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We propose a sequential minimal optimization method for quantum-classical hybrid algorithms, which
converges faster, robust against statistical error, and hyperparameter-free. Specifically, the optimization problem
of the parameterized quantum circuits is divided into solvable subproblems by considering only a subset of the
parameters. In fact, if we choose a single parameter, the cost function becomes a simple sine curve with period
2π , and hence we can exactly minimize with respect to the chosen parameter. Furthermore, even in general
cases, the cost function is given by a simple sum of trigonometric functions with certain periods and hence
can be minimized by using a classical computer. By repeatedly performing this procedure, we can optimize the
parameterized quantum circuits so that the cost function becomes as small as possible. We perform numerical
simulations and compare the proposed method with existing gradient-free and gradient-based optimization
algorithms. We find that the proposed method substantially outperforms the existing optimization algorithms and
converges to a solution almost independent of the initial choice of the parameters. This accelerates almost all
quantum-classical hybrid algorithms readily and would be a key tool for harnessing near-term quantum devices.
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I. INTRODUCTION

Quantum computing devices with almost a hundred qubits
are now within reach in the near future [1–3]. Since they have
an unignorable amount of error because of a lack of error
correction, they are called noisy intermediate-scale quantum
(NISQ) devices. While the complexity of NISQ devices is
limited because of the noise, still their classical simulation
is considered to be intractable on classical computers if the
fidelity of gates is sufficiently high [4–6].

In order to exploit NISQ devices in useful ways,
quantum-classical hybrid algorithms have been proposed.
Quantum-classical hybrid algorithms solve problems with
a combination of sampling on low-depth quantum circuits
and classical post-processing of the sampled outcomes. The
variational quantum eigensolver (VQE) [7–10] is, for exam-
ple, an attracting algorithm for NISQ devices for finding an
approximate ground state of a given Hamiltonian H. The
VQE is now extended in various purposes beyond finding the
ground state [11,12]. The quantum approximate optimization
algorithm (QAOA) [13–15] makes it possible to get approxi-
mate solutions for combinatorial optimization problems. The
quantum machine learning [16,17], especially for the near-
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term devices, has been proposed in various machine learning
settings such as supervised learning [18–20], unsupervised
learning [21], generative model [22], generative adversarial
model [23], and so on.

All these major quantum-classical hybrid algorithms have
a common structure: a parameterized quantum circuit and its
optimization with respect to an observed cost function. More
precisely, we repeatedly generate an ansatz state |ψ (θ)〉 from a
parameterized quantum circuit U (θ) on quantum devices and
optimize the parameters θ to minimize the expectation value
of the given Hermitian operator, 〈H(θ)〉 = 〈ψ (θ)|H|ψ (θ)〉, on
classical computers. Therefore, the convergence speed of the
optimization process is a key factor that determines the overall
performance of the algorithms.

Existing works employ either gradient-free [24–26] or
gradient-based [27–31] optimization algorithms. For example,
Peruzzo et al. [7] and Ryabinkin et al. [32] use the Nelder-
Mead method, which is one of the gradient-free optimization
algorithms [24]. Gradient-based methods are generally more
efficient if we can get the gradients directly. In the context
of the neural networks, the backpropagation method, which
is an efficient method to calculate the gradients, is one of
the most important ingredients to minimize the cost function
of the model. To use gradient-based optimization algorithms
for parameterized quantum circuits, Li et al. [33] and Mitarai
et al. [18] propose an analytical way to take a partial derivative
of parameterized quantum circuits, which allows us to obtain
the gradient directly from the expectation value of a Hermitian
operator. However, it is not yet fully explored whether a better
optimization algorithm, specially designed for the parame-
terized quantum circuits, exists, or not. For example, in the
optimization procedure in the support vector machine [34], the
sequential minimal optimization [35] is widely used, in which
the cost function is exactly minimized with respect to two
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parameters at each step by making use of the characteristic
structure of the quadratic programming problem.

In this study, we propose an optimization method which
is specialized for quantum-classical hybrid algorithms based
on parameterized quantum circuits.1 The idea is similar to
the sequential minimal optimization for support vector ma-
chine; the cost function is minimized exactly with respect to
certain chosen parameters at each step by using the charac-
teristic structure of the parameterized quantum circuits. The
proposed optimization method has several good properties:
hyperparameter-free, faster convergence, less dependence on
the initial choice of the parameters, and robust against the
statistical error. To this end, we use the fact that the cost
function, as a function of a parameter θ , behaves very sim-
ply as a sine curve with period 2π , when the parameterized
quantum circuit consists of a unitary gate exp( iθ

2 A) being
subject to A2 = I . By virtue of this special property, we can
determine the angle θ that provides the exact minimum of
the cost function by evaluating the cost function at three
independent points with respect to the parameter. This allows
us to update each parameter with fewer measurements and to
achieve a smaller value of the cost function. The update is
deterministic if the order of the parameters is provided, and
hence the proposed optimization method is hyperparameter-
free. Independently from our work this periodic property of
the cost function has been used as part of proposed methods
for optimizing parameters of quantum circuits [36,37].

We perform detailed numerical simulations to compare
the proposed method with existing optimization algorithms
including both of gradient-free and gradient-based methods.
To this end, we develop a benchmark task for which we
can purely compare the performance of the optimization
algorithms apart from the representation power of the param-
eterized quantum circuits. The results show that the proposed
optimization method converges extremely faster than the ex-
isting ones, especially when the statistical error exists because
of the finite number of the samples to estimate an expectation
value. Furthermore, we find that the proposed method con-
verges to the solution almost irrespective of the choice of the
initial parameters, while other methods fail for certain initial
parameters. These results mean that the proposed method
readily accelerates almost all quantum-classical hybrid al-
gorithms substantially in a practical situation. The proposed
optimization method should be an inevitable ingredient in the
parameter tuning of NISQ devices.

The rest of the paper is organized as follows. In Sec. II, we
first describe the proposed optimization method for a single
parameter optimization at each step, where we can find an
exact minimum at each step. Then we further extend it for the
case where multiple parameters are updated at each step. We
also explain the case where multiple gates are parameterized
by the same parameters. In Sec. III, we present numerical
simulations to compare the proposed method with the exist-
ing optimization algorithms. We perform two tasks. One is
a benchmark of the optimization of the parameterized quan-
tum circuits, where we can achieve the exact solution if an

1A reference implementation of the proposed method as an opti-
mization module of scipy.optimize is available at https://github.com/
ken-nakanishi/nftopt.

optimization algorithm successfully finds the best parameters
regardless of the representation power of the ansatz state.
The other is VQE of the lithium hydride (LiH) molecule.
Section IV is devoted to the conclusion.

II. METHODS

A. Preconditions

Our optimization method requires the following three
conditions of the quantum-classical hybrid algorithms with
parameterized quantum circuits. (1) The parameters of the
parameterized quantum circuit are independent of each other.
(This condition can be relaxed by extending the proposed
method as we will see in Sec. II D.)

(2) The parameterized quantum circuit with J parameters
U (θ) (θ := {θ j}J

j=1) is composed only of the two types of
gates: fixed unitary gates (e.g., the Hadamard gate and the
control-Z gate) and rotation gates

Rj (θ j ) = exp
(
− iθ j

2
Aj

)
( j = 1, 2, . . . , J ), (1)

where Aj ( j = 1, 2, . . . , J ) satisfies the condition

A2
j = I (2)

(e.g., the Z-rotation gate and the X -rotation gate).
(3) The cost function which we are going to minimize is

written by the (weighted) sum of K expectation values:

L(θ) =
K∑

k=1

wk 〈ϕk|U †(θ)HkU (θ)|ϕk〉 , (3)

where Hk (k = 1, . . . , K ) are Hermitian operators such as
Hamiltonian, {|ϕk〉}K

k=1 are the input states, and wk is the
weight of the kth term. Hereinafter, we refer to L as the “cost
function.”

Most quantum-classical hybrid algorithms with parame-
terized quantum circuits, such as hardware efficient ansatz
[10,20], satisfy these requirements.

B. Our method

Here we describe how parameters are updated in the pro-
posed optimization method. Let θ(n) be the parameters of
the circuit after n steps of update. Then, let U (n)

j (θ j ) be the
parameterized quantum circuit U (θ) in which the parameters
are fixed to be θ(n) except for the jth parameter θ j :

U (n)
j (θ j ) := U (θ)|

θ j′=θ
(n)
j′ (for j′ �= j). (4)

Similarly, let L(n)
j (θ j ) be the cost function L(θ) with the fixed

parameters θ(n) except for the jth parameter θ j :

L(n)
j (θ j ) := L(θ)|

θ j′=θ
(n)
j′ (for j′ �= j). (5)

This cost function L(n)
j (θ j ) can be rewritten as a

function of θ j :

L(n)
j (θ j ) =

K∑
k=1

wk 〈ϕk|U (n)†
j (θ j )HkU

(n)
j (θ j )|ϕk〉

= a(n)
1 j cos

(
θ j − a(n)

2 j

) + a(n)
3 j , (6)

where a(n)
� j (� = 1, 2, 3) denote constants independent of θ j .

(See Appendix A for the derivation.) Equation (6) tells us that
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FIG. 1. The flow chart of the method shown in Sec. II B. The gray box is the part of using quantum device, and the white boxes are the
part of using only classical computer. Note that, at the top white box, the first and every few times we use a quantum device to estimate the
cost function.

the relation of L(n)
j (θ j ) to θ j is just a sine curve with period

2π . The three constants a(n)
1 j , a(n)

2 j , and a(n)
3 j can be determined

from the values of the cost function L(n)
j (θ j ) evaluated at

three independent points of θ j . Then we can find the ar-
gument θ j that minimizes the cost function L(n)

j (θ j ), i.e.,

arg minθ j
L(n)

j (θ j ).
Using the above feature, we update the parameters as fol-

lows. The flowchart in Fig. 1 also shows the procedure for
updating the parameters. (1) Estimate L(θ(0) ) from a quantum
device. (2) Choose an index jn ∈ {1, 2, · · · , J} of the param-
eters sequentially or randomly. (3) Estimate L(n−1)

jn
(θ (n−1)

jn
±

π
2 ) from a quantum device. Although the arguments do
not have to be θ

(n−1)
jn

± π
2 , the present choice simplifies the

optimization at step 3 greatly. (4) Determine θ jn minimiz-
ing the cost function L(n−1)

jn
(θ jn ) given by Eq. (6) using

L(n−1)
jn

(θ (n−1)
jn

), which was obtained in the previous update, and

L(n−1)
jn

(θ (n−1)
jn

± π
2 ). (5) Update as follows:

θ
(n)
jn

= arg minθ jn
L(n−1)

jn
(θ jn ), (7)

θ
(n)
j = θ

(n−1)
j (for j �= jn), (8)

L(n)
jn+1

(
θ

(n)
jn+1

) = min
θ jn

L(n−1)
jn

(θ jn ). (9)

Note that, the minimum is not estimated directly but calcu-
lated from the sine curve. Therefore the statistical error would
accumulate. To avoid this, the minimum L(n)

jn+1
(θ (n)

jn+1
) should be

estimated directly in a certain period. Under the circumstances
in which there is no statistical error, on the other hand, one
can further accelerate the convergence by performing a line
search, such as the golden section search, along on the line
connecting the initial and final points after each iteration over

the whole parameters. (6) Repeat steps 2, 3, 4, and 5 until L(θ)
converges.

C. Generalization of our method

In the previous section, the minimization is performed with
respect to one parameter at each update. Here we generalize
it for a multiparameter case. Let θ(n) be the values of the
parameters after n times of update as in Sec. II B. Then, let
U (n)

M ({θ j} j∈M ) be the parameterized quantum circuit U (θ) in

which the parameters are chosen to be θ(n) except for a set of
parameters {θ j} j∈M (M ⊂ {1, · · · , J}):

U (n)
M ({θ j} j∈M ) := U (θ)|

θ j′=θ
(n)
j′ (for j′ /∈M ), (10)

where M is a subset of indices for which the minimization
is performed. Similarly, let L(n)

M ({θ j} j∈M ) be the cost function

L(θ) with the fixed parameters θ(n) except for the parameters
{θ j} j∈M (M ⊂ {1, . . . , J}):

L(n)
M ({θ j} j∈M ) := L(θ)|

θ j′=θ
(n)
j′ (for j′ /∈M ). (11)

This cost function L(n)
M ({θ j} j∈M ) can be rewritten as

L(n)
M

({θ j} j∈M

)
=

K∑
k=1

wk 〈ϕk|U (n)†
M

({θ j} j∈M

)
HkU

(n)
M

({θ j} j∈M

)|ϕk〉

= b(n)
M ·

[⊗
j∈M

(cos θ j

sin θ j

1

)]
, (12)

where
⊗

denotes the Kronecker product, and b(n)
M denotes a

3|M|-dimensional coefficient vector with |M| being the number
of the elements of M. [See Appendix B for the derivation
of Eq. (12).] Since Eq. (12) has 3|M| parameters b(n)

M , we can
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determine b(n)
M using the values of cost function L(n)

M ({θ j} j∈M )

evaluated at 3|M| independent points of {θ j} j∈M . Then we
can find the values of {θ j} j∈M that minimize the cost func-

tion L(n)
M ({θ j} j∈M ). Unlike the method in Sec. II B, the true

minimum cannot be found analytically. In the experiments
in Sec. III, we numerically determined this with the BFGS
method. Note that the minimum does not necessarily equal to
the true minimum.

The optimization for the multiparameter update runs as
follows. (1) Estimate L(θ(0) ) from a quantum device. (2)
Choose a subset Mn ⊂ {1, 2, . . . , J} of indices. (3) Esti-
mate L(n−1)

Mn
({θ (n−1)

j + 2π
3 α j} j∈Mn

) for all α ∈ {0,±1}⊗|Mn| \
{0}⊗|Mn| using a quantum device, where α j denotes the jth
element of α. Although the above choices of the parameters
are not necessary, they have the advantage that the coeffi-
cients in Eq. (12) can be easily determined by using the
discrete Fourier transformation. (4) Determine {θ j} j∈Mn

that

minimizes the cost function L(n−1)
Mn

({θ j} j∈Mn
) from Eq. (12)

using L(n−1)
Mn

({θ (n−1)
j + 2π

3 α j} j∈Mn
) for α ∈ {0,±1}⊗|Mn|.

(5) Update as follows:{
θ

(n)
j

}
j∈Mn

= arg min{θ j} j∈Mn
L(n−1)

Mn

({θ j} j∈Mn

)
(13)

θ
(n)
j = θ

(n−1)
j (for j /∈ Mn), (14)

L(n)
Mn+1

({
θ

(n)
j

}
j∈Mn

) = min
{θ j} j∈Mn

L(n−1)
Mn

({θ j} j∈Mn

)
. (15)

Similarly to the previous case, L(n)
Mn+1

({θ (n)
j }

j∈Mn
) should be

estimated directly in a certain period to avoid the error accu-
mulation. (6) Repeat steps 2, 3, 4, and 5 until L(θ) converges.

D. Special case of our method

In this section, we consider the case where the several rota-
tion gates in the parameterized quantum circuit share the same
parameter. This is the case when the target state has a sym-
metry, like translation invariance, and hence the ansatz state
is also subject to it. Assume that the parameterized quantum
circuit has J parameters θ = {θ j}J

j=1, which are independent
of each other. Unlike Secs. II B and II C, each θ j is used at S j

times in the circuit. θ(n), U (n)
j (θ j ), and L(n)

j (θ j ) is defined in

the same way as Sec. II B. The cost function L(n)
j (θ j ) can be

transformed as

L(n)
j (θ j ) =

K∑
k=1

wk 〈ϕk|U (n)†
j (θ j )HkU

(n)
j (θ j )|ϕk〉

=
S j∑

s=1

a(n)
s j cos(sθ ) +

S j∑
s=1

b(n)
s j sin(sθ ) + c(n)

j , (16)

where a(n)
s j , b(n)

s j (s = 1, . . . , S j ) and c j denote some constants.
Note that these constants are independent of θ j . (See Ap-
pendix C for the derivation.) Since Eq. (16) has 2S j + 1
parameters, a(n)

s j , b(n)
s j (s = 1, . . . , S j ) and c(n)

j , we can deter-

mine these constants using the values of cost function L(n)
j (θ j )

at 2S j + 1 different values of θ j , and then find θ j minimizing
the cost function L(n)

j (θ j ).

Using this feature, we propose an updating method which
is the same method of Sec. II B except for the following
points. (1) Estimate L(n−1)

jn
(θ (n−1)

jn
+ 2πs

2S j+1 ) (s = 1, . . . , 2S j )
using a quantum device. Although the above choices of the
parameters are not necessary, they have the advantage that the
coefficients can be determined easily by using the discrete
Fourier transformation. (2) Determine θ jn minimizing the
cost function L(n−1)

jn
(θ jn ) [Eq. (16)] by using L(n−1)

jn
(θ (n−1)

jn
+

2πs
2S j+1 ) (s = 0, . . . , 2S j ).

III. NUMERICAL SIMULATION

A. Numerical setups

In this section, we numerically demonstrate the perfor-
mance of the proposed methods via two types of optimization
tasks. One (task 1) is a benchmark task of the parameter
optimization problems, which we introduced here to compare
the performance of different optimization algorithms. In this
task, we minimize

L(θ) = −∣∣〈0|⊗r U †(θθθ∗)U (θ) |0〉⊗r
∣∣2

, (17)

where r is the number of qubits, and θ∗ is randomly cho-
sen from a uniform distribution [0, 2π ) a priori. This task
is equivalent to VQE whose Hamiltonian is given by H =
U (θ∗)|0〉⊗r 〈0|⊗rU †(θ∗). However, in our numerical simu-
lations, we sample the output from the quantum circuit
U †(θ∗)U (θ)|0〉⊗r in the {|0〉, |1〉} basis for each qubit, which
can be done even on an actual quantum device. Then we cal-
culate the probability to obtain the outcome zero for all qubits
similarly to the estimation of the inner product in Higgott
et al. [38]. The cost function multiplied by −1 corresponds
to the fidelity between two quantum states U (θ)|0〉⊗r and
U (θ∗)|0〉⊗r . Since the minimum of the L(θ) is exactly −1
and achieved at least when θ = θ∗, we can purely compare
the performance of the optimization algorithms apart from the
representation power of the parameterized quantum circuits.

The other (task 2) is VQE for the lithium hydride (LiH)
molecule at bond distance with four qubits. The molecular
Hamiltonian HLiH is the same as the one given in the sup-
plemental material of Kandala et al. [10].

We use the method with the single-parameter minimiza-
tion proposed in Sec. II B at each update (method II B). We
sequentially choose a parameter to be optimized at each iter-
ation, and re-estimate the cost function L(n)

jn+1
(θ (n)

jn+1
) once in

32 iterations. In addition, we show the results of the two-
parameter simultaneous minimization version of the method
II C (method II C 2). We randomly choose two parameters to
be optimized at each iteration, and re-estimate the cost func-
tion L(n)

Mn+1
({θ (n)

j }
j∈Mn

) once in 32 iterations. We compare the

proposed methods with five existing optimization algorithms,
Powell, Nelder-Mead, conjugate gradient (CG), BFGS, and
SPSA methods, implemented in the SCIPY library [39] except
for the SPSA method.2 The hyperparameters of the SPSA

2Actually, we use a slightly modified code of them not to finish the
optimization process in the middle. This modified code use for our
experiment is available at https://github.com/ken-nakanishi/scipy.
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FIG. 2. The parameterized quantum circuit used in the simula-
tions of Sec. III. These parameters θ are optimized to to minimize L.
D denotes the number of repetition of a circuit in the bracket.

method we used are the same as the default values in QISKIT

v0.8.0 [40].
The initial values of the circuit parameters were randomly

sampled from a uniform distribution [0, 2π ). In the present
numerical simulations, we sampled the outcome 1024 times
for the estimation of the cost function (except for the results
shown in Fig. 4), which determine the amount of the statistical
error. For each simulation, the optimization was run 100 times
starting from different initial values of the parameters. In the
following, step counts the number of the estimation of the
expectation value of the cost function L(θ).

B. Numerical results

In task 1, we set the number of qubits and the depth of
the circuit in Fig. 2 to be r = 5 and D = 9, respectively. The
total number of the parameters is thus 100. In Fig. 3, the
horizontal axes represent the fidelity, and the vertical axes
represent the number of samples whose fidelity is under the
value of x axis for each of 1024, 2048, 4096, and 8192
steps from left to right. From Fig. 3, one can see that our
methods, shown as solid lines, converge extremely faster than
the other methods. Comparing the two proposed methods,
method II B converges faster than method II C-2. Specifically,
our method II B achieved fidelity higher than 0.98 after 8192
steps being independent of the initial set of parameters, while
the conventional methods only result in far low fidelity for
certain choices of the initial parameters. Figure 3 also shows
that the gradient-based methods converge much faster than
the gradient-free methods in general. Regarding the gradient-

based methods, BFGS seems to be the best, while SPSA
exhibits a better fidelity for some initial parameters. Fur-
thermore, the Powell method outperforms the Nelder-Mead
method when the number of steps is sufficiently large.

To investigate the statistical-error tolerance of each
method, the number of samples to estimate the cost function
is changed. In Fig. 4, we show the results after 8192 steps, for
each of 256, 1024, 16 384, and ∞ outcomes from left to right.
Here ∞ means that the cost function is directly calculated
from the inner product. In the limit of the larger number of
accumulations, Nelder-Mead, CG, BFGS, and the proposed
methods achieve high fidelity with almost no dependence on
the initial choice of the parameters. Specifically, BFGS and
the proposed methods both result in fidelity close to unity.
However, if the statistical error becomes larger with fewer
accumulations, the advantage of the proposed methods gets
larger. Notably, the proposed methods can achieve fidelity
above 0.9 with only 256 accumulations for almost all choices
of the initial parameters. Thus we conclude that the proposed
methods are robust against the statistical error. We present the
additional experiments of the method proposed in Sec. II D in
Appendix D.

In task 2, the depth D in Fig. 2 is set to 4, and hence
the circuit has 40 parameters. We show the results of VQE
of the lithium hydride molecule in Fig. 5. The horizontal
axes represent the energy difference (for top four figures)
and fidelity (for bottom four figures) between the solution of
VQE and the true ground state. The vertical axes represent
the choices of the initial parameters, which are sorted by the
values of each of energy difference and fidelity. From Fig. 5,
one can see that Method II B gets closer to the true ground
state much faster than the conventional methods we compared.
Especially, method II B achieved fidelity higher than 0.95,
which is considered the close-to-limit of the representation
power of the prepared parameterized quantum circuits, after
only 512 steps against almost all initial set of parameters,
while the conventional methods only result in far low fidelity
for certain choices of the initial parameters.

Let us finally argue why the proposed methods outperform
the other existing optimization algorithms. The possible weak
point of BFGS and CG methods is that these methods require
the gradients of all the parameters. They are good methods

FIG. 3. Cumulative distribution function of fidelity after 1024, 2048, 4096, and 8192 steps in task 1. Method II B is denoted by the solid red
(dark gray) lines. Method II C-2 is denoted by the solid orange (light gray) lines. The horizontal axes are the fidelity | 〈0|⊗r U †(θ∗)U (θ) |0〉⊗r |2.
The vertical axis shows the number of samples whose fidelity is under the value of x axis at particular steps.
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FIG. 4. Dependence of cumulative distribution function of fidelity on the strength of statistical error. Method II B is denoted by the solid red
(dark gray) lines. Method II C-2 is denoted by the solid orange (light gray) lines. The horizontal axes are the fidelity | 〈0|⊗r U †(θ∗)U (θ) |0〉⊗r |2.
The vertical axis shows the number of samples whose fidelity is under the value of x axis after 8192 steps.

when we can calculate all gradients at once, such as neural-
network models. In the quantum-classical hybrid algorithm,
however, we need to estimate the cost function twice as many
as the number of the parameters to get all gradients of the
parameter. This could be a disadvantage of these methods,
since the step counts not the number of updates but the number
of the estimation of the cost function in total. In SPSA method,
we use the difference of the two cost functions L(θ+δθ)−L(θ−δθ)

2|δθ|
instead of the gradient. This method cannot avoid the addi-
tional noise on the gradient, and this can interrupt the fast
convergence. In task 2, the SPSA method is better results than
in task 1. It is considered that the gradients of the parameters
in task 2 is farther apart of zero than ones in task 1 and then
can be estimated better.

IV. CONCLUSION

In this work, we proposed an efficient optimization method
for quantum-classical hybrid algorithms using parameterized
quantum circuits. In most quantum-classical hybrid algo-
rithms with parameterized quantum circuits, the relation of
the cost function to each parameter of the circuit is just a sine
curve with period 2π , on which our proposed method is based.
To make a good use of the above property, we divide the
optimization problem of the parameterized quantum circuits
into solvable subproblems by considering only a subset of the
parameters. By numerical simulations, we demonstrate that
our method converges to a better solution much faster than the
existing ones, especially in the presence of a large statistical

FIG. 5. Cumulative distribution function of energy difference and fidelity in VQE for the ground state of the Hamiltonian of lithium hydride
molecule LiH (task 2). Method II B is denoted by the solid red (dark gray) lines. Method II C-2 is denoted by the solid orange (light gray)
lines. The horizontal axes are the energy difference/fidelity between the calculated ground state and the true ground state. The vertical axes
show the number of samples whose energy difference/fidelity is under the value of x axis at particular steps.
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error. The proposed method is expected to have robustness not
only to the statistical error but also to the noise in the NISQ
devices due to the lack of the error correction, because the
relation of the cost function to each parameter of the circuit
would be robust against noise. This property of the present
method would enable us to conduct parameterized-quantum-
circuit-based variational algorithms on real quantum devices.
We believe that this work drastically accelerates the quantum-
classical hybrid algorithms and makes them practical in a
realistic situation. Furthermore, the proposed method itself
can be applied not only for optimizing parameterized quantum
circuits but also for classical variational method. For example,
the proposed method might be applied for the optimization
of multi-scale entanglement renormalization ansatz (MERA)
[41] by using variational unitary matrices inspired by pa-
rameterized quantum circuits. Neural networks composed of
rotation matrices might also be considered as the another
candidate.
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APPENDIX A: DERIVATION OF EQ. (6)

Using Eq. (2), the jth rotation gate Rj (θ j ) can be
rewritten as

Rj (θ j ) = I cos
θ j

2
− iA j sin

θ j

2
. (A1)

The circuit U (n)
j (θ j ) can be divided into three parts as

follows:

U (n)
j (θ j ) = V (n)

1 j R j (θ j )V
(n)

2 j , (A2)

where V (n)
1 j and V (n)

2 j are unitary operators which are in-

dependent of θ j . The cost function L(n)
j (θ j ) can then be

transformed as

L(n)
j (θ j ) =

K∑
k=1

wk 〈ϕk|U (n)†
j (θ j )HkU

(n)
j (θ j )|ϕk〉

=
K∑

k=1

wk 〈ϕk|V (n)†
2 j R j (−θ j )V

(n)†
1 j HkV

(n)
1 j

× Rj (θ j )V
(n)

2 j |ϕk〉

=
K∑

k=1

wk
〈
ϕ

′(n)
k j

∣∣(I cos
θ j

2
+ iA j sin

θ j

2

)

×H′(n)
k j

(
I cos

θ j

2
− iA j sin

θ j

2

)∣∣ϕ′(n)
k j

〉
× ( ∣∣ϕ′(n)

k j

〉
:= V (n)

2 j |ϕk〉 , H′(n)
k j := V (n)†

1 j HkV
(n)

1 j

)

= cos2 θ j

2

K∑
k=1

wk
〈
ϕ

′(n)
k j

∣∣H′(n)
k j

∣∣ϕ′(n)
k j

〉 + sin2 θ j

2

×
K∑

k=1

wk
〈
ϕ

′(n)
k j

∣∣AjH′(n)
k j A j

∣∣ϕ′(n)
k j

〉 + sin
θ j

2
cos

θ j

2

×
K∑

k=1

wk
〈
ϕ

′(n)
k j

∣∣i(AjH′(n)
k j − H′(n)

k j A j
)∣∣ϕ′(n)

k j

〉

= c(n)
1 j cos2 θ j

2
+ c(n)

2 j sin2 θ j

2
+ c(n)

3 j sin
θ j

2
cos

θ j

2

× (
c(n)

1 j , c(n)
2 j , c(n)

3 j ∈ R
)

= c(n)
4 j cos θ j + c(n)

5 j sin θ j + c(n)
6 j

(
c(n)

4 j , c(n)
5 j , c(n)

6 j ∈ R
)

= a(n)
1 j cos

(
θ j − a(n)

2 j

) + a(n)
3 j

(
a(n)

1 j , a(n)
2 j , a(n)

3 j ∈ R
)
,

(A3)

where c(n)
� j (� = 1, 2, . . . , 6) and a(n)

� j (� = 1, 2, 3) denote real
constants independent of θ j .

APPENDIX B: DERIVATION OF EQ. (12)

Mathematical induction can be used to prove that the fol-
lowing statement, P(m), holds for all natural numbers m.

P(m) : ∃b 〈ϕ|U †
m

({
θ j

}m

j=1

)
HUm

({
θ j

}m

j=1

)|ϕ〉

= b ·
[

m⊗
j=1

(cos θ j

sin θ j

1

)]
, (B1)

where
⊗

denotes Kronecker product, Um({θ j}m
j=1) is a given

parameterized quantum circuit which has m parameters and
which satisfies the three conditions of Sec. II A, H is a given
Hamiltonian, and |ϕ〉 is a quantum state. The order of the
parameters {θ j}m

j=1 is the same as the order of operating cor-
responding rotation gates.

When m = 1, the statement can prove in the similar manner
as Eq. (A3).

Show that if P(t ) holds, then also P(t + 1) holds. This can
be done as follows.

Assume P(t ) holds for some unspecified value of t . It must
then be shown that P(t + 1) holds as follows.

The given circuit Ut+1({θ j}t+1
j=1) can be divided into three

parts as follows:

Ut+1
({

θ j
}t+1

j=1

) = U0Rt+1(θt+1)Ut
({θ j}t

j=1

)
, (B2)

where U0 denotes a unitary with no parameter and Ut ({θ j}t
j=1)

denotes a unitary with t parameter.
Therefore

〈ϕ|U †
t+1

({θ j}t+1
j=1

)
HUt+1

({θ j}t+1
j=1

)|ϕ〉
= 〈ϕ|U †

t

({θ j}t
j=1

)
Rt+1(−θt+1)U †

0 HU0Rt+1(θt+1)

×Ut
({θ j}t

j=1

)|ϕ〉
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= 〈ϕ|U †
t

({θ j}t
j=1

)(
I cos

θt+1

2
+ iAt+1 sin

θt+1

2

)

×H′
(

I cos
θt+1

2
− iAt+1 sin

θt+1

2

)
Ut

({θ j}t
j=1

)|ϕ〉

× (
H′ := U †

0 HU0
)

= cos2 θt+1

2
〈ϕ|U †

t

({θ j}t
j=1

)
H′Ut

({θ j}t
j=1

)|ϕ〉

+ sin2 θt+1

2
〈ϕ|U †

t

({θ j}t
j=1

)
At+1H′At+1Ut

({θ j}t
j=1

)|ϕ〉

+ sin
θt+1

2
cos

θt+1

2
〈ϕ|U †

2

({θ j}t
j=1

)
i(At+1H′−H′At+1)

×U2
({θ j}t

j=1

)|ϕ〉

= b1 ·
[

t⊗
j=1

(cos θ j

sin θ j

1

)]
cos2 θt+1

2

+ b2 ·
[

t⊗
j=1

(cos θ j

sin θ j

1

)]
sin2 θt+1

2

+ b3 ·
[

t⊗
j=1

(cos θ j

sin θ j

1

)]
sin

θt+1

2
cos

θt+1

2

× (
b1, b2, b3 ∈ R3t )

= b4 ·
[

t⊗
j=1

(cos θ j

sin θ j

1

)]
cos θt+1

+ b5 ·
[

t⊗
j=1

(cos θ j

sin θ j

1

)]
sin θt+1

+ b6 ·
[

t⊗
j=1

(cos θ j

sin θ j

1

)] (
b4, b5, b6 ∈ R3t )

= b ·
[

t+1⊗
j=1

(cos θ j

sin θ j

1

)] (
b ∈ R3t+1)

. (B3)

Thereby showing that indeed P(t + 1) holds.

Since both the base case and the inductive step have been
performed, by mathematical induction the statement P(m)
holds for all natural numbers m.

APPENDIX C: DERIVATION OF EQ. (16)

Assume that the parameterized quantum circuit has S ro-
tation gates which has the same parameter θ . Because of
Eq. (B3), then cost function can written by

b ·
(cos θ

sin θ

1

)⊗S

. (C1)

This equation is written as follows:

b ·
(cos θ

sin θ

1

)⊗S

=
∑

p, q ∈ N
p + q � S

ap,q cosp θ sinq θ (ap,q ∈ R)

=
S∑

s=0

ηs coss θ +
S−1∑
s=0

ξs coss θ sin θ (ηs, ξs ∈ R)

=
S∑

s=0

η′
s cos(sθ ) +

S−1∑
s=0

ξ ′
s cos(sθ ) sin θ (η′

s, ξ
′
s ∈ R)

=
S∑

s=0

η′
s cos(sθ ) +

S−1∑
s=0

ξ ′
s

2
(sin((s + 1)θ ) − sin((s − 1)θ ))

=
S∑

s=0

η′
s cos(sθ ) +

S∑
s=0

ξ ′′
s sin(sθ ) (ξ ′′

s ∈ R)

=
S∑

s=1

as cos(sθ ) +
S∑

s=1

bs sin(sθ ) + c (as, bs, c ∈ R).

(C2)

Using Eq. (C2), we can derive Eq. (16).

FIG. 6. Cumulative distribution function of fidelity after 1024, 2048, 4096, and 8192 steps in task 1. Method II D is denoted by the solid
red lines. The horizontal axes are the fidelity | 〈0|⊗r U †(θ∗)U (θ) |0〉⊗r |2. The vertical axis shows the number of samples whose fidelity is under
the value of x axis at particular steps.
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FIG. 7. Dependence of cumulative distribution function of fidelity on the strength of statistical error. Method II D is denoted by the solid
red lines. The horizontal axes are the fidelity | 〈0|⊗r U †(θ∗)U (θ) |0〉⊗r |2. The vertical axis shows the number of samples whose fidelity is under
the value of x axis after 8192 steps.

APPENDIX D: NUMERICAL SIMULATION OF SEC. II D

In this Appendix, we show the additional results of the
method proposed in Sec. II D (method II D) comparing with
the conventional methods. In task 1, we set the number of
qubits and the depth of the circuit in Fig. 2 to be r = 5 and
D = 9, respectively. The total number of the parameters is
thus 100. Here, we divide them into 50 pairs, each of which
takes the same value. In Fig. 6, the horizontal axes repre-
sent the fidelity, and the vertical axes represent the number

of samples whose fidelity is under the value of x axis for
each of 1024, 2048, 4096, and 8192 steps from left to right.
The other experimental settings are the same as the task 1
in Sec. III.

To investigate the statistical-error tolerance of each
method, the number of samples to estimate the cost function
is changed. In Fig. 7, we show the results after 8192 steps,
for each of 256, 1024, 16 384, and ∞ outcomes from left
to right.
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