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Dark states of quantum search cause imperfect detection
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We consider a quantum walk where a detector repeatedly probes the system with fixed rate 1/τ until the walker
is detected. This is a quantum version of the first-passage problem. We focus on the total probability Pdet that the
particle is eventually detected in some target state, for example, on a node rd on a graph, after an arbitrary number
of detection attempts. Analyzing the dark and bright states for finite graphs and more generally for systems with a
discrete spectrum, we provide an explicit formula for Pdet in terms of the energy eigenstates which is generically
τ independent. We find that disorder in the underlying Hamiltonian renders perfect detection, Pdet = 1, and then
expose the role of symmetry with respect to suboptimal detection. Specifically, we give a simple upper bound
for Pdet that is controlled by the number of equivalent (with respect to the detection) states in the system. We also
extend our results to infinite systems, for example, the detection probability of a quantum walk on a line, which
is τ dependent and less than half, well below Polya’s optimal detection for a classical random walk.
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I. INTRODUCTION

Recently, the first detection problem for quantum dynam-
ics has attracted increasing interest [1–23], due in part to
its potential relevance for the readout of certain quantum
computations. More fundamentally, it sheds light on hitting
time processes and measurement theory in quantum the-
ory [24–28]. The classical counterpart of this topic is the
first-passage-time problem, which has a vast number of appli-
cations in many fields of science [29–34]. In its simplest guise,
a classical random walker initially located on a particular
vertex of a graph is considered, and the question of interest
is the following: When will the particle arrive at a target state,
for instance, another vertex of the graph, for the first time?
For the quantum system, we investigate unitary evolution on
a graph, with a particle in an initial state |ψin〉, which could
be, e.g., a localized state on a vertex |rin〉. This evolution is
repeatedly perturbed by detection attempts for another state
|ψd〉 called the detection state (for example, another localized
vertex state of the system |rd〉, discussed below). In this sit-
uation, the concept of first arrival is not meaningful, but we
can register the first detected arrival time. The protocol of
measurement (i.e., the epochs of the detection attempts) cru-
cially determines this first detection time [9,18]. We consider
a stroboscopic protocol, i.e., a sequence of identical mea-
surements with fixed inter-attempt time τ , continued until the
first successful detection (see definitions below). One of the
general aims in this direction of research is to gain information
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on the statistics of this event, which is inherently random by
the basic laws of quantum mechanics. Our approach explicitly
incorporates repeated strong measurements into the definition
of the first detected arrival and therein differs from other
quantum search setups [1,35–52] and from the time-of-arrival
problem [53–61].

In some cases, the quantum search is by far more efficient
than its classical counterpart. In particular, for the hypercube
and for certain trees it was shown that the quantum search can
be exponentially faster than possible classically [2,62–64]. In-
deed, while the classical random walker repeatedly resamples
its trajectory, a quantum walker may benefit from the con-
structive interference of its wave function. This mechanism
enables a quantum walker to achieve much faster detection
times than its classical counterpart. In the same way, however,
certain initial conditions suffer from destructive interference
such that the desired state is never detected and yields a
diverging mean detection time [2–4,6,18]. We call such ini-
tial conditions dark states. The terminology dark states is
borrowed from atomic physics and quantum optics where it
describes forbidden transitions or nonemissive states [65,66].
The classical random walk, if the process is ergodic, does not
possess dark states and hence in this sense performs “better,”
since detection on a finite graph is guaranteed. In the quan-
tum problem, the presence of the detector splits up the total
Hilbert space into a dark space [2,7,67] and its complement.
These play the roles of the ergodic components in a classical
random walk. In contrast to the classical situation, they are not
generated by a separation of state space (alone) but rather by
destructive interference.

The main focus of this paper is the total detection probabil-
ity Pdet. This is the probability to detect the particle eventually,
namely, the detection probability in principle after an infi-
nite number of attempts (though the measurement process is
stopped once the particle is detected). In a finite system, if the
initial and detection states coincide, Pdet is always unity [9].
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However, when the initial state differs from the detection state,
the initial state can have an overlap with some dark states,
which are undetectable, and the overlap of the initial state
with the dark space gives no contribution to Pdet. We derive
an explicit formula for Pdet in terms of the eigenstates |El,m〉
of the unitary propagator Û (τ ) := e−iτ Ĥ/h̄ (or the Hamiltonian
Ĥ ), the mth state with quasienergy λl = τEl/h̄ mod 2π , such
that Û (τ )|El,m〉 = e−iλl |El,m〉:

Pdet(ψin) =
∑

l

′
∣∣∑gl

m=1〈ψd|El,m〉〈El,m|ψin〉
∣∣2

∑gl
m=1 |〈El,m|ψd〉|2 . (1)

This is the first main result of this paper. For most values of τ ,
there is a one-to-one correspondence between the set of values
of El and those of λl . Only if there are one or more pairs of
energies {Ek, El}, such that the resonance condition

(Ek − El )τ/h̄ = 0 mod 2π (2)

is satisfied, are there fewer quasienergies than energies. The
primed sum runs over those distinct quasienergy sectors that
have nonzero overlap with the detected state (i.e., excluding
any completely dark sectors) with the inner sum running
over the gl degenerate states of quasienergy level λl . Thus,
except for the zero-measure set of resonant values of τ , Pdet

does not depend on the detection period at all. However, at
these resonant τ , Pdet changes dramatically [68]. This formula
is obviously invariant under a change of basis within any
quasienergy sector. We give two different derivations of this
formula, one based on the quantum renewal formula [9,18]
for the probability of detection after n measurements and a
more elementary proof based on an explicit formula for the
bright and dark states in terms of the propagator’s eigenstates.
This proof requires showing that, on a finite graph, all states
that are orthogonal to the dark space are bright, that is, they
are detected with probability one, and so Pdet is equal to the
initial state’s overlap with the bright space. Both our renewal
formula derivation and this latter proof break down in the
cases of infinite graphs, where the spectrum has a continuous
part. We will discuss this point in detail in the context of the
infinite line.

While Eq. (1) is the exact solution to the problem, insight is
found addressing the symmetry of H and for systems whose
Hamiltonian is given by an adjacency matrix, the symmetry
of the graph. Krovi and Brun [2] already showed that the total
detection probability is suboptimal, or in their language the
hitting time is infinite, if the system exhibits symmetry. Indeed
as indicated by Eq. (2), degeneracy plays an important role
in the evaluation of Pdet and hence the symmetry properties
of the underlying unitary operator are crucial. In Sec. VIII
of this paper, we obtain a remarkably simple upper bound
Pdet � 1/ν, where ν is the number of distinct sites of the
graph equivalent to the initial localized initial state. Briefly,
that means that we search for ν graph nodes that are equivalent
with respect to the detector (which is also localized on a node)
and this number yields the mentioned bound on the detection
probability (see Fig. 1 for details). More general symmetry
consideration will follow.

The rest of this paper is organized as follows. In Sec. II we
will introduce our model. Then we derive our main result, first
using the renewal formula in Sec. III. After that we discuss the

FIG. 1. Upper bound for some simple graphs showing the de-
viations of detection probability Pdet from the classical counterpart,
which is unity. The numbers represent the bound for Pdet from
Eq. (47). An open circle denotes the detection site rd, and any other
node is a possible localized initial state |ψin〉 = |rin〉. The quantum
particle resides on the nodes of these graphs and travels along its
links, which are all identical (Ĥ is the adjacency matrix of the graph).
In all graphs, the on-site energies are equal to zero. Shown from
left to right and top to bottom are the ring of size 6; the hypercube
of dimension 3; a two-dimensional simple cubic lattice; the square
graph with a detection site in the center, in a corner, and in a corner
with one modified link; the binary tree graph in two generations with
detection in the root, middle, and leaves; the complete graph with
eight sites; the Star-of-David graph; and the tree-of-life graph. The
infinite line is shown at the very bottom. The numbers are upper
bounds for Pdet which are easy to obtain and can be compared with
the exact result (1).

splitting of the Hilbert space into bright and dark subspaces in
Sec. IV and use this in Sec. V to rederive our main formula.
Examples are discussed in Sec. VI. The case of the infinite
line is analyzed in Sec. VII. In Sec. VIII we provide an
upper bound exploiting the symmetry of the underlying graph.
A brief summary of some of our results was presented in
Ref. [21].

II. STROBOSCOPIC DETECTION PROTOCOL

One does not simply observe the first arrival of a quan-
tum particle in some target state |ψd〉, because it does not
have a trajectory in the classical sense. The measurement,
i.e., the attempted detection, must be explicitly incorporated
into the dynamics. Following Refs. [9,10,12,13,16–20], this
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can be done by adhering to the stroboscopic detection pro-
tocol, where detection in state |ψd〉 is attempted at times
τ, 2τ, 3τ, . . .. The detection period τ between the detection
attempts is a parameter of the experimentalist’s choice. The
experiment we have in mind follows this protocol.

1. Prepare the system in state |ψin〉 at time t = 0 and set
n = 0.

2. The system evolves unitarily for time τ with the evo-
lution operator Û (τ ) := e−iτ Ĥ/h̄; the wave function is then
|ψ (nτ + τ−)〉 = Û (τ )|ψ (nτ )〉. [The − (+) superscript de-
notes the limit from below (above)]. Increase n by one, n =
n + 1.

3. Attempt to detect the system in the state |ψd〉 with a
strong collapsing measurement.

a. With conditional probability ‖D̂|ψ (nτ−)〉‖2 =
|〈ψd|ψ (nτ−)〉|2, the system is successfully detected. Here

D̂ = |ψd〉〈ψd| (3)

is the projector onto the detection state. The detection time is
t = nτ and the experiment ends.

b. Otherwise, the measurement fails to detect the system
in the target state. The wave function is instantaneously pro-
jected to the state that has no overlap with the detection state
|ψd〉. This is the collapse postulate [69]. Mathematically, the
wave function directly after the unsuccessful measurement
is equal to |ψ (nτ+)〉 = Nn[1 − D̂]|ψ (nτ−)〉, where Nn is a
normalization constant and 1 is the identity operator. After
constructing the new wave function, jump back to step 2. This
loop is repeated until the system is finally detected in step 3a.

After following this procedure many times, one may con-
struct a histogram for the first successful detection number n.

As shown by Dhar et al. [12], the overall probability of
detection at measurement n is

Fn = ‖D̂Û (τ )[(1 − D̂)Û (τ )]n−1|ψin〉‖2 (4)

and the probability of no detection in the first n measurements
is

Sn(ψin) = 1 −
n∑

m=1

Fm = ‖[(1 − D̂)Û (τ )]n|ψin〉‖2

= ‖Ŝn|ψin〉‖2, (5)

where Ŝ := (1 − D̂)Û (τ ) is the survival operator. The de-
pendence on the initial state is stressed in the notation.
The dependence on the detection state, however, will be
suppressed throughout the article. Clearly, Sn involves n com-
pound steps of unitary evolution followed by unsuccessful
detection. The main focus of this paper is the total detection
probability, the probability to be eventually detected, i.e., the
probability to “not survive”:

Pdet(ψin) =
∞∑

n=1

Fn = 1 − lim
n→∞ Sn(ψin). (6)

An initial state |ψin〉 that is never detected is called a dark
state with respect to the detection state |ψd〉; for these states
Pdet(ψin) = 0 and Sn(ψin) = 1 for all n. Similarly, a bright
state is detected with probability one, i.e., Pdet(ψin) = 1, and

Sn(ψin) → 0 as n → ∞. Of course we may also have states
that are neither dark nor bright.

Our theory is developed in generality, valid for any finite-
dimensional Hamiltonian Ĥ . Besides the initial and detection
states, Ĥ and the detection period τ are the ingredients that
enter the stroboscopic detection protocol via the evolution
operator Û (τ ) := e−iτ Ĥ/h̄. We assume that a diagonalization
of the latter is available:

Û (τ ) =
∑

l

e−iλl P̂l , P̂l :=
gl∑

m=1

|El,m〉〈El,m|. (7)

Here |El,m〉 are the eigenstates and P̂l are the eigenspace pro-
jectors, which gather all eigenstates of the gl -fold degenerate
quasienergy level λl = τEl/h̄ mod 2π , so that all λl in Eq. (7)
are distinct. This form is easily obtained from a similar diago-

nalization of the Hamiltonian Ĥ = ∑
l El

∑g′
l

m=1 |E ′
l,m〉〈E ′

l,m|.
For convenience, we label the states by their energy El , rather
than by their quasienergy λl , since we focus on nonresonant
values of τ .

Although the only effect of τ on Pdet is possible discontin-
uous changes at resonant τ s, the detection period has a more
profound effect on other quantities such as the mean detection
time [18,70]. It is an important parameter of the stroboscopic
detection protocol. In the limit τ → 0, when the system is
observed almost continuously, the Zeno effect freezes the
dynamics [71–74] and detection can become impossible.

III. FROM THE RENEWAL EQUATION TO THE TOTAL
DETECTION PROBABILITY

One proof of Eq. (1) starts from the first detection am-
plitudes ϕn [17], which in turn yield the first detection
probabilities Fn = |ϕn|2, and so Pdet = ∑∞

n=1 Fn. The gener-
ating function for these amplitudes ϕ(z) = ∑∞

n=1 znϕn can be
expressed in terms of Û (τ ) (for details, see Refs. [17,18]):

ϕ(z) = z
〈ψd| Û (τ )

1−zÛ (τ )
|ψin〉

〈ψd| 1

1−zÛ (τ )
|ψd〉

. (8)

This formula is obtained from the quantum renewal equation:
a basic tool for the derivation of the detection amplitude
[9,18]. As shown in [18], Pdet can be obtained from ϕ(z),

Pdet =
∞∑

m,n=1

δm,nϕ
∗
mϕn = 1

2π

∫ 2π

0
dθ

∞∑
m,n=1

ϕ∗
mϕneiθ (n−m)

= 1

2π

∫ 2π

0
dθ |ϕ(eiθ )|2, (9)

i.e., as the integral of the generating function’s modulus on the
unit circle.

Using the quasienergy representation of the evolution oper-
ator (7), the generating function (8) is expressed as the fraction
of two expressions

ϕ(z) =
∑

l〈ψd|P̂l |ψin〉 ze−i(τEl /h̄)

1−ze−i(τEl /h̄)∑
l

〈ψd|P̂l |ψd〉
1−ze−i(τEl /h̄)

= z
(Kμν)(z)

(Kμ)(z)
, (10)
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where (Kμ)(z) is the so-called Cauchy transform of the func-
tion μ(θ ), 0 � θ < 2π , defined by [75]

(Kμ)(z) = 1

2π

∫ 2π

0
dθ

μ(θ )

1 − ze−iθ
. (11)

In Ref. [20] we showed that the denominator of ϕ(z) is
a Cauchy transform of the so-called wrapped measurement
spectral density of states,

μ(θ ) := 2π〈ψd|δ(e−iθ − Û (τ ))|ψd〉

= 2π
∑

l

〈ψd|P̂l |ψd〉δ(θ − λl ), (12)

where λl is the phase corresponding to the lth quasienergy
level: λl := τEl/h̄ mod 2π . All λl are distinct.

The numerator is a Cauchy transform as well, but of a
product of functions μ(θ )ν(θ ):

μ(θ )ν(θ ) :=
∑

l

′ 〈ψd|P̂l |ψd〉δ(θ − λl )
〈ψd|P̂l |ψin〉e−iλl

〈ψd|P̂l |ψd〉︸ ︷︷ ︸
=:ν(λl )

.

(13)

Almost all values of the functions ν(θ ) are irrelevant, except
at the specific arguments λl , where they are fixed, ν(λl ) =
e−iλl 〈ψd|P̂l |ψin〉/〈ψd|P̂l |ψd〉. [Due to the δ functions in μ(θ ),
these are the only significant values of ν(θ ).] The primed
sum excludes all completely dark energy levels, i.e., those
for which P̂l |ψd〉 = 0, so 〈ψd|P̂l |ψd〉 does not vanish in the
denominator of ν(θ ). Putting the numerator and denomi-
nator together, we find that ϕ(z) = z(Kμν)(z)/(Kμ)(z) =:
z(Vμν)(z) is a so-called normalized Cauchy transform [75].
For objects like this, Aleksandrov’s theorem allows one to
compute the total detection probability (see [75], Proposition
10.2.3)

Pdet = 1

2π

∫ 2π

0
dλ|(Vμν)(eiλ)|2 = 1

2π

∫ 2π

0
dλμ(λ)|ν(λ)|2,

(14)
where we used Eq. (9) for the first equality. An explicit ex-
ample of how Aleksandrov’s theorem works in practice for a
two-level system in given in Appendix A.

Since μ(θ ) is just a sum of δ functions at the quasienergies
λl and ν(λl ) is known, the required integral is easily deter-
mined:

Pdet = 1

2π

∫ 2π

0
dλ μ(λ)|ν(λ)|2

=
∑

l

′〈ψd|P̂l |ψd〉
∣∣∣∣e−iλl

〈ψd|P̂l |ψin〉
〈ψd|P̂l |ψd〉

∣∣∣∣
2

=
∑

l

′ |∑gl
m=1〈ψd|El,m〉〈El,m|ψin〉|2∑gl
m=1〈ψd|El,m〉〈El,m|ψd〉 . (15)

We have thus obtained Eq. (1).
It is important to note that Aleksandrov’s theorem in this

form only applies to operators with a point spectrum. If the
spectrum has a continuous component, then Aleksandrov’s
theorem turns into an inequality (see [75], Proposition 10.2.3)
and we have

Pdet �
1

2π

∫ 2π

0
dλ μ(λ)|ν(λ)|2. (16)

Reference [20] discusses μ(λ) in depth for systems with a
continuous spectrum. [Note that this reference defines ν(λ) in
a slightly different way.] This proof does not make any explicit
reference to dark or bright states (except for the exclusion of
dark levels) and so is not physically transparent. We therefore
present an alternate proof in the next section.

IV. PARTITION OF HILBERT SPACE

A. Dark states

In this section we discuss the partition of the Hilbert space
into a bright and a dark part. In Sec. II we defined dark states
as those with Fn = 0 and Sn = 1 for all n. In particular, we fo-
cus on stationary dark states, which are invariant under unitary
evolution as well as under the detection attempts. During the
course of the detection protocol, only their phase is affected.
Hence they remain dark for all times.

In view of the diagonalization (7), there are two ways dark
states can arise.

(i) Completely dark quasienergy levels. Consider a
quasienergy level El that has no overlap in the detection
state. That means none of the level’s eigenstates overlaps
with |ψd〉, i.e., P̂l |ψd〉 = 0 or 〈El,m|ψd〉 = 0 for m = 1, . . . , gl .
Alternatively, one can write D̂|El,m〉 = 0. We also define
these states as |δl,m〉 = |El,m〉. If we take one of these as
an initial state, we have Ŝ|δl,m〉 = (1 − D̂)Û (τ )|δl,m〉 = (1 −
D̂)e−iτEl /h̄|δl,m〉 = e−iτEl /h̄|δl,m〉. Thus, |δl,m〉 is an eigenstate
of the survival operator with an eigenvalue on the unit circle,
and so Sn(δl,m) = ‖Ŝn|δl,m〉‖2 = 1. Thus, all the |δl,m〉 are
dark states. We call quasienergy levels that do not appear
in a decomposition of the detection state completely dark
quasienergy levels. All gl associated eigenstates are dark.

(ii) Degenerate energy levels. Consider now an quasienergy
level El that does overlap with the detection state, but which
is degenerate, such that gl > 1. Construct the projection of the
detection state on this sector,

|βl〉 := P̂l |ψd〉√
〈ψd|P̂l |ψd〉

. (17)

It will turn out that |βl〉 is a bright state. All states within
this sector which are orthogonal to |βl〉 are orthogonal to the
detector, since if |δl〉 is such a state,

〈ψd|δl〉 = 〈ψd|P̂l |δl〉 ∝ 〈βl |δl〉 = 0 (18)

and so are dark. These states constitute a (gl − 1)-dimensional
subspace of this quasienergy sector, any state lying within
which is dark. It can be convenient to have an explicit basis
for this subspace, which can be generated by a determinantal
formula similar to that used in the Gram-Schmidt procedure.
We define

|δl, j〉 = Nj

∣∣∣∣∣∣∣∣∣∣∣∣∣

|E1〉 |E2〉 · · · |Ej+1〉
〈ψd|E1〉 〈ψd|E2〉 · · · 〈ψd|Ej+1〉
〈δ1|E1〉 〈δ1|E2〉 · · · 〈δ1|Ej+1〉

...
...

. . .
...

〈δ j−1|E1〉 〈δ j−1|E2〉 · · · 〈δ j−1|Ej+1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(19)
where Nj is a normalization factor and the subscript l was
omitted on the right-hand side. This determinant has the ob-
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vious properties that (i) it yields an eigenstate of Û (τ ); (ii)
it is orthogonal to |ψd〉, since 〈ψd|δl, j〉 is a determinant with
two identical rows; and (iii) it is orthogonal to all |δl,m〉 with
m < j. Likewise, 〈δl,m|δl, j〉 is a determinant with two identical
rows and so vanishes.

This formula gives

|δl,1〉 = N1(〈ψd|El,2〉|El,1〉 − 〈ψd|El,1〉|El,2〉) (20)

and then recursively computes |δl,m〉 from all previous |δl, j〉.
The result is a set of gl − 1 normalized and mutually or-
thogonal stationary dark states. As |δl,m〉 is constructed only
from the eigenstates |El,1〉, |El,2〉, . . . , |El,m+1〉, we find that
many of the 〈δl,m|El, j〉 in Eq. (19) vanish, namely, all those
with j > m + 1. Consequently, the matrix in Eq. (19) is lower
triangular except for the first rows. This enables us to compute
the determinant explicitly:

|δl,m〉 =
∑m

j=1[|αl, j |2|El,m+1〉 − α∗
l,m+1αl, j |El, j〉]√∑m

j=1

∑m+1
j′=1 |αl, j |2|αl, j′ |2

. (21)

Here we abbreviated αl,m = 〈El,m|ψd〉. Equation (21) contains
Eq. (20) as a special case.

B. Bright states

We have seen above how dark states arise and constructed
a set of stationary dark states, which not only are energy
eigenstates but (unit modulus eigenvalue) eigenstates of the
survival operator. We have also seen that each degenerate level
that was not completely dark yielded an energy eigenstate |βl〉
which we claimed was not only not dark, but was bright. Sim-
ilarly, every nondegenerate level that is not completely dark
also turns out to be bright, so |El〉 = |βl〉. These bright states,
while energy eigenstates, are not in general eigenstates of the
survival operator. Together, the |βl〉 states, one arising from
each not-totally-dark level, span the orthogonal complement
of the dark space.

We now demonstrate that they are indeed bright. It was
already mentioned that the stationary dark state |δl,m〉 is a
(right) eigenstate of Ŝ with eigenvalue e−iτEl /h̄, lying on the
unit circle. It is easy to see that these are the only eigenvalues
on the unit circle, since D̂ must annihilate it. Since Ŝ is the
product of a projector with a unitary matrix, it can have no
eigenvalues outside the unit disk, and so all other eigenvalues
ζ must lie inside the unit disk, i.e., |ζ | < 1.

In fact, these eigenvalues are directly related to the poles
of the generating function ϕ(z) discussed above. We may
now use the definition Ŝ := (1 − D̂)Û (τ ) of the survival
operator and rewrite its characteristic polynomial as det[ζ1 −
Û (τ ) + |ψd〉〈ψd|Û (τ )]. An application of the matrix determi-
nant lemma yields

det[ζ1 − Ŝ] = det[ζ1 − Û (τ )]〈ψd|[ζ1 − Û (τ )]−1|ψd〉.
(22)

The last term can be identified with the denominator of ϕ(z)
of Eq. (8). Inverting the equation yields

〈ψd| 1

1 − 1
ζ
Û (τ )

|ψd〉 = ζ
det[ζ1 − Ŝ]

det[ζ1 − Û (τ )]
. (23)

This relation shows that zp is a (finite) pole of ϕ(z) if and only
if ζl = 1/zp is an eigenvalue of Ŝ, but not of Û (τ ). These are
exactly the eigenvalues of Ŝ that lie inside the unit disk. By
construction, ϕ(z) is analytic in the unit disk. Therefore, all of
its poles must lie outside the unit disk and have |zp| > 1. Con-
sequently, all of these nontrivial eigenvalues of Ŝ, which are
the poles’ reciprocals, must lie inside the unit circle, |ζl | < 1.
The corresponding eigenvectors belong to the complement of
the dark space, i.e., the bright space. These vectors span the
bright space, and it is clear that any superposition of bright
eigenstates |β̃〉 = ∑

l bl |βl〉 will yield an exponentially decay-
ing survival probability. So S∞(β̃ ) = 0 and the state is bright,
as claimed. The decay rate is determined by the eigenvalue
ζmax closest to the unit circle.

There are two subtleties in this argument. One must allow
for the possibility that there are degenerate eigenvalues of Ŝ
and the operator is not diagonalizable. Showing that |β̃〉 is
bright in this case is a bit technical, and we present the argu-
ment in Appendix B. The other point to be raised is that if the
system is infinite, the eigenvalues might approach arbitrarily
closely to the unit circle and there might not be an exponential
decay of the survival probability. This indeed happens, and in
such systems, states in the complement to the dark space are
not necessarily bright. This will be discussed in more detail in
Sec. VII.

The just-described transition from {|El,m〉}gl
m=1 to |βl〉 and

{|δl,m〉}gl −1
m=1 is a change from one orthonormal basis to another.

Still, all involved states are eigenstates and are thus invariant
under Û (τ ). The special feature of the new representation
is that each individual stationary dark state and all bright
eigenstates together are additionally invariant under the de-
tection process. In the language of Refs. [7,67], HB and HD

are so-called invariant subspaces. The action of the survival
operator Ŝ may change a particular superposition of bright
eigenstates |β̃〉 = ∑

l bl |βl〉 into some other superposition of
|βl〉, but it can never generate a dark state.

V. Pdet CALCULATED FROM THE BRIGHT SPACE

We see from the above discussion that, as noted by Krovi
and Brun [2], the limit limn→∞ Sn(ψin) of an arbitrary initial
state’s survival probability is equal to its overlap with the
dark space, ‖P̂HD |ψin〉‖2, at least for a finite system. Comple-
mentarily, the total detection probability must be equal to the
overlap with the bright space.

The projector onto the bright space has the form P̂HB =∑′
l |βl〉〈βl |, where the sum excludes all completely dark en-

ergy levels, so that they do not possess a bright state, and |βl〉
are the bright eigenstates of Eq. (17). Identifying Pdet(ψin) =
〈ψin|P̂HB |ψin〉, we find

Pdet(ψin) =
∑

l

′ |〈ψd|P̂l |ψin〉|2

〈ψd|P̂l |ψd〉
. (24)

Plugging the definition of the eigenspace projectors P̂l that
is found in Eq. (7) into Eq. (24) yields Eq. (1). Note that
the sum only runs over those quasienergy levels El which are
not completely dark, so the denominator in Eq. (1) can never
vanish.
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We can now make the following observations.
(a) When the initial state coincides with the detection state,

we get Pdet = 1, in agreement with Ref. [9]. This means that
the detection state |ψd〉 itself is always bright.

(b) The total detection probability does not depend on the
sampling rate; Pdet is τ independent. This is true except for
the resonant detection periods τc, defined in Eq. (2). At these
points the number of bright states can suddenly change and
Pdet may exhibit a discontinuous drop.

(c) In systems with only nondegenerate quasienergy levels
that all overlap with the detection state, i.e., 〈El |ψd〉 
= 0, any
initial state is detected with probability one. In this case there
are no dark states; all eigenstates are bright. Such behavior
is classical, in the sense that a classical ergodic random walk
also finds its target with probability one. It implies that some
disorder in the system, which removes all the degeneracy,
may increase the detection probability provided none of the
eigenstates is orthogonal to the detection state. In systems
with degenerate quasienergy levels, one may still be able to
find initial states which are detected with probability one, but
this will not be true generically for all initial states.

VI. EXAMPLES

Let us now consider some examples that demonstrate the
relation of Pdet to the dark and bright states. The examples all
consist of graphs of nodes connected by links, which represent
hopping between the connected nodes, and we consider only
initial and detection states which are localized on individual
nodes. In all cases but the ring with a magnetic field, we take
the hopping strengths to be uniform, with value γ , and zero
on-site energies. We also assume that τ avoids the resonant
condition (2).

A. Ring

Let us now consider a ring with L (even) sides. Its Hamil-
tonian takes the form

Ĥ = −γ

L∑
r=1

[|r〉〈r + 1| + |r〉〈r − 1|]. (25)

We employ periodic boundary conditions and identify |r +
L〉 = |r〉.

The free wave states diagonalize the Hamiltonian such that
the energy levels are given by

El = −2γ cos
2π l

L
, (26)

with l = 0, 1, . . . , L/2. Except for E0 and EL/2, which are
nondegenerate, all energy levels possess two eigenstates

|E0〉 =
L∑

r=1

|r〉√
L

, |EL/2〉 =
L∑

r=1

(−1)r |r〉√
L

,

|El,1〉 =
L∑

r=1

ei(2π lr/L)|r〉
√

L
, |El,2〉 =

L∑
r=1

e−i(2π lr/L)|r〉√
L

.

(27)

Picking the localized states |rin〉 and |rd〉 = |L〉 as initial and
detection states, we find, using Eq. (1),

Pdet(rin) = 2

L
+ 2

L

L/2−1∑
l=1

cos2 2π lrin

L
=

{
1 for rin = L

2 , L
1
2 otherwise.

(28)
For almost all sites, we find Pdet = 1/2 except when rin and
rd coincide or are on opposing sides of the ring. This is in
accordance with our results from Ref. [18]. The same result
appears for rings of odd sizes, although it is not possible to
place initial and detection sites on opposite sites of the ring.

The energy basis bright states are given by the cosine
waves, whereas the stationary dark states are given by sine
waves

|βl〉 = Nl

L∑
r=1

cos
2π lr

L
|r〉, |δl〉 =

√
2

L

L∑
r=1

sin
2π lr

L
|r〉,

(29)
where Nl = √

1/L for l = 0, L/2 and Nl = √
2/L otherwise;

|δ0〉 and |δL/2〉 are not defined. Thus, in this case, the devi-
ation of Pdet from unity is solely due to the degeneracies of
the energy spectrum, which of course arise from the parity
symmetry of the system.

B. Ring with a magnetic field

In the ring, as we saw, the degeneracy of an energy level
gives rise to dark states, which in turn lead to a deficit in the
total detection probability. What happens if this degeneracy is
lifted? To explore this, we add to the ring model of Eq. (25) a
magnetic field

Ĥ = −γ

L∑
r=1

(eiα|r〉〈r + 1| + e−iα|r〉〈r − 1|). (30)

The magnetic field strength is proportional to α and its vector
is normal to the plane in which the ring lies. This field splits
the twofold degeneracy of the energy levels. The eigenstates
are still the free wave states of Eq. (27), although the index l
now runs from zero to L − 1. The new levels are

El = −2γ cos
(2π l

L
+ α

)
. (31)

Except for special values of α, namely, when α is an integer
multiple of 2π/L, these are all distinct. Similarly, a degenerate
quasienergy level can only appear when the condition (2) for
resonant τ is fulfilled. Since a localized detection state |rd〉
has overlap with all eigenstates and since all energy levels are
nondegenerate, we find

Pdet(rin) = 1, (32)

with the exception of special combinations of τ and α. This
is nicely demonstrated in Fig. 2, Pdet as a function of τ and
α, as well as the energy levels as a function of α for a ring
with L = 6. We find that the total detection probability is
almost everywhere unity except along some lines in (α, τ )
space which parametrize the resonant combinations at which
degeneracy occurs. What is presented is 1 − S50, rather than
1 − S∞. Thus, the lines have finite width. Nevertheless, the
extreme sensitivity to the presence of any symmetry breaking
is apparent.
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FIG. 2. Total detection probability for a ring with a magnetic
field. Here Pdet was approximated by Pdet = 1 − SN , with N = 50.
The initial and detection states are rin = 1 and rd = 0, respectively.
Shown on the bottom are the energy levels of Eq. (31) as a function
of α. Degeneracy occurs when they cross, which occurs for special
values of α. Shown on top is the total detection probability as a
function of τ and α. We usually find Pdet = 1, but a deficit occurs
when there is a degeneracy in the quasienergy levels which appears as
dark lines in the figure. This happens for certain values of α (vertical
lines, coinciding with the intersection of two energy levels in the
bottom) and for special combinations of τ and α. As N is taken to
infinity, the dark lines will become infinitely thin.

This can be quantified by considering the value of n1/2 for
which Sn falls below its α = 0 limit of 1/2 (for the detection
site not identical or diametrically opposite the initial site).
This is plotted in Fig. 3, where even for the tiny value of α =
10−6 the presence of a magnetic field can be unequivocally
detected after a series of runs of 50 measurement attempts.
We see that n1/2 grows only logarithmically with diminishing
α, so detection of very small magnetic fields is in principle
possible. This can be understood by looking at the behavior of

10-6 10-5 10-4 10-3 10-2

α

10

20

30

40

50

n 1/
2

FIG. 3. Plot of n1/2, the first n for which Sn(α) < Sn(α = 0) =
1/2, as a function of α, for a ring of size L = 6, with rd = 0, rin = 1,
and γ τ = h̄. A straight line is shown indicating the linear behavior
in ln α for small α.

FIG. 4. First detection probability Fn for an L = 6 ring with
magnetic field parameter α = 0, 10−4, and 10−3. The behavior for
small n is indistinguishable in the three cases. Past some nc(α), as
marked in the figure, the finite α cases diverge from that of α = 0,
decaying at a much slower rate. Here rd = 0, rin = 1, and γ τ = h̄.

Fn, as depicted in Fig. 4. We see that, for the small values of α

depicted, Fn is essentially independent of α for not too large n.
For small finite α and large n, Sn decays very slowly, as a result
of the presence of slow modes of Ŝ. These modes, which for
α = 0 were dark states with unit modulus eigenvalue, now
are at a distance of order α2 from the unit circle, leading to
a decay rate of order α2. These modes have to contribute a
total of 1/2 to Pdet. Given their slow O(α2) exponential decay,
once this slow decay sets in (at nc, say), Fn must behave as
Fn ∼ Fnc exp[−dα2(n − nc)], for some α-independent d , with
Fnc ∼ α−2, to give an α-independent sum. Thus, in Fig. 3 we
see that Fnc for α = 10−4 is roughly a factor of 100 smaller
than for α−3. Since, for n < nc, the decay rate of Fn is set by
the slowest nondark state (with an α-independent decay rate
d0), we get that Fnc ∼ exp(−d0n), so

nc ∝ − ln α. (33)

Since, for α = 0, Pdet = 1/2, 1 − Sn will first exceed this
value at an n1/2 of order nc.

C. Square with center node

We next consider a square with a single node in the middle
connected to all the others. The states localized on the corners
of the square are denoted by |1〉, |2〉, |3〉, and |4〉 and the
additional node in the center of the diagonals is state |0〉. The
Hamiltonian in matrix form is

Ĥ = −γ

⎛
⎜⎜⎜⎝

0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0

⎞
⎟⎟⎟⎠. (34)

The energy levels are E1 = −(1 + √
5)γ , E2 = (

√
5 − 1)γ ,

E3 = 2γ , and E4 = 0 and E4 is twofold degenerate. To find
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(f)(a) (e)(d)(c)(b)

FIG. 5. Total detection probability for graphs. A quantum particle is put on a graph whose node’s describe the particle’s possible position
states. The links describe allowed transitions, each with equal strength. The particle starts localized on some node of the graph (closed circles)
and we attempt to detect it on the node with the open circle. The numbers denote Pdet for this initial state. (a) Square with a center node, (b) ring
of L sites, (c) complete graph with L sites, (d) star graph with L sites in the periphery, (e) hypercube (here of dimension d = 3, and (f) binary
tree with two generations.

Pdet we obtain the eigenvectors

|E1〉 = (
√

5 − 1, 1, 1, 1)T /

√
10 − 2

√
5,

|E2〉 = (−1 −
√

5, 1, 1, 1, 1)T /

√
10 + 2

√
5,

|E3〉 = (0,−1, 1,−1, 1)T /2,

|E4,1〉 = (0, 1,−1,−1, 1)T /2,

|E4,2〉 = (0, 1, 1,−1,−1)T /2.

(35)

Notice that, as opposed to the ring, where there were no
completely dark levels, here there are two energy levels E3 and
E4 which are completely dark with respect to a measurement
in the center. These sectors are dark because these states are
not invariant under rotation by π/2 (where |E3〉 transforms to
−|E3〉 and |E4,1〉 transforms to −|E4,2〉), whereas the center
is, and so there can be no overlap with the center. As per our
general discussion, this gives rise to a deviation of Pdet from
unity when measuring at exactly this node, i.e., |rd〉 = |0〉.
The bright eigenstates are given by the projections of the
detection state into the energy subspaces; hence |β1〉 = |E1〉
and |β2〉 = |E2〉. As mentioned, the energy levels E3 and E4

are completely dark and will be excluded in the sum of Eq. (1)
which yields

Pdet(rin) =
{

1, rin = 0
1
4 , rin 
= 0.

(36)

For other detection states, say, rd = 1, there are no dark
energy levels, as other initial states are the same up to a
rotation, but E4 possesses one dark state due to degeneracy:
|δ4〉 := (|E4,1〉 − |E4,2〉)/

√
2. All energy levels participate in

Eq. (1):

Pdet(rin) =
{

1, rin = 0, 1, 3
1
2 , rin = 2, 4.

(37)

D. Additional examples

We have worked out a number of additional examples
where Pdet < 1 and the associated dark states for other simple
geometries of graphs. These include a complete graph, a star
graph, a hypercube, and a tree graph. The results are presented
in Appendix C and summarized together with the previous
examples in Fig. 5. The detection node is represented by an
open circle; all other (closed) circles are possible initial states

and the numbers next to them represent the corresponding
total detection probability. It is interesting to note that in all
these simple cases, Pdet is rational and, except for the tree, is
simply one over an integer. The detection probability for some
larger systems is discussed in Ref. [21].

We note that after infinitely many unsuccessful detection
attempts only the dark component of the initial wave function
survives. The dark space is invariant under unitary evolution
and strong detection [67,76]. Similar behavior can be found
in the long-time behavior of general open quantum dynamics
[77]. An interesting question would be which of the features
described here will carry over when one employs weak mea-
surements or open quantum dynamics [23,24,27,78–80].

VII. INFINITE LINE

We have seen above that finite systems are very different
from infinite systems, at least as far as the properties of Pdet

are concerned. Grünbaum et al. [9] showed that when the
detection and initial states coincide, Pdet is unity for every
finite system; for an infinite system with a band of continuous
energies, such as the infinite line, it is always less than unity
[18]. We wish here to amplify this point by comparing the
finite ring of size L with its infinite counterpart. Above we
exhibited the dark states for the finite ring. It is clear that the
dark states remain dark even in the infinite-L limit. However,
the bright states of the finite ring, while remaining orthogonal
to every dark state, are not detected with unit probability in the
infinite-L limit. Instead, they are “dim,” such that 0 < Pdet < 1
for these states. Furthermore, Pdet for these states depends
essentially on τ .

To get insight into this phenomenon, we first consider the
space-time picture of the undetected probability density (i.e.,
the position distribution at time nτ , normalized to Sn). We
start with the particle at x = L/2 on a ring of large length L,
measuring at the same point. As time progresses, the density
spreads out ballistically from the initial location in both di-
rections. As long as not enough time has passed to allow the
two “wings” of the distribution to meet at the opposite end
of the ring (x = 0 = L), a time of order L, the density has a
overall amplitude proportional to 1/t so that, given the ex-
tension over a distance proportional to t , the total undetected
density is of order unity. It should be noted that this is the
same exact scaling behavior of the measurement-free density.
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FIG. 6. Surviving (i.e., as yet undetected) particle probability
density Pn(x) after n = 238 and 576 measurements, in a ring of
length L = 2000 and a detection interval of γ τ/h̄ = 1. For clarity,
only every fifth point is plotted.

This situation is presented in Fig. 6, where the scaled density
is presented after 238 and 476 steps. The total undetected
probability Sn is 0.6006 at both times, the difference being
only of order 4 × 10−6, while the average distance to the
origin of the surviving particle has doubled from 386 to 770.
Thus, in the limit of large L, the total undetected probability
remains of order unity, spreading out to infinity, for all times
less than the huge system traversal time of order L.

An alternative picture arises from considering the station-
ary bright states which are the eigenvectors of the survival
operator with eigenvalues lying inside the unit circle. For
large finite L, these eigenvalues span the range in magnitude
from 0 to very near unity. For times Nτ shorter than the
time to propagate across the system (i.e., for the wings of the
distribution to meet, as described above) the relatively quickly
decaying stationary bright states with eigenvalues with small
magnitude contribute to

∑
n�N Fn = 1 − SN , while the states

with eigenvalues near the unit circle do not. These slow states
then are essentially dark over this timescale. We find that for
L = 1000, there are 267 fast eigenvalues (out of 501) further
than a distance 0.002 from the unit circle, and for L = 2000,
there are 531 fast eigenvalues (out of 1001) further than a
distance 0.001 from the unit circle (for γ τ = h̄), i.e., twice
as many. Examining the eigenvectors, they extend over the
entire system, so an initial state localized near the origin will
have a squared overlap with each bright mode proportional to
1/L. Therefore, the number of effectively dark states, those
that do not contribute in time Nτ to Pdet, scales with L. Thus,
the undetected probability is of order 1, since it arises from
order L modes times a number of order 1/L overlap for each
mode.

VIII. FROM SYMMETRY TO DETECTION PROBABILITY

As mentioned in the Introduction, the symmetry of the
underlying graph controls the deviations of the detection prob-
ability from its classical counterpart, which is unity [2]. This
is also evident in the examples in Fig. 5, which clearly show

that symmetry plays an important role. Take the example in
Fig. 5(b), the ring. The probability to detect the particle once
starting at one of the nearest neighbors of the detected site is
1/2. This, as we claim below, is related to the fact that we
have two nearest neighbors on the ring structure. On the other
hand, starting on the site opposing the detected site yields
Pdet = 1. We claim that this is due to the absence of another
equivalent initial state in the system. This is similar for the
example in Fig. 5(e), the cube. Here, starting on one of the
three nearest neighbors to the detector, we find Pdet = 1/3. In
the remaining part of the paper we wish to further explore this
relation between symmetry and Pdet.

In this section we assume that the initial state is localized:

|ψin〉 = |rin〉. (38)

We already discussed the first detection amplitude given by
[12,13,18]

ϕn(ψin) = 〈ψd|Û (τ )[(1 − D̂)Û (τ )]n−1|ψin〉. (39)

Reading the equation right to left, we see that the initial state is
subject to n − 1 compound steps of unitary evolution and un-
successful detection, until finally, after the nth evolution step,
detection is successful. As mentioned, the focus of this paper
is the total detection probability Pdet(ψin) = ∑∞

n=1 Fn(ψin) =∑∞
n=1 |ϕn(ψin)|2 .
From Eq. (39) we see that the detection amplitude ϕn is

linear with respect to the initial state, and thus obeys a super-
position principle. This allows us to obtain an upper bound for
Pdet(rin) without the need of detailed calculations. To see this,
consider localized initial and detection states |rd〉 and |rin〉,
respectively. Now we introduce an auxiliary initial state which
is a linear combination of any two different localized states

|uα〉 = 1√
2

(|rin〉 + eiα|r′〉), (40)

where 〈rin|r′〉 = 0 and α is an arbitrary relative phase. As the
first detection amplitudes are linear in the initial state [see
Eq. (39)] we find

ϕn(uα ) = 1√
2

[ϕn(rin) + eiαϕn(r′)]. (41)

We can use this to find a very useful upper bound on the
detection probability, provided there is a symmetry relation
between rin and r′, namely, when |rin〉 and |r′〉 are physically
equivalent. Mathematically, two orthogonal initial states |ψin〉
and |ψ ′

in〉 which yield identical transition amplitudes to the
detection

〈rd|Û (t )|ψin〉 = 〈rd|Û (t )|ψ ′
in〉 
= 0 (42)

are called physically equivalent to each other. As usual, the
amplitudes on the left- and right-hand sides of this equation
may have irrelevant phase factors eiλ. More importantly, such
states only appear in systems with a certain degree of symme-
try. From these two states we can construct the superposition
state (|ψin〉 − |ψ ′

in〉)/
√

2, which must be a dark state. Hence,
any pair of physically equivalent states yields a dark state.
This reveals dark states as an interference phenomenon [2].
Certain initial states result in permanent destructive interfer-
ence and thus vanishing probability amplitude in the detection
state.
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Let us consider the example in the ring system of Fig. 1.
The two sites left and right of the detection node are equivalent
due to reflection invariance. Clearly, when |rin〉 and |r′〉 are
physically equivalent then also ϕn(rin) = ϕn(r′). Under such
circumstances, for the superposition |uα〉 in Eq. (40), we have

ϕn(uα ) = 1 + eiα

√
2

ϕn(rin) (43)

and so

Fn(uα ) = |ϕn(uα )|2 = (1 + cos α)Fn(rin). (44)

The relative phase α affects the first detection statistics. The
aforementioned choice α = π obviously yields a dark state,
as can be seen.

A useful bound on Pdet can be found by summing over all
n and using Pdet(uα ) = ∑∞

n=1 Fn(uα ) � 1:

1 � Pdet(uα ) = (1 + cos α)Pdet(rin). (45)

Choosing α = 0, we obtain, for the originally considered tran-
sition from rin to rd,

Pdet(rin) � 1
2 . (46)

Thus, if rin has a physically equivalent partner, the total de-
tection probability cannot be unity, unlike for the classical
random walk.

This bound can be easily generalized to other structures,
for example, the cube of Fig. 1. Consider the transition to
one vertex, denoted by |0〉, from one of its nearest neighbors,
say, |1〉. Let us denote the neighbors of |0〉 by |1〉, |2〉, and
|3〉 and define an auxiliary state |u〉 := (|1〉 + |2〉 + |3〉)/

√
3.

(This would be the generalization of |u0〉 from before.) Using
the same procedure as before, we find that Pdet(1) � 1/3.
This trick can be easily extended and is summarized in the
following proposition.

Proposition 1. The total detection probability for the transi-
tion from a localized initial state |rin〉 to a localized detection
state |rd〉 is bounded by the reciprocal of the number ν of
nodes physically equivalent to rin:

Pdet(rin) � 1

ν
. (47)

Recall the definition of physically equivalent states from
Eq. (42): They have identical transition amplitudes to the
detection state at all times. Such states are indistinguishable
in the first detection problem. For a given system and a
given transition rin → rd from one localized detection state
to another, we can find a set of ν initial nodes {r j}ν−1

j=0
(where r0 = rin) which are physically equivalent in this sense.
They can be identified from elementary symmetry considera-
tions. This number ν of physically equivalent states is what
appears in Eq. (47). The strongest bound is given by the
maximal number of physically equivalent states, i.e., by the
largest possible value for ν. However, Eq. (47) still holds
even when this maximal number cannot be identified beyond
doubt.

Let us discuss the remaining examples of Fig. 1. For the
cube, we find Pdet � 1/3, except for the diametrically opposed
node, for which Pdet � 1. For the complete graph with L sites,
all nodes besides the detection site are equivalent and we find
Pdet � 1/(L − 1) (here L = 8). For simple cubic lattices in

d dimensions with periodic boundary conditions one finds
Pdet � 1/2d for sites on the main horizontal, vertical, and
main diagonals, but smaller values for sites which are off these
main axes. The Star-of-David graph with a detector on one of
the tips yields Pdet � 1/2, due to reflection symmetry, except
for the opposing tip. Similarly, yet less obvious, Pdet � 1/2 in
the tree-of-life graph. For a square graph with an additional
node in the center, we have ν = 4 for a transition from one
of the corners to the center. When the detector is in one of
the square’s corners, the neighboring corners are equivalent,
yielding ν = 2, but all other sites are unique. Also for a tree,
the number of physical equivalent sites and thus the upper
bound varies with the position of the detector. The square,
the ring, the complete graph, the hypercube, and the tree have
been discussed above, where we computed Pdet exactly. With
one exception, the exact values of these examples actually
coincide with the upper bound. The only exception is the tree,
when the detector is not placed on the root node.

Finally, the infinite line demands special attention. The
upper bound yields Pdet � 1/2 for every nondetection site and
is correct. However, since it is an infinite system, the exact
formula (1) does not apply. In particular, one finds that Pdet

has a complicated dependence on τ (see Refs. [18,19], where
this model was investigated in detail). However, the Pdet(τ )
curves stay below the upper bound 1/2.

To gain further physical insight, consider the cross struc-
ture presented in Fig. 7. We detect on the center of the cross,
at node |0〉, and start on one of the outer nodes, for exam-
ple, on state |1〉. This initial state can be decomposed into
a linear combination of four states, out of which three are
easily understood as being dark states. For example, the state
|δ̃1〉 = (|1〉 − |2〉 + |3〉 − |4〉)/2 is dark since it is not inject-
ing probability current into state |0〉. Destructive interference
erases all amplitude in the detection state. The uniform state
|u〉 = (|1〉 + |2〉 + |3〉 + |4〉)/2, which is a normalized sum of
all the equivalent states in the system, is the fourth state. This
state gives a constructive interference pattern at the detected
state. Returning to the transition |1〉 → |0〉, we decompose
the initial condition into a superposition of the four states, as
shown in Fig. 7. Since three components are dark and the over-
lap of initial and uniform states is 1/

√
4, we find Pdet(1) �

1/4. In fact, a straightforward calculation using Eq. (1) shows
Pdet(u) = 1 and thus Pdet(1) = 1/4. This is clearly in accord
with ν = 4.

Let us formalize our result. Consider a localized initial
state |rin〉 and assume that in the system we have a total
of ν physically equivalent states {|r j〉}ν−1

j=0, where |r0〉 = |rin〉
and 〈ri|r j〉 = δi, j . These states span the subspace E|rin〉 =
Span[|r j〉], i.e., the space of all possible superpositions of the
physically equivalent states |r j〉. We define

|u(rin)〉 := 1√
ν

ν−1∑
j=0

|r j〉 (48)

to be the auxiliary uniform state (AUS); |u(rin)〉 is one par-
ticular state in the subspace E|rin〉. We can find a new basis
{|u(rin)〉, |δ1〉, . . . , |δν−1〉} for E|rin〉, which consists of the AUS
and ν − 1 dark states. These dark states can be found similarly
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FIG. 7. Decomposition of an initial state |1〉, localized on an
exterior node of a cross, into three dark components, and the aux-
iliary uniform state. Detection is attempted on the node in the center
(open circle). We find ν = 4 from the π/2 degree rotation symmetry
about the detection site. Consequently, Pdet(1) � 1/4 from the simple
bound (47).

to the stationary dark states in Sec. IV. The solution reads

|δ j〉 = j|r j〉 − ∑ j−1
m=0 |rm〉√

j( j + 1)
, (49)

where j = 1, 2, . . . , ν − 1. One quickly verifies that the states
|δ j〉 are normalized and orthogonal to each other and to
the AUS. Furthermore, they are dark, because the transition
amplitudes to the detection state from any state |r j〉 are the
same. Consequently, the multiplication with 〈rd|Û (t ) annihi-
lates |δ j〉, because it yields 〈rd|Û (t )|δ j〉 = 〈rd|Û (t )|rin〉[ j −
j]/

√
j( j + 1) = 0. The original initial state |rin〉 = |r0〉 is now

rewritten as

|rin〉 = 1√
ν
|u(rin)〉 −

ν−1∑
j=1

|δ j〉√
j( j + 1)

. (50)

Knowing about the dark states in |rin〉, we can directly obtain
Pdet(rin), because ϕn(δ j ) = 0. We immediately find

Pdet(rin) = 1

ν
Pdet(u(rin)). (51)

Since Pdet(u) � 1, we obtain the upper bound (47). It is im-
portant to keep in mind that ν is not a global property of the
system but depends on the transition rin → rd. Clearly, if the

AUS is bright, then Pdet(u(rin)) = 1 and the upper bound sat-
urates, i.e., it becomes an equality. We also note that Eq. (51)
holds as well in infinite systems. A rigorous group-theoretic
investigation of the problem is left for future work. A lower
bound was also recently presented, including the discussion
of hypercube in dimension d , i.e., the extension of this work
to certain large systems with what we called a shell structure
was considered [21].

IX. SUMMARY

We have investigated herein the total probability of detec-
tion Pdet in a quantum system that is stroboscopically probed
in its detection state. An explicit formula for this in terms of
the energy eigenstates was produced via the renewal equation
[9,18] previously derived for the generating function for the
detection amplitude, with the help of the Aleksandrov theorem
for Cauchy transforms. An alternate derivation for the formula
was also given via an analysis of the dark and bright subspaces
that comprise the total Hilbert space. The dark states are those
energy eigenstates that have no overlap with the detector and
thus are never detected. There were found to be two classes
of dark states: those that belong to completely dark energy
levels, where every eigenstate of the sector is orthogonal to the
detection state, and those which perforce appear in degenerate
energy levels, whose sectors possess a nonzero projection of
the detection state. The bright states are those eigenstates
which are detected with probability unity and were shown to
constitute, in a finite system, the orthogonal complement to
the dark subspace. They were shown to belong to the spectrum
of the survival operator Ŝ inside the unit disk. An explicit set
of basis states for the subspaces was constructed. From this,
Pdet was calculated as the overlap of the initial state with the
bright space, reproducing the original result. We considered
several examples, showing in particular how lifting the de-
generacy in the energy spectrum discontinuously changes Pdet.
The breakdown of our formula for Pdet in an infinite system
was discussed in the context of the infinite line.

The τ independence of the total detection probability
will survive when irregularities are introduced in the sam-
pling times. The lack of total control over the detector can
be modeled by a random sequence of interdetection times
{τ1, τ2, . . .}, as has been done, e.g., in Ref. [6], where the
sampling times were given by a Poisson process. A strong
finding of ours is that Pdet actually does not depend on τ at all
for systems with a discrete spectrum. As the set of resonant
detection periods [defined by Eq. (2)] has zero measure, all of
our results are expected to hold for nonstroboscopic sampling
as well.

We also investigated the influence of the system’s symme-
tries on Pdet. Whenever one has found ν physically equivalent
initial states, one will find that the total detection probability is
bounded by Pdet � 1/ν. Two states are physically equivalent
when they yield the same transition amplitudes to the detec-
tion state for all times. Any pair of equivalent states can be
seen to yield a dark state from their negative superposition.
The AUS defined by Eq. (48) is the positive superposition
of all equivalent states, contains all bright components of the
original initial state, and gives Pdet via Eq. (51).
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APPENDIX A: ALEKSANDROV’S THEOREM IN A
TWO-LEVEL SYSTEM

A proof of the powerful equation (14) lies far outside the
scope of this paper; the interested reader is referred to [75].
In order to nevertheless help to understand the origin of the

equality, we consider the case when there are only two differ-
ent energy levels E1 and E2. The Hamiltonian of such a system
would read Ĥ = P̂1E1 + P̂2E2. It is not necessary to specify
the eigenstates and degeneracies, as long as the overlap of
each eigenspace with the detection state is given. For simplic-
ity, we assume that 〈ψd|P̂1|ψd〉 = 〈ψd|P̂2|ψd〉 = 1/2. (In fact,
the Aleksandrov ansatz does not “see” individual eigenstates
|El,m〉, but just the overlap with the eigenspace projectors P̂l .)
We can replace 〈ψd|P̂1|ψin〉 = ν(λ1)〈ψd|P̂1|ψd〉 = ν(λ1)/2,
and similarly with ν(λ2). Then ϕ(z) reads

ϕ(z) =
ze−iλ1 ν(λ1 )
1−ze−iλ1

+ ze−iλ2 ν(λ2 )
1−ze−iλ2

1
1−ze−iλ1

+ 1
1−ze−iλ2

. (A1)

Its absolute value on the unit circle equals

|ϕ(eiθ )|2 = ν(λ1)∗eiλ1 (eiλ2 − eiθ ) + ν(λ2)∗eiλ2 (eiλ1 − eiθ )

eiλ1 + eiλ2 − 2eiθ

ν(λ1)e−iλ1 (1 − eiθ−iλ2 ) + ν(λ2)e−iλ2 (1 − eiθ−iλ1 )

2 − eiθ (e−iλ1 + e−iλ2 )
. (A2)

When this expression is plugged into Eq. (14), the left-hand-
side integral can be treated by a variable change z = eiθ and
dθ = dz/iz. The result is a complex contour integral which is
performed by residue inspection. The integrand has only two
simple poles inside the unit circle. One lies at the origin z = 0
and the other is defined by the linear term in the denominator
of the first line in Eq. (A2). After some lengthy algebra, we
find that the prefactors of the cross terms ν(λ1)∗ν(λ2) and
ν(λ2)∗ν(λ1) vanish. Collecting the residues of the diagonal
terms, however, we find one half:∮

|z|=1

dz

2π iz

eiλ2 (1 − ze−iλ2 )

[eiλ1 + eiλ2 − 2z][2 − z(e−iλ1 + e−iλ2 )]
= 1

2
.

(A3)
We obtain the same result for the integral proportional to
|ν(λ2)|2. Hence

Pdet = 1
2 [|ν(λ1)|2 + |ν(λ2)|2], (A4)

which is the result of Eqs. (14) and (1) for the chosen example
system. A demonstration with more than two energy levels
using the same method first becomes tedious and soon unfea-
sible. In a system with w bright states there are w different
phases λl in μ(θ ) and w poles in the integrand of Eq. (9) after
switching again to z = eiθ . Aleksandrov’s theorem “magi-
cally” ensures that the residues of these poles are exactly given
by |ν(λl )|2〈ψd|P̂l |ψd〉, thus giving Eq. (1).

APPENDIX B: ADDITIONAL PROPERTIES OF THE
SURVIVAL OPERATOR

Here we will give a more detailed discussion of Ŝ’s proper-
ties. In the main text we already mentioned that the stationary
dark states are eigenstates of Ŝ corresponding to eigenvalues
on the unit circle and that the stationary bright states belong to
the spectrum inside the unit disk. In view of the fact that Ŝ is
not a diagonalizable matrix in general, these statements need
to be refined.

First, we note that the stationary dark states |δl,m〉 of
Eq. (21) are in general the right eigenstates of Ŝ that

correspond to eigenvalues e−iτEl /h̄ on the unit circle. In par-
ticular, these eigenvalues coincide with eigenvalues of Û (τ ).
Next Eq. (22), which relates the poles of the generating func-
tion ϕ(z) and the spectrum of Ŝ, is generally true as well.
Its algebraic eigenvalues ζ are given by the zeros of the
characteristic polynomial det[ζ1 − Ŝ].

It remains to be shown that the survival probability
Sn(β̃ ) = ‖Ŝn|β̃〉‖ of some bright state decays to zero as n →
∞. To see this, consider the restriction of Ŝ to the bright space
ŜB = P̂HBŜP̂HB . This removes all trivial eigenvalues that lie
on the unit circle from Ŝ. This operator is defective in general
and cannot be put into a diagonal form. It can be put into a
Jordan normal form, though

ŜB =
∑

l

[ζl M̂l + N̂l ]. (B1)

Here ζl are the algebraic eigenvalues of ŜB that we deter-
mined from ϕ(z), and the matrices M̂l and N̂l act on the
(generalized) eigenspaces of ζl ; N̂l is a nilpotent matrix (i.e.,
N̂ pl

l = 0, for some integer pl > 0) and M̂l is the projector
to the corresponding eigenspace (hence M̂2

l = M̂l ). The rank
of M̂l is equal to the algebraic multiplicity of ζl , M̂l and N̂l

commute, and M̂l N̂l ′ = N̂l ′M̂l = δl,l ′ N̂l ′ . Using these proper-
ties, one finds, for n > pl ,

(ζl M̂l + N̂l )
n = ζ n

l M̂l +
pl −1∑
m=1

(
n

m

)
ζ n−m

l N̂m
l , (B2)

and therefore for any superposition |β̃〉 of bright states

Sn(β̃ ) = ‖Ŝn
B|β̃〉‖2 =

∑
l

|ζl |2nCl,n(β̃ ). (B3)

The coefficients are given by

Cl,n(β̃ ) := ‖[M̂l + ζ−1
l N̂l ]

n|β̃〉‖2. (B4)

Using Eq. (B2), the triangle inequality, as well as |ζl |−m <

|ζl |−pl and
(n

m

)
�

( n
pl

)
� npl /pl ! for n > 2pl and m < pl , one
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can bound these coefficients with

Cl,n(β̃ ) � ‖M̂l |β̃〉‖2 +
pl −1∑
m=1

(
n

m

)2

|ζl |−2m‖N̂m
l |β̃〉‖2

� ‖M̂l |β̃〉‖2 + (n|ζ−1
l |)2pl

pl !2

pl −1∑
m=1

‖N̂m
l |β̃〉‖2. (B5)

Hence Cl,n(β̃ ) � O(n2pl ). Considering the largest of all pl

denoted by p∗ and the eigenvalue ζ∗ closest to the unit circle,
we find that the survival probability will eventually decay
exponentially

Sn(β̃ ) � O(n2p∗ |ζ∗|2n). (B6)

From writing [1 − D̂] in the energy basis and inspecting
the definition of ŜB, it is evident that each ζl has to be a convex
sum of the phase factors eiτEl /h̄. In fact, Ref. [9] shows that the
nontrivial eigenvalues ζl can be obtained from the stationary
points of a certain two-dimensional Coulomb force field and
must lie inside the unit disk. This approach is investigated in
detail in Ref. [68]. Therefore, we find another reason why the
nontrivial eigenvalues obey |ζl | < 1.

This is easily seen for a system with only two bright states
|β1〉 and |β2〉 corresponding to two energies E1 and E2. The
detection state is decomposed into the bright states via |ψd〉 =
a|β1〉 + b|β2〉, where |a|2 + |b|2 = 1. In this case, ŜB reads,
in matrix notation,

ŜB =
(

1 − |a|2 ab∗

ba∗ 1 − |b|2
)(

e−i(τE1/h̄) 0
0 e−i(τE2/h̄)

)

=
(|b|2e−i(τE1/h̄) ab∗e−i(τE2/h̄)

ba∗e−i(τE1/h̄) |a|2e−i(τE2/h̄)

)
. (B7)

This matrix has one vanishing eigenvalue ζ1 = 0. The other
one is equal to ζ2 = |a|2e−iτE2/h̄ + |b|2e−iτE1/h̄, i.e., it is a
convex sum of the phase factors, which lies inside the unit
circle. Similar reasoning applies to systems with more than
two bright states.

In systems with finite-dimensional Hilbert space we are
finished, because there is some minimum decay rate λ∗ =
minl{−2 ln |ζl |} > 0. Infinite-dimensional systems may be-
have more subtly. In the thermodynamic limit the eigenvalues
ζl can get infinitely close to the unit circle. In that case
unity is an accumulation point of the sequence {|ζl |} and
λ∗ = inf l{−2 ln |ζl |} = 0. In the view of the spectral theorem
of Ref. [9], there are two options: Either one is lucky and Sn

decays to zero, albeit slower than exponentially fast, or not. In
the former case Sn → 0 will still hold. The spectral theorem
of Ref. [9] says that this is the case when the spectrum of
Û (τ ) has no absolutely continuous part. If such a part of the
spectrum is present, on the other hand, then Sn will converge to
some positive value and we find Pdet(β̃ ) < 1. This is obviously
only possible in infinite-dimensional systems. Some more
mathematical details about ŜB can be found in Appendix A
of Ref. [10].

APPENDIX C: ADDITIONAL EXAMPLE GRAPHS AND
THEIR Pdet AND DARK STATES

In this Appendix we present the calculation for the spec-
trum, eigenstates, Pdet, and dark states for the collection of
graphs illustrated in Figs. 5(c)–(f), Figs. 5(a) and 5(b) having
been presented in the main text.

1. Complete graph

We now consider a graph with L nodes, in which each node
is connected to each other node [see Fig. 8(c)]. Its Hamilto-
nian reads

Ĥ = −γ

L∑
r,r′=1

(1 − δr,r′ )|r〉〈r′|. (C1)

We pick one node as the detection node, say, rd.
The system has only two energy levels, namely, E1 =

−γ (L − 1) and E2 = γ , the latter being (L − 1)-fold degen-
erate. The eigenstates are

|E1〉 = | j〉 :=
L∑

r=1

|r〉√
L

, |E2,m〉 =
L∑

r=1

ei(2πmr/L)|r〉√
L

, (C2)

where m = 1, 2, . . . , L − 1 and | j〉 is the uniform state over
all nodes. Therefore, none of these energy levels is completely
dark with respect to a localized detection state. The two bright
eigenstates are

|β1〉 = | j〉 = 1√
L

L∑
r=1

|r〉, |β2〉 =
√

L|rd〉 − | j〉√
L − 1

. (C3)

Computing the overlap with the bright space, we find

Pdet(rin) =
{

1, rin = rd
1

L−1 , rin 
= rd.
(C4)

2. Star

The next example is a star graph with a center node |0〉
and L nodes in the periphery [see Fig. 8(d)]. The Hamiltonian
reads

Ĥ = −γ

L∑
r=1

[|0〉〈r| + |r〉〈0|]. (C5)

The system has three energy levels E1 = −γ
√

L, E2 = 0,
and E3 = γ

√
L, of which E2 is (L − 1)-fold degenerate. The

eigenstates are

|E1〉 = |0〉 + | j〉√
2

, |E3〉 = |0〉 − | j〉√
2

,

|E2,m〉 = 1√
L

L∑
r=1

ei(2π/L)mr |r〉,
(C6)

where m = 1, 2, . . . , L − 1. In addition, | j〉 := ∑L
r=1 |r〉/√L

is the uniform state over the periphery.
If the detection takes place on the center node, the energy

level E2 is completely dark. If detection were to take place
in the periphery, there would be no completely dark energy
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(f)(a) (e)(d)(c)(b)

FIG. 8. Notation used for the examples considered in Sec. VI: (a) square with a center node, (b) ring of L sites, (c) complete graph with L
sites, (d) star graph with L sites in the periphery, (e) hypercube (here of dimension d = 3, and (f) binary tree with two generations.

levels. The Pdet is computed from Eq. (1). The calculations are
similar to the ones of the complete graph:

Pdet(rin) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, rd = rin

1
L , rd = 0, rin 
= 0

1, rd 
= 0, rin = 0
1

L−1 , rd 
= 0, rin 
= 0.

(C7)

3. Hypercube

The next example is the d-dimensional hypercube. An
example graph for d = 3 is depicted in Fig. 8(e). In this
system there are 2d different states which can be represented
by a d-length string consisting only of zeros and ones, i.e.,
a string of d bits, |ψ〉 = ⊗d

j=1|b j〉, where b j = 0 j, 1 j is the
jth bit. The allowed transitions correspond to bit flips and the
Hamiltonian can be written as a sum of Pauli σ̂x matrices

Ĥ = −γ

d∑
j=1

σ̂ ( j)
x , (C8)

where σ̂
( j)
x only acts on |b j〉 and σ

( j)
x = |0 j〉〈0 j |1 j +

|1 j〉〈1 j |0 j . (As an example, σ̂ (1)
x |110〉 = |010〉, σ̂ (2)

x |110〉 =
|100〉, and σ̂ (3)

x |110〉 = |111〉.) The relation to a word of
d bits with bit-flip transitions make this model particularly
relevant for the quantum computation field [2,64]. The en-
ergy levels are El = −γ (2l − d ), l = 0, 1, . . . , d , and each is(d

l

)
-fold degenerate. Let x j = ±1 and define |x j〉 := (|0 j〉 +

x j |1 j〉)/
√

2; then σ̂
( j)
x |x j〉 = x j |x j〉. Hence the energy eigen-

states have the form

|El,m〉 = ⊗d
j=1|x j〉 (C9)

such that
∑d

j=1 x j = 2l − d and m enumerates all
(d

l

)
combi-

nations. In each bit, we have the important relation

〈b j |x j〉 = 1√
2

(−1)b j [(1−x j )/2], (C10)

which has a negative sign when b j = 1 and x j = −1 and a
positive sign otherwise.

We try to detect the system in the node with all bits equal
to zero, i.e., |rd〉 = ⊗ j |0 j〉. From Eq. (C10) we find that all
energy eigenstates have the same overlap with the detection
state: 〈rd|El,m〉 = 2−d/2. Therefore, one finds the bright eigen-
states

|βl〉 = 1√(d
l

)
∑

|{x j}|=2l−d

⊗d
j=1|x j〉, (C11)

where the sum runs over all combinations {x j}, where |{x j}| =∑d
j=1 x j = 2l − d .
We now pick any localized initial state |rin〉 = ⊗d

j=1|bin, j〉,
which differs from |rd〉 in exactly ξ bits. (ξ is the so-called
Hamming distance between both states.) The Pdet only de-
pends on ξ and can be obtained from Eq. (1) and from
Eq. (C11) and some complicated combinatoric computation.
We do not present this here and instead refer to Ref. [45],
where Pdet was computed in a different way:

Pdet(rin) = 1(d
ξ

) . (C12)

This shows that only two transitions in a hypercube are actu-
ally reliable, in the sense that Pdet = 1: the return to the initial
node and the traversal to the opposing node [see Fig. 5(e)].

4. Tree graph

Similar to the hypercube, trees are important examples
from quantum computation, in particular because they feature
an exponential speedup [62,63] relative to classical algo-
rithms. We will consider here only a small binary tree with
two generations [see Fig. 8(f)]. The top of the tree is called
the root; the bottom nodes are called leaves of the tree. Its
Hamiltonian reads

Ĥ = −γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C13)

The corresponding energy levels are E1 = −2γ , E2 = −√
2γ ,

and E3 = 0, being thrice degenerate, as well as E4 = √
2γ and

E5 = 2γ . The energy eigenstates are

|E1〉 = (2, 2, 2, 1, 1, 1, 1)T /4,

|E2〉 = (0,−
√

2,
√

2,−1,−1, 1, 1)T /
√

8,

|E3,1〉 = (0, 0, 0, 1,−1, 0, 0)T /
√

2,

|E3,2〉 = (0, 0, 0, 0, 0, 1,−1)T /
√

2,

|E3,3〉 = (−2, 0, 0, 1, 1, 1, 1)T /
√

8,

|E4〉 = (0,
√

2,−
√

2,−1,−1, 1, 1)T /
√

8,

|E5〉 = (2,−2,−2, 1, 1, 1, 1)T /4.

(C14)

We see that some of the energy levels may be completely dark
depending on the detection state.
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a. Detection on the root

The choice |rd〉 = |0〉 renders E2 and E4 completely dark.
The third energy level yields the bright eigenstate |β3〉 =
|E3,3〉. Doing the calculations with Eq. (1), we find the total
detection probability equal to 1/2 for nodes |1〉 and |2〉 and
equal to 1/4 for the leaves, i.e.,

Pdet(rin) =

⎧⎪⎨
⎪⎩

1 for rin = 0
1
2 for rin = 1, 2
1
4 otherwise.

(C15)

b. Detection in the middle

Now we choose |rd〉 = |1〉. Then E3 is completely dark. All
remaining energy levels are nondegenerate; hence there are no
other dark states. We find, from Eq. (1),

Pdet(rin) =

⎧⎪⎨
⎪⎩

1
2 for rin = 0

1 for rin = 1, 2
3
8 otherwise.

(C16)

c. Detection in the leaves

We choose |rd〉 = |3〉. Then there are two dark state in the
energy level E3. The bright state in this level is

|β3〉 = 2|0〉 − 5|3〉 + 3|4〉 − |5〉 − |6〉√
40

. (C17)

The remaining bright states are equal to the eigenstates. This
results in

Pdet(rin) =

⎧⎪⎨
⎪⎩

3
5 , rin = 0, 4

1, rin = 1, 2, 3
2
5 , rin = 5, 6.

(C18)

All these results are summarized in Fig. 5.
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[5] M. Štefaňák, I. Jex, and T. Kiss, Phys. Rev. Lett. 100, 020501

(2008).
[6] M. Varbanov, H. Krovi, and T. A. Brun, Phys. Rev. A 78,

022324 (2008).
[7] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio,

J. Chem. Phys. 131, 105106 (2009).
[8] E. Agliari, O. Mülken, and A. Blumen, Int. J. Bifurcat. Chaos

20, 271 (2010).
[9] F. A. Grünbaum, L. Velázquez, A. H. Werner, and R. F. Werner,

Commun. Math. Phys. 320, 543 (2013).
[10] J. Bourgain, F. A. Grünbaum, L. Velázquez, and J. Wilkening,

Commun. Math. Phys. 329, 1031 (2014).
[11] P. L. Krapivsky, J. M. Luck, and K. Mallick, J. Stat. Phys. 154,

1430 (2014).
[12] S. Dhar, S. Dasgupta, and A. Dhar, J. Phys. A: Math. Theor. 48,

115304 (2015).
[13] S. Dhar, S. Dasgupta, A. Dhar, and D. Sen, Phys. Rev. A 91,

062115 (2015).
[14] P. Sinkovicz, Z. Kurucz, T. Kiss, and J. K. Asbóth, Phys. Rev.

A 91, 042108 (2015).
[15] P. Sinkovicz, T. Kiss, and J. K. Asbóth, Phys. Rev. A 93,

050101(R) (2016).
[16] S. Lahiri and A. Dhar, Phys. Rev. A 99, 012101 (2019).
[17] H. Friedman, D. A. Kessler, and E. Barkai, J. Phys. A: Math.

Theor. 50, 04LT01 (2017).
[18] H. Friedman, D. A. Kessler, and E. Barkai, Phys. Rev. E 95,

032141 (2017).
[19] F. Thiel, E. Barkai, and D. A. Kessler, Phys. Rev. Lett. 120,

040502 (2018).
[20] F. Thiel, D. A. Kessler, and E. Barkai, Phys. Rev. A 97, 062105

(2018).

[21] F. Thiel, I. Mualem, D. A. Kessler, and E. Barkai, Phys. Rev.
Research 2, 023392 (2020).

[22] F. Thiel, D. A. Kessler, and E. Barkai, Phys. Rev. A 102, 022210
(2020).

[23] F. Thiel and D. A. Kessler, Phys. Rev. A 102, 012218 (2020).
[24] S. Gurvitz, Fortschr. Phys. 65, 1600065 (2017).
[25] Y. Ashida, K. Saito, and M. Ueda, Phys. Rev. Lett. 121, 170402

(2018).
[26] L. Buffoni, A. Solfanelli, P. Verrucchi, A. Cuccoli, and M.

Campisi, Phys. Rev. Lett. 122, 070603 (2019).
[27] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith, Phys.

Rev. B 99, 224307 (2019).
[28] B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9, 031009

(2019).
[29] S. Redner, A Guide to First-Passage Processes, 1st ed. (Cam-

bridge University Press, Cambridge, 2007).
[30] E. P. Raposo, S. V. Buldyrev, M. G. E. da Luz, G. M.

Viswanathan, and H. E. Stanley, J. Phys. A: Math. Theor. 42,
434003 (2009).

[31] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez, Rev.
Mod. Phys. 83, 81 (2011).

[32] V. V. Palyulin, A. V. Chechkin, R. Klages, and R. Metzler,
J. Phys. A: Math. Theor. 49, 394002 (2016).

[33] A. Godec and R. Metzler, Sci. Rep. 6, 20349 (2016).
[34] A. Godec and R. Metzler, Phys. Rev. X 6, 041037 (2016).
[35] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[36] S. Aaronson and A. Ambainis, in Proceedings of the 44th

Annual IEEE Symposium on Foundations of Computer Science
(IEEE, Piscataway, 2003), pp. 200–209.

[37] A. M. Childs and J. Goldstone, Phys. Rev. A 70, 022314 (2004).
[38] O. Mülken and A. Blumen, Phys. Rev. E 73, 066117 (2006).
[39] H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and

Y. Silberberg, Phys. Rev. Lett. 100, 170506 (2008).
[40] M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D.

Meschede, and A. Widera, Science 325, 174 (2009).
[41] F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt,

and C. F. Roos, Phys. Rev. Lett. 104, 100503 (2010).

043107-15

https://doi.org/10.1016/j.jcss.2004.03.005
https://doi.org/10.1103/PhysRevA.73.032341
https://doi.org/10.1103/PhysRevA.74.042334
https://doi.org/10.1103/PhysRevA.75.062332
https://doi.org/10.1103/PhysRevLett.100.020501
https://doi.org/10.1103/PhysRevA.78.022324
https://doi.org/10.1063/1.3223548
https://doi.org/10.1142/S0218127410025715
https://doi.org/10.1007/s00220-012-1645-2
https://doi.org/10.1007/s00220-014-1929-9
https://doi.org/10.1007/s10955-014-0936-8
https://doi.org/10.1088/1751-8113/48/11/115304
https://doi.org/10.1103/PhysRevA.91.062115
https://doi.org/10.1103/PhysRevA.91.042108
https://doi.org/10.1103/PhysRevA.93.050101
https://doi.org/10.1103/PhysRevA.99.012101
https://doi.org/10.1088/1751-8121/aa5191
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevLett.120.040502
https://doi.org/10.1103/PhysRevA.97.062105
https://doi.org/10.1103/PhysRevResearch.2.023392
https://doi.org/10.1103/PhysRevA.102.022210
https://doi.org/10.1103/PhysRevA.102.012218
https://doi.org/10.1002/prop.201600065
https://doi.org/10.1103/PhysRevLett.121.170402
https://doi.org/10.1103/PhysRevLett.122.070603
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1088/1751-8113/42/43/434003
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1088/1751-8113/49/39/394002
https://doi.org/10.1038/srep20349
https://doi.org/10.1103/PhysRevX.6.041037
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevA.70.022314
https://doi.org/10.1103/PhysRevE.73.066117
https://doi.org/10.1103/PhysRevLett.100.170506
https://doi.org/10.1126/science.1174436
https://doi.org/10.1103/PhysRevLett.104.100503


FELIX THIEL et al. PHYSICAL REVIEW RESEARCH 2, 043107 (2020)

[42] F. Magniez, A. Nayak, J. Roland, and M. Santha, SIAM J.
Comput. 40, 142 (2011).

[43] O. Mülken and A. Blumen, Phys. Rep. 502, 37 (2011).
[44] S. R. Jackson, T. J. Khoo, and F. W. Strauch, Phys. Rev. A 86,

022335 (2012).
[45] L. Novo, S. Chakraborty, M. Mohseni, H. Neven, and Y. Omar,

Sci. Rep. 5, 13304 (2015).
[46] S. Chakraborty, L. Novo, A. Ambainis, and Y. Omar, Phys. Rev.

Lett. 116, 100501 (2016).
[47] S. Boettcher, S. Falkner, and R. Portugal, Phys. Rev. A 91,

052330 (2015).
[48] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P.

Zupancic, Y. Lahini, R. Islam, and M. Greiner, Science 347,
1229 (2015).

[49] P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C.
Sanders, Phys. Rev. Lett. 114, 140502 (2015).

[50] S. Li and S. Boettcher, Phys. Rev. A 95, 032301 (2017).
[51] B. Mukherjee, K. Sengupta, and S. N. Majumdar, Phys. Rev. B

98, 104309 (2018).
[52] D. C. Rose, H. Touchette, I. Lesanovsky, and J. P. Garrahan,

Phys. Rev. E 98, 022129 (2018).
[53] G. R. Allcock, Ann. Phys. (NY) 53, 253 (1969).
[54] J. Kijowski, Rep. Math. Phys. 6, 361 (1974).
[55] Y. Aharonov, J. Oppenheim, S. Popescu, B. Reznik, and W. G.

Unruh, Phys. Rev. A 57, 4130 (1998).
[56] J. A. Damborenea, I. L. Egusquiza, G. C. Hegerfeldt, and J. G.

Muga, Phys. Rev. A 66, 052104 (2002).
[57] C. Anastopoulos and N. Savvidou, J. Math. Phys. 47, 122106

(2006).
[58] J. J. Halliwell and J. M. Yearsley, Phys. Rev. A 79, 062101

(2009).
[59] A. Ruschhaupt, J. G. Muga, and G. C. Hegerfeldt, in Time

in Quantum Mechanics - Vol. 2, edited by G. Muga, A.
Ruschhaupt, and A. del Campo, Lecture Notes in Physics, Vol.
789 (Springer, Berlin, 2009), Chap. 4, pp. 65–96.

[60] D. L. Sombillo and E. A. Galapon, Phys. Rev. A 90, 032115
(2014).

[61] D. L. B. Sombillo and E. A. Galapon, Ann. Phys. (NY) 364,
261 (2016).

[62] E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998).
[63] A. M. Childs, E. Farhi, and S. Gutmann, Quantum Inf. Process.

1, 35 (2002).
[64] J. Kempe, Probab. Theory Relat. Fields 133, 215 (2005).
[65] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
[66] F. D. Stefani, J. P. Hoogenboom, and E. Barkai, Phys. Today

62(2), 34 (2009).
[67] P. Facchi and S. Pascazio, J. Phys. Soc. Jpn. 72, 30 (2003).
[68] R. Yin, K. Ziegler, F. Thiel, and E. Barkai, Phys. Rev. Research

1, 033086 (2019).
[69] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantenmechanik

(de Gruyter, Berlin, 2009), Vol. 1.
[70] Q. Liu, R. Yin, K. Ziegler, and E. Barkai, Phys. Rev. Research

2, 033113 (2020).
[71] B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).
[72] W. M. Itano, D. J. Heinzen, J. J.Bollinger, and D. J. Wineland,

Phys. Rev. A 41, 2295 (1990).
[73] T. J. Elliott and V. Vedral, Phys. Rev. A 94, 012118 (2016).
[74] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 98, 205136

(2018).
[75] J. A. Cima, A. L. Matheson, and W. T. Ross, The Cauchy Trans-

form (American Mathematical Society, Providence, 2006).
[76] F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. S.

Cataliotti, F. Caruso, and A. Smerzi, Nat. Commun. 5, 3194
(2014).

[77] J. Novotný, G. Alber, and I. Jex, J. Phys. A: Math. Theor. 45,
485301 (2012).

[78] B. Svensson, Quanta 2, 18 (2013).
[79] B. Tamir and E. Cohen, Quanta 2, 7 (2013).
[80] K. Snizhko, P. Kumar, and A. Romito, Phys. Rev. Research 2,

033512 (2020).

043107-16

https://doi.org/10.1137/090745854
https://doi.org/10.1016/j.physrep.2011.01.002
https://doi.org/10.1103/PhysRevA.86.022335
https://doi.org/10.1038/srep13304
https://doi.org/10.1103/PhysRevLett.116.100501
https://doi.org/10.1103/PhysRevA.91.052330
https://doi.org/10.1126/science.1260364
https://doi.org/10.1103/PhysRevLett.114.140502
https://doi.org/10.1103/PhysRevA.95.032301
https://doi.org/10.1103/PhysRevB.98.104309
https://doi.org/10.1103/PhysRevE.98.022129
https://doi.org/10.1016/0003-4916(69)90251-6
https://doi.org/10.1016/S0034-4877(74)80004-2
https://doi.org/10.1103/PhysRevA.57.4130
https://doi.org/10.1103/PhysRevA.66.052104
https://doi.org/10.1063/1.2399085
https://doi.org/10.1103/PhysRevA.79.062101
https://doi.org/10.1103/PhysRevA.90.032115
https://doi.org/10.1016/j.aop.2015.11.008
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1023/A:1019609420309
https://doi.org/10.1007/s00440-004-0423-2
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1063/1.3086100
https://doi.org/10.1143/JPSJS.72SC.30
https://doi.org/10.1103/PhysRevResearch.1.033086
https://doi.org/10.1103/PhysRevResearch.2.033113
https://doi.org/10.1063/1.523304
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1103/PhysRevA.94.012118
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1038/ncomms4194
https://doi.org/10.1088/1751-8113/45/48/485301
https://doi.org/10.12743/quanta.v2i1.12
https://doi.org/10.12743/quanta.v2i1.14
https://doi.org/10.1103/PhysRevResearch.2.033512

