-passage under
restart in several directions. First and foremost, it allows for
a realistic description of restart by accounting for nonin-
stantaneous and space-time-coupled returns. To this end, the
searcher’s return time was allowed to be an arbitrary function
of its position at the restart moment, which naturally couples
returns to the underlying stochastic motion. The latter can
be general, which is also true for the distributions of restart
and home-waiting times. Thus, our framework is applicable
to a large variety of stochastic search processes, in arbi-
trary dimensions, and generally shaped domains that contain

either single or multiple targets. Specifically, we provided
general results for the mean [Eqs. (2) and (6)] and distribution
[Eqs. (5) and (7)] of the first-passage time of a search process
with home returns and further demonstrated how these results
apply to several case studies of interest.

To further elucidate the effect of home returns, we asked
under which conditions adopting this strategy is advantageous
to search. We showed that this question can be answered based
on the statistical properties of the underlying first-passage
process, i.e., that which is conducted without home returns.
This, in turn, gave us a phase diagram for search and revealed
that search with home returns outperforms free-range search
in conditions of high uncertainty. Specifically, the introduction
of home returns will lower the mean FPT to a target when-
ever the relative magnitude of the fluctuations, or uncertainty,
around the free-range mean FPT is large [Eq. (14)]. More-
over, under the same conditions, optimal search with home
returns will also reduce the fluctuations around the mean FPT
[Eq. (20)], which is important because living organisms rely
heavily on a steady supply of nutrients and other essential re-
sources. Indeed, even when the time taken to locate a resource
is, on average, short enough to support life—large fluctuations
around the average are deleterious and may result in death.
Thus, search with home returns offers a double advantage,
which unequivocally asserts the superiority of this strategy
when facing uncertain conditions.

While the prevalence of search with home returns in or-
ganisms ranging from insects to humans is probably due to
the amalgamation of many contributing factors, our analysis
shows that having a home may also be important because it al-
lows one to locate food and other resources quickly and more
efficiently than in its absence. Importantly, we find that this is
true even when knowledge about the surrounding environment
is not taken into account, and despite the fact that our analysis
assumed that targets cannot be located in the return stage,
i.e., while returning home. Thus, in reality, search with home
returns is expected to perform even better than predicted here.
Free-range search may out-compete search with home returns,
but only in conditions of low uncertainty. This suggests that
search with home returns may have evolved as a bet-hedging
strategy that performs best when search conditions are at their
worst.
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APPENDIX A: DETAILED DERIVATION OF EQ. (2)
IN THE MAIN TEXT

To derive Eq. (2) in the main text, we first rewrite Eq. (1)
to obtain

TR = min(T, R) + I (R � T )[τ (�x) + W + T ′
R], (A1)

where I (R � T ) is an indicator function that takes the value
one if R � T , and zero otherwise. Taking expectations on the
both sides of the above equation, we obtain

〈TR〉 = 〈min(T, R)〉 + 〈I (R � T )[τ (�x) + W + T ′
R]〉. (A2)

Recalling that W and T ′
R are independent of T and R, and that

〈I (R � T )〉 = Pr(R � T ) by definition, we find

〈TR〉 = 〈min(T, R)〉 + 〈I (R � T )τ (�x)〉 + Pr(R � T )〈W 〉
+ Pr(R � T )〈T ′

R〉. (A3)

Finally, because T ′
R is an independent and identically dis-

tributed (i.i.d.) copy of TR, we have 〈TR〉 = 〈T ′
R〉, and a simple

rearrangement then gives

〈TR〉 = 〈min(T, R)〉
Pr(T < R)

+ 〈I (R � T )τ (�x)〉
Pr(T < R)

+ Pr(R � T )〈W 〉
Pr(T < R)

.

(A4)

Equation (A4) is equivalent to Eq. (2) in the main text. Sub-
stituting Eq. (4) into Eq. (A4), we observe that 〈TR〉 can also
be written as

〈TR〉 = 〈min(T, R)〉
Pr(T < R)

+
∫ ∞

0 dt fR(t )
∫
D d�xτ (�x)G0(�x, t )

Pr(T < R)

+Pr(R � T )〈W 〉
Pr(T < R)

. (A5)

APPENDIX B: EVALUATING TERMS IN EQ. (2)

The expectation value 〈min(T, R)〉 and the probability
Pr(T < R) in Eq. (2) are easy to evaluate given the distribu-
tions of T and R. Indeed, letting fT (t ) and fR(t ) stand for the
probability densities of T and R, respectively, we see that the
cumulative distribution function of min(T, R) is given by

Pr(min(T, R) � t ) = 1 − Pr(T > t )Pr(R > t ), (B1)

where

Pr(T > t ) =
∫ ∞

t
dt ′ fT (t ′), (B2)

and

Pr(R > t ) =
∫ ∞

t
dt ′ fR(t ′). (B3)

Now, since min(T, R) is non-negative, the expectation
〈min(T, R)〉 can be computed directly from the cumulative
distribution function in Eq. (B1) as

〈min(T, R)〉 =
∫ ∞

0
dt[1 − Pr(min(T, R) � t )]

=
∫ ∞

0
dtPr(T > t )Pr(R > t ), (B4)

or, alternatively, using the density of min(T, R) as

〈min(T, R)〉 =
∫ ∞

0
dt t[ fT (t )Pr(R > t )

+ fR(t )Pr(T > t )]. (B5)

Similarly, we see that the probability Pr(T < R) is given by

Pr(T < R) =
∫ ∞

0
dt fR(t )Pr(T < t )

=
∫ ∞

0
dt fT (t )Pr(R > t ), (B6)

and note that Pr(R � T ) = 1 − Pr(T < R).

APPENDIX C: DETAILED DERIVATION OF EQ. (5)
IN THE MAIN TEXT

We now derive an exact and general expression for the
distribution of the FPT, TR, in Laplace space. To this end, we
first define two auxiliary random variables

Rmin ≡ {R|R � T },
Tmin ≡ {T |T < R}. (C1)

In words, Rmin is the restart time R conditioned on the event
that restart occurs before the target is found. Similarly, Tmin is
the free-range FPT T conditioned on the event that the target
is found prior to restart. The probability density functions of
Rmin and Tmin are given by [26,35]

fRmin (t ) = fR(t )
∫ ∞

t dt ′ fT (t ′)
Pr(R � T )

= fR(t )Pr(T > t )

Pr(R � T )
,

fTmin (t ) = fT (t )
∫ ∞

t dt ′ fR(t ′)
Pr(T < R)

= fT (t )Pr(R > t )

Pr(T < R)
. (C2)

To obtain the Laplace transform of TR, we utilize Eq. (1)
and this gives

T̃R(s) = 〈e−sTR〉
= Pr(T < R)〈e−sTR |T < R〉 + Pr(R � T )〈e−sTR |R � T 〉
= Pr(T < R)〈e−s{TR|T <R}〉 + Pr(R � T )〈e−s{TR|R�T }〉.

(C3)

However, by use of Eqs. (1) and (C1) above, we have

{TR|R � T } = {R + τ (�x) + W + T ′
R|R � T }

= {R + τ (�x)|R � T } + W + T ′
R, (C4)

and

{TR|T < R} = {T |T < R} = Tmin, (C5)

where we have once again utilized the fact that W and T ′
R

are independent of R and T . Casting these relations back into
Eq. (C3), we obtain

T̃R(s) = Pr(T < R)〈e−sTmin〉
+ Pr(R � T )〈e−s(W +T ′

R )−s{R+τ (�x)|R�T }〉
= Pr(T < R)T̃min(s)

+ Pr(R � T )〈e−sW 〉〈e−sT ′
R〉〈e−s{R+τ (�x)|R�T }〉
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= Pr(T < R)T̃min(s)

+ Pr(R � T )W̃ (s)T̃R(s)〈e−s{R+τ (�x)|R�T }〉, (C6)

where we have again utilized the independence of W and T ′
R,

the fact that T ′
R is an i.i.d. copy of TR, and further used the

shorthand notation Z̃ (s) to denote the Laplace transform of a
random variable Z . We now observe that

〈e−s{R+τ (�x)|R�T }〉 =
∫ ∞

0
dt fRmin (t )〈e−s{t+τ (�x(t ))|T �t}〉

=
∫ ∞

0
dt fRmin (t )e−st

×
[

1

Pr(T � t )

∫
D

d�xe−sτ (�x)G0(�x, t )

]
,

(C7)

where we recall that Pr(T � t ) is the free-range survival prob-
ability. Substituting Eq. (C2) into the above we obtain

〈e−s{R+τ (�x)|R�T }〉 = 1

Pr(R � T )

∫ ∞

0
dt fR(t )e−st

×
∫
D

d�xe−sτ (�x)G0(�x, t ), (C8)

where we have used Pr(T � t ) = Pr(T > t ). Equation (C6)
then reads

T̃R(s) = Pr(T < R)T̃min(s) + W̃ (s)T̃R(s)
∫ ∞

0
dt fR(t )e−st

×
∫
D

d�xe−sτ (�x)G0(�x, t ). (C9)

Rearranging this expression, we obtain an exact and general
expression for the FPT, TR, in Laplace space:

T̃R(s) = Pr(T < R)T̃min(s)

1 − W̃ (s)
∫ ∞

0 dt fR(t )e−st
∫
D d�xe−sτ (�x)G0(�x, t )

,

(C10)

which is Eq. (5) as announced in the main text.

APPENDIX D: DERIVATION OF EQ. (6)
IN THE MAIN TEXT

To derive Eq. (6) in the main text, we simplify Eq. (A5) by
assuming that fR(t ) = re−rt , i.e., that restart times are taken
from an exponential distribution with mean 1/r. First, we use
this in Eq. (B4) to obtain

〈min(T, R)〉 =
∫ ∞

0
dte−rt

∫ ∞

t
dt ′ fT (t ′)

= 1

r
− 1

r

∫ ∞

0
dte−rt fT (t )

= 1 − T̃ (r)

r
, (D1)

where T̃ (r) stands for the Laplace transform of the free-range
FPT T evaluated at r. Similarly, we use Eq. (B6) to obtain

Pr(T < R) =
∫ ∞

0
dt fT (t )e−rt = T̃ (r). (D2)

Finally, we see that, for an exponentially distributed restart
time, we have∫ ∞

0
dt fR(t )

∫
D

d�xτ (�x)G0(�x, t )

=
∫ ∞

0
dtre−rt

∫
D

d�xτ (�x)G0(�x, t )

= r
∫
D

d�xτ (�x)
∫ ∞

0
dte−rt G0(�x, t )

= r
∫
D

d�xτ (�x)G̃0(�x, r), (D3)

where we have defined the Laplace transform of the free-range
propagator as

G̃0(�x, r) =
∫ ∞

0
dte−rt G0(�x, t ). (D4)

Substituting Eqs. (D1)–(D3) into Eq. (A5), we obtain

〈Tr〉 = 1 − T̃ (r)

T̃ (r)

1

r
+ r

∫
D d�xτ (�x)G̃0(�x, r)

T̃ (r)
+ 1 − T̃ (r)

T̃ (r)
〈W 〉.

(D5)

Finally, we observe that

T̃ (r) =
∫ ∞

0
dte−rt fT (t ) = −

∫ ∞

0
dte−rt dPr(T � t )

dt

= −
∫ ∞

0
dte−rt d

dt

∫
D

d�xG0(�x, t )

= 1 − r
∫
D

d�xG̃0(�x, r), (D6)

where in the last transition we have used integration by
parts and the definition in Eq. (D4). Multiplying and divid-
ing the second term on the right-hand side of Eq. (D5) by
1 − T̃ (r), using the relation in Eq. (D6), and setting 〈τ (�x)〉r ≡∫
D d�xτ (�x)φr (�x) ≡ ∫

D d�xτ (�x)G̃0(�x, r)/
∫
D d�xG̃0(�x, r), we ob-

tain Eq. (6) in the main text.

APPENDIX E: DERIVATION OF EQ. (7)
IN THE MAIN TEXT

To derive Eq. (7) in the main text, we simplify Eq. (C10)
by assuming once again that fR(t ) = re−rt , i.e., that restart
times are taken from an exponential distribution with mean
1/r. Using this in Eq. (C2), we immediately find

T̃min(s) =
∫ ∞

0
dte−st fTmin (t ) =

∫ ∞

0
dte−st fT (t )Pr(R > t )

Pr(T < R)

= T̃ (s + r)

T̃ (r)
, (E1)

where in the last step we have substituted Eq. (D2) and used
the fact that Pr(R > t ) = e−rt . Substituting fR(t ) = re−rt and
Eqs. (D2) and (E1) into Eq. (C10) and using the definition in
Eq. (D4), we recover Eq. (7) of the main text:

T̃r (s) = T̃ (s + r)

1 − rW̃ (s)
∫
D d�xe−sτ (�x)G̃0(�x, s + r)

. (E2)
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(a) (b) (c)

FIG. 6. The Mean FPT of diffusive search with home returns is plotted vs the restart rate r for τd = 1/2 and three different values of τb.
Dashed lines come from Eq. (9) in the main text and markers indicate data coming from numerical simulations.

APPENDIX F: DERIVATION OF EQ. (9)
IN THE MAIN TEXT

To derive Eq. (9) in the main text, we simplify Eq. (6) for
the case of diffusive home-range search. We first recall that,
in this case, the free-range propagator (starting from the origin
and in the presence of a target located at L) is given by [13]

G0(x, t ) = 1√
4πDt

(
e− x2

4Dt − e− (2L−x)2

4Dt
)
. (F1)

The Laplace transform of the propagator in Eq. (F1) is given
by

G̃0(x, r) =
∫ ∞

0
dte−rt G0(x, t )

= 1√
4Dr

[
e−

√
r
D |x| − e−

√
r
D (2L−x)]. (F2)

Substituting the above expression into Eq. (D6), we find

T̃ (r) = 1 − r
∫
D

d�xG̃0(�x, r)

= 1 − r
∫ L

−∞
dxG̃0(x, r)

= e−
√

rL2/D = e−√
τd r, (F3)

where we recalled τd = L2/D from Eq. (10). Finally, we
observe that, when the searcher returns home at a constant
velocity vr , we have τ (x) = |x|/vr , and this in turn results in

r
∫
D

d�xτ (�x)G̃0(�x, r) = r
∫ L

−∞
dx

|x|
vr

G̃0(x, r)

= τbe−√
τd r

[
2 sinh (

√
τd r)√

τd r
− 1

]
,

(F4)

where we have recalled τb = L/vr from Eq. (10) in the main
text. Substituting Eqs. (F3) and (F4) into Eq. (6) and setting
〈W 〉 = 0, we recover Eq. (9) in the main text:

〈Tr〉 = 1

r
(e

√
τd r − 1) + τb

[
2 sinh (

√
τd r)√

τd r
− 1

]
. (F5)

APPENDIX G: CORROBORATION OF EQ. (9) IN THE
MAIN TEXT VIA NUMERICAL SIMULATIONS

In this section, we provide numerical corroboration of
Eq. (9). In Fig. 6, we plot the mean FPT for τd = 1/2 and
three different values of τb (indicated on plots) corresponding
to those used in Fig. 2(b) in the main text. In all plots, dashed
lines correspond to the exact analytical results coming from
Eq. (9). These results are corroborated with data coming from
numerical simulations (square, diamond, and circle markers).
In the simulations, the time step was taken as 
 = 10−5 and
mean FPTs were estimated based on 105 samples each. As
seen from the figure, theory and simulations are in excellent
agreement.

APPENDIX H: DERIVATION OF EQ. (11)
IN THE MAIN TEXT

To derive Eq. (11), we start from Eq. (9) and set

d

dr
〈Tr〉 = 0, (H1)

which gives

2 + 2
τb

τd
z2 cosh (z) + ez(−2 + z) = 2

τb

τd
z sinh (z), (H2)

with z = √
rτd . Substituting 2 cosh(z) = ez + e−z and

2 sinh(z) = ez − e−z, we rewrite the above equation as

2

z2

1 − e−z − z
2(

1 − 1
z

) + (
1 + 1

z

)
e−2z

= τb

τd
. (H3)

The left-hand side of Eq. (H3) is defined as F (z) in the main
text.

APPENDIX I: EXPANSION OF F (z) AROUND z = 0

We recall the expression for F (z) from Eq. (9):

F (z) = 2

z2

1 − e−z − z
2(

1 − 1
z

) + (
1 + 1

z

)
e−2z

. (I1)

Expanding F (z) around z = 0 gives

F (z) = 3

2z3
− 2

5z
− 1

8
+ O(z). (I2)

Thus, in the limit z → 0 we have F (z) = 3
2z3 + O( 1

z ).
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APPENDIX J: DERIVATION OF EQ. (13)
IN THE MAIN TEXT

To derive Eq. (13), we first write the MFPT from Eq. (9) at
the optimal restart rate:

〈Tr〉|r=r∗ = 1

r∗ (e
√

τd r∗ − 1) + τb

[
2 sinh (

√
τd r∗)√

τd r∗ − 1

]
. (J1)

To capture the behavior of the MFPT at optimality, at the
different limits, we first recall Eq. (12) from the main text:

r∗/r∗
0 �

{
1 for τb � τd(

3
2z∗3

0

)2/3(
τb
τd

)−2/3
for τb 
 τd ,

(J2)

where r∗
0 = z∗2

0 /τd and z∗
0 = 1.593 · · · is the solution of the

transcendental equation 1 − e−z − z
2 = 0. In the limit τb �

τd , we have r∗ � r∗
0 , and thus

〈Tr∗ 〉 � ez∗
0 − 1

z∗2
0

τd +
[

2 sinh (z∗
0 )

z∗
0

− 1

]
τb ∼ τd . (J3)

On the other hand, when τb 
 τd , we have r∗/r∗
0 ∼ ( τb

τd
)−2/3,

so r∗ ∼ τ
−1/3
d τ

−2/3
b , and τd r∗ ∼ ( τb

τd
)−2/3 � 1. Substituting

this scaling form into Eq. (J1), we find

〈Tr∗ 〉 � 1

r∗

(√
τd r∗ + τd r∗

2

)
+ τb

(
1 + τd r∗

3

)
∼ τb. (J4)

Equation (13) then follows immediately from Eqs. (J3)
and (J4).

APPENDIX K: DERIVATION OF EQ. (14)
IN THE MAIN TEXT

To derive Eq. (14), we expand Eq. (D5),

〈Tr〉 = 1 − T̃ (r)

rT̃ (r)
+ r

∫
D d�xτ (�x)G̃0(�x, r)

T̃ (r)
+ 1 − T̃ (r)

T̃ (r)
〈W 〉,

(K1)

around r = 0 to obtain

〈Tr〉 = 〈T 〉 + r

2
[〈T 〉2 − σ 2(T )] + r

∫
D

d�xτ (�x)
∫ ∞

0
dtG0(�x, t )

+r〈T 〉〈W 〉 + O(r2), (K2)

with σ 2(T ) = 〈T 2〉 − 〈T 〉2 standing for the variance of T .
Now, the introduction of home returns will decrease the FPT
whenever 〈Tr〉 < 〈T 〉 which is equivalent to

σ 2(T ) − 〈T 〉2 > 2
∫
D

d�xτ (�x)
∫ ∞

0
dtG0(�x, t ) + 2〈T 〉〈W 〉.

(K3)

Letting CV = σ (T )/〈T 〉 stand for the coefficient of variation,
we rearrange the above expression and arrive at the following
criterion:

CV 2 > 1 + 2

〈T 〉2

∫
D

d�xτ (�x)
∫ ∞

0
dtG0(�x, t ) + 2〈W 〉

〈T 〉 . (K4)

To get Eq. (14), we rewrite the second term on the right-hand
side of Eq. (K4) in a way that resembles the third term in this

equation. Observe that

1

〈T 〉
∫
D

d�xτ (�x)
∫ ∞

0
dtG0(�x, t )

=
∫
D

d�xτ (�x)

[
1

〈T 〉
∫ ∞

0
dtG0(�x, t )

]

=
∫
D

d�xτ (�x)φ0(�x), (K5)

where we have again used

φ0(�x) = φr=0(�x) = G̃0(�x, r = 0)

/ ∫
D

d�xG̃0(�x, r = 0)

= 1

〈T 〉
∫ ∞

0
dtG0(�x, t ). (K6)

Once again, we note that∫
D

d�xφ0(�x) =
∫
D

d�x 1

〈T 〉
∫ ∞

0
dtG0(�x, t )

= 1

〈T 〉
∫ ∞

0
dt

∫
D

d�xG0(�x, t )

= 1

〈T 〉
∫ ∞

0
dtPr(T � t )

= 1, (K7)

which means that φ0(�x) is a proper probability density func-
tion over the domain D. We thus have

1

〈T 〉
∫
D

d�xτ (�x)
∫ ∞

0
dtG0(�x, t ) =

∫
D

d�xτ (�x)φ(�x) = 〈τ (�x)〉0,

where the averaging over the return time is done with respect
to the probability measure φ0(�x). Interpreting 〈τ (�x)〉0 as the
mean return time of a home-range searcher in the limit r → 0,
we substitute the above into Eq. (K4) and recover Eq. (14) in
the main text:

CV 2 > 1 + 2〈τ (�x)〉0

〈T 〉 + 2〈W 〉
〈T 〉 . (K8)

APPENDIX L: DRIFT-DIFFUSIVE SEARCH
WITH HOME RETURNS

To derive an expression for the mean FPT of drift-diffusive
search with home returns, we simplify Eq. (6) in the main text
for this case. We start from the propagator of the free-range
search process

G0(x, t ) = 1√
4πDt

[
e− (x−vt )2

4Dt − e
Lv
D e− (x−2L−vt )2

4Dt
]
, (L1)

and evaluate its Laplace transform (at r)

G̃0(x, r) =
∫ ∞

0
dte−rt G0(x, t )

= e
vx
2D√

v2 + 4Dr

[
e− |x|

2D

√
v2+4Dr − e− |x−2L|

2D

√
v2+4Dr

]
.

(L2)
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Using the above expression, and Eq. (D6), we compute the
Laplace transform of the free-range first-passage time

T̃ (r) = 1 − r
∫
D

d�xG̃0(�x, r)

= 1 − r
∫ L

−∞
dxG̃0(x, r)

= e
Lv
2D − L

2D

√
v2+4Dr . (L3)

To further proceed, we set τ (x) = |x|/vr and compute

r
∫
D

d�xτ (�x)G̃0(�x, r)

= r
∫ L

−∞
dx

|x|
vr

G̃0(x, r)

= e− L
D

√
v2+4Dr

rvr

√
v2 + 4Dr

[
2Dr

( − 1 + e
L
D

√
v2+4Dr

)
+ v2

(
e

L
D

√
v2+4Dr − 1

) + v
√

v2 + 4Dr

− (v + rL)
√

v2 + 4Dre
L

2D (v+√
v2+4Dr)]. (L4)

Using the above expression and Eq. (L3), we find

r
∫
D d�xτ (�x)G̃0(�x, r)

T̃ (r)

= r
∫ L
−∞ dx |x|

vr
G̃0(x, r)

exp
[

Lv
2D − L

2D

√
v2 + 4Dr

]
= e− Lv

2D − L
2D

√
v2+4Dr

rvr

√
v2 + 4Dr

[
2Dr

( − 1 + e
L
D

√
v2+4Dr

)
+ v2

(
e

L
D

√
v2+4Dr − 1

)
+

√
v2 + 4Dr

(
v − (v + rL)e

L
2D (v+√

v2+4Dr))]. (L5)

Setting 〈W 〉 = 0 and substituting Eqs. (L3) and (L5) into
Eq. (6), we find

〈Tr〉 = 1

r

[
e

L
2D (

√
v2+4Dr−v) − 1

]
+ e− Lv

2D

rvr

√
v2 + 4Dr

[
(4Dr + 2v2) sinh

(
L

2D

√
v2 + 4Dr

)

+
√

v2 + 4Dr
(
ve− L

2D

√
v2+4Dr − ve

Lv
2D − rLe

Lv
2D

)]
. (L6)

Recalling Pe = Lv/2D, τd = L2/D, and τb = L/vr , we can
simplify the above expression further and obtain the following
expression for the mean FPT of drift-diffusive search with
home returns

〈Tr〉 = 1

r

[
e
√

Pe2+τd r−Pe − 1
] + 1

r

τb

τd
I (Pe, τd , r), (L7)

where we have introduced the following function:

I (Pe, τd , r) = 2e−Pe 2Pe2 + τd r√
Pe2 + τd r

sinh[
√

Pe2 + τd r]

+ 2Pe
[
e−(Pe+

√
Pe2+τd r) − 1

] − τd r. (L8)

Equations (L7) and (L8) together constitute a closed form
expression for the mean FPT of drift-diffusive search with
home returns.

APPENDIX M: CORROBORATION OF EQ. (L7)
VIA NUMERICAL SIMULATIONS

In this section, we provide numerical corroboration of
Eq. (L7) for the mean FPT of drift-diffusive search with home
returns. Equation (L7) was used to plot Fig. 4(b) in the main
text. In Fig. 7, we plot the mean FPT from Eq. (L7) vs the
restart rate for three different sets of parameters (indicated
on plots) which correspond to those used in Fig. 4(b). In
all the plots, dashed lines indicate analytical results com-
ing from Eq. (L7). These results are corroborated with data
coming from numerical simulations (square, diamond, and
circle markers). In the simulations, the time step was taken
as 
 = 10−5 and mean FPTs were estimated based on 105

samples each. As seen from the figure, theory and simulations
are in excellent agreement.

APPENDIX N: DERIVATION OF EQ. (16)
IN THE MAIN TEXT

To derive Eq. (16), we simplify Eq. (14) in the main text for
the case of drift-diffusive search with home returns. Starting
from the propagator of the free-range search process

G0(x, t ) = 1√
4πDt

[
e− (x−vt )2

4Dt − e
Lv
D e− (x−2L−vt )2

4Dt
]
, (N1)

(a) (b) (c)

FIG. 7. The mean FPT of drift-diffusive search with home returns is plotted vs the restart rate r for the three different sets of parameter
that were used in Fig. 4(b) (indicated on plots). The dashed lines are exact theoretical results coming from Eq. (L7) while the markers indicate
data coming from numerical simulations.
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the probability density function of the free-range first-passage
time T can be computed by inverting Eq. (L3) above. One
then obtains [13]

fT (t ) = L√
4πDt3

e− (L−vt )2

4Dt . (N2)

The mean and coefficient of variation of T are then easy to
compute. These are given by

〈T 〉 = L/v, (N3)

and

CV 2 = 2D/Lv = Pe−1, (N4)

where we recalled the definition of the Péclet number
Pe = Lv/2D. With the above at hand, we continue to
compute

〈τ (�x)〉0 =
∫
D

d�xτ (�x)φ(�x), (N5)

where φ(�x) = 1
〈T 〉

∫ ∞
0 dtG0(�x, t ). First, we compute∫ ∞

0
dtG0(x, t ) = 1

v
e

vx
2D

[
e− v|x|

2D − e− v|x−2L|
2D

]
, (N6)

and this allows us to obtain∫ L

−∞
dxτ (x)

∫ ∞

0
dtG0(x, t )

=
∫ L

−∞
dx

|x|
vr

∫ ∞

0
dtG0(x, t )

= 1

2vrv3

[
4D2

(
1 − e− Lv

D
) − 2DLv + L2v2

]
, (N7)

and conclude that

〈τ (�x)〉0 = 1

2Lvrv2

[
4D2

(
1 − e− Lv

D
) − 2DLv + L2v2

]
= 2D2

Lvrv2
[1 − Pe + Pe2 − e−2Pe]. (N8)

Setting 〈W 〉 = 0 and substituting the expressions for 〈T 〉,
CV 2, and 〈τ (�x)〉0 into Eq. (14) we obtain

Pe−1 > 1 + v

vr

1 − Pe + Pe2 − e−2Pe

Pe2 , (N9)

which can be rearranged to give Eq. (16) in the main text:

vr > v∗
r = vG(Pe), with G(Pe) = 1 − e−2Pe

Pe(1 − Pe)
− 1.

(N10)
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