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A global symmetry (0-symmetry) in an n-dimensional space acts on the whole space. A higher symmetry
acts on closed submanifolds (i.e., loops and membranes, etc.), and those transformations form a higher group.
In this paper, we introduce the notion of algebraic higher symmetry, which generalizes higher symmetry and is
beyond higher group. We show that an algebraic higher symmetry in a bosonic system in n-dimensional space
is characterized and classified by a local fusion n-category. We find that, when restricted to its symmetric sub-
Hilbert space, an algebraic higher symmetry can be fully characterized by a noninvertible gravitational anomaly
(i.e., a topological order in one higher dimension). Thus, we also refer to a noninvertible gravitational anomaly
as categorical symmetry to stress its connection to symmetry. This provides a holographic and entanglement
view of symmetries. For a system with a categorical symmetry, its gapped state must spontaneously break part
(not all) of the symmetry, and the state with the full symmetry must be gapless. Using such a holographic
point of view, we obtain (1) the gauging of the algebraic higher symmetry; (2) the classification of anomalies
for an algebraic higher symmetry; (3) the equivalence between classes of systems, with different (potentially
anomalous) algebraic higher symmetries or different sets of low-energy excitations, as long as they have the
same categorical symmetry; and (4) the classification of gapped liquid phases for bosonic and/or fermionic
systems with a categorical symmetry, as gapped boundaries of a topological order in one higher dimension (that
corresponds to the categorical symmetry). This classification includes symmetry protected trivial (SPT) orders
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and symmetry enriched topological (SET) orders with an algebraic higher symmetry.
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I. INTRODUCTION

The notion of a symmetry plays a very important role in
physics. A quantum system living on n-dimensional space'
M" is defined by a vector space V formed by wave functions
on M" and a Hamiltonian H. A symmetry in such a system
is a set of linear constraints on the allowed Hamiltonians.
Since the Hamiltonian is always a sum of local operators
H =}, Oy, we can also more precisely describe a symmetry
as a set of linear constraints on the allowed local operators.

'Here, a n-dimensional space M" actually means a triangula-
tion of n-dimensional manifold. So, M" should be viewed as a
n-dimensional simplicial complex. In this paper, we mainly consider
discrete lattice systems.
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Those allowed local operators are called symmetric local op-
erators and they form an algebra of symmetric local operators.
A symmetric Hamiltonian is a sum of symmetric local opera-
tors. The algebra of symmetric local operators contains all the
information about the symmetry and represents a very general
way to describe the symmetry. In this paper, we will use this
point of view to show that a symmetry in n-dimensional space
is described as a local fusion n-category.

By a “symmetry,” we usually mean a global symmetry,
where we have a set of unitary operators W,, labeled by «,
acting on the whole space M" (i.e., a symmetry transforma-
tion), which gives rise to the following linear constraint on the
local operators W,,O, = O,W,,. If one digs deeper, however,
one finds that there are in fact several different kinds of global
symmetries. In quantum field theories, we have anomaly-
free global symmetries (gaugeable global symmetries) and
anomalous global symmetries (non-gaugeable global symme-
tries or 't Hooft anomalies [1]). In lattice systems, we have
on-site symmetries [where the symmetry transformation has a
composition in terms of operators W, (x) that acts only on
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lattice site labeled by x: W,, = ®, W, (x)] and non-on-site sym-
metries [2,3].

These different kinds of global symmetries are closely re-
lated. Consider a low-energy effective field theory of a lattice
model. The on-site symmetries in the lattice model becomes
the anomaly-free global symmetries in the effective field the-
ory, since the lattice on-site symmetry is always gaugeable.
The non-on-site symmetries in the lattice model become the
anomalous global symmetries in the effective field theory [3].
For the symmetries related to spacial transformation, such as
the lattice translation symmetry and point group symmetry,
sometimes they become anomalous symmetry in the effec-
tive field theory, and sometimes they are anomaly-free. In
this paper, we consider only internal symmetries instead of
symmetries related to spatial transformations.

There are also gauge symmetries in field theories and lat-
tice theories, but they are not symmetries in quantum systems
and should not be called symmetry at all.

Recently, in Ref. [4], the notion of a global symmetry
was generalized to a k-form symmetry, which acts on all
closed subspaces of codimension k and becomes the iden-
tity operator if the closed subspaces are contractible. It was
stressed that many results and intuitions for global symme-
tries (the O-form symmetries) can be extended to higher form
symmetries.

In fact, closely related higher symmetries have been stud-
ied earlier (but under various different names, such as logical
operator, gauge-like symmetry, etc.), where exactly solvable
lattice Hamiltonians commuting with all closed string and/or
membrane operators were constructed to realize topological
orders [5—11]. We call a lattice symmetry generated by a
k-codimensional operator as a k-symmetry, where the codi-
mension in this paper is defined with respect to the space
dimension. Similar to a k-form symmetry, a k-symmetry acts
on closed subspaces of codimension k, but it does not become
the identity operator when the closed subspaces are con-
tractible. A higher symmetry is a symmetry in a lattice model.
A higher symmetry reduces to a higher form symmetry in the
ground-state subspaces (i.e., in low-energy effective topolog-
ical quantum field theory). Our local fusion higher category
description of symmetry includes those higher symmetries.

The emergence of higher symmetries was also studied
before (again under different names, such as string-operators
satisfying zero law) [12], where it was found that, unlike usual
global symmetry (i.e., O-symmetry), the emergent higher sym-
metries cannot be destroyed by any local perturbations. Such
a topological robustness was used to show that the emer-
gent gapless U (1) gauge bosons are robust against any local
perturbations—a topological version of Goldstone theorem
[12]. See Refs. [13—-18] for some recent discussions of lattice
higher symmetries, their emergence, anomalies, and a clas-
sification of associated higher symmetry protected phases on
lattice.

In this work, we study another kind of symmetries that
is beyond higher groups. We refer to these symmetries as
algebraic higher symmetries and refer to higher groups as
group-like higher symmetries. Algebraic higher symmetries
include group-like higher symmetries as special cases.

Group-like higher symmetries and algebraic higher sym-
metries can both be generated by p-dimensional operators

W, (87) labeled by an index « and S? (a p-dimensional closed
submanifold), and W, (S”) only acts on the degrees of freedom
near S”. For a group-like higher symmetry, the k-dimensional
operators satisfy a group-like algebra

W (SP)Wp(SP) = W, (SP), ey

while for an algebraic higher symmetry, they may satisfy a
more general multiplication algebra [19],

W (SPYWp(SP) =D NI W, (SP). 2)
Y

In this case, the symmetry generator W, (S”) may be neither
invertible nor unitary. Such kind of algebraic symmetries
was studied in 1 + 1D conformal field theory via noninvert-
ible defect lines (where invertible defect lines are known to
connect to symmetry) [20-23]. We believe that local fusion
higher categories classify the anomaly-free algebraic higher
symmetries, while anomalous algebraic higher symmetries
are described by generic higher categories.

In Sec. IV, we discuss an example, a lattice model de-
scribed by a Hamiltonian H, where the above algebraic higher
symmetry does show up, i.e.,

Wo(SP)H = HWo (SP). 3

Then, in Secs. VI and V, we discuss unbroken anomaly-free
algebraic higher symmetry from a point of view of trivial
symmetric product state and local fusion higher category. In
Sec. VIE, we show that an algebraic higher symmetry can
be fully described by a noninvertible gravitational anomaly
[24] (which is the same as a topological order in one higher
dimension [3,25-27]), and this is a very useful way to view
symmetry. To stress its relation to symmetry, we also refer
to noninvertible gravitational anomaly (i.e., topological order
in one higher dimension) as categorical symmetry [19]. In
Sec. VII B, we obtain a classification of gapped liquid phases
for systems with a categorical symmetry. It includes the clas-
sification of symmetry protected trivial (SPT) phases and that
of symmetry enriched topological (SET) phases for algebraic
higher symmetry. In Sec. VIII, we describe the emergence
of categorical symmetries from topological orders, when the
excitations have a large separation of energy.

The main point of this paper is about anomaly-free al-
gebraic higher symmetries that are generally described and
classified by local fusion higher categories. We also study
topological orders with algebraic higher symmetries. Our
approach is based on fusion higher category description of
topological orders [25-31], which will be reviewed, clarified,
and expanded in Sec. III. A brief summary of higher category
description of topological orders can also be found in the first
few subsections of Sec. II. This section tries to summarize the
results of this paper for physics readers.

We have a more mathematical version of this paper pub-
lished as Ref. [31]. The present paper contains more physical
results and has more physical discussions.

We remark that the precise definitions of fusion higher
categories and local fusion higher categories are difficult due
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to the lack of the universally accepted and well-developed
model for weak n-categories. In this paper, we try to give
a physical definition via the notion of topological orders.
Many related concepts for topological order in arbitrary di-
mensions and for higher categories are discussed this way in
Sec. III.

We like to point out that the physical definition of topolog-
ical orders given in Ref. [32] is based on microscopic lattice
models. In fact, many physical concepts are defined via micro-
scopic lattice models, and we refer to those kinds of definition
as microscopic definitions. There are also many physical con-
cepts which are defined via macroscopic measurements, such
as superfluidity defined via vanishing viscosity and quan-
tization of vorticity. We refer to those kinds of definitions
as macroscopic definitions. In this respect, the definitions
in mathematics are macroscopic definitions, so mathematical
definitions are closer to physical experiments. Some notions
in symmetry and topological orders are defined microscop-
ically, such as topological excitations [33-35], long-range
entanglement [32], the characterization of algebraic higher
symmetry by (2), etc. Some other notions are defined micro-
scopically, such as topological degeneracy and the associated
modular transformations [36-38], etc. A lot of the effort of
this work is to convert microscopic definitions to macroscopic
definitions, when possible. We will use Ph {5 indicate the mi-
croscopic definitions. Most results of this paper are presented
via propositions. Those results are physical results based var-
ious physical arguments and beliefs.

Throughout this work, we use nd to denote the spacial
dimension and (n + 1)D to denote the spacetime dimension,
and the following convention of notations:

(1) nD topological orders: A", B", C" (mathsf font);

(2) fusion n-categories: A", B", C" (mathcal font);

(3) braided fusion n-categories: A", B", C" (euscript font).

Throughout this paper, superscripts always mean the
spacetime dimension, or level of higher category. Also in
this paper, we only consider finite algebraic higher symmetry.
We mostly consider bosonic systems, except in Secs. VIIC 3,
VIIC4, and VIIC 6. When we say, for example, SPT orders,
we mean SPT orders in a bosonic system. In Secs. VIIC 3,
VIIC4, and VIIC6, our results apply to both bosonic and
fermionic systems, and even anyonic systems, via a more
general notion of algebraic higher symmetry.

II. SUMMARY OF MAIN RESULTS

Since the main text of this paper is quite mathematical, in
this section, we summarize the main results in less rigorous
physical terms and introduce concepts and notations along the
way.

A. Category of topological orders

First, let us introduce some concepts and notations about
topological order. Let 9"*!, called the moduli space, be the
space of Hamiltonians that support a gapped liquid ground
state [39,40]. An element in mo(9M"*') is a gapped liquid
phase, i.e., a topological order, which is denoted by MetL
So, a topological order is a gapped liquid phase [39,40]
(see Definition 8, which is a microscopic definition).

Trivial product

M n+2 n+1
state M

k k

(a) gfﬂ .Cgf

FIG. 1. (a) An anomaly-free topological order C*' € TO’™ in
(n + 1)-dimensional spacetime can be realized on lattice in the same
dimension, which can also be viewed as a boundary of a trivial
product state in one higher dimension. The excitations in C ! are
described by fusion n-category Cl%. (b) An anomalous topological
order C"*! € TO"*! in (n + 1)-dimensional spacetime can be re-
alized as a boundary of an anomaly-free topological order M"+2
in one higher dimension. The excitations in C"*! are described by
fusion n-category C". The excitations in M"*2 are described by fusion
(n + 1)-category M"+1,

A topological order in n-dimensional space is roughly de-
scribed macroscopically by the following data [25,26]:

(1) the codimension-1, codimension-2, etc., excitations
above the gapped liquid state (see Fig. 1);

(2) the domain walls between two high dimensional exci-
tations;

(3) the domain walls connecting to other topological
orders (see Fig. 2);

(4) the monoid formed by the stacking topological orders.

Roughly, the data in the first two items describes a fusion
n-category M", which is a partial description of topological
order M"*!_ If we add the data in the third and fourth items
to fusion n-category M", we get a full description of the
topological order M"*! (i.e., a full description of gapped liquid
phase).

To incorporate all the above data in one framework, we
can put all those topological orders in (n + 1)-dimensional
spacetime together to form a category TO"! of (n+1)D
topological orders [26] (see Sec. III F). It consists of a collec-
tion of topological orders (called the objects or O-morphisms
of the category), and 1-codimensional gapped domain walls
between two (not necessarily different) topological orders
(called 1-morphisms of the category), and 2-codimensional
domain walls between 1-codimensional domain walls (called
2-morphisms), so on and so forth. The top morphisms are
(n 4+ 1)-morphisms, which are local operators (satisfying cer-
tain symmetry constraints) acting on a spacetime point (x, ).

M M, | M,

—e

() C, D () C, D

FIG. 2. (a) An anomaly-free domain wall D between two (poten-
tially anomalous) topological orders C; and C,. (b) An anomalous
domain wall D between two (potentially anomalous) topological
orders C; and C,. D is a boundary of domain wall C; which is a
(potentially anomalous) topological order.
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The top morphisms can also be viewed as instantons in space-
time. The objects form a monoid under the stacking operation.

To be more precise, we distinguish two different cate-
gories: TO"™! and TO '. A topological order is called
anomaly-free (i.e., in T@Z;’ 1Y if it can be realized by lattice
models in the same dimension [see Sec. IIIE and Fig. 1(a)]
and is called anomalous if otherwise [see Sec. IIIF and
Fig. 1(b)] [3,25]. An (n — 1)d domain wall between two
anomaly-free nd topological orders is called anomaly-free if
it can be realized by a (n — 1)d lattice wall between two
(n 4+ 1)d lattice-model realization of two adjacent (n + 1)d
topological orders [see Fig. 2(a)] and is called anoma-
lous if otherwise [see Fig. 2(b)]. Anomaly-free/anomalous
higher codimensional domain walls can be defined similarly.
All potentially anomalous (n + 1)D topological orders form
a category TO""!, in which I-morphisms in TO"*! are
defined by potentially anomalous 1-codimensional gapped
domain walls and higher morphisms are higher codimen-
sional gapped domain walls. See Ref. [26] for more details.
Since objects in TO"*! are topological orders, we simply
use A"+ B! C"+! e TO™! to denote (n + 1)D topolog-
ical orders (see Sec. III A). The superscript "*! represents
the spacetime dimension and may be omitted if it is manifest
from the context. We denote the trivial (n 4+ 1)D topological
order by I"*! (see Sec. III D) and denote the stacking of two
(n + 1)D topological orders A"*! and B"*! by A"*! @ B"*!.
The data I"*! and ® endow the (n + 1)-category TO" ! with
a structure of a symmetric monoidal (n + 1)-category. All
(n+ 1)D anomaly-free topological orders, together with all
anomaly-free domain walls of all codimensions, form a sym-
metric monoidal (n + 1)-category of anomaly-free (n + 1)D
topological orders, denoted by TO” ! (see Sec. IIIE and
Ref. [26] for more details).

We recall a few notions introduced in Ref. [26]. We denote
the trivial (n — 1)D domain wall between A" and A" by ida,
and the trivial (n — 2)D domain wall between ida and ida by
idi, and so on and so forth.

As objects in a higher category, the notion of ‘“same
topological order” is nontrivial. Physically, two anomaly-free
topological orders, M and M’, are equivalent if they can de-
form into each other smoothly without closing the energy
gap (i.e., without phase transition), i.e., via a continuous path.
However, there are different paths that correspond to different
ways that M and M’ are equivalent. Those different classes of
paths are described by 7r; (9"1).

Such a deformation corresponds to an invertible domain
wall (which is always gapped; see Definition 21) between the
two topological orders.

Definition 1. Two anomaly-free topological orders M and
M’ are called equivalent if they can be connected by an invert-

ible domain wall $. We denote this isomorphism by M ~ M’
or § : M >~ M. The invertible domain walls are classified by
big (mn+l )

The objects in T @;’;” ! are actually the equivalent classes
of topological orders, under the above equivalent relations
(which correspond to isomorphisms in category). When we
say two topological orders are the “same,” they can be equiv-
alent in many different ways, described by different invertible
domain walls.

B. Excitations in a topological order

In an nd potentially anomalous topological order C**! ¢
TO"! [i.e., in (n + 1)-dimensional spacetime], the point-like
(0d), string-like (1d), ..., (n — 1)d excitations form a fusion
n-category, which is denoted as Hom(C"*+!, C"*1), or simply
C" (see Definition 17). By abusing the notation, we set

an-H = HOI’I](Cn-H, Cn+l) = C". (4)

We set the convention of the superscript: QC"! = Q(C"*!).
Excitations of codimension-1 can be fused but not braided.
If we exclude the 1-codimensional excitations, we obtain a
braided fusion (n — 1)-category, which is precisely the loop-
ing QC" of C" (see Sec. IIIH). The fusion n-category C"
does not carry the full information about the nd topological
order, since C" only describes the excitations within the nd
topological order. There are different topological orders (that
differ by stacking invertible topological orders [25,41,42])
which have identical excitations. To fully describe an nd
topological order C"*!, we need not only the information
about the excitations C”, but also the additional information on
invertible topological orders. We can also say that nd poten-
tially anomalous topological orders (without any symmetry)
are classified, up to invertible topological orders, by fusion
n-categories [25,26,30,31] (see Propositions 17 and 21).

Similar to topological order, it is tricky to determine if two
fusion higher categories are the same or not. In general, we
can only say whether the two fusion higher categories are
equivalent or not.

Definition 2. Two fusion higher categories, M and M’
are equivalent if there exist a functor F : M — M’ and G :
M’ — M suchthat F o G >~ idpyq and G o F 2~ id o, where
=~ are natural isomorphisms. Such an equivalence F is denoted
by M~ M orF: M~ M.

Here, we like to clarify that for simplicity we use the terms
of functor, natural isomorphism, algebra object, etc., while
they should all be understood as higher categorifications in
higher categories.

C. Holographic principle for topological order

It was pointed out in Ref. [25] that a potentially anoma-
lous (n+ 1)D topological order C"*! uniquely determines
an anomaly-free topological order M"*2 in one-higher di-
mension where C"*! can be viewed as a boundary of M"+2
[see Fig. 1(b)]. This boundary-bulk relation is the holographic
principle of topological order: “anomaly” = “topological
order in one-higher dimension” [3,25-27]. Such a point of
view on anomaly is quite different from viewing anomaly as
a noninvariance of path-integral measure, and the anomalies
under the new point of view are in general noninvertible (since
the topological orders are in general noninvertible). We denote
this relation between two topological orders by

M"*+2 = Bulk(C"™") (5)

(see Proposition 16). Since M"*2 is anomaly-free, its bulk is
trivial, i.e.,

Bulk(M"*?) = Bulk*(C™*!) = I"*3. (6)

In other words, Bulk is a “categorified” differential.
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In fact, we have a stronger version of the holographic
principle [see (43) and Fig. 4(b)]:

The excitations in the topological order C"*!, described
by the fusion n-category QC™*!, can already uniquely
determine the bulk anomaly-free topological order M2,
We denote the map from fusion higher categories QC"*!
to topological orders M"*?2 as

bulk(QC"*!) = M**2. (7)

The bulk topological order in turn determines a fusion
n-category QM”12 describing excitations in M"+2. After drop-
ping all 1-codimensional excitations, we obtain a braided
fusion (n — 1)-category Q>M"+2. For simplicity, throughout
this work, we also use the following convention, for example,

C" = anJrl’ (:Jmfl = QC" = 92cn+1;
Mn+1 = QMn+27 M = QM”H — Q2Mﬂ+2' (8)

The boundary-bulk relation bulk(QC"*!)=bulk(C")=M"*2
reduces to the main results in Refs. [26,27] (see Sec. III 1)

M =Z,C") or QM2 =z, (QC", )

where Z; is the monoidal center (or E;-center, or Drinfeld
center for fusion 1-categories). For a more detailed description
of topological orders in arbitrary dimensions, see Sec. III and
Refs. [25-31].

D. Algebraic higher symmetry

Now, we are ready to describe algebraic higher symmetry.
First, let us describe a very general view of symmetry.

Definition”" 3. A symmetry is simply a way to select a set
of local operators {O}, called symmetric local operators, that
form a linear vector space:

01+ 0,€{0}, V 01,0, € {0}, (10)
and form a linear algebra
0,0, € {0}, Y 04,0, € {0}. 1D

The symmetric Hamiltonians are simply sums of those
selected local operators.

The standard way to select the symmetric local operators is
via symmetry transformations that form a group G,

{Oc | We0¢ = OgW,, g € G}, 12)

where the symmetry transformation W, acts on the whole
space. The Hamiltonians formed by the sums of local oper-
ators in {Og} is said to have a O-symmetry G.

For a O-symmetry given by a group G in spatial n-
dimension, if the ground state of a symmetric Hamiltonian is
a symmetric product state, then point-like excitations are de-
scribed by the representations of G, which are called charged
particles. We denote the category of these representations by
1RepG = RepG. These excitations can be fused and braided,
and can be condensed to form higher dimensional excitations,

called condensation descendants. All these excitations form a
(symmetric) fusion n-category, denoted by nRepG. Due to the
Tannaka duality [43] between Rep(G) and G, the fusion and
braiding properties (i.e., the conservation law) of the pointlike
excitations can fully determine the symmetry group G. When
n = 2, we believe that the constructed nRepG outlined above
is the same as that in Ref. [44].

In fact, fusion n-category nRepG can also determine a
set of local operators in n-dimensional space, denoted as
{Onrepc). The set {O,repg} describes all possible local in-
teractions among the excitations described by nRepG that
preserve all the fusion and braiding properties of the ex-
citations. For example, {O,rep} contain all the operators
that create particle-antiparticle pairs. It also contain all the
operators that create a small loop of string-like excitations,
small ball of membrane-like excitations, etc. There are also
potential interactions between those excitations. We believe
all those operators generate the whole set {O,repc}. However,
{Onrepc} does not contain operators that create a single par-
ticle that carries nontrivial representation (i.e., single charged
particle). Such operators will break the symmetry.

Above, we have described two ways (i.e., two symmetries)
which select two sets of local operators, {Og} and {OyRepc}-
We believe that

there is one-to-one correspondence between the local op-
erators in the two sets, {Og} and {O,rcpG}, such that the
two corresponding local operators share the same proper-
ties (such as identical operator algebra relations). In other
words, the linear algebras formed by {Og} and {O,repG}
are isomorphic.

Definition”" 4. Consider two symmetries (i.e., two ways)
that select two sets of local operators {O} and {O’}. The two
symmetries are said to be holographically equivalent (holo-
equivalent) if the linear algebras formed by {O} and {O'} are
isomorphic.

The reason we use the term holographically is due to the
Propositions 1 and 2. Note that two holo-equivalent symme-
tries may be generated by transformations that are not related
by a unitary transformation, so “holo-equivalent” is more gen-
eral then “equivalent” for symmetries.

Thus, the symmetry described by the transformations
G and the symmetry described by the fusion n-category
nRepG are holo-equivalent. This correspondence represents
a categorical view of symmetry, which is heavily used in
Refs. [45,46].

The 0-symmetry transformations W, that acts on the whole
space can be generalized so that the generalized symmetry
transformations W; can act on any loops, any closed mem-
branes, etc. We call the new symmetry algebraic higher
symmetry, which can be beyond higher groups. The algebraic
higher symmetry described by the transformations W, select a
set of local operators

{Ow | WaOw = OwWo}, 13)

where « labels different symmetry transformations. The label
o may include various closed subspaces of the space manifold,
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where the symmetry acts. In Secs. IV and V, we discuss
some examples of algebraic higher symmetries via the sym-
metry transformations W,. But a mathematical definition (i.e.,
a macroscopic definition not involving lattice) of algebraic
higher symmetries in terms of symmetry transformations W,
is not easy to formulate.

In the following, we will use the categorical view of
symmetry to obtain a mathematical definition of algebraic
higher symmetry. First, we have a mathematical definition of
anomaly-free property of algebraic higher symmetry:

Definition” 5. An nd algebraic higher symmetry is
anomaly-free if there exists a symmetric gapped Hamiltonian
in the same dimension whose ground state is a nondegener-
ate product state. In other words, the gapped ground state is
nondegenerate for any closed space manifolds. Such nonde-
generate ground state is called a trivial symmetric state. The
excitations on top of such a ground state are called charge
objects, which carry “representations” of the algebraic higher
symmetry.

We note that the excitations (the charge objects) may be
point-like, string-like, membrane-like, etc. In particular, for
an algebraic k-symmetry that acts on closed subspace of codi-
mension k, its charge objects has dimension k.

Motivated by the Tannaka duality of O-symmetry described
by a group, we propose that an anomaly-free algebraic higher
symmetry in nd boson systems is completely characterized
by the excitations on top of its trivial symmetric state. In
this paper, we use this property to define algebraic higher
symmetry.

Those excitations on a trivial symmetric state form a very
special fusion n-category R (called the representation cat-
egory of the symmetry). To see in which way the fusion
n-category is special, we note that the symmetry described by
‘R can be explicitly broken. This explicit symmetry-breaking
process will change R to another fusion n-category n)ec,
where nVec describes point-like, string-like, etc., excitations
in a product state without any symmetry (see Sec. IITH),
so R is a special fusion n-category that is equipped with a

top-faithful monoidal functor R LY nVec, where the functor
B describes the explicit symmetry-breaking process. Such a
fusion n-category R is said to be local.

The anomaly-free bosonic algebraic higher symmetries are
classified by local fusion n-categories R, i.e., by the data

R —ﬂ> nVec [see Fig. 3(a) and Sec. VIB].

We can use this classification as a formal definition of
algebraic higher symmetry. For simplicity, in this paper,
we usually drop B and use the representation category R
to describe an algebraic higher symmetry. For example, a
finite O-symmetry G in n-dimensional space has a represen-
tation category nRepG and can also be referred as a nRepG
symmetry.

As a symmetry, the algebraic higher symmetry character-
ized by R also selects a set of symmetric local operators
{Or}, which describe all possible local interactions between
excitations described by R. If the set of local operators se-
lected by the transformations W, [see (13)] has a one-to-one
correspondence with the set of local operators selected by

M

«M
k k
fo-Or (oA

a) R 5 (b) X 0

FIG. 3. (a) An algebraic higher symmetry in nd bosonic sys-
tems is fully characterized by its charge objects (the excitations in
trivial symmetric state), which form a local fusion n-category R.
The symmetry selects a set of local operators {Ox} which are said
to have the algebraic higher symmetry R. (b) A categorical sym-
metry for bosonic systems in n-dimensional space is characterized
by an anomaly-free topological order M in one higher dimension.
The categorical symmetry M also selects a set of local operators,
which is given by all the boundary local interactions, {Om}, of
the bulk topological order M. An algebraic higher symmetry R is
holo-equivalent to a categorical symmetry given by M = bulk(R).
The holo-equivalence means that the algebraic higher symmetry R
and the categorical symmetry M = bulk(R) select equivalent sets
of local operators, i.e., there is one-to-one correspondence between
{Ox} and {Ow}, such that the two corresponding local operators have
the same operator algebra relations. In this sense, the systems with
an algebraic higher symmetry R also have the categorical symmetry
M = bulk(R).

the local fusion n-category R, i.e., if {Ow} =~ {Or}, then
‘R describes the algebraic higher symmetry defined by the
transformations W,.

It is possible that two local fusion n-categories, R and R/,
select the equivalent local operator algebras.

Definition” 6. If {Or} and {O'} form isomorphic linear
algebras (i.e., there is a one-to-one correspondence between
{Or} and {Ox'} such that the corresponding operators have
the same operator algebra relations), then the two symmetries
are called holo-equivalent.

Later we will show that nRepG and n)ecg are both local
fusion n-categories if G is a finite group. Their corresponding
algebraic higher symmetries are holo-equivalent.

In this paper, we mainly discuss anomaly-free algebraic
higher symmetry. For simplicity, by an algebraic higher sym-
metry we mean an anomaly-free algebraic higher symmetry
unless indicated otherwise.

We further generalize the notion of algebraic higher sym-
metry, by introducing a notion of V-local fusion n-category
(see Definition 28), which has a top-faithful surjective

monoidal functor R LY V, where V is a fusion n-category.
When V = nVec, R describes algebraic higher symmetry in
nd bosonic systems. When V = nsVec, where nsVec is the
fusion n-category of super n-vector spaces, R describes alge-
braic higher symmetry in nd fermionic systems.

The anomaly-free fermionic algebraic higher symmetries

are classified by the data R —ﬁ> nsVec, where R is a fusion
n-category.

For some discussions on fermionic topological orders (with
R = nsVec), see Refs. [47-49], and on fermionic SPT/SET

orders (with R —ﬂ> nsVec) see Refs. [46,50-58].
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More general choices of V can describe systems formed by
anyons or other higher dimensional topological excitations, so
the notion of a generalized algebraic higher symmetry allows
us to study the symmetry of bosonic and fermionic systems at
equal footing. It is interesting to see that the boson, fermion,
and anyon statistics can be encoded in a generalization of
algebraic higher symmetry.

E. Dual symmetry

An algebraic higher symmetry can be understood via a
more general notion: categorical symmetry. Before explain-
ing categorical symmetry, let us explain a simpler notion of
dual symmetry. It was pointed out in Ref. [19] that an nd
system with O-symmetry G also has a dual algebraic (n — 1)-
symmetry denoted by G"~1,

We may use the holographic view to understand the ap-
pearance of the dual symmetry. We note that the symmetric
sub-Hilbert space of a G-symmetric system in n-dimensional
space can be viewed as a boundary of a one-higher-
dimensional G-gauge theory [19,59] denoted by GT"GH. The
fusion (the conservation) of the bulk point-like gauge charges
in the G-gauge theory gives rise to the 0-symmetry G. The
bulk GT'&Jr2 also has (n — 1)d gauge flux. The fusion (the con-
servation) of the bulk gauge flux in the G-gauge theory gives
rise to the algebraic (n — 1)-symmetry G~ 1 (see Sec. IV).
We stress that both the 0-symmetry G and the dual algebraic
(n — 1)-symmetry G”~1 are present at all the boundaries
if we view the boundaries as lattice boundary Hamiltonians
or lattice boundary conditions [19] (for details, see the next
subsection). However, for a gapped boundary, viewed as a
quantum ground state, one of the 0-symmetry and algebraic
(n — 1)-symmetry, or some of their combinations must be
spontaneously broken [19,60].

If we condense all gauge flux, we obtain a boundary with
the O-symmetry G and the spontaneously broken algebraic
(n — 1)-symmetry GV, The boundary excitations are de-
scribed by nRepG. This boundary corresponds to the usual
G-symmetric product state whose excitations are also de-
scribed by nRepG.

If we condensed all gauge charges, we obtain a boundary
with the dual algebraic (n — 1)-symmetry GV and the spon-
taneously broken 0-symmetry G. The boundary excitations
are described by a local fusion n-category nVecg. This is the
usual spontaneous G-symmetry breaking state. The nontrivial
fusion (the conservation) of the symmetry-breaking domain
walls is also described by nVecG, which gives rise to the dual
algebraic (n — 1)-symmetry G=D. Thus, the dual symmetry
GV can also be represented by its representations cate-
gory, which is just the fusion n-category, nVec, of G-graded
vector spaces. For such a boundary, the dual algebraic (n — 1)-
symmetry G~ is not spontaneously broken.

If the boundary Hamiltonians have both the 0-symmetry
G and the dual algebraic (n — 1)-symmetry G~ 1, we should
see a boundary phase where both the O-symmetry G and the
dual algebraic (n — 1)-symmetry G®~1 are not spontaneously
broken. Indeed, such a boundary phase does exist, and it must
be gapless. This is because to get a gapped boundary, we
must condense enough bulk excitations at the boundary, which
break one of the 0-symmetry and algebraic (n — 1)-symmetry,

or some of their combinations. If we do not condense any bulk
excitations, the boundary can only be gapless [61,62].

We see that it is better to view a system with G-symmetry
as a boundary of the G-gauge theory in one higher dimension.
This holographic point of view allows us to see the accom-
panying dual symmetry (i.e., the algebraic (n — 1)-symmetry
G"~V) clearly. Using a categorical language, the point-like
excitations carrying group representations (the charge objects)
in an nd G-symmetric product state generate a local fusion
n-category n’RepG. The same local fusion n-category nRepG
also describes the excitations on a boundary of G-gauge the-
ory GT%™, ie., GTE™ = bulk(nRepG) (see Sec. IIIT). This
links the 0-symmetry G to the G-gauge theory GT'(';+2 in one
higher dimension. The boundary with excitations n’/RepG can
be obtained from GT{" by condensing the gauge flux.

GT%™ has another boundary whose excitations are de-
scribed by another fusion n-category n)ec¢. This boundary is
obtained by condensing gauge charges. In this case, the gauge-
flux excitations are not condensed, and their nontrivi~a1 fusion
gives rise to the dual algebraic (n — 1)-symmetry GV, In
fact, nVecg is the representation category that describes the
charge objects of the dual symmetry G”~ 1. In summary, we
have

GT™ = bulk(nVecg) = bulk(nRepG).  (14)

We see that both O-symmetry G and its dual algebraic
(n — 1)-symmetry G®~") share the same G-gauge theory
GT"+2 in one higher dimension. Thus, we can view GT"Jr2
a comblned symmetry, denoted by G v GV The comblned
symmetry is referred as categorical symmetry. It is in this
sense that we say that the categorical symmetry G v G~ is
bigger then the symmetry G and the dual symmetry GV,
We like to mention that the combined symmetry is similar
to the “materialized symmetry” in Ref. [5]. However, there
is a difference: The categorical symmetry GV G®~ 1 is a
symmetry on nd boundary, while the materialized symmetry
is for (n 4+ 1)d bulk.

It is possible to realize the above model-independent
discussion by concrete lattice models. We expect that the
Levin-Wen type of lattice models can be generalized to higher
dimensions. Similar to the 2 + 1D case [34,59], an n + 2D
model is built on a chosen fusion n-category C and a gapped
boundary is built on a chosen C-module. Then the G-gauge
theory GT%™ can be realized by such a lattice model by
choosing C = nRepG. One of its gapped boundary nRepG
can be realized by the boundary lattice model built on the
obvious nRepG-module nRepG. The other gapped boundary
nYecg can be realized by the boundary lattice model built
on the nRepG-module n)ec, where the module structure on
n)ec is induced from the fiber functor n"RepG — nVec, and
nVecg is the category of nRepG-module endo-functors on
nVec. Mathematically, it is just a manifestation of Morita
equivalence between nRepG and nlecg.

We would like to mention that a structure similar to cat-
egorical symmetry was found previously in anti-de Sitter/
conformal field theory (AdS/CFT) correspondence [63—65],
where a global symmetry G at the high-energy boundary is
related to a gauge theory of group G in the low-energy bulk.
In this paper, we stress that the categorical symmetry encoded
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by the bulk G-gauge theory not only contains the G symmetry
at the boundary but also contains a dual algebraic higher
symmetry G”~ at the boundary. We developed a categorical
theory for this holographic point of view for both 0-symmetry
and algebraic higher symmetry. This allows us to gauge the
algebraic higher symmetry, classify the anomalies for a given
algebraic higher symmetry, identify which algebraic higher
symmetries are holo-equivalent, identify duality relations for
low-energy effective theories, and classify SET/SPT orders
with a given algebraic higher symmetry.

F. Categorical symmetry: A holographic of view of symmetry

The above is just the simplest example of categorical sym-
metry. We can generalize the above discussion, and show that,
when restricted to the symmetric sub-Hilbert space, an nd sys-
tem with an algebraic higher symmetry R can be viewed as a
boundary of an anomaly-free topological order M = bulk(R)
[see (43)]. This allows us to see that our system actually has a
categorical symmetry, characterized by topological order M.

Let us first define what is a categorical symmetry. In short,

a categorical symmetry
= a noninvertible gravitational anomaly

= a topological order in one higher dimension.  (15)

To give a more detailed definition, we note that a symmetry
is explicitly defined via the algebra of the symmetric local
operators that its selects. Let us define categorical symmetry
this way.

Definition” 7. For an (n + 1)d anomaly-free topological
order M, the corresponding categorical symmetry is given by
the following:

(1) A special boundary of M such that all the excitations in
M are either condensed or have nearly zero energy gap. All the
bulk excitations have an energy gap larger than a positive fixed
value Apy. Those nearly zero-energy boundary excitations
define a low energy boundary Hilbert space.

(2) The symmetric local operators {Oy} are the local op-
erators acting within the low energy boundary Hilbert space.

We note that a bulk topological order M can have many
different special boundaries that satisfy the above conditions.
We conjecture that different choices of the special boundaries
give rise to different sets of symmetric local operators, {Ow}
and {Oy}, that generate equivalent operator algebra. In other
words, {Om} and {O,} are holo-equivalent.

Although we define categorical symmetry via a topological
order in one higher dimension, in fact, as pointed out in
Ref. [19], at least some categorical symmetries can be defined
via the patch symmetry transformations without going to one
higher dimension, so we believe that the categorical symmetry
is really a property of nd systems.

For an nd categorical symmetry described by an (n + 1)d
topological order M, consider one of its special boundary, such
that all the excitations in M are either condensed or have small
but nonzero energy gap on the boundary. Here, small means
much smaller than the bulk gap Apy. In this case, the special
boundary can be viewed as a gapped boundary, whose non-
condensing excitations are described by a fusion n-category
R that satisfies bulk(R) = M. The fusion n-category R

bulk(® ) bulk( )  bulk(C) %bulk(C’)
R ‘ C . C’
(a) (b)

FIG. 4. (a) Two algebraic higher symmetries R and R’ are holo-
equivalent if they have the same categorical symmetry bulk(R) =~
bulk(R'). (b) Two sets of low-energy excitations C and C’ are holo-
equivalent if they have the same categorical symmetry bulk(C) =~
bulk(C’). Here, holo-equivalent means the states with symmetry R
or R’ (or formed by C or C’) have a one-to-one correspondence.

defines an algebra higher symmetry which is holo-equivalent
to the categorical symmetry M. In other words, R selects a
set of symmetric local operators {Or} and M selects a set
of symmetric local operators {On}. The two sets of local
operators generate equivalent algebra. We find the following
[see Fig. 3(b) and Sec. III 1].

Proposition 1. An algebraic higher symmetry R and a cat-
egorical symmetry M are holo-equivalent, i.e., {Ox } and {Opw}
are isomorphic linear alegras, if and only if M >~ bulk(R).

Using the notion of categorical symmetry, we can eas-
ily tell when two algebraic higher symmetries are holo-
equivalent.

Proposition 2. Two algebraic higher symmetries, R and
R/, are holo-equivalent if and only if bulk(R) ~ bulk(R’)
[see Fig. 4(a)].

We note that the dimension-0, dimension-1, etc., excita-
tions described by M in the bulk topological order M can
be viewed as the dimension-0, dimension-1, etc., excitations
on the boundary if they do not condense. The fusion rule of
those bulk excitations corresponds to the conservation law,
which leads to the categorical symmetry of the boundary
(where the boundary is viewed as a system). However, when
the boundary is viewed as a ground state, some of the bulk
excitations may condense on the boundary, and the categor-
ical symmetry associated with those condensing excitations
are spontaneously broken. So, the boundary, when viewed
as a system (i.e., as a Hamiltomian), has the full categorical
symmetry, but when viewed as a state, the boundary may
spontaneously break part of the categorical symmetry due to
condensation of bulk excitations. From this point of view, the
categorical symmetry has some special properties [19,60]: For
a system with a nontrivial categorical symmetry M,

(1) its gapped ground state must spontaneously break the
categorical symmetry partially (i.e., some excitations in M =
©2M condense);

(2) itis impossible to spontaneously break the categorical
symmetry completely in a gapped state and possibly not in a
gapless state (i.e., it is impossible to condense all excitations
in M);

(3) the symmetric ground state with the full categorical
symmetry must be gapless (i.e., if none of the excitations in
M condense, the boundary must be gapless).

To see an example of categorical symmetry, Ref. [19]
shows that a Hamiltonian on n-dimensional lattice with O-
symmetry Z, also has a (n — 1)-symmetry Z(Z"_l), so the sys-
tem actually has a larger Z, Vv Z({“l) categorical symmetry.
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Suchaz, v Zg"il) categorical symmetry is nothing but the Z,

topological order GT’Z2 (or Z, gauge theory) in one higher
dimension [i.e., in (n + 1)-dimensional space]. The Z, sym-
metry corresponds to the mod-2 conservation of the point-like
Z, gauge charge. The Zg"_l)(n — 1)-symmetry corresponds to
the mod-2 conservation of the (n — 1)-dimensional Z, gauge
flux.

The above system can have a gapped phase where Z(znfl) is
spontaneously broken and Z, is not broken, which is the usual
Z, symmetric phase [19]. Using the categorical language, we
may say that this phase has an (unbroken) algebraic higher
symmetry characterized by the local fusion n-category R =
nRepZ, (which is nothing but the usual Z, 0-symmetry).

The system can also have a gapped phase where Z, is
spontaneously broken and Zg’*l) is not broken, which is the
usual Z,-symmetry-broken phase [19]. This phase has an (un-
broken) algebraic higher symmetry characterized by the local
fusion n-category R = nVecz,, which describes the conser-
vation of symmetry-breaking domain walls.

The quantum critical point of the Z, symmetry-breaking
transition has the full categorical symmetry Z, v Z{""". In
particular, in 1-dimensional space (n = 1), the Z, Vv Z(ZO) cat-
egorical symmetry leads to the emergent Z, x Z, symmetry
for right movers and left movers [19].

G. Emergence of algebraic higher symmetry
and categorical symmetry

In a practical nd condensed matter system, we often have
an on-site 0-symmetry described by a symmetry group G.
Then the system also has a G v G~ categorical symmetry.
However, how can we have a more general higher symmetry
or algebraic higher symmetry R, as well as their associated
categorical symmetry M = bulk(R) in a practical condensed
matter system? Certainly, we can try to realize algebraic
higher symmetry by fine-tuning. Here, we will describe a
situation to have an algebraic higher symmetry without fine-
tuning. In fact, algebraic higher symmetry and categorical
symmetry can emerge at low energies.

We will first discuss the emergence of a categorical sym-
metry M. Once we have an emergent categorical symmetry
M (which may or may not be spontaneously broken), then
we can determine the emergent algebraic higher symmetry R
(which may or may not be spontaneously broken) by solving
the equation bulk(R) = M. Such a equation may have many
solutions for R, but different solutions are all holo-equivalent.

Let us consider a topological order (with or without sym-
metry) on an nd lattice, whose excitations are described by
a fusion n-category C. C may contain topological excitations
not associated with symmetry. C may also contain charge
objects if we have symmetry. Assuming the excitations have a
large separation of energy scale, such that all the low-energy
excitations (point-like, string-like, etc ) are described a sub-
category C'°% of C. All other excitations not in C'*" have large
energy gaps, which are assumed to be infinite. Thus, at low
energies, we only see the excitations in C%_ Here, we treat
all excitations in C'°% on equal footing,and do not distinguish
which excitations are charge objects from a symmetry and
which excitations are topological excitations. In other words,

we pretend all the excitations in C'°% are topological excita-
tions and pretend the system has a (potentially anomalous)
topological order without symmetry, whose excitations are
described by C'°¥.

We see that once we know the low-energy excitations C'*%
(which may contain possible charge objects from symmetry),
the higher energy lattice regularization becomes irrelevant.
Thus, we can directly consider a field theory with low-energy
excitations C'°%. What is the low-energy emergent categorical
symmetry? The answer is very simple:

The low-energy effective categorical symmetry for a nd
field theory with low-energy excitations C'°" is given by
a topological order M'% = bulk(C'*%) [see (43)] in one
higher dimension.

Here by field theory, we mean a theory whose UV regu-
larization is not specified. When we say a field theory has a
property, we mean that there exists a UV regularization of the
field theory, such that the regularized theory has the property.
It is possible that the same field theory with a different regular-
ization may not have the property. In particular, when we say
two field theories are connected by phase transitions, we mean
that for any UV regularization of the first field theory, we can
find a UV regularization for the second field theory, such that
the regularized theories are connected by phase transitions.

The emergent categorical symmetry M°Y is very useful
(see Sec. VIII):

The categorical symmetry M° represents the full infor-
mation that controls all the low-energy properties of the
system.

For example, given a set of low-energy excitations C'°%, we
like to ask the following questions: When the low-energy ex-
citations condense, what kind new phases are possible? What
kind of critical points are possible at the phase transitions? Do
we have any principle to address those issues? The answer is
the emergent categorical symmetry. This because all the possi-
ble low-energy systems (described by all possible interactions
of excitations in C'°%) share the same emergent categorical
symmetry MV, We may view the emergent categorical sym-
metry M'¥ as an “topological invariant” of the low-energy
systems. We believe that all other topological invariants of the
low-energy systems are contained in the emergent categorical
symmetry MV,

In this paper, we obtain many results assuming exact alge-
braic higher symmetry and categorical symmetry. Those result
remain valid for systems with emergent categorical symmetry
MY = bulk(C'*"). This allows us to apply the results of this
paper to some practical situations. In the next subsection, we
consider two applications along this line.

H. Categorical symmetry and duality

A symmetry is useful since it can constrain the properties
of a system, such as possible phases and phase transitions,
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the critical properties at the phase transitions, etc. From the
above discussion, we see that the constraint from a symmetry
actually comes from the corresponding categorical symmetry.
This is because the possible physical properties of a system
with an algebraic higher symmetry R are the same as the
possible physical properties of a boundary of the topological
order M = bulk(R) in one higher dimension. In particular, as
we have mentioned before, if two symmetries R and R’ have
the equivalent categorical symmetry bulk(RR) ~ bulk(R’),
then the two symmetries provide the same constraint on the
physical properties [see Figs. 3 and 4(a)], at least within the
symmetric sub-Hilbert space. In this case, the two symmetries
are holo-equivalent (see Secs. VIE and VIII).
Here, we like state a stronger result:

symmetry, and vice versa. The G 0O-symmetry and the
G~V (n — 1)-symmetry are holo-equivalent symmetries. Us-
ing the categorical notation, we say the n"RepG symmetry and
the nVecs symmetry are holo-equivalent symmetries, since
Z1(nRepG) = Z;(nVecg).

The above duality result can be generalized even further
[see Fig. 4(b) and Sec. VIII]:

Consider two nd field theories with low-energy excitations
described by two fusion n-categories C and C’ respectively.
The two field theories are dual to each other (i.e., are
holo-equivalent), if they have equivalent categorical sym-
metries bulk(C) >~ bulk(C") [see (43)], provided that all
other excitations have high energies.

If two algebraic higher symmetries R and R’ have the
equivalent monoidal center Z;(R) >~ Z;(R'), then the two
symmetries provide the same constraint on the physical
properties, and the two symmetries are holo-equivalent.

In other words, the sets of local operators selected by the
two symmetries, {Or} and {Ox'}, have a one-to-one cor-
respondence (for example, via a duality transformation; see
Ref. [19]) and generate the same algebra. The Hamiltonians
as sums of those symmetric local operators also have a one-
to-one correspondence, and the corresponding Hamiltonians
have the same spectrum.

The above result is motivated by the following con-
sideration: Let M™ be an invertible topological order in
(n 4+ 1)-dimensional space and Cy be the fusion n-category
describing the excitations in one gapped boundary of M™.
Then R and R' =R ® Cy will have the same monoidal
center Z,(R’) = Z;(R), but different bulks: bulk(R') = M ®
M —£ bulk(R) = M. Therefore, requiring Z;(R') = Z;(R)
does not imply bulk(R’) ~ bulk(R) and does not imply the
holo-equivalence. However, if R is local and describes an
algebraic higher symmetry, then R’ = R ® Cy is not local
and does not describe an algebraic higher symmetry. In other
words, the excitations in Cy are topological, which comes
from the invertible topological order M™ in one higher
dimension. Symmetry breaking cannot make them trivial.
This is why we think that there is no top-faithful functor
B that maps R’ = R ® Cy into nVec. Thus we believe the
following:

Proposition 3. If R and R’ are both local (i.e., both de-
scribe algebraic higher symmetries), then Z;(R') >~ Z;(R)
implies bulk(R") ~ bulk(R).

As aresult, all possible phases in a system with R symme-
try have a one-to-one correspondence with all possible phases
in a system with R’ symmetry. In fact, we have a stronger
result: All possible states on a system with R symmetry have
a one-to-one correspondence with all possible states on a
system with R’ symmetry. Those states include gapped states
and gapless states. In Ref. [19], some lattice exact duality
mappings were discussed for some very simple examples to
explicitly demonstrate such a result. This duality relation can
be an important application of categorical symmetry.

For example, an nd system with G 0-symmetry can be
mapped to an nd system with the dual G~V (n— 1)-

We like to remark that the two field theories may have
different symmetries described by different charge objects,
forming two different subcategories in C and C’. The two
field theories may also have different low-energy topological
excitations. In other words, we do not care which excitations
are topological excitations and which excitations are charge
objects of the symmetries.

When two systems have the same categorical symmetry M,
both systems can be simulated by the boundaries of the same
bulk topological order M (since the categorical symmetry is
the bulk topological order). Hence, the two systems are holo-
equivalent. This means that the possible states of the system C
(including condensed states, gapless states, etc.) have a one-
to-one correspondence with the possible states of the system
C’ (see Sec. VIII). Those states are just the possible boundary
states of the same M.

I. Gauging the algebraic higher symmetry
and the corresponding R-gauge theory

Given an nd product state with an on-site O-symmetry G
(i.e., an anomaly-free O-symmetry), we can gauge the symme-
try to obtain a state with topological order and no symmetry.
The resulting topological order is nothing but the G-gauge
theory GT%™'. The excitations in GT%4™' are described by
a fusion n-category QGT4™. In fact QGTE = 2Z,((n —
1)Rep(G)), where X is the delooping (see Sec. II1 H).

Similarly, given an nd product state with an anomaly-free
higher symmetry, we can gauge the higher symmetry to obtain
a state with topological order and no symmetry. The resulting
topological order is described by a higher gauge theory.

Now, given an nd product state with an anomaly-free alge-
braic higher symmetry R, can we gauge the algebraic higher
symmetry to obtain a state with topological order and no sym-
metry? If we can, then the corresponding topological order is a
gauge theory for the algebraic higher symmetry R. We denote
such a gauge theory by GT%™, the excitations in which form
a fusion n-category QGTx.

In this paper, we propose a way to gauge algebraic higher
symmetry, which gives us a construction of R-gauge theory
(by constructing the corresponding topological order GT';QH ).
Our approach is based on the holographic view of the R-
symmetry, which is very different from the usual gauging
based on spacetime-dependent symmetry transformations.
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R
Z,(R)
R

FIG. 5. Gauging the R-symmetry: Stacking two local fusion
n-category R over their common bulk Z;(R) gives rise to an

fusion n-category R ® R', describing the excitations in nd
Zi(R

anomaly-free topological order GT’;], which is the R-gauge the-
ory. The boundary Hamiltonians of R-gauge theory share the same
low-energy properties with the Hamiltonians with algebraic higher
symmetry QR, if R = XQR. We like to remark that R’s on the
two boundaries differ by a parity transformation as indicated by the
arrows and superscript .

Y

R=- th,
} R—gauge theory

A

Under the holographic point of view, an algebraic higher
symmetry R gives rise to a 1-higher-dimensional topological
order M such that QM = Z;(R) [see Fig. 3(b)]. Then the
topological order obtained by gauging the R-symmetry in a
symmetric product state can be obtained by simply stacking
two R boundaries through their common bulk Z;(R) (see
Fig. 5). This is an algebraic way to gauge an symmetry,
which work for O0-symmetries, higher symmetries, and alge-
braic higher symmetries (see Sec. VIICY5).

n+1

The excitations in an nd R-gauge theory GT%  are de-
scribed by an multifusion n-category
QCTE'=Z(R)=R ® R™, (16)

Zi(R)
where Zy(R) := Fun(R, R) is the Ey-center.

J. Dual of an algebraic higher symmetry

Using a similar holographic approach, we can also de-
fine the dual symmetry ‘R for an arbitrary algebraic higher
symmetry R as follows: R and R are dual to each other,
if they have the same bulk Z;(R) = Z;(R) = M and if the
stacking of R and R through their bulk gives rise to a
trivial topological order (i.e., a product state; see Fig. 6,
Definition 30, and Proposition 39):

R ® R™® = nVec. (17)
M

Such a definition reproduces our previous result: The dual of
G 0-symmetry is the G~V (n — 1)-symmetry; i.e., nRep(G)
and nVecg are dual to each other [19].

We would like to mention that a gapped boundary of M,
such as R, is induced by condensing some excitations in M at
the boundary. The collection of those condensing excitations
form a so-called condensable algebra Az. The condensable
algebra A uniquely determines the gapped boundary. A dif-
ferent condensable algebra Az unique determines a different
gapped boundary R. Roughly speaking, moving bulk excita-
tion in M to the R boundary induces a map from M to R, the
mathematical description of which is a functor Fr : M — R.
Under such a map, the condensable algebra A is mapped to
the trivial excitations in R (i.e., condensed; see Fig. 6).

@
nVec Aze M

FIG. 6. Stacking R and R through their common bulk gives
rise to a trivial product state R @ R = n)ec, if the two algebraic
M

higher symmetries, R and 7%, are dual to each other. Condensing
the condensable algebra A (resp. Aj) produces the R (resp. ﬁ)
boundary. The functor Fr : M — R, induced by moving the bulk
excitations to the boundary, maps Ax to the trivial excitation on the
‘R boundary. Similar for Fj.

K. Anomalous algebraic higher symmetry

Can an algebraic higher symmetry have anomaly? How
to describe its anomaly? First, an anomalous symmetry is
characterized by two things: symmetry and anomaly. So an
anomalous algebraic higher symmetry is characterized by a
pair (R, a), where R is for symmetry and « for anomaly.

For a 0-symmetry in n-dimensional space, an anomalous
symmetry is characterized by a pair (G, w,12) where w,12 €
H"™2(G,U(1))is an (n + 2)-cocycle. A more physical way to
understand the anomalous symmetry (G, w,47) is to view it
as the boundary symmetry of a 1-dimension-higher SPT state
[3], which is also characterized by the pair (G, w,+,). We can
gauge the G-symmetry in the SPT state to get a “twisted” G-
gauge theory (the Dijkgraaf-Witten theory [66]), denoted by
GT'(';TjM. In fact, C-}T'(l;’j'1+2 is the categorical symmetry that is
holo-equivalent to the anomalous symmetry (G, w,4,). Thus,
we can also describe the anomalous symmetry (G, w,+2) via
its holo-equivalent categorical symmetry GT’EZM, which is
a “twisted” G-gauge theory in one higher dimension [3,19].
This is the point of view that we will use in this paper.

In fact, under the holographic point of view, a “twisted” G
gauge theory in one higher dimension defines an anomalous
0-symmetry. The boundaries of the “twisted” G gauge theory
give rise to all possible phases (including symmetry-breaking
phases), as well as all other properties, of systems with the
anomalous G 0-symmetry.

Similarly, an nd bosonic system with an anomalous higher
symmetry described by a higher group B(G, 3, ...) (using
the notation in Ref. [67]) has a holo-equivalent categorical
symmetry characterized by a “twisted” higher gauge theory
in one higher dimension. The different anomalies for the
higher group B(G, 3, ...) are (partially) characterized by
cocycles in H""2[B(G, 75, ...);R/Z]. The “twisted” higher
gauge theory in one higher dimension defines the anomaly of
the anomalous higher symmetry.

The categorical symmetry of an nd Hamiltonian with an
anomaly-free algebraic higher symmetry R is given by M =
bulk(R). We like to ask whether M = bulk(R) describes the
R-gauge theory in one higher dimension. The answer is no,
simply because R describes a symmetry in nd, not in one
higher dimension (n + 1)d. The gauge theory in one higher
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dimension cannot be a R-gauge theory since R lives in one
lower dimension.

When we discuss G-gauge theory in all the dimensions, we
have used the fact that the same G-symmetry can be defined
in all the dimensions. For an algebraic symmetry R in nd,
what is the corresponding symmetry in one higher dimension
(n 4+ 1)d? This is a highly nontrivial question. It turns out that
an algebraic symmetry, in general, cannot be promoted to one
higher dimension. Only a special class of algebraic symme-
tries, described by symmetric local fusion n-categories, can
be promoted to one higher dimension. This is because a sym-
metric fusion n-category R in nd can be viewed as a braided
fusion n-category, describing 2-codimensional and higher ex-
citations in one higher dimension [i.e., in (n + 1)d]. We then
can do a delooping to obtain a fusion (n + 1)-category ¥R
(see Sec. IITH). If R is a symmetric local n-category, ¥R is
again a symmetric local (n + 1)-category. So, ¥R describes
the R-symmetry in one higher dimension. Since ¥R is also
symmetric and local, we can promote further to obtain the
corresponding R symmetry in all higher dimensions %2R,
3R, etc. In this subsection, we assume R to be symmetric
local fusion n-category.

Now, we can state the nontrivial result:

The categorical symmetry for an anomaly-free algebraic
symmetry R, M = bulk(R), is the same as the R-gauge
theory GT's2 in one higher dimension:

bulk(R) = GT%2, (18)

provided that R is symmetric.

The excitations in the XR-gauge theory are given by

QGTyZ =R ® IR™, (19)

Zi(ZR)
which defines the gauging of the algebraic higher symme-
try XR. Equation (19) describes the excitations in bulk(R)
given by Qbulk(R) = £Z;(R). The fact that XZ;(R) =

YR ® XR™ follows [30] from the following identity
ZiI(ER)

[68]:
YZI(R)=Zy(ER)=XR ® XR™. 20)
ZI(ER)

Similarly, an anomalous algebraic higher symmetry (R, o)

is defined via its categorical symmetry, which corresponds to a

twisted X R-gauge theory in one higher dimension. The twist

is produced by an automorphism « of Z;(XR) (the dashed

line in Fig. 7). Such a twisted R gauge theory, denoted by

GT%2 . is characterized by its excitations described by (see
Fig. 7)

QGTE2, =TSR ® a ® IR™. 1)

' ZI(ZR)  ZiI(ER)

The automorphism « is not arbitrary. It must satisfy

a(Asn) = Asn, where Ag, is the condensable algebra for

the dual symmetry of ¥R (see Sec. VIICS5). This result

allows us to classify types of anomalies that an algebraic

higher symmetry can have. Since invertible domain wall

 Z,(ER) o | Twisted
Y. R—gauge theory

FIG. 7. The topological order described by a twisted ¥R gauge

theory has excitations described by ¥R ® o @ XR™. The
Z(ZR) Zi(ER)

twist is done by an automorphism « in Z;(X¥R) that keeps the
condensable algebraic Agz of the dual symmetry ¥R unchanged
a(As% ) ~ Asx . The boundary Hamiltonians of twisted X R-gauge
theory correspond to the Hamiltonians with anomalous algebraic
higher symmetry R.

include invertible topological orders, the above anomalies in-
clude invertible gravitational anomalies, symmetry ('t Hooft)
anomalies (which are always invertible), and invertible mixed
symmetry-gravitational anomalies.

Anomalous algebraic higher symmetries R are classi-
fied by the automorphisms o« of Z;(XR) such that
a(Agi) ~ Agzn. Its categorical symmetry M satisfies

CM=%EXR ® « ZR™.

b2
ZiI(ZR)  Zi(ER)

As an application of the above result, we consider 1d
bosonic system with an anomalous 73 symmetry. The possible
anomalies are classified by H 3(Z3, U(1)), which correspond
to 2d Z%-SPT orders. The categorical symmetry of the 1d
anomalous Z3 symmetry is given by the 2d topological order
obtained by gauging the corresponding 2d Z3-SPT states. It
was found that a particular anomalous Z% symmetry, described
by a so-called type-III cocycle in H3(Z3, U (1)), has a cate-
gorical symmetry described by the 2d D4 gauge theory GT%4
[69,70]. Certainly, the 1d anomaly-free D4 symmetry also has
a categorical symmetry described by the 2d D, gauge theory
GT?:,A. Therefore, this particular 1d anomalous Z3 symmetry is
holo-equivalent to 1d D4 symmetry. In general, we conjecture
the following:

Two anomalous algebraic higher symmetries, (R, @) and
(R, &), are holo-equivalent if they satisfy

TR ® a ® IR™

ZI(ZR) Zi(ER)
~¥R ® o ® IIR"™, (22)
Zi1(ER) ZI(ER))

which implies that (R, @) and (R/, @’) have the same cat-
egorical symmetry.

One may ask whether a categorical symmetry M can
always be viewed as an anomalous algebraic higher symme-

try. If the categorical symmetry satisfies QM =XR ®
Z(ER)

o ® XR™, then the categorical symmetry can indeed be
Z(ER)

viewed as an anomalous R-symmetry. We believe there exist
categorical symmetries that do not have the above form, and
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M=Bulk(C) i A
Cbuk(E) )
C @ SNC)

FIG. 8. (a) Gapped liquid phases in systems with categorical
symmetry M are classified by anomalous topological orders C
such that M = Bulk(C). Those gapped liquid phases are partially
classified by fusion n-categories C such that M = Q*M = Z,;(C).
(b) Gapped liquid phases in systems with categorical symmetry M
are classified by the pairs (C, §), where C satisfies bulk(C) = M and
7 is an invertible domain wall in M.

those categorical symmetries cannot be viewed as an anoma-
lous algebraic higher symmetry. Categorical symmetry play a
similar role as anomalous symmetry, but it is more general. In
fact, after introducing categorical symmetry, we do not need to
use anomalous symmetry any more. The effect of anomalous
symmetry can all be covered by categorical symmetry.

L. Classification of gapped liquid phases for systems with a
categorical symmetry

We can also use the holographic point of view to classify
SET/SPT orders with a given algebraic higher symmetry R.
But first, let us classify possible gapped liquid phases in nd
systems with a categorical symmetry M (assuming n > 1).
Using boundary-bulk relation, we find the follwing (see
Sec. VII A):

For nd lattice systems with a categorical symmetry M,
all their gapped liquid phases (which partially break the
categorical symmetry spontaneously) are classified by
potential anomalous nd topological orders C (i.e., nd
boundary topological orders) that satisfy [see Fig. 8(a)

M = Bulk(C). (23)

We note that the categorical symmetry M is an anomaly-
free topological order in one higher dimension.

Since the fusion n-categories C (describing the excitations)
partially describes an nd topological order (up to invertible
topological orders [25,41,42] and SPT orders), we get a partial
classification if we only use C (see Sec. VIIB):

The gapped liquid phases (up to invertible topological or-
ders and SPT orders) in nd lattice systems with categorical
symmetry M are classified by fusion n-categories C that
satisfy bulk(C) = M.

Motivated by the results in Refs. [45,46], we conjecture
that, comparing C and C, the missing information is the in-
vertible topological orders and SPT orders. Thus, we can use
a pair (C, 9) to describe C, where  corresponds to invert-
ible topological orders or SPT orders. More precisely [see
Fig. 8(b) and Sec. VII B], we find the following:

Gapped liquid phases in nd lattice systems with a fixed cat-
egorical symmetry M are classified by pairs (C, 7), where
C is a fusion n-category that satisfies bulk(C) = M and
is an invertible domain wall in M.

The invertible domain walls formed by the trivial excita-
tions in the bulk topological order M are invertible topological
orders. The invertible domain walls formed by the topological
excitations in the bulk topological order M are SPT orders,
since the fusion of the topological excitations encode sym-
metry. There are also invertible domain walls that exchange
excitations. Those invertible domain walls correspond to the
automorphisms of the fusion higher category QM = M that
describes the excitations in the bulk topological order M.

M. Classification of SET orders and SPT orders
with an algebraic higher symmetry

For systems with a categorical symmetry M, in the above,
we classify anomaly-free gapped liquid phases C which par-
tially break the categorical symmetry. Here we assume the
unbroken symmetry is an algebraic higher symmetry R, such
that M = bulk(R). In this case, the classification of gapped
liquid phases C in last subsection includes the classification
of anomaly-free gapped liquid phases with a given algebraic
higher symmetry R. Which gapped liquid phases do not
break the symmetry R and which spontaneously break the
symmetry R? To identify the gapped liquid phases C that
do not break the symmetry R, first C should include R as
its excitations, i.e., R is a subcategory of C = QC, or more
precisely, there is a top fully faithful functor ¢ : R — C (see
Proposition 27 and Definition 29). Second, R and C have
the same bulk topological order bulk(C) = bulk(R) (i.e., the
same categorical symmetry).

This understanding gives us a classification of anomaly-
free gapped liquid phases with an anomaly-free algebraic
higher symmetry R. First, let us define the notion “anomaly-
free gapped liquid phases with an anomaly-free algebraic
higher symmetry R” more carefully. We have defined
anomaly-free algebraic higher symmetry in Definition 5. “A
phases with a symmetry” means that the symmetry is not
spontaneously broken. But how do we determine if an alge-
braic higher symmetry R is spontaneously broken or not?
There is a macroscopic way to do so (see Sec. VIT A):

A gapped phase has a symmetry R (i.e., R is not sponta-
neously broken) if the excitations of phase contain R.

A gapped liquid phase is anomaly-free if it can be realized
as the ground of lattice Hamiltonian in the same dimension.
Again, there is a way to describe this property macroscopi-
cally (see Sec. VIIC 1):

If the excitations (described by fusion n-category C) in the
gapped liquid phase with an algebraic higher symmetry R
satisfy bulk(C) >~ bulk(R), then the gapped liquid phase
is anomaly-free.
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Here bulk(C) ~ bulk(R) means that the two topological
orders bulk(C) and bulk(R) are equivalent, i.e., they can be
connected by an invertible (also called transparent) domain
wall 7. Note that the invertible domain wall is not unique.
Thus, the two topological orders bulk(C) and bulk(R) can be
equivalent in many different ways. We denote a way of equiv-

alence by bulk(C) = bulk(R) or # : bulk(C) =~ bulk(R).
Now, we are ready to state some classification results. First,
let us describe a simple partial classification:

Given an algebraic higher symmetry described by a local
fusion n-category R, anomaly-free symmetric gapped lig-
uid phases (up to invertible topological orders and SPT
orders) are classified by fusion n-categories C that (1)
admit a top fully faithful functor: : R < C, and (2) satisfy
bulk(C) ~ bulk(R) (see Sec. VI A).

To get a more complete classification that includes invert-
ible topological orders and SPT orders for the algebraic higher
symmetry R, we need to include the equivalence (i.e., the
invertible domain wall) P : bulk(R) ~ bulk(C) and use the

data (R Ny 7) to classify anomaly-free symmetric gapped
liquid phases. However, not every equivalence  should be
included. We know that the categorical symmetry described
by bulk(R) or by bulk(C) includes the algebraic higher sym-
metry R. The equivalence  should not change R that is
contained in bulk(R) and in bulk(C) [68]. For details and the
main classification results, see Sec. VII C. Here, we just quote
a classification of R-SPT orders, obtained by setting C = R:

nd SPT orders and invertible topological orders with an

anomaly-free algebraic higher symmetry R are classified
by the invertible domain wall & in Z;(R), such that its
induced automorphisms « of Z;(R) satisfy «(A3) ~ Az,
where A5 is the CondNensable algebra in Z;(R) that de-
termines a boundary R corresponding to the dual of the
symmetry R (see Fig. 6).

This result generalizes the previous classification of SPT
orders for higher symmetries [13—17].

III. A HIGHER CATEGORY THEORY OF TOPOLOGICAL
ORDERS IN HIGHER DIMENSIONS

In this section, we present a review, a clarification, and an
expansion of a higher category theory for topological orders
in higher dimensions, based on Refs. [25-31]. Many notions
of higher category and topological order will be introduced
and explained for physics and mathematics audiences. Those
notions will be used to understand algebraic higher symmetry
and categorical symmetry, as well as to classify topological
orders and SPT orders with those symmetries, in the rest of
this paper. Readers who are familiar with higher category and
topological order can skip this section.

[
¥ NI
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FIG. 9. There are two kind of equivalent relations: (1) finite-
depth local unitary (LU) transformations and (2) local addition (LA)
of product states.

A. Topological orders as gapped liquid phases

In this section, we give a microscopic description of topo-
logical order. Topological orders [36-38] are gapped liquid
phases without symmetry. The notion of gapped liquid phases
is introduced in Refs. [32,39,40]:

Definition” 8. A gapped liquid phase is an equivalence
class of gapped states, under the following two equivalence
relations (see Fig. 9):

(1) two gapped states connected by a finite-depth local
unitary transformation are equivalent;

(2) two gapped states differ by a stacking of product state
are equivalent, where the degrees of freedom of the product
state may have a nonuniform but bounded density.

If there is no symmetry, the local unitary transformation
has no symmetry constraint, and the corresponding gapped
liquid phases of local bosonic or fermionic systems are
topological orders [36-38]. In the presence of finite inter-
nal symmetry, the local unitary transformation is required to
commute with the symmetry transformations, and the corre-
sponding gapped liquid phases include spontaneous symmetry
breaking orders, symmetry protected trivial (SPT) orders
[2,50,71], and symmetry enriched topological (SET) orders
[32,72-80].

In this paper, we only consider bosonic systems with finite
internal symmetries. We do not consider spacetime symme-
tries (such as time reversal and translation symmetries), nor
continuous symmetry [such as U(1) symmetry]. So in this
paper, when we refer symmetry, we only mean finite internal
symmetry.

We would like to remark that the above definition has an
important feature. A gapped liquid phase with some nonin-
vertible topological excitations on top of it is not a gapped
liquid phase according to the definition. (The notion of nonin-
vertible topological excitations is defined in the next section.)
We note that the Hamiltonian here may not have translation
symmetry. Thus it is hard to tell if the ground of a Hamilto-
nian has excitation in it or not. Using our above definition, a
gapped liquid state is a ground state of a Hamiltonian that has
no noninvertible topological excitations. However, a gapped
liquid state may contain invertible topological excitations. In
fact, two gapped liquid states differ by invertible topological
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excitations are very similar, and both can be viewed as proper
ground states.

To see the above point, let us start with a gapped state
of N sites with a topological excitation in the middle. We
may double the system size by stacking a product state of
N sites to the left half of the system, or to the right half of
the system. Both operations are equivalence relations, and
the resulting states of 2N sites should be equivalent, i.e.,
be connected by a finite-depth local unitary transformation.
However, in the presence of the noninvertible topological ex-
citation, the excitation appears at left 1/4 or right 1/4 of the
enlarged systems (see Fig. 9). Such two enlarged systems are
not connected by finite-depth local unitary transformations,
which can only move the noninvertible topological excitation
by a finite distance. Thus, a gapped liquid state with some
noninvertible topological excitations can no longer be viewed
as a gapped liquid state.

However, a gapped liquid state with some invertible topo-
logical excitations can still be viewed as a gapped liquid
state. This is because finite-depth local unitary transforma-
tions can move invertible topological excitations by a large
distance across the whole system. Thus, the gapped liquid
phases defined above may contain some invertible topological
excitations.

References [25,26] outline a description of topological or-
ders (i.e., without symmetry) in any dimensions, via braided
fusion higher categories. Here, we would like to review and
expand the discussions in Refs. [25,26]. We would like to
remark that the needed higher category theory is still not fully
developed, so our discussion here is just an outline. We hope
that it can be a blueprint for further development. However,
our discussions become rigorous at low dimensions (such as
1d and 2d).

B. Trivial, local, and topological excitations

The reason that gapped liquid phases (which include topo-
logical orders) can be described by higher categories is that
higher category is the natural language to describe excitations
within a gapped liquid phase, as well as domain walls between
different gapped liquid phases. To understand this connection,
let us define excitation more carefully. We find that there two
different ways to define types of excitations, which result in
different kinds of higher category theories [25,26]. However,
only the first definition of types and its associated higher cate-
gory theory are more developed [29-31]. We will concentrate
on this one.

We consider a gapped liquid state, which is the ground
state of a local Hamiltonian H. As discussed in last section,
a gapped liquid state does not contain any noninvertible topo-
logical excitations. To define excitations in H, for example, to
define string-like excitations, we can add several trap Hamilto-
nians SHS“(S; ), labeled by a, to H such that H + Za (SHS"(S;)
has an energy gap. §Hy(S!) is only nonzero along the string
S1. Here we require §Hy,(S)) to be local along the string S..
6Hy, (Sé) can be any operator, as long as its acts on the degrees
of freedom near the string S!. The ground state subspace
Vius(S}, 84, ...)of H + )", 8Hy(S)) (where is also called the
fusion space) corresponds to stringlike excitations located at
S}, 83, ete. (see Fig. 10).

ground—state A—>finite gap
subspace
PEE_'e—>0
FIG. 10. The ground-state subspace below the energy gap A. The

energy splitting € in the subspace approaches to 0 in thermodynamic
limit, which the energy gap A remains nonzero.

If the ground-state subspace is stable (i.e., unchanged)
against any small change of §Hy,(S!), then we say the cor-
responding string on S is a simple excitation (or a simple
morphism in mathematics). If the ground-state subspace has
accidental degeneracy (i.e., can be split by some small change
of 8Hy(S!); see Fig. 11), then we say the correspond string
on S! is a composite excitation (or a composite morphism
in mathematics). A composite excitation / is a direct sum of
several simple excitations

[=i®j®- . 24)

In other words, I can be viewed as an accidental degeneracy of
excitations 7, j, .... We see that different stringlike excitations
can be labeled by different trap Hamiltonians § Hg, (S ;) (.e.,
different nonlocal operators on S!’s).

Definition”" 9. Excitations are something that can be
trapped. In other words, excitations are described by the
ground-state subspace of the Hamiltonian with traps.

The above definition give us too many different strings, and
many of different strings actually have similar properties, so
we would like to introduce a equivalence relation to simplify
the types of strings. We define two strings labeled by § Hy(S')
and 8H(S') as equivalent, if we can deform §Hy,(S') into
8Hy.(S') without closing the energy gap. The equivalence
classes of the strings define the types of the strings. We would
like to point out that if S! is an open segment, the correspond-
ing string is equivalent to the trivial string 1, described by
8Hy.(S') = 0, since we can shrink the string along S' to a
point without closing the gap.

Deﬁnitionph 10. Two excitations are equivalent (i.e., are
of the same type) if they can be connected by local-unitary
transformations and by stacking of product states.

[— —
SHw ™ SHJ'

FIG. 11. The ground-state subspace of a composite excitation
can be split by some change of trap Hamiltonian 6 Hy, — 6H_,,. The
ground-state subspace of a composite excitation i can be viewed as
a direct sum of the ground-state subspaces of excitations j and k. In
this sense, we can denote / =i @ j.
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We would like to remark that if the two excitations
are defined on a closed submanifold, then we can define
their equivalence by deforming their trap Hamiltonians into
each other in the space of local trap Hamiltonians with-
out closing the energy gap. The above definition is more
general, since the local-unitary transformations and stacking
of product states can be applied to a part of the subman-
ifold that support the excitations, and we can examine if
the two excitations turn into each other on the part of the
submanifold.

Definition 11. An excitation is trivial if it is equivalent to
the null excitation defined by a vanishing trap Hamiltonian.

Definition 12. An excitation is invertible if there exists an-
other excitation such that the fusion of the two excitations is
equivalent to a trivial excitation.

The above equivalence relation can also be phrased in a
way similar to Definition 8:

Proposition4. A type of excitations is an equivalence
class of gapped ground states with added trap Hamiltonian
acting on a m-dimensional subspace S™, under the following
two equivalence relations:

(1) two gapped states connected by a finite-depth local uni-
tary transformation acting on the subspace S are equivalent;

(2) two gapped states differ by a stacking of product states
located on the subspace S are equivalent.

We see that, when m > 0, the excitations defined above are
gapped liquid state on the subspace S™, and there is no lower
dimensional noninvertible excitations on S™.

We also would like to introduce the notion of nonlocal
equivalence and nonlocal type:

Definition” 13. Two excitations are nonlocally equivalent
(i.e., are of the same nl-type) if they can be connected by
non-local-unitary transformations and by stacking of product
states.

Definition” 14. An excitation is local if it has the same
nl-type as the null excitation.

We see that a trivial excitation is always a local excitation,
but a local excitation may not be a trivial excitation.

Definition” 15. An excitation is topological if it is
nonlocal.

Again, the above nonlocal equivalence relation can also be
phrased in a way similar to Definition 8:

Proposition 5. A nl-type of excitations is an equivalence
class of gapped states with added trap Hamiltonian acting
on a m-dimensional subspace S™, under the following two
equivalence relations:

(1) two gapped states connected by a nonlocal unitary
transformation acting on the subspace S™ are equivalent;

(2) two gapped states differ by a stacking of product states
located on the subspace S™ are equivalent.

We also believe the following:

Proposition 6. Two excitations have the same nl-type if
and only if they can be connected by gapped or gapless do-
main walls. We note that the morphisms in higher category
only correspond to gapped domain walls.

We would like to remark that for point-like excitations the
notion of type and ni-type coincide.

Those different concepts of excitations were discussed
in Ref. [25], where the nl-type was called elementary type
and topological excitation was called elementary topological

excitation. The local excitation was called descendant excita-
tion in Ref. [25].

C. Examples of excitations

To illustrate the above concepts that we just introduced,
let us consider a 2d Z, topological order [81,82] for bosons
described by 2 4 1D Z, gauge theory.

Example 1. The Z, topological order has four rypes of
point-like excitations, labeled by 1, e, m, f, where e is the Z;
charge, m is the Z, vortex, and f is a fermion—the bound
state of ¢ and m. 1 is a trivial point-like excitation. The Z,
topological order also has four nl-fypes of point-like excita-
tions, labeled by 1, e, m, f. 1 is a local point-like excitation,
and e, m, f are topological point-like excitations.

The Z, topological order has only one nl-type of string-
like excitations, which is a local string-like excitation. The
Z, topological order has six types of string-like excitations,
generated by 1y, ey, my, f;, with two additional types given by
fx Rm; =e; Q@ f\' and m, ® fv = fv ® e;:

es ® e, = 2ey,

my; ® my = 2my,
es@m; = f@my; =e; @ f,

mg@e; =m; @ fs = fi Qe;. (25)

The e;-type of string-like excitation is formed by the e-
particles, condensing into a 1d phase of spontaneous Z;
symmetry-breaking state. We note that the e-particles have
a mod-2 conservation and an emergent Z, symmetry. Sim-
ilarly, the m,-type of string-like excitation is formed by the
m-particles, condensing into a 1d phase of spontaneous 7,
symmetry-breaking state. The fi-type of string-like excitation
is formed by the f-particles, condensing into a 1d topologi-
cal superconducting phase (i.e., the 1d invertible topological
order of fermions where the string ends have Majorana zero
modes [83]); 1; is the trivial string-like excitation. Although
1,, e, my, f; are four different types of string-like excitations,
they are all local string-like excitations, i.e., belong to the
trivial nl-type of string-like excitations. We also comment that
f5 1s an invertible string-like excitations, or the e, m- exchange
transparent domain wall; if we move e throuch f;, it becomes
m and vice versa.

Next we consider a 3d trivial product state of bosons.

Example 2. Such a state has trivial nl-type of point-like,
string-like, and membrane-like excitations; i.e., all excitations
are local. It also has trivial type of point-like and string-
like, but it has nontrivial types of membrane-like excitations.
In fact, those nontrivial types of membrane-like excitations
correspond to 2d topological orders. Thus, there are infinite
types of membrane-like excitations corresponding to infinite
different 2d topological orders, even though the 3d state has
trivial topological order and is a trivial product state of bosons.
All those membrane-like excitations are local but not trivial.

Remark 1. We remark that the our above description of 3d
trivial topological order is different from that in Refs. [29,30].
References [29,30] only include membrane excitations that
correspond to 2d topological orders with gappable boundary.
There are still infinite type of membranes of this kind. In
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our description, the membrane excitations include both 2d
topological orders with gappable boundary and 2d topological
orders whose boundary cannot be gapped.

We see that to have a complete macroscopic description of
trivial product state of bosons in n-dimensional space without
symmetry, we need to classify (n — 1)d topological orders of
bosons, which correspond to fypes codimension-1 excitations.
We also see that to have a complete macroscopic description
of nd topological order of bosons without symmetry, we need
to classify (n — 1)d SET orders of bosons and fermions with
symmetries (i.e., the emergent symmetry).

D. Trivial topological order (the product states)
and its excitations

In the last section, we see that the fypes of dimension-k
excitations in a trivial product state in n-dimensional space
correspond to topological orders (gapped liquid phases) in k-
dimensional space. Thus, the study of the trivial topological
order and its excitations of various dimensions allows us to
understand topological orders in spatial dimensions less then
n. This motivated us to develop a comprehensive theory of
trivial topological order.

All trivial topological orders are product states and all
product states belong to one phase, if there is no symmetry.
We denote the trivial topological order in n-dimensional space
as I"*! (n + 1 is the spacetime dimension). I"*! is also referred
as an object. Once we have the trivial topological order I"*!,
we also have accidental degeneracy of several I"*!’s (i.e., sev-
eral product states). We denote a gapped liquid phase formed
by m degenerate product states as I""! @ - .- @ I"™! = ml"t!,

m copies
So, after the completion, the collection of trivial topological
orders has objects ml"*!. We refer I"*! as simple object and
ml"*! (m > 1) as composite object. We see that the com-
posite object does not correspond to a stable phase, since
the accidental m-fold degeneracy can be easily split by local
perturbations in the Hamiltonian.

The collection of trivial topological orders in (n + 1)D
spacetime, {ml"*t!}, is a set. However, the objects in the
set have many relations. Two objects can be connected by
a gapped codimension-1 domain wall a : mI""! — m, 1"+,
which is called an 1-morphism. For example, an 1-morphism
a : 21" — 31" can be represented as

O(T';H ||rlx+l), O(T'I’H ||;+1)
a=[1(galg). Ofulg) |, (26)

Oy lgr). OfGgorlig)

Physically, it means that there is a gapped domain wall be-
tween the first product state in 2I"*! = "' @ 17! and the
second product state in 31" = ~|'1”rl o) Tg“ @T’3’+1, and such
a gapped domain wall is not degenerate. We denote such
a gapped domain wall as ('l';zx+l |,7+1). All other domain walls
between different product states have higher energy density
or are gapless. In this paper, we do not consider gapless
domain walls and we always assume gapless domain walls
have infinite energy density.

We can have another 1-morphism b : 2I"+! — 3|"+!

O(TrlHrl ||rlt+l), 0(],;+1 ||g+l)
b= 2(7;21+1 ||'11+')a O(TZH ||g+1) , 27)
Oy liger)s Oyeliger)

Physically, it means that there is a gapped domain wall
between the first product state in 2I"*! and the second
product state in 3I"*!, and such a gapped domain wall
is twofold degenerate. So, we express the gapped domain
wall as (T’z'“ ||,ll+1)eB (Tg“ ||7+1) = 2(1;+1 ||7+1). The most general
I-morphism ¢ : 2I"*! — 3"*! has a form

@kmlfl (T’]'“kV{“)’

c= @kmlzcl (T;Hkylfﬂ),
@kmécl (];+1k|'11+1 ) s

Dt (77+1 kyyit)
Dby (k) |, (28)
i’y (juv k)

where m{‘] € N. Here, for example, (7,21+1k|,lz+1 ) denotes a gapped

domain wall between the first product state in 2I"*! and the
second product state in 31"*!, and k labels different types of
accidentally degenerate gapped domain wall between the two
product states. m¥, is the accidental degeneracy of the domain
walls of the same type k. We see that an 1-morphism is like a
matrix that can also be added.

In particular, a 1-morphism k : I"*! — I"*1 denoted by
(p+1kp+1), 1s the codimension-1 excitation discussed in the last
section, where k labels the different fypes of the excitations,
as defined in Definition 10. Such an excitation corresponds
to a topological order in (n — 1)-dimensional space. We use
Hom(I"*!, I"*1) to denote the collection of all morphisms
from 1"*! to I"*!, which happen to be the collection of all
topological orders in (n — 1)-dimensional space. We remark
that Hom(I"*!, I"*1) is also complete in the sense that it not
only contains stable topological orders but also contains ac-
cidental degeneracy of topological orders. In other words, if
a,b € Hom(I"*!, I"*1) then the accidental degeneracy of a
and b, a @ b, is also in Hom(I"*!, I"*1), Thus, just like the col-
lection of trivial topological orders {ml"t!'}, Hom(I"*!, |"*1)
is also closed under the “degeneracy” operation .

We would like to point out that there is a 1-morphism in
Hom(I"*!, I"*1) that corresponds to a codimension-1 trivial
topological order (i.e., a product state in (n — 1)-dimensional
space or n-dimensional spacetime). We denote such a 1-
morphism as I” € Hom(I"+!, ["+1),

Two codimension-1 topological orders a,b may also be
connected by a gapped domain wall of codimension-2: k :
a — b (see Fig. 12). We call k a 2-morphism. To be precise,
here, the “domain wall” really means fypes of domain walls.
We regard two domain walls as equivalent if they differ only
by local unitary transformations and local addition of prod-
uct states on the wall. The collection of 2-morphisms from
a to b is denoted as Hom(a, b). We see that the collection
of 2-morphisms from 1" to I", Hom(I", I"), is the collection
of condimension-2 excitations, which are also topological
orders in (n — 2)-dimensional space. Such a collection also
contains a product state (trivial topological order) in (n — 2)-
dimensional space, denoted as I"~! € Hom(l", I"). Also, the
collection of 2-morphisms from a to a, Hom(a, a), is the
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C b a a

FIG. 12. The 2-dimensional excitations a, b, ¢ are objects. The
1-dimensional domain walls i, j, k,I are 1-morphisms. o is a 2-
morphism (domain wall) connecting two 1-morphisms i and j. The
fusion of domain walls k, [ between excitations a, b, ¢ via the “glue”
b is given by [ (%) k.

collection of codimension-2 excitations on the codimension-1
excitation a.

We would like to remark that it is possible that
Hom(a, b) = 0, which means that there is no gapped domain
wall between a and b. Here O denotes the “zero” category,
which can be roughly thought as the linearized and categori-
fied version of the empty set.

The above discussion can be continued. This allows us
to define 3-morphisms, 4-morphisms, etc. The n-morphisms
correspond to codimension-n or dimension-O (i.e., point-
like) excitations. The point-like excitations are world lines
in spacetime. The domain wall on world lines are (n + 1)
mophisms. In general, a point-like excitation p (an n-
morphism) may have degenerate ground states (of the
Hamiltonian with traps). We denote the vector space of the
degenerate ground states as Vys(p, . .. ), where ... represent
other excitations which are fixed. Then a (n + 1)-morphism
o from one point-like excitations p; to the other p, (where
the two excitations are near each other) is a linear operator
acting near p,; and p, from Vys(p;,...) and Vi(p,, ... ):

Vas(Dys - --) 2 Vius(Pa, ... ). We denote such a (n+ 1)-
morphism as 0 : p; — p,.

Just like the objects (also called O-morphisms), the mor-
phisms also can be divided into two classes: the simple
morphisms (which correspond to stable excitations whose
ground state cannot be split by any local perturbations near
the excitations) and composite morphisms (which correspond
to unstable excitations with accidental degeneracy).

The objects (i.e., the O-morphisms), as well as m-
morphisms can also fuse or compose. Let a, b, c be three
(m — 1)-morphisms, and k € Hom(a, b) and I € Hom(b, ¢)
be two m-morphisms. Then, a composition of k and [ is
given by a m-morphism from a to c: [ % k € Hom(a, c). The

subscript b indicates that k and I are fused together via the
“glue” b (see Fig. 12). Figure 12 also has a dual representation,
shown in Fig. 13.

Above, we discussed excitations of various dimensions in a
trivial topological order. We may reverse the thinking and use
all the excitations to characterize the trivial topological order,
or more generally, a nontrivial topological order. This is equiv-
alent to using higher categories to characterize topological
orders or trivial orders. However, in order to use excitations
to describe topological orders or trivial orders, the first issue
one faces is weather to use type or use ni-type of excitations

Jj o
[ k

Q= -
C b a

FIG. 13. A dual representation of Fig. 12. A higher category is
a collection of vertices (objects), arrows (1-morphisms), oriented
surfaces (2-morphisms), etc., connected in a certain way. In other
words, a higher category is a simplicial complex.

to construct higher categories. The notions of type and nl-
type were discussed in Refs. [25,26]. In physics, when we
refer topological excitations, we usually mean the nl-types of
excitations, which seems to suggest using nl-type to construct
higher category. However, in mathematics, it is more natural
to use types of excitations to build the higher categories that
describe topological orders [29]. In some sense, nl-types are
like the basis vectors in a vector space. The completion under
“4” give rise to all the types which form the whole vector
space. In higher category theory, such a completion corre-
sponds to condensing the nl-types of excitations to construct
all the types of excitations.

Definition’" 16. Descendent excitations are excitations of
dimension 1,2,3, etc., which are obtained by condensing lower
dimensional excitations.

The process of adding all the types of excitations in a cate-
gory is called condensation completion, which is discussed in
Ref. [29]. (Note that the condensation completion in Ref. [29]
only includes defects that correspond to gapped liquid phases
that have gappable boundaries; see Remark 1.) In this paper,
we do a more general condensation completion that includes
all the descendent excitations that correspond to all possible
gapped liquid phases. In other words, we use types of all
excitations to build the higher categories.

In n-dimensional space, the trivial topological order has
dimension-(n — 1) excitations, dimension-(n — 2) excitations,
etc. Those excitations can fuse (the ® operation) and can have
accidental degeneracy (the @ operation). The excitations can
also have domain walls between them (the morphisms). The
collection of excitations plus those extra structures form a
fusion n-category, which is denoted as Hom(I"+!, I"*1),

The precise definition of a fusion n-category is difficult
to write down due to the lack of a universally accepted and
well-developed model of weak n-categories. However, this is
not the only problem. Recently, by ignoring this problem,
Johnson-Freyd managed to solve other important problems
and provided a workable definition in Ref. [30]. Because of
its complexity, we choose to not to give Johnson-Freyd’s defi-
nition but to provide a rough and physical intuition underlying
the definition instead.

Definition” 17. A fusion n-category is an n-category,
which is C-linear: the n-morphisms are required to form com-
plex vector spaces; additive (with @ operation); monoidal:
with fusion ® operation, which is compatible with the
C-linear and additive structures; semisimple (all compos-
ite object x has a unique decomposition x =a@®b---)
and the tensor unit is simple; condensation complete: the
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TABLE I. Correspondence between concepts in higher category and concepts in topological order [25,26].

Concepts in higher category

Concepts in physics

Symmetric monoidal (n + 1)-category TO";"

The collection of all nd anomaly-free topological orders, which can all be realized by

bosonic lattice model in the same dimension

n+1

A simple object (0-morphism) of TO};
Simple 1-morphisms of TO’™" connecting
different objects
Simple 1-morphisms of TO"" connecting
the same object
n+1

Simple 2-morphisms of TO}{

A topological order (with nondegenerate ground state on S")
The types of domain wall between different topological orders

The types of codimension-1 topological excitations within a single topological order. They
can fuse (compose).
The types of codimension-2 topological excitations. They can fuse as well as braid (both

induced from composition).

Simple (n — 1)-morphisms of TO”!
Simple n-morphisms of TO™

(n + 1)-morphisms of TO";"
Composite morphisms

Trivial morphisms

The types of string-like topological excitations

The types of point-like topological excitations

The operators (instantons in spacetime)

The types of topological excitations with accidental degeneracy

The types of excitations that can be created by local operators (the trivial excitations)

0-morphisms (the objects), 1-morphisms, 2-morphisms, etc.
include all the decedent excitations; and satisfies certain fully
dualizable condition amounts to the invariance of the physical
reality by deforming and folding of the associated topological
order.

Remark 2. Because our descendant excitations include
topological orders whose boundary cannot be gapped, our
definition of fusion n-category is different from that proposed
by Refs. [29,30], where the descendent excitations only in-
clude topological orders with gappable boundary (see also
Remark 1).

Since the excitations in a trivial topological order is sur-
rounded by product states, we can add more product states
to form a higher dimensional trivial topological order and
view the same excitations as excitations in a higher dimension
trivial topological order. In fact, we can view any excitations
in a trivial topological order as excitations in an infinite-
dimensional trivial topological order. We can always braid the
excitations in a trivial topological order by viewing the exci-
tations as in an infinite dimensional trivial topological order.
Since the excitations in an infinite dimensional trivial topo-
logical order have trivial braiding and exchange properties,
those excitations form a symmetric fusion higher category
with trivial exchange properties.

Proposition 7. The fusion n-category Hom(I"*!, I"*1), that
describes the excitations in a trivial topological order I"*! in
n-dimensional space, can always be promoted into a braided
fusion n-category. In fact, such a braided fusion n-category is a
symmetric fusion n-category with trivial exchange properties.

E. The category of anomaly-free topological orders

Definition”" 18. An anomaly-free topological order is a
gapped liquid phase that can be realized by a local bosonic
lattice models in the same dimension.

In a trivial topological order I"*? (n + 1)-dimensional
space, a type of codimension-1 excitation correspond to
an anomaly-free topological order in n-dimensional space.
This is because we can remove the product state around
a codimension-1 excitation and view it as an anomaly-free

topological order. Thus, Hom(I"*?, I"*?) is the set of
anomaly-free nd topological orders. Those nd topological or-
ders have excitations on them and have domain walls between
them, which correspond to morphisms. They can also fuse
® and have accidental degeneracies @. Besides, we include
all descendant excitations (condensation completion). Adding
those structures to the set Hom(I"*2, I"*2), we make it into
a fusion (n 4+ 1)-category (see Table I), which leads to the
definition of the first version of category of anomaly-free
topological orders:

Definition 19. The category of anomaly-free topological
orders in n-dimensional space is the fusion (n 4 1)-category
given by Hom(I"*2, I"*2) where 1"*? is the trivial topological
order (i.e., a product state) in (n + 1)-dimensional space. We
denote the category of anomaly-free topological orders as
JoI .

In the above, we have defined anomaly-free topological
orders via a microscopic approach, since we used the notion of
product states and condensing low-dimensional excitations to
construct descendant excitations. Can we define anomaly-free
topological orders using only the macroscopic notions? Here
we would like to point out that the anomaly-free topological
orders have a defining macroscopic property called the princi-
ple of remote detectability [25,84]:

Proposition 8. A topological order is anomaly-free if and
only if any excitations of nontrivial nl-type can be detected
remotely (such as via braiding) by some other excitations.

Here the nl-type also has a defining macroscopic property:

Proposition 9. Two excitations have the same nl-type if
and only if they can be connected by gapped or gapless do-
main walls.

The gapped domain walls are the morphisms that we have
discussed, while the gapless domain walls are not included
in our discussion. Also the notion of “detecting remotely”
is not defined carefully. This reveals the difficulty to de-
fine anomaly-free topological order macroscopically beyond
2-dimensional space. The above just points out a possible
direction.

The category ‘.TO;’;’ ! include both topological phases
(called stable topological orders) and correspond to simple
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objects in TO!') and first-order phase transitions between

two stable topological orders (called unstable topological
orders). The stable topological order corresponds to simple
object and the unstable topological order corresponds to com-
posite object in TO! !. For example, the first-order phase
transition point between two stable topological orders, the
simple objects A and B, correspond to the composite object
A @ B, which can be viewed as the accidental degeneracy
of the two stable topological orders A and B. As a fusion
category, the objects in TO" ! has this @ operation.

The fusion higher category TO! ! has a special property,
reflecting the following physics fact. The stacking of two
stable anomaly-free topological orders M’f“ and M121+1 always
gives us a third stable anomaly-free topological order Mg”“l,
and the result does not depend on the order. Also note that the
stacking is nothing but the fusion along I"*2. This means the
following:

Proposition 10. The simple objects, M7, Ma+!, Mg”“l, in

JO™! form a commutative monoid under the fusion ®:
|n+2

M?H I@z Mi21+1 — Mg+1 l@, MrltJrl — MgH'l. (29)
|®2 is also abbreviated as ®. Since a commutative monoid
may have a submonoid which is actually an Abelian group,
anomaly-free topological orders have a subset of invertible
topological orders [25,41,42], which form an Abelian group
under the stacking ®. All the invertible topological orders in
n-dimensional space, plus their accidental degeneracies, also
form a fusion (n + 1)-category denoted as TOJF!.

From the above discussion, we see that we can ignore
all the unstable topological orders and restrict ourselves to
only stable topological orders (which is more natural from
a physics point of view). After dropping all the composite
objects from TO !, we obtain a monoidal (n + 1)-category
TO" . The objects in TO™ still support the stacking ®
operation, but do not support the accidental degeneracy (or
first-order phase transition) @ operation. Thus, TO"! is

monoidal but not fusion.

F. The category of anomalous topological orders

In the last section, we see that Hom(I"*2, "*2) gives
rise to the collection of anomaly-free (stable and unsta-
ble) topological orders in n-dimensional space. Similarly,
Hom(I"*2, M"*2) gives rise to the collection of gapped
boundaries of a (n+ 1)d topological order described by
M"+2_ Those gapped domain walls have domain walls (mor-
phisms) between them, as well as accidental degeneracy
@ operation, but they do not have stacking ® operation.
However, we can fuse the morphisms in Hom(I"*2, I"+?)
to Hom(I"*2, M"*2) from right, and fuse the morphisms
in Hom(M"t2, M"2) to Hom(I"*2, M"*2) from left. Both
Hom(I"*2, I"*2) and Hom(M"*2, M"**2) are fusion (n+ 1)-
categories. Thus, Hom(I"+2, M"*2) is a right module of fusion
(n + 1)-category Hom(I"*2, 1"*2) and a left module of fusion
(n + 1)-category Hom(M"*+2, M"*+2),

As a collection of gapped boundaries of a (n+ 1)d
anomaly-free topological order M"*2, Hom(I"*2, M"*2) sup-
ports the & operation but does not support the ® operation.

In order to allow the staking ® operation, we consider a
collection of Hom(I"*2, M"*2) for all different M**2; i.e., we
consider all the gapped boundaries of all (n + 1)d anomaly-
free topological orders. Such an enlarged collection support
the stacking ® operation, by stacking both boundary and bulk.
However, in the enlarged collection ® operation becomes
messy, since there are two kinds of accidental degeneracies:
the accidental degeneracies of the boundary and the acciden-
tal degeneracies of the bulk, suggesting that there are two
kinds of & operations. To keep things simple, we will drop
all the unstable gapped boundaries and all the unstable bulk
topological order; i.e., we restrict M"*2 to be simple objects
and consider only simple 1-morphisms in Hom(I"*2, M"*+2),
In this way, we obtain the following:

Definition 20. The category of potential anomalous topo-
logical orders in n-dimensional space is the monoidal
(n 4 1)-category given by the union of all Hom(I"+2, M"+2)’s
after dropping all the composition 1-morphisms, where "2
is the unit object in TOZ 2 and M2 is a simple object
in TO!f 2. It is a right module over fusion (n 4+ 1)-category
Hom(I"*2, 1"*2), a left module over fusion (n + 1)-category
M1 = Hom(M"*2, M"*2), and thus a bimodule. Here
M"+2 is a stable anomaly-free topological order in (n + 1)-
dimensional space, which determines the anomaly. We denote
the category of anomalous topological orders as TO"*!. Such
a category describes all the gapped boundaries of all the
anomaly-free topological orders

G. Invertible domain wall between topological orders

We have seen that the collection of domain walls (plus
the excitations on the walls and their ®, @ operations) in a
stable nd topological orders C is given by Hom(C, C). In fact,
C = Hom(C, C) is a fusion n-category. The objects in C (the
domain walls) support the fusion ® operation. Roughly, an
object a (a domain wall) is invertible if there exist another
object b such that a® b ~ b ® a >~ |, where | is the trivial
object (the unit of ® operation).

Let us give a more careful definition. An invertible 0d
domain wall 7 between two 1d topological orders A' and B!
is well defined (see Section 4.3 in Ref. [26]) and is denoted
by Al 2 B! or $ : A ~ B!. Higher dimensional invertible
domain walls are defined by induction:

Definition 21. A gapped domain wall M"~! between two
gapped walls A" and B" is called invertible if there is a
gapped domain wall N"~! between B" and A" such that there

exist an invertible gapped domain wall between M"~! @ N"~!
B~

and ida, i.e., M1 @ N*~! ~ ida., and one between N"~! ®
B A,

M~ and idg., i.e., N*~! @ M*~! ~ idg..
A

The invertible domain wall will be used extensively later.

H. Looping and delooping

Looping and delooping operations reveal the layered
structures in higher categories. From an n-category we can
construct a fusion (n — 1)-category via a process called loop-
ing (see Fig. 13 where the morphisms are viewed as paths and
loops):
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Definition 22. Given an n-category C, we choose an object
a (the “base point”). We can construct a fusion (n — 1)-
category, denoted as €2,C, whose objects are given by the
morphisms k : @ — a. In other words ©,C = Hom(a, a). If C
is a fusion n-category, we usually choose the base point to be
the unit of fusion 1¢: Q2C = Hom(1¢, 1¢), and QC becomes a
braided fusion n-category.

To apply the looping to a physical situation, let us consider
a single simple object C"*! in TO"*!, which corresponds to
an nd gapped boundary of an anomaly-free topological order
M”+2 = Bulk(C"*!) in (n 4 1)-dimensional space [see (41)].
C"*! is also an nd anomalous topological order. For special
case M2 = |"+2 C"+! becomes an nd anomaly-free topo-
logical order. Hom(C"*!, C"*!) is the collection of (n — 1)d
excitations on the boundary. Here we include the morphisms,
as well as the ® and @ operations to view Hom(C"+!, C**1)
as a fusion n-category, denoted by C" = Hom(C"*!, C"*1).
Thus, C" describe all the codimension-1, codimension-2, etc.,
excitations on the nd boundary C"*!

The unit object under ® in C" is denoted as lg» =
idgs+1, which is the trivial codimension-1 excitations in C"*'.
Then the looping Q2C" = Hom(1¢x, 1¢n) is a fusion (n — 1)-
category, which describes the codimension-2 excitations on
the nd boundary C"*!. Those excitations can also braid and
QC" is in fact a braided fusion (n — 1)-category.

We see that the looping of a fusion category C" is ob-
tained by dropping the objects (the codimension-1 excitations)
and include only the morphisms of the trivial object (the
codimension-2 excitations). The looping operation can be
continued, and the commutativity increases. For example,
QQC" = Q2C" is a symmetric fusion (n — 2)-category.

There is reverse process of looping, called delooping (see
Fig. 13). From a fusion n-category, we can construct an
(n 4 1)-category via delooping:

Definition 23. Given an fusion n-category C, we can con-
struct a (n + 1)-category, denoted as X,.C, which has only one
object * and whose morphisms are given by the objects of
C. In other words, Hom(x, x) = C. We can complete X,C by
adding the composite objects * @ * - - -, to obtain an additive
(n + 1)-category with @ operation. We can also do a con-
densation completion, by adding objects (the gapped liquid
phases) formed by the codimenson-1 excitations (i.e., the 1-
morphisms of X,C), the codimenson-2 excitations (i.e., the
2-morphisms of X,C), etc. The resulting (n + 1)-category is
called the delooping of C and is denoted by XC.

Remark 3. Our definition of delooping is compatible with
Definition® 17 (see also Remarks 1 and 2) and is different
from that in Refs. [29,30].

As an application to physics, let us consider a braided
fusion (n — 1)-category €"*~! that describes the codimension-
2 and higher excitations in n-dimensional space. Then the
delooping %.@"~! is the fusion n-category with only one
object I, which corresponds to the trivial codimension-1 ex-
citation in the n-dimensional space. We can do a condensation
completion by adding 1" @ 1". .., as well as all the descen-
dant codimension-1 excitations, obtained from condensing
codimension-2 and higher excitations. The resulting fusion
n-category is XC"~'. If we can add a braiding structure
to ©C"!, making it a braided fusion n-category, then the

delooping plus condensation completion can be continued.
rxe! = %2¢" ! is a fusion (n 4 1)-category.

We note that excitations in a trivial topological order I"*!
in n-dimensional space are described by a fusion n-category

Hom(I"*!, I"*1). It contains (n — 1)d, (n — 2)d, ..., 0d ex-
citations. If we drop the (n — 1)d excitations, the remaining
(n—2)d, ..., 0d excitations correspond to excitations in triv-

ial topological order I" in (n — 1)-dimensional space and are
described by Hom(l", I"). This way we find

QHom(I"*!, "1y = Hom(I", I"). (30)

All the excitations in trivial topological order are descen-
dent excitations. Thus, if we add one layer of descendent
excitations in one higher dimension, we obtain excitations of
a trivial topological order in one higher dimension. Therefore,
we have

YHom(I", I") = Hom(I"*!, I"*1). 31

We note that the codimension-1 excitations in a trivial topo-
logical order is embedded in a product state in 1 higher
dimension. We can also view the same excitation as embed-
ded in a product state in 2 higher dimension. In this case,
the excitation becomes codimension-2 and can braid. Thus,
Hom(I"*!, I"*1) can also be viewed as a braided fusion n-
category, and we can perform delooping. In fact, the braiding
is trivial, and Hom(I"*!, I"*1) can be viewed as a symmetric
fusion n-category.

Since Hom(I"*2, I"*2) = JO/'F ! is the fusion higher cat-
egory of anomaly-free topological orders in n-dimensional
space, we find that

QJOL ! = JO%, ETOL =TON. (32)

We note that in O-dimensional space, the category of
anomaly-free topological order has only one simple object I,
which corresponds to a single quantum state |y). The set of
I-morphisms Hom(l', I') = C is the set of 1-by-1 complex
matrices. We see that the category of anomaly-free topological
orders in 1-dimensional space is given by Vec—the category
of complex vector spaces:

JO); = XC = Vec. (33)

The higher category of n-vector spaces is given by the iterated
delooping

nVec = " Vec. (34)

Remark 4. Our definition of nVec is different from that in
Ref. [29] for n > 2 (recall Remark 3). We suspect that the
difficulty of defining nVec mathematically might be due to
the complexity of higher topological orders.

We see that the category of anomaly-free topological or-
ders is given by

JO! = ©"Vec = (n + 1)Vec. 35)

We would like to remark that the fusion (n + 1)-category
JO' = Hom(I"*2, I"*2) = (n + 1)Vec can also be pro-
moted into a braided fusion (n + 1)-category, which is
actually, a symmetric fusion (n + 1)-category with trivial
exchange property (see Proposition 7). After we promote
(n 4+ 1)Vec to a braided fusion (n + 1)-category, we can de-
note it as (n+ 1)Vec. In other words, (n 4+ 1)Vec is the
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braided fusion (n+ 1)-category obtained from the fusion
(n 4 1)-category (n 4+ 1)Vec by adding the trivial braiding
structure (which is always doable).

Consider an anomaly-free topological order M™! ¢
JO'!. Tts excitations are described by a fusion n-
category M" = Hom(M"*!, M"+!) The objects in M" are
codimension-1 excitations, which cannot braid and cannot
be remotely detected by any excitations. Thus, according to
Proposition 8, those codimension-1 excitations must all have
the trivial nl-type. We believe the following:

Proposition 11. All the excitations with the trivial nl-type
are descendant excitations, coming from the condensations of
lower dimensional excitations.

Thus, the codimension-1 excitations in an anomaly-free
topological order are all descendant excitations. Drop-
ping those codimension-1 excitations gives us the looping
QM". The delooping of QM" adds back those descendant
codimension-1 excitations. We find the following:

Proposition 12. The excitations in an anomaly-free topo-
logical order described by fusion n-category M" satisfy the
following relation:

M = TQM". (36)

The reverse may not be true: A fusion n-category M"
satisfying M" = ¥£QM" may not describe the excitations in
an anomaly-free topological order.

We see that the category of anomaly-free topological or-
ders ‘J'OZ;r ''= (n + 1)Vec is a fusion (n + 1)-category. Since
the condensation completion always include excitations in-
duced by condensing the trivial excitations and nlec is
formed only by those excitations induced by condensing the
trivial excitations, we find the following:

Corollary 1. A fusion n-category C" is a bimodule of
nYec:
C" ® nVec = nVec ® C". 37
We also have Corollary 2.

Corollary 2. The n-category M”" that describes the exci-
tations in an anomaly-free topological order M"*! € JO! L
M" = Hom(M™!, M"+1), is a fusion n-category.

This is because the n-category M" contains all the descen-
dent excitations.

1. Boundary-bulk relation

Consider an anomaly-free stable topological order M"+2
in (n 4 1)-dimensional space, M"*? ¢ TOL 2, and its gapped
boundaries. The (n + 1)d bulk topological order and the
nd gapped boundaries have a very direct relation. Refer-
ences [25-27] proposed a holographic principle for this
boundary-bulk relation: Boundary uniquely determines bulk.
The boundary-bulk relation has several versions, which differ
in mathematical details.

In the first version, we consider a linear (n + 1)-category
B'*! and a fusion (n + 1)-category M"*+! that acts on B"*!
from left. 3"*! is also a right module over the fusion (1 + 1)-
category Hom(I"*2, "*2). The pair (B"*!, M"*!) describes a
category of all gapped boundaries of an (n + 1)d anomaly-free
topological order in ’EOZ;L 2. We believe the following:

Proposition 13. There is only one anomaly-free topologi-
cal order M"*2 in TO%, which gives rise to the category of
the gapped boundaries

(B’H_l, MI’!+2) — (Hom(|n+2’ MIH-Z)’ HOm(Mn+2, MV!+2))'
(38)

We would like to point that the pair (8!, M"+2) not only
uniquely determines the bulk topological order M"*2 but also
gives extra information about how the bulk is connected to the
boundary. If we ignore such information, we believe that the
linear (n + 1)-category of the gapped boundaries can already
uniquely determines the bulk topological order:

Proposition 14. There is only one anomaly-free topolog-
ical order M"*2 in TO"} 2, which gives rise to the linear
(n + 1)-category for the gapped boundaries

Bn+1 — HOm(|n+2, Mn+2). (39)

In the second version, we consider a particular gapped
boundary C"*!' € B**!. Now Hom(M"*2, M"*2) does not
act within C"*! since the fusion with excitations in
Hom(M"+2, M"*2) (i.e., the nd excitations in M"+2) may
change C"t! to some other boundaries C"*!. However, the
(n — 1)d excitations in M"*2 act within C"*!. The n-category
of all the (n — 1)d excitations is given by Hom(idp+2, idpn+2),
where idy.2 € Hom(M"™+2, M"+2) is the unit morphism (that
corresponds to the trivial nd excitation in the bulk topolog-
ical order M"*2). In fact, Hom(idpu2, idyms2) is a braided
fusion category, which is actually defined as the looping
QHom (M2, M"*+2). Therefore, there is a braided fusion n-
category M" = QHom(M"+2, M"+2) that acts on C"*!. A
gapped boundary is described by a pair (C"*!, M"). We be-
lieve that the pair (C"™"!, M") uniquely determines the bulk
topological order and how the bulk topological order is con-
nected to the boundary. If we ignore the information about
how the bulk is connected to the boundary, we believe that
C"*! € Hom(I"*2, M"*2) uniquely determines the bulk topo-
logical order:

Proposition 15. There is only one anomaly-free topologi-

cal order M"*2 in TO!;" 2, which gives rise to the boundary

C"*! € Hom(I"*2, M"2). (40)
We denote such boundary-bulk relation as
Bulk(C"*!) = M2, 41)

The above is the accurate meaning of boundary uniquely
determines bulk.

C" can determine the boundary topological order C"*! up
to an invertible topological order. Since we believe that all
invertible topological orders are anomaly-free, the excitations
C" = Hom(C"*!, C"*!) in the boundary topological order
C™*! can already determine the bulk topological order M"+2,
We obtain the following:

Proposition 16. For any fusion n-category C", there is only
one anomaly-free topological order M"*2 in TO/;f 2 admitting
aboundary C**! € Hom(I"+2, M"*2) such that

c" = QCrt!. (42)
We denote such boundary-bulk relation as
bulk(C") = M"*? (43)

Here, we have assumed the following.
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Proposition 17. A fusion n-category C" can always be
realized by the excitations in a potentially anomalous topo-
logical order C"*! such that C* = QC"+!.

The above result was shown for n = 1 case. Given a fusion
category C, we can explicitly construct a 2d string-net liquid
state [34] that has a boundary realizing the fusion category
C [35]. For n > 1, the general construction is sketched in
Proposition 21.

In the third version, we only consider the excitations on
a particular gapped boundary C"*! € B"*!, and instead of
determining bulk topological orders, we ask only whether
boundary excitations can determine bulk excitations. The
boundary excitations are described by a fusion n-category
C" = Hom(C"*!, C"*!). Again Hom(M"*2, M"+2) (nd exci-
tations in M"*?) does not act within C". However, the (n — 1)d
excitations in M"*2 act within C". The braided fusion n-
category of all the (n — 1)d excitations is given by M" =
QHom (M2, M**+2), which acts on C". In other words, C"
is a left module over M". It is also a right module over
nVec = Hom(I"*!, I"*1). A gapped boundary, up to an invert-
ible topological order, is described by a pair (C", M"). In fact,
the data (C", M") determine the boundary excitations, which
in turn determine the gapped boundary, up to an invertible
topological order. We believe that the data (C", M") can deter-
mine the category of the bulk excitations (i.e., determine the
bulk topological order up to an invertible topological order).
In fact, we believe that C" alone can uniquely determine the
category of the bulk excitations.

Proposition 18. There is only one anomaly-free topologi-
cal order M"+2 in 'l[‘@;’;” 2, up to invertible topological orders,
which gives rise to the category of boundary excitations:

Cn — HOm(CrH_l, Cn+1)’

where C"*' € Hom(I""?, M"*?). (44)

The above result can be rephrased. Let us denote the fusion
(n + 1)-category of the bulk excitations as M"*! [which is
given by Hom(M"+2, M"+2)]. Then M"*! is uniquely de-
termined by a braided fusion n-category M" = QM"*!, via
delooping: M"*! = ZM?", since the bulk topological order is
anomaly-free.

Proposition 19. The braided fusion n-category M" is
uniquely determined by C”,

M" = Z, (€, (45)

where boundary-bulk relation Z; is called Z; center (the Drin-
feld center when n = 1). Thus, C" uniquely determines M"*!
via

M =37,CM. (46)

Mathematically, the above result is phrased as follows:

Proposition 20. From any fusion n-category C", we can
always construct a unique braided fusion n-category Z;(C"),
which is the maximal one equipped with a central monoidal

Fen . . .
functor M" — C", i.e., for any x in M" and y in C"

For(x) @y =y ® Fen(x), C)

Kn+1
M n+2

n+
C qn
FIG. 14. The “bulk” of a domain wall on the boundary [26].

such that Z;(C") is the category of codimension-2 excitations
in the bulk of C"

M = Z,(CM. (48)

Such central functor Fg» : Z1(C") — C" is also referred
to as the forgetful functor, since by construction, objects in
Z1(C") can be viewed as objects in C" equipped with addi-
tional half-braiding structures.

We now explain an explicit construction of Z;. To
do this, consider a slightly more complicated config-
uration as in Fig. 14, where C"*! € Hom(I"*2, M"*+2),
Dn-H c Hom(l"“, N"+2), Kn+1 c Hom(M””, N"+2), and

V' = Hom(D"t!, KMl @ C'l). We view V' as a
MIH»Z

collection of domain walls between the boundary C"*!
and D"*! and it uniquely determines the “bulk” K"*!, which
is a domain wall between the bulk of C"*!, and the bulk of
D"*+!, namely between M"+2 and N"+2.

Observe that all three fusion n-categories, K" =
HOIII(K’HI, KnJrl), " = Hom(C”“, Cn+1), and D" =
Hom(D"t!', D"+1), act on V". Moreover, the three actions
commute with each other. Here we want to separate the action
of K" from those of C" and D".

Let us introduce Fun()", V") as a collection of endofunc-
tors of the linear n-category ", or more precisely, a category
of linear functors f :) — V. In other words, for objects
v, w € V, the functor f satisfies

Jdw) = f(v)® f(w). (49)

Note that these functors are higher functors between higher
categories and consist of many structures at different levels
of morphisms. In this paper, we are not giving rigorous de-
scriptions, but only listing the structures at the object level for
illustration. The structures on higher morphisms are similar.

Fun(V", V") is naturally a linear monoidal category since,
for f, g € Fun(V", V"), we can define

(f®eW) = fg), (f®w =f(v)dgl. (50)

Now we can see that an action of K" on V" is the same as
a monoidal functor X" — Fun(V", V"); in other words, an
object k € K" corresponds to a functor f; € Fun(V", V"),

fe(v) = kl(? v, veV (51)

where k ® v describes the fusion of an object k € K" to an
’Cn

object v € V" along the domain wall K"*+!,

Similarly, we have the actions of C" and D" on V",
which commute with each other and make V" into a C"-D"-
bimodule. Thus, the action of K", that commutes with both
actions of C" and D", identifies K" with the bimodule
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endofunctors of V", i.e., all the linear functors that commute

with both actions. More precisely, if we denote the left ac-

tion of C" by C ® v and right action of D" by v ® d for
Crt ’Dn

veV" Ce(", deD" abimodule functor is a functor
f V" — V" together with natural isomorphisms

fCR®v)~C®f(v), flved)~fved, (52
cr cr Dr Dr

and other appropriate higher structures. We note that the
above are additional structures rather than conditions. Denote
the category of all bimodule functors by Func.p.(V", V).
The monoidal functor K" — Fun(V", V") can be promoted
to K" — Funpn e (V", V). Following the holographic prin-
ciple, we expect such functor to be an equivalence. Thus,
we have the following boundary-bulk relation, extended to
domain walls on the boundary and in the bulk:

Proposition 21. Let C*! e Hom(I"+%, M"*2),
D! € Hom(I"t?, N*+?), and their excitations C" =
Hom(Cn-H , Cn+l )’ D — Hom(Dn-H , Dn+1 ) A (Ch-Dr-
bimodule V", viewed as a collection of domain walls
between C"*! and D"*!, uniquely determines a domain wall
K™t in the bulk, ie., K""! € Hom(M"**2 N**2). In other
words, there is a unique K"*! € Hom(M"*2, N"+2) such that

V' = Hom(D"*!, K**+! @ C"*!). The excitations on K"*!
Mn+2
is given by

K" = Hom(K"*!, K™y = Funcapr (V", V). (53)

Objects in K" correspond to functors in Fungnp-(V?, V).

As a special case, take V" = D" = C"; i.e., we view C" as
a collection of domain walls between C"t! and itself. The
“bulk” of C" is the trivial domain wall in the bulk of C"**!
and the excitations on the trivial domain wall are just the
codimension-2 excitations in the bulk of C"t!. We obtain the
explicit construction

M = Z] (Cn) = Funcn|cn (Cn, Cn) (54)
For a bimodule functor f € Z;(C"), and any y € C"

fde) @y = fly) =y ® f(len). (55)

We see that a bimodule funcor f is the same as an object
f(en) in C" together with the half-braiding f(le:) @ y =~
y ® f(1cn). The forgetful functor is thus

FC” : FunCn|cﬂ (Cn, Cn) = Zl (Cn) — Cn’
[ Fo(f)=fen).  (56)

In this paper, we mainly use the third version of boundary-
bulk relation Z;(C") =M": The codimension-1 boundary
excitations described by a fusion n-category C" uniquely de-
termine the codimension-2 bulk excitations described by a
braided fusion n-category M". In contrast, (41) is a relation
between a boundary topological order [i.e., an anomalous nd
topological order—an object in Hom(I"+2, M"*2)] and a bulk
topological order (i.e., an anomaly-free (n + 1)d topological

order—an object in TO?).

J. Example of topological orders and the corresponding
higher categories

1. Invertible topological orders

The simplest anomaly-free topological orders are invertible
topological orders [25,41,42]. We use TO™! to denote the
category of all nd invertible topological orders. We believe
that there are no anomalous invertible topological orders:

Proposition 22. Consider a  potentially anomalous
topological order in n-dimensional space: C"t! e
Hom(I"*2, M"*2) for M2 e TO, if its excitations
are the same as those for the trivial topological order, i.e.,
QC! = QI"t! = nVec, then M™? = "2 (ie., C"! is
anomaly-free) and C"*! is an invertible topological order.

By definition, the invertible topological orders form
Abelian groups under the stacking ®. In different dimensions,
those groups are given by [25,41,42]

(m+1)D: 0+1 141 241 3+1 4+1 7)
Jort! 0 0 z 0 Z, -
The generator of TO3,, is the Eg bosonic quantum Hall state

described by the wave function

)| TTTT - || T - o,

ij I1<J i<j I
(58)
where the K-matrix is given by
2 1 0 0 0 0 0 O
1 21 0 0 0 1 O
01 2 1 0 0 0 O
0O 01 2 1 0 0 O
K=o 001 2 10 of ©2
O 0 0 01 2 0 O
O 1 0 0 0 0 2 1
o 0 0 0 0 0 1 2

which satisfies det(K) = 1. The generator of JO?  is given
following 4d bosonic system (described by a path integral for
cochain fields [85])

7 = Z ol fM4+I(W2+dazz)(w3+db22)’ (60)

a?2 pZ2

where a?2 is a Z,-valued 1-cochain, b%> is a Z,-valued 2-
cochain, and w,, is the nth Stiefel-Whitney class of the tangent
bundle of the closed spacetime manifold M**!. The path in-
tegral only depends on the cohomology classes of w, and ws,
since the path integral is invariant under the following gauge
transformation:

w3 — w3 +dA,

b — bP 4. (61)

wy — Wy +dy,
a? — a® + Y,
The path integral can be calculated exactly

7 = Z o7 i1 (Wada?2) (w3 +db?)

a?2 b%2

b

— oNi+N gin Syt Waw3 (62)
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where N, is the number of the links and N; is the number of the
triangles in the triangulated spacetime M**!. The nontrivial
topological invariant e Juarr waws implies that (60) realizes a
nontrivial 4d invertible topological order.

The invertible topological order have no nontrivial nl-type
of excitations, i.e., no nontrivial topological excitations. All
the excisions are local. The different types of local excitations
are described by the trivial fusion n-category nVec for an nd
invertible topological order.

For example, in 2-dimensional space, the objects in the cat-
egory of invertible topological orders TO? , form an Abelian
group Z. The morphisms on each object form a trivial fusion
2-category 2Vec. Since the Eg quantum Hall state has no
gapped boundary, it is not an exact topological order, but is a
closed (i.e., anomaly-free) topological order. Therefore, TO; |
has no 1-morphisms between different objects. All domain
walls between different objects are gapless. The 1-morphism
that connects the same object is also trivial. This is because
such a 1-morphism corresponds to an 1 4+ 1D excitation and
there is no nontrivial 1 4+ 1D anomaly-free topological order.

In our attempt to use higher categories to characterize
topological orders, the invertible topological orders are the
most difficult ones. This is because higher categories mainly
describe the excitations, but the excitations on top of invertible
topological orders are identical to those on top of of triv-
ial product state. Fortunately, in the category of topological
orders, we also have information on the stacking operation
® and the gapped domain walls between topological orders.
This allows us to distinguish invertible topological orders. The
invertible topological orders in 2d are particularly difficult,
since we do not even have any gapped domain walls (i.e.,
no 1-morphisms). Only the stacking operation ® allows us
to distinguish 2d invertible topological orders.

2. G-topological orders

Another class of topological orders for bosonic systems are
called G-topological orders (see Sec. IV), which are described
by gauge theories with a finite group G. We use GT'Erl €
TOL !'to denote G-topological order in n-dimensional space.
We use QGT';’] to denote the fusion n-category that describes
the excitations in GT5™" and use Q>GT4™ to denote the
braided fusion (n — 1)-category that describes the excitations
with codimension-2 and higher in GT%™. It is known that
GT’(’;’Ll is anomaly-free and has gapped boundary. An example
of GT3Zz is given in Example 1.

Let us describe the 3d Z,-topological order GT‘%2 in more
detail. Such a state has two nl-types of point-like excitations
1, e, two nl-types of string-like excitation 1, my, and one
trivial nl-type membrane-like excitations. The e-particle has
a fusion e ® e = 1 and the m;-loop has a fusion m; ® m,; =
1,. The Z,-topological order also has two types of point-
like excitations 1, e, and four types of string-like excitation
1, my, e;, eg ® my. The string e, is formed by e-particles con-
densing into the Z, symmetry-breaking state. The eg-loop
has a fusion e; ® e; = 2e,. Those point-like and string-like
excitations form the braided fusion 2-category QzGT%.

The 3d Z,-topological order GuT%2 has infinite types of
membrane-like excitations corresponding to infinite different

2d topological orders formed by trivial point-like excitations
I’s. GT‘%2 also has infinite types of membrane-like excitations
corresponding to infinite different 2d SET orders with Z, sym-
metry, formed by e-particles with mod-2 conservation. There
are three types of membrane-like excitations corresponding
to 2d topological orders formed in mjy-loops. The mg-loops
have a mod-2 conservation that corresponds to a Z, higher
symmetry. Thus, this kind of 2d topological order can be
viewed as having a spontaneous breaking of Z, 1-symmetry.
Those point-like, string-like, and membrane-like excitations
form the fusion 3-category QGT%. The point-like and string-
like excitations form the braided fusion 2-category QZGT%.

The above 3d Z,-topological order GuT%2 is anomaly-free,
which means that it can be realized by a bosonic lattice model,
as shown in Sec. IV. Another way to realize GT}2 is via the
path integral of Z,-valued 1-cochain fields, a?> [85]:

z= Y1, (63)

da?2=0

where )", z,_, is a summation over Z,-valued 1-cocycles.
One can also realize GT%2 via the path integral of Z,-valued
2-cochain fields, 522 [85]:

z=Y 1, (64)

db%2=0

where ) 4,7, _o is a summation over Z,-valued 2-cocycles.
Since GT‘%2 is anomaly-free, its excitations described by
QGTY, satisfy
2

Z1(QGTy,) = Q4Vec = 3Vec. (65)

The above boundary-bulk relation between fusion higher cat-
egories and braided fusion higher categories only tell us that
GT3Z, is either anomaly-free or has invertible anomaly. The
stronger boundary-bulk relation is given by

Bulk(GTy,) = . (66)

This boundary-bulk relation tells us that GT}2 is anomaly-
free.

We would like to mention that there is also a 3d twisted
Z,-topological order where the point-like Z,-charges are
fermions. We denote such a twisted Z,-topological order
as GT;/. The twisted Z,-topological order GT;, is also

anomalyz—free and can be realized by the path integrzal of Z,-
valued 2-cochain fields, b2 [56,57,85]:

7 = Z 4™ Junr bR2b*2 Z &7 bZZW2, (67)

db%2=0 db%2=0

where ) ,z,_, is a summation over Z,-valued 2-cocycles,
M3 is a (3 + 1)-dimensional closed spacetime (with a
triangulation), and w, is the second Stiefel-Whitney class
of the tangent bundle of M3*!. Here we used a fact that
bbb + b%w, is a Z,-valued coboundary. The topological
term i Ju+1 b26%2 — o fy31 %2W2 makes the point-like Z-
charges to be fermions.
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3. A 2d anomalous topological order

Now, let us consider an anomalous topological order in 2d,
denoted as C%z, which has two nl-types of point-like excita-
tions, labeled by 1, e, where 1 is a trivial point-like excitation
and e has a Z, fusion ¢ @ ¢ = 1. The anomalous topological
order has two types of point-like excitations, which are also
given by 1, e. The anomalous topological order has only one
nl-type of string-like excitations, which is a local string-like
excitation. But it has two types of string-like excitations, la-
beled by 14, e,. The e,-type of string-like excitation is formed
by the e-particles, condensing into a 1d phase of sponta-
neous Z, symmetry-breaking state. The e; loop has a fusion
e; @ ey = 2e;. 1y, e are local string-like excitations, i.e., they
belong to the trivial nl-type of string-like excitations.

The excitations in the anomalous topological order C3Zz are
described by a fusion 2-category C%z = QC3Z2 = 2Rep(Z,).
C%z has two simple objects 1;,e,. On 1, there are two
simple 1-morphisms 1, e. On ey, there are also two simple
1-morphisms 1., d,, with a fusion rule d,, ® d,, = 1,,. There
is one simple I-morphism o € Hom(1y, ¢;) and one simple
6 € Hom(ey, 1;), with fusion rules

o®l=0®e=1,Q0 =d, ®0 =0,
1 1, e e

1®U—e®a—a®le‘—o®de =
1,

o gz) oc=16&®e,
oG = 1, ®d,. (68)
The bulk of the anomalous topological order C3Zz is the Z,-
topological order in 3-dimensional space GT%Z:
Bulk(C}) = GT3,. (69)

Since GT‘%2 is nontrivial, C3Zz is anomalous. In fact, C3Zz is a

2d gapped boundary of the 3d Z, topological order GT%2 ob-
tained via condensation of Z,-flux strings. We have a similar
relation for excitations

z(cz) =

where C%z = QC3Z2 is the fusion 2-category describing the
excitations in C3Z . The relation (69) carries more information
than (70). We would like to remark that when we stack the
two anomalous topological orders, both the boundaries and
the bulks are stacked:

Bulk(C}, ® C3))

Q*GTY, (70)

=GT,, ® GTy,. (71)

4. Anomalous 3d 7, topological order

The anomaly-free 3d Z,-topological order GT‘%2 discussed
above can also be realized via the path integral of Z,-valued
1-cochain and 2-cochain fields, aZ2 and b%2 [85]:

7 = Z em fM3+1 b*2da*2 s (72)

a?2,b%2

where )z, ,z, is a summation over Z,-valued 1-cochain and
2-cochain. The above path integral has a gauge invariance for

closed M3+1;

a” - a® +da, b" — b" +dB. (73)

In this formulation, the twisted 3d Z,-topological order
GT; ; is realized by the path integral
2

7 — Z 4 s b%2 da*2 _,.;,Zsz' (74)

a?2,b%2

The above path integral is also gauge invariant for closed
M3+1:

a® — g% + v, b2 — p% +dp, wo > wr+dy. (75)

The path integral only depends on the cohomology classes of
Ww», so it describes an anomaly-free theory.

In this section, we are going to study an anomalous 3d Z,
topological order, realized by the following path integral:

7 — § ei]r fM3+] b22da”2 +a%2wi+b%2w, (76)

a2 b%2

Under the gauge transformation,

Z;

a —>aZZ+)/, b — b2 4,

(77

wy — Wy +dy, w3 —> w3 +dA,

the above path integral is not invariant. The gauge nonin-
variance can be fixed by adding a bulk term i s Wa%s jn
one higher dimension, where N> = M3*!. The resulting path
integral

7 — Z 7 Sy b72daP2+aP2ws 1072wy i s Waws (78)

a?2 p?2

is gauge invariant; i.e., it only depends on the cohomology
classes of w;, and ws. Since the path integral requires a bulk in
one higher dimension to be gauge invariant (i.e., only depends
on the cohomology classes of w, and w3), so it describes
an anomalous theory. We denote such a 3d anomalous Z;-

topological order as GT4’W2W3
2

Such a 3d anomalous Z,-topological order GuT4 V2% has a

fermionic point-like Z, charge. If the world sheet for the V&)
flux loop is unorientable, there is a world line that marks the
reversal of the orientation. Such an orientation-reversal world
line corresponds to a fermion world line. In other words, the
anomalous Z, topological order has a special property that a
unorientable world sheet of the Z,-flux must bind with a world
line of the fermionic point-like Z, charge. Such a fermionic
world line corresponds to the orientation reversal loop on the
unorientable world sheet.

The 3d anomalous Z,-topological order GT4 W% has a

nontrivial bulk. The boundary-bulk relation can be written as

4, Wy W
Bulk(GTszz ) =1, (79)
where I3, |, is the 4d invertible topological order charac-

terized by the topological invariant e™™ Jyswaws 25 41,42].
The boundary-bulk relation (79) implies the following
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boundary-bulk relation for the excitations:

Z (SZGT“’,WZ‘“) = 3Vec,
3Vec = QI3 .. (80)

since the excitations in an invertible topological order are

described by a trivial braided fusion higher category. Al-

though the right-hand side of Zl(QGT;}”Z%) =3Vec is a
2

trivial braided fusion higher category, as we have mentioned
before, the boundary-bulk relation for fusion higher cate-
gories ZI(QGT4’WZW3) = 3Vec does not imply GT4’W2W3 to be

anomaly-free. In fact, GT4 ¥ has an 1nvert1ble anomaly,

which is a Z, global grav1tat10nal anomaly. So (79) carries

more information, which indicates that GT;WzW‘ is anoma-

2
lous.

IV. AN EXAMPLE OF ALGEBRAIC HIGHER
SYMMETRIES: G-GAUGE THEORY

For a quantum system with usual symmetry, the Hamilto-
nian commutes with a set of operators which form a group
under the operator product. In this section, we construct an
example, in which the Hamiltonian commutes with a set of
operators that do not form a group under the operator prod-
uct. The constructed model is an exactly solvable 3d local
bosonic model [5] whose ground state has a topological order
described by a 3d gauge theory of a finite group G. The oper-
ators that commute with the Hamiltonian are the Wilson line
operators. When G is non-Abelian, the Wilson line operators,
under the operator product, form an algebra, which is not a
group.

Our lattice bosonic model is defined on a 3d spatial lattice
whose sites are labeled by i. Physical degrees of freedom live
on the links which are labeled by ij. On an oriented link ij,
the degrees of freedom are labeled by g;; € G. The labels g;;’s
on links with opposite orientations satisfy

gij =8 (81)

The many-body Hilbert space of our lattice bosonic model has
the following local basis:

Hgij}),

The Hamiltonian of the exactly solvable model is expressed in
terms of string operators and point operators.

gij € G, ij € links of cubic lattice. (82)

A. The string operators

The string operators B,(S") are defined on a closed loop S!
formed by the links of the cubic lattice and are labeled by g,
the irreducible representation of the gauge group G:

Ry(higijh;") = Ry(hi)Ry(gi))R, " () (83)

where R,(g;;) is the matrix of the irreducible representation.
A g-string operator is given by

By(SHlgih) =Tr| ] Ro(eip) [Hgh)- (89

ijes!

So Bq(Sl) is diagonal in the basis [{g;;j}):
Tr[ l_[ijeSl R,(gi;)]. We note that

B,(SH) =

By(S"YBy(S") = Tr [ | Ry(gij) ®c Relgij).  (85)
IeS!

(We use ®c to denote the usual tensor product of matrices or
vector spaces over the complex numbers C, while @ to denote
the fusion of excitations.) Using

R, ®c Ry = NIR, N eN, (86)
t

we see that
B,(S")By(S") = Y NP B/(S"). (87)
t

The ends of the strings are point-like topological excitations
and the above N,”* are the fusion coefficients of those topolog-
ical excitations. The quantum dimensions of those topological
excitations, i.e., d;, = dim(R,), satisfy the following identity:

> Ndy = dyd;. (88)

We see that these string operators form a fusion algebra which
is not a group when G is non-Abelian.
Let

B(SHh=Y" I%Bq(s‘), D? =

q

> . (89)
q

We have

BzzdeffBB —de B,

q,s q,5,1

Thus, B is a projection operator. In fact, it is a projection
operator into the subspace with | =1

q ——1d,B, = B. (90)

ijeloop 8ij

B. The point operators

A point operator is given by its action on the basis:

O .., gij> &ijr>--- 1) =I..., hgij, hgij, ... 1. (91)
Clearly they satisfy
Q)0 (i) = Qi (0. (92)
So for a non-Abelian group G, in general
On(D)Qu (i) # O (DO (), (93)
but we have
Qu()Qw (j) = Qw(NQw(), i # j. (94)
Let us introduce
Ca(i) =Y Ou(i), 95)

hexa
where x, is a conjugacy class labeled by a. We find that
Ca(DCp(j) = Cp())Cali) 96)

regardless if i = j or not.
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We note that, on a given site i,

Ca@DCH(D) =D > O (i) = Zbecc(o. 97)

hexa W' exp

The above expression allows us to see that M are
non-negative integers. Using C,C, = C,C, and (C,Cp)C, =
C,.(CyC,), we find that

M =Ml Y MM =

d

> oMMl 98)
d

Let (M) =M fb , and we can rewrite the second equation in
the above as

MM, =MM,. 99)

For example, the permutation group of three elements
S3 = {(123), (132), (321), (213), (231), (312)} has three con-
jugacy classes: x; = {(123)}, xo» = {(132), (321), (213)}, and
x3 = {(231), (312)}. We find that

CiC,=Cs, GG =3C + 3G,
GG =2C + G, GG =2G. (100)

Let C be a particular common eigenvector of M, whose
components are all non-negative. (Such common eigenvector
exists since the matrix elements of M, are all non-negative.)
The eigenvalue of such an eigenvector is A, for M,. We choose
the scaling factor of C to satisfy

Z)Laca =1.

In this case, we can define Q; = > ¢,C,(i) that satisfy

(101)

0} =0 (102)
Thus Q; is a projection operator. In fact, Q; is given by
=1GI™" ) o). (103)

heG

where |G| is the number of elements in the group G. We can
check explicitly that

07 =G> ) 0w(D)Qw (i) = |G ZZQWa)

h,W

=167 Y 0ui) = 0.

h

(104)

C. A commuting-projector Hamiltonian

We note that Q,(i)’s generate the local gauge transforma-
tions. Since the closed-string operators are gauge invariant, we
have (for closed-string operators)

[ (Sclosed) C (l)] = 0,
[ (SCllosed) (Snll/osed)] =0,
[Cu(D), Cp(j)] = 0.

Therefore, we can construct the following commuting projec-
tor Hamiltonian [5,74]

H= UZ(] —0)+J Y (1= Byju),

(ijkl)

(105)

(106)

where U, J > 0,

d,
Bijuy = Z D—quq

i

((ijkl)) (107)

and (ijkl) labels the loops around the squares of the cubic
lattice.

The ground state of the above exactly solvable Hamiltonian
has a nontrivial topological order. The low-energy effective
theory is the G-gauge theory [5,74].

D. The point-like and string-like excitations

What are the excitations for the above Hamiltonian? There
are local point-like excitations created by local operators.
There are also topological point-like excitations that cannot be
created by local operators. Two topological point-like excita-
tions are said to be equivalent if they differ by local point-like
excitations. The equivalent topological point-like excitations
are said to have the same type.

We note that the closed string operators B, (S} ..q) (84)
commute with the Hamiltonian (106). Thus, the string oper-
ators act within the ground-state subspace. We see that the
ends of the open string operators create point-like excitations,
which are labeled by representations R,. The types of topo-
logical point-like excitations one-to-one correspond to the
irreducible representations of G. In other words, topological
point-like excitations are described by representations of G in
a G-gauge theory.

Similarly, there are also topological string-like excitations.
They are created at the boundary of the open membrane oper-
ators. To define the membrane operators, we point out that a
membrane S? is formed by the faces of the dual lattice, which
is also a cubic lattice. The faces of the dual lattice correspond
to the links in the original lattice and are also labeled by i;.
Let us first assume G is Abelian. In this case, the membrane
operators are defined as

G =[] T

ije§?

i (W1{gij}) (108)

where the operator 7;;(h) acts only on link i and is defined as
Tij(h)lgij) = Tj(h)Igsi) = Igjih™").

We see that C,,(5?) simply shifts g; j on the membrane 52 by h.
For non-Abelian G, the membrane operators are given by

= > T mitipligsh.

hexa ije§?

|hg”) or (109)

Ca(8®)lgif}) (110)

where x, is the ath conjugacy class of G. In the l_[ijEsz, i’s are
on one side of the membrane and j’s are on the other side of
the membrane (see Fig. 15). Lastly, 4;; is a function of 4 and
gij- For non-Abelian group G, h;; is complicated, but when
all g;; = 1, h;; has a simple form 4;; = h. For general g;;, we
need to choose a base point iy on one side of the membrane,
and a path iy — i on the membrane that connect the base point
ip to any other point i on the membrane (see Fig. 15). Then we
can define h;; as

hij = (Sigi - - - 8ir1) " "h(Gigir - - - gind), (111)
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_— |-t = == 4 = |_ll

Iy ix

FIG. 15. The red dashed lines are membranes and the cross
marks the boundary of the membranes. The blue thick line is the
path iy — i.

where (gj,7 . .. gi»i) is the product of the link variables along
the path iy — i.

We note that when the closed membrane encloses only one
site i (see Fig. 15), the operator C,(8?) reduces to C,(i) as
discussed before:

C.(§?) = C,(i). (112)

Thus, C,(i) can be viewed as a small membrane operator,
rather than a point operator.

Let us consider a loop iy — i = j — jo — ip. The G-
flux through such a loop in the ground state |\Wy) is trivial:
(gioi’ N gi”i)gij(gjj’ Ce gj”jo)gjoio = 1. This is because the
ground state | W) satisfies

B|Wy) = [Wo). (113)

After we apply the membrane operator (110), the G-flux
through the same loop becomes
(i - - D81 (&) - - - &j7jo)nioh ™
= h(gioi’ .. 'gi”i)gij(gjj’ N gj"jo)gjoioh_l = 1, (1 14)

which is still trivial. This allows us to conclude that for~states
|W) satisfying B|W) = |W) and for closed membrane 52

closed?
we have
BCH (gzlosed) |\IJ> = Cﬂ (Sglosed) |\Il> (1 15)
We can also show that
Q,(1)Ca(8?) = Ca(§1)Q, (). (116)
For example,
0. (10)Ca(8)0i0) = > [ Tiithij)
g 'hgexa ijeS?
= C,(5?). (117)
Also,
Q;l(i)Tij(hij)Qg(i) = T;;(hy), (118)
where

hij =g (gigir - - 8iig ) "W (gii - - - girig g = hij. (119)
Thus, in general, we have
0, (NCa(8)Q4 (i) = Cu(8?),
Cp()Co(857) = Ca(8H)Cy(i),

(120)

for any i, even for open membranes. The results (115) and
(120) imply that closed membrane operators C,(S3 ..4) act
within the ground-state subspace of the Hamiltonian (106).
Therefore, the boundary of the open membrane operators
(110) creates string-like excitations, which are labeled by
conjugacy classes x,.

E. Exact algebraic higher symmetry

Since the Hamiltonian (106) commutes with the closed
string operators By (S} eq)s

[H’ B‘I (Scllosed)] = O’

we say that the Hamiltonian has an algebraic 2-symmetry
generated by Bq(Scllosed) for any closed strings. Since the
composition of the symmetry transformations satisfies the
fusion rule (87), there is not a group multiplication rule for
non-Abelian G. Thus, the B,(closed string)’s generate an ex-
act algebraic 2-symmetry which is not a higher 2-symmetry.
However, when G is Abelian, B,(S) .,)’s generate a higher
2-symmetry.

There is another way to describe the algebraic 2-symmetry
using the open string operators [19]. We note that the Hamil-
tonian is a sum of local operators H = Zi H;, where H; acts
only on the degrees of freedom near site i. We find that H;
commutes with open string operators as long as the ends of
the strings are a distance away from the site i:

[H:. B, (Sgpen)] =0.

(121)

(122)

F. Emergent algebraic higher symmetry

We also note that the Hamiltonian (106) commutes with
Un(S?)

[H,Upy($H)] =0, Uy=][]QuG). heG. (123)

Thus, the Hamiltonian has a 0O-symmetry, i.e., a global
symmetry described by symmetry group G. In fact, the Hamil-
tonian has a much bigger symmetry. It has a local symmetry
described by group G, where N, is the number of lattice
sites:

[H, O] =0, h;€G. (124)

On the other hand, the membrane operators C,(52 ..4)’s
do not commute with the Hamiltonian (106). Thus, the
Hamiltonian does not have algebraic 1-symmetries. How-
ever, C,(S2..q) acts within the degenerate ground subspace.
More generally, C,(5%..q) and H commute in the subspace
where B;jiy =1 (i.e., in the finite energy subspace of H
when J — +00). Therefore, the Hamiltonian has an emergent
low-energy algebraic 1-symmetry generated by C,(8%,..q)’S
when J — 4-00. Such an emergent algebraic 1-symmetry is a
(group-like) 1-symmetry only when G is Abelian.

V. DESCRIPTION OF ALGEBRAIC HIGHER SYMMETRY
IN A SYMMETRIC PRODUCT STATE

Usually, we use the symmetry transformation, i.e., the
symmetry group G, to describe a symmetry. We can also use
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the symmetry charges, i.e., the representations Rep(G), to
describe a symmetry. Due to Tannaka duality, the two descrip-
tions are equivalent. In last section, we introduced algebraic
higher symmetry via the symmetry transformations. In this
and next sections, we will develop a similar dual way to de-
scribe algebraic higher symmetry, i.e., via the representations
of algebraic higher symmetry. This section will concentrate on
the point-of-view-based lattice model and symmetric product
state. The next section will present a point of view based on a
higher category.

What are the representations of algebraic higher symme-
try? Physically, the representations correspond to the “charged
excitations” in a symmetric ground state which has a trivial
topological order (i.e., be a product state). In the following,
we will explore the following questions: What is a “symmetric
state” (i.e., no spontaneous symmetry breaking) for algebraic
higher symmetry? What kind of algebraic higher symmetry
can have symmetric ground state with no topological order?
What are the “charged excitations” for algebraic higher sym-
metry? This allows us to obtain a representation theory for
algebraic higher symmetry, in terms of local fusion higher
category.

A. Spontaneous broken and unbroken algebraic
higher symmetry

In Sec. IV, we constructed a 3d lattice model that has
an exact algebraic 2-symmetry generated by string operators
B,(S ). However, the ground state of the model (106) spon-
taneously breaks the algebraic 2-symmetry, which gives us a
topological order described by the G-gauge theory.

Here, we consider a different model,

H=-V 23(&']’) +U 2(1 -0+ J 2(1 — Bijiny),
ij i (ijkl)
(125)

by including an extra term —V§(g;;) and taking J — 400
limit. Here,

5(0) {1, ifg=id (126)
&= 0, otherwise
The model also has the algebraic 2-symmetry

[H, By(Skoe)] = 0. If we choose the limit U <V, the
ground state is given by |{g;; = 1}). This ground state does
not spontaneously break the algebraic 2-symmetry.

For the usual global symmetry, the spontaneous symmetry
breaking is defined via nonzero order parameters. Here we
would like to define the spontaneous symmetry breaking of
algebraic higher symmetry in a different way:

Definition”" 24. An algebraic higher symmetry is sponta-
neously broken if there exists a close space, such that the
symmetry transformations are not proportional to the identity
operator in the nearly degenerate ground-state subspace on
that space.

For the Hamiltonian (125), the ground state is not degen-
erate on any closed spaces. Thus, the algebraic 2-symmetry
is not spontaneously broken. In contrast, for model (106),
the ground states are degenerate on space S} x S} x S!.

The different ground states can have different fluxes, say,
]_[(i st 8ij = h. The symmetry generator Bq(S;) is not pro-
portional to identity, since Bq(S;) = X,(h) on the ground state
with flux /4. Here,

X, () =Tr[Ry(g)], g€ G (127)
is the character of the representation R,. We see that the
ground state of the model (106) spontaneously breaks the al-
gebraic 2-symmetry B, (S"). In fact, the algebraic 2-symmetry
is completely broken, which gives rise to the topological order
described by the G-gauge theory.

B. Anomaly-free algebraic higher symmetry

In this section, we would like to discuss algebraic higher
symmetry in the simplest state—symmetry unbroken state
without topological order. However, some algebraic higher
symmetries may not allow such a state. This leads to an
important attribute of algebraic higher symmetry. There are
two ways to describe this attribute: The first is a microscopic
way:

Definition”" 25. An algebraic higher symmetry in a lattice
system is anomaly-free if a system with the symmetry allows
a phase which has a symmetric product state as its unique
gapped ground state.

The second is a macroscopic way:

Definition”" 26. An  algebraic higher symmetry is
anomaly-free if a system with the symmetry allows a phase
which has a unique gapped ground state on each closed space.
Such a phase is also symmetric.

For 0-symmetry on lattice, we can use on-siteness to de-
fine anomaly-free O-symmetry [3]. Using this definition, we
believe that all anomalous (non-on-site) O-symmetry can be
realized on a boundary of a system in one higher dimen-
sion with anomaly-free (on-site) O-symmetry [3]. For finite
symmetries, we believe that there is an one-to-one correspon-
dence between anomalous 0-symmetries and the SPT order
in one higher dimension [3]. (While for infinite symmetry
described by a continuous compact group, we do not have the
one-to-one correspondence between anomalous 0-symmetries
and the SPT order in one higher dimension [3].) As a result,
the finite anomalous O-symmetries are classified by the SPT
orders in one higher dimension. Since we believe that the
boundary uniquely determines the bulk [25,27], the above
result also implies that an anomalous O-symmetry does not
allow a gapped symmetric product state as the ground state
[86,87]. Otherwise, the SPT order in one higher dimension
must be trivial, as implied by such a symmetric ground state
on the boundary.

For algebraic higher symmetry, it is hard to define on-
siteness. So we turn things around and use the existence
of trivial symmetric gapped ground state to define algebraic
higher symmetry (where trivial means product state). In this
case, algebraic higher symmetry can appear at a boundary
of the trivial SPT phase for algebraic higher symmetry. The
boundary of nontrivial SPT phases for an algebraic higher
symmetry realize an anomalous algebraic higher symmetry.
In this paper, we only consider anomaly-free algebraic higher
symmetries.
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C. The charge objects and charge creation operators
for the exact algebraic 2-symmetry

The exact algebraic 2-symmetry in the lattice model (125)
is generated by B,(S .q)- The algebraic 2-symmetry is
anomaly-free since the model (125) allows symmetric gapped
product state |{g;; = 1}) as its unique ground state.

The charge objects of such a 2-symmetry live on 2-
dimensional surfaces [just like the charges of a 0-symmetry
(the usual global symmetry) live on 0-dimensional points]. To
construct the 2-dimensional operators that create the charge
objects of the algebraic 2-symmetry, let us review the charge
creation operators for the O-symmetry in a proper general
setting.

A pair of charge and anticharge of a 0-symmetry is created
by an operator C(5°) on S° (i.e., on two points i and j), for
example,

CS") =Y Yl (128)
a

where the local operator 1,(i) forms a unitary representation

R,y for the O-symmetry group G-

UVa =Y Ra(@VU;. g€G. (129)
b

We note that when the two points in S° belong to the same
connected component of the space, C(S®) commutes with the
algebraic O-symmetry transformations and creates an neutral
excitation. On part of SO, the creation operator becomes ¥/, (i),
which creates a non-neutral excitation.

Similarly, a neutral charge object of a k-symmetry is
created by operators on closed contractible k-dimensional
manifolds, such as S*. Such an operator on contractible Sk
commutes with the algebraic k-symmetry transformations and
creates an neutral excitation. A charge object of k-symmetry
is created by operators C(M*) on open k-dimensional man-
ifold M*. In nd, when the algebraic k-symmetry generator
Bq(Sglgfed) on (n — k)-dimensional sub-manifold intersects
with the submanifold M* at one point, we can detect the k-
symmetry charge. The algebra between symmetry generators
B‘I(Sglgfed) and charge creation operators C(M*) only depends
on the linking between S”_* ; and 9M*, and does not depend
on the deformations of Sé’lgfed and dM* that do not change
their linking. Those are key conditions for the charge creation
operators C(M*) for an algebraic higher symmetry.

For our algebraic 2-symmetry in 3d, the charge creation
operator acts on 2-dimensional surfaces with or without
boundary. In fact, such a charge creation operator is nothing
but the membrane operator C,(5?) discussed in Sec. IVD.
The charge object created by C,(5?) can be detected by the
2-symmetry generator B, (Scllmed), when 52 has a boundary, or
when 52 is closed and noncontractible.

In fact, on the |{g;; = 1}) ground state, the creation opera-
tor can have a simpler form

Gi8 = ] i,

ije§?

(130)

where []. jese 18 over all the links ij of the original lattice
that form the faces in §? of the dual lattice. Such an operator

B,

FIG. 16. In 3-dimensional space, a disk-like 2-charge object
(a 2-dimensional excitation) created by C;,(5?) can be detected by
the algebraic 2-symmetry transformation loop operator B, (S} .q)-

just changes g;; =1 to g;; = h on links ij of the original
lattice that form the faces in S? of the dual lattice. g; i =nh
on S? corresponds to a charged excitation, called a 2-charge
object labeled by A, of our algebraic 2-symmetry generated
by qusglosed)'

If 52 is a disk in 3d space, then the 2-charge object created
by C;,(D?) can be detected by the algebraic 2-symmetry op-
erator By(S) ) if Shoeeq 18 linked with 952—the boundary
of the 2-charge object (see Fig. 16). If fact, Bq(Scllosed) =
TrR,(h) in this case when acting on the 2-charge object. In
comparison, for the ground state |{g;; = 1}), the 2-symmetry
generator is equal to the dimension d,; of the g-representation:
Bq(Scllosed) =TrR,(1) =d,. We see that the algebraic 2-
symmetry cannot distinguish two 2-charge objects labeled by
h and A’ if h and /' belong to the same conjugacy class, so
the distinct algebraic 2-symmetry charges are labeled by the
conjugacy classes x, of G.

We stress that the membrane operator C,(5?) that creates
the 2-dimensional charge object of the algebraic 2-symmetry
is an operator that acts only on the membrane S2. This is a
very important general feature.

Proposition 23. On top of a ground state that does not
break the symmetry, the k-dimensional charge object of an
algebraic k-symmetry is created by an operator that acts only
on the k-dimensional subspace that supports the charge object.

We note that in J/ — oo limit, only 2-charge objects cor-
responding to closed surfaces have low energy. The 2-charge
objects corresponding to surfaces with boundary cost energy
of order J or bigger. We may consider the low-energy sub-
space of the model in J — oo limit. In fact, we consider an
even smaller space, the invariant sub-Hilbert space of all the 2-
symmetry transformations generated by B, (S, Cllosed) operators.
The collection of those created 2-charge objects within the
symmetric sub-Hilbert space, plus their fusion (and braiding)
properties, form a higher category. The 2-charge objects are
labeled by h € G and created by C‘h(S'Czlosed). The fusion of
Ch (Sglosed) is giVCl’l by

Ch (Szlosed) ® Ch' (Sglosed) = C‘hh/ (Sglosed)'

The charged membrane-like excitations, labeled by & € G,
form a fusion 3-categoryR = 3Vecs (see Definition 17),
which is also a local fusion 3-category (see Definition 27). We
also refer R = 3Vecg as the representation category of the
algebraic 2-symmetry. Physically, R is the fusion 3-category
that describes the low-energy excitations in model (125).
What is a fusion higher category and what is a local fusion
higher category? Roughly speaking, a fusion higher category
describes the point-like, string-like, etc., excitations above a
gapped liquid ground state. If an excitation can be annihilated
by an operator acting on the excitations, then we say the

(131)
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TABLE II. Correspondence between concepts in fusion higher category and concepts in topological order [25,26].

Concepts in higher category

Concepts in physics

Fusion n-category C

A collection of all the types of codimension-1 and higher excitations (plus their fusion and braiding

properties) in an nd (potentially anomalous) topological order

Simple objects of C

Simple 1-morphisms of C
Simple (n — 2)-morphisms of C
Simple (n — 1)-morphisms of C
n-morphisms of C

Local fusion n-category R

The types of codimension-1 topological excitations. They can fuse

The types of codimension-2 topological excitations. They can fuse and braid.

The types of string-like topological excitations

The types of point-like topological excitations

The local operators acting on the point-like excitations

The “charged” excitations (charge objects) above a product state of a bosonic system with an algebraic

higher symmetry R. It is called the representation category of the algebraic higher symmetry

excitation is local. Note that the operators may break any
symmetry and may not be local, as long as they act on the
support subspace of the excitation. The fusion higher category
formed by local excitations is a local fusion higher category.
Since the membrane excitations in R can all be annihilated
by operators on the membranes, R is a local fusion higher
category.

The following discussions use the notions of topological
order higher categories extensively [25,26,29,30], which are
reviewed in Sec. III. Table II summarizes some related con-
cepts in higher category and in topological order.

VI. LOCAL FUSION HIGHER CATEGORY AND
REPRESENTATIONS (CHARGE OBJECTS) OF
ANOMALY-FREE ALGEBRAIC HIGHER SYMMETRY

In the last section, we described the charged excitations
(i.e., the charge objects) in a trivial symmetric ground state
with anomaly-free algebraic higher symmetry. Here trivial
state means a product state. In the rest of this paper, we will
mainly discuss anomaly-free algebraic higher symmetry, and
we drop “anomaly-free” for simplicity.

For a 0-symmetry G, we know that its charges are repre-
sentations of G. All those representations form a symmetric
fusion category RepG. Because of the Tannaka duality, we
can use the local fusion category RepG to fully describe the
symmetry group G [45,46]. To be more precise, the charges
(the representations) of G correspond to point-like excitations.
Those point-like charges can condense to form other de-
scendent excitations. All those excitations are described by a
fusion n-category, if the O-symmetry G lives in n-dimensional
space. We denote such a fusion n-category as nRepG. In
other words, an nd 0-symmetry G is fully characterized by
a symmetric fusion n-category nRepG. We refer to nRepG as
the representation category of the 0-symmetry G.

In the above, we try to use excitations (trapped by the sym-
metric traps) to characterize a symmetry. Here we would like
to stress that the excitations described by the fusion n-category
nRepG only correspond to the excitations in the symmetric
sub-Hilbert space Vsymn of the many-body system. The fusion
n-category nRepG do not include the excitations outside the
symmetric sub-Hilbert space. In the thermodynamic limit,
restricting to symmetric sub-Hilbert space does not affect our
ability to understand the properties of a symmetric system.
We would like to use a similar approach to characterize an

algebraic higher symmetry (which is not characterized by
groups or even higher groups): The representations (i.e., the
charge objects) of an algebraic higher symmetry are sim-
ply the excitations above a symmetric product state, which
are also described by a category—the local fusion higher
category.

A. The excitations in a symmetric state
with no topological order

To have a general understanding of the charge objects, let
us consider a local lattice Hamiltonian H with an algebraic
higher symmetry. We assume the ground state |Wgpq) of H
has no topological order nor SPT order, i.e., it can be de-
formed into a product state without a phase transition, via a
symmetry-preserving path. Then how to understand the point-
like, string-like excitations, etc., of the above ground state?
Also similar to the O-symmetry case, here we only consider
the symmetric excitations (i.e., those trapped by symmetric
traps) in the symmetric sub-Hilbert space Viymm. We know
that an algebraic higher symmetry is generated by many
operators acting on all closed submanifolds. The symmetric
sub-Hilbert space is the invariant sub-Hilbert space of all those
symmetry generators.

To understand the excitations, first let us define excitations
more carefully. For example, to define string-like excitations,
we can add several trap Hamiltonians AHm(Sil) to H such
that H + Y, AHy(S}) has an energy gap. AHy(S}) is only
nonzero along the string S} and commutes with the generators
of the algebraic higher symmetry. We also assume AHS"(S})
to be stable: Any small symmetric change of AHy(S}) does
not change the ground-state degeneracy in the large string
S} limit. The resulting string corresponds to a simple mor-
phism in mathematics. We also define two strings labeled
by AH. (S 1y and AHy(S') as equivalent, if we can deform
AHy (S") into AH, (8") without closing the energy gap while
preserving the algebraic higher symmetry. The equivalent
classes of the strings define the types of the strings (see
Definition 10).

In the example in Sec. V, the 2-dimensional charge object
of an algebraic 2-symmetry is created by a membrane opera-
tor. If the membrane is a closed 2-dimensional subspace, then
the membrane operator acts within the symmetric sub-Hilbert
space Viymm and creates an excitation in the fusion higher
category. If the membrane has a boundary, then the membrane
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operator does not act within the symmetric sub-Hilbert space
and creates an excitation not in the fusion higher category.
When the membrane has a boundary, such a boundary is
the morphism that connect the membrane excitation to the
trivial excitation. In the above example, such a boundary (i.e.,
the morphism) is not allowed, since it breaks the algebraic
2-symmetry (i.e., the membrane with the boundary does not
act within the symmetric sub-Hilbert space).

B. Local fusion higher category

Now we are ready to define a local fusion higher cate-
gory, which describes the collection of excitations (i.e., the
collection of types) in the system mentioned above, i.e., a
system with algebraic higher symmetry whose ground state is
a symmetric bosonic product state without degeneracy. Also,
we only consider excitations within the symmetric sub-Hilbert
space Vsymm. For a symmetric trivial phase without topolog-
ical order, it has only local excitations. From a categorical
point of view, a local excitation can always be connected
to the trivial excitation through a morphism as described
above, if we are willing to break the symmetry. However,
if we preserve the symmetry, the symmetry-breaking mor-
phism is not allowed and some excitations cannot connect
to trivial excitation via symmetry-preserving morphisms (i.e.,
symmetry-preserving domain walls). This leads to the follow-
ing definition: A fusion n-category R is local if we can add
morphisms in a consistent way, such that all the resulting
simple morphisms are isomorphic to the trivial one. Physically,
this process of “adding morphisms” corresponds to explicit
breaking of algebraic higher symmetry. This is because R
only has morphisms that correspond to symmetric operators.
Adding morphisms means including morphisms that corre-
spond to symmetry-breaking operators. If after breaking all
the symmetry, R describes a trivial phase without symmetry,
then R is a local fusion n-category. The above can be stated
more precisely as follows:

Definition 27. A fusion n-category R (see Definition 17)
equipped with a top-faithful surjective monoidal functor g

from R to the trivial fusion n-category: R LY n)Vec is called
a local fusion n-category. Here, top-faithful means that the
functor B is injective when acting on the top morphisms (i.e.,
the n-morphism in this case).

Remark 5. The top-faithful condition means that operators
in R form a subset of operators in n)ec, which agrees with the
physical interpretation that from R to n)ec we add symmetry-
breaking operators. The functor 8 may not be faithful when
acting on other morphisms. In other words, every object and
morphism in R can be viewed as (i.e., can be mapped into)
objects and morphisms in nVec, but the map may not be
injective.

When we are interested in fermion systems, we need to re-
place nVec for nsVec. More generally, the building blocks of
our physical system may have even larger intrinsic symmetry
(which is unbreakable or we are not willing to break) besides
the fermion number parity. Let } denote the fusion n-category
formed by the building blocks (V = n)Vec for bosons, V =
ns)Vec for fermions, and possibly any other V for more exotic
cases such as an effective theory built upon anyons). We define
the notion of V-local fusion n-categories.

Definition 28. A V-local fusion n-category is a fusion n-
category R equipped with a top-faithful surjective monoidal
functor B : R — V.

C. Local fusion 1-category RepG and Vecg

As an example, let us consider a 1d system with degrees of
freedom labeled by g; € G on site i, where G is a group. The
Hamiltonian of the system is given by

H==JYY"Tm-V> 5 s). (132)
i heG i
where T;(h) is an operator
(W) .... 81,8 8it1s--+)
=|...,g,‘,1,hgi,gi+1,...>, heG. (133)

The system has a symmetry G

)= ..., 88i-1, 88i 88ix1s - - )-

(134)

[ ..., 8i—1,8i> 8it1s---

When J > |V|, the ground state is a product state |Wgmg) =
®;|0);, where |0); = |G|~1/? Zg |g)i» that does not sponta-
neously break the symmetry.

Note that {|g);, g € G} spans the regular representation
of G. It can be further decomposed into irreducible rep-
resentations. Let |a);, |b);, ... be a basis in an irreducible
representation. Under the symmetry transformation 4 € G,
|a); transforms to T;(h)|a); = D", Rap(h)|b);, where Ry(h) is
the matrix representing /. A pointlike excitation at site i is cre-
ated by changing the state |0); on site i to |a); = Zg(gla) lg)i.
Since

Tih)la); = Y (gla)lhg)i = Y _(h~"gla)lg);

4

8
= Ra(WIb);, (135)
b

we see (h~'gla) = Y, Rap(h)(glb).

Such a ground state plus its excitations are described by
a fusion 1-category RepG whose objects correspond to the
point-like excitations (i.e., the representations R of G). The
I-morphisms of RepG correspond to the symmetric local
operators that act on each site. We see that the 1-morphisms
directly act on the point-like excitations (the objects). If we
view an excitation (an object) as a world line in spacetime,
an l-morphism that changes the excitation can be viewed
as a “domain wall” on the world line. For a symmetric sys-
tem, all those 1-morphisms should be symmetric operators.
Respecting to those symmetric 1-morphisms, the excitations
corresponding to the irreducible representations are simple
objects. Different irreducible representations cannot be con-
nected by symmetric operators, i.e., different simple objects
cannot be connected by 1-morphisms.

If we add the additional 1-morphisms that correspond to
local operators that break all the symmetry, then the excita-
tions corresponding to the irreducible representations R are
still allowed, but they are no longer simple objects, and split
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into direct sum of trivial excitations:

R—>Co®---0C. (136)
————

dimR copies

As a result, the fusion 1-category is reduced to the trivial 1-
category—the category of vector spaces Vec. Thus, the fusion
1-category RepG is a local fusion 1-category. Indeed, all the
point-like excitations can be annihilated by local operators
that may break the symmetry.

Now consider a 1d system with symmetry G, whose ground
state spontaneously breaks all the symmetry. In this case, the
ground states are |G|-fold degenerate and are labeled by the
group elements: |V,), g € G. The point-like excitations are
domain walls, which live on the links and are labeled by the
elements 4 of the group: |h);y i+1 = W i<i, Whe,izig+1)- Such
symmetry-breaking state plus its excitations are described by
a fusion 1-category Vecg, whose objects correspond to the
point-like excitations (the domain walls) discussed above.
We may still choose the 1-morphisms of Vecs to be the
symmetric local operators acting on the sites. However, such
a choice is not proper, since such 1-morphisms cannot be
viewed as the “domain walls” on the world-lines of the point-
like excitations (the domain walls on the links). In any case,
let us proceed. If we add the 1-morphisms that correspond
to local operators that break all the symmetry, then objects
(the point-like domain-wall excitations) are confined (i.e., no
longer allowed), since the ground-state degeneracy is lifted.
This appears to suggest that the fusion 1-category Vecg is not
a local fusion 1-category, if we view it as describing domain
walls in a spontaneous symmetry-breaking state that breaks a
0-symmetry of group G. Since our choices of the 1-morphisms
is not proper, the above conclusion is incorrect.

In fact, Vecg can also be viewed as a fusion 1-category
that describes excitations on top of a product state with an
algebraic 0-symmetry. The degrees of freedom on each site
i of our 1d model are labeled by group elements of a finite
group G. A basis of the many-body Hilbert space is given by
l{gi}), & € G. The Hamiltonian is given by

H=-VY 8)~t) Ty (137
i i,heG
where T;_; ;(h) is an operator
T (M- 8im1, &is Git1s - - )
=1|...,81h"' hgi, git1,...), heG. (138)
The model has an algebraic 0-symmetry generated by
B, = Tr|:l_[ Rq(g,-):|, (139)

where ¢ labels the representations of G. In the ¢t — 0 limit, the
ground state is a symmetric product state |{g; = id}).

Above such a ground state, a point-like excitation is gen-
erated by changing g; =id to g; = h on site i. Thus, the
excitations are labeled by group elements & € G, with & = id
corresponding to the ground state. They fuse as h @ b’ = hh'.
When the algebraic 0-symmetry operators act on the excita-
tions h, we get B,(h) = X,(h), where X, is the character for

the representation g. Those point-like excitations form a local
1-fusion category Vecg.

The operators that break the algebraic 0-symmetry are
given by

SH =T;(h)|..., 81,8 &i+1>---)

=|...,gi,1,hg,’,gi+1,...), heG. (140)
Those operators reduce the local 1-fusion category Vecg to
the trivial 1-fusion category Vec, since those operators corre-
spond to new morphisms 2 — /' for any h, i’ € G. Therefore,
the 1-fusion category Vecg is local.

We would like to mention that the 3d generalization of
the 1d model (137) was discussed in Sec. V. Using a similar

reason, we show that the 3-fusion category 3Vecg is local.

D. Representation category of algebraic higher symmetry

Let us summarize the relation between the charge objects
of an algebraic higher symmetry and a local fusion higher
category.

Proposition 24. Consider an nd trivial ground state which
is a product state with an algebraic higher symmetry. The
different types of the excitations above the ground state and
within the symmetric sub-Hilbert space form a local fusion
n-category R (i.e., with a fiber functor 8 : R — nVec), which
is called the representation category of the algebraic higher
symmetry in n-dimensional space.

We would like to conjecture that the Tannaka duality can
be generalized to algebraic higher symmetries:

Proposition 25. There is an one-to-one correspondence
between local fusion n-categories R and algebraic higher
symmetries for bosonic systems in n-dimensional space.

In other words, the algebraic higher symmetries in nd
bosonic systems are fully characterized and classified by local
fusion n-categories. Since a local fusion n-category R fully
characterizes an anomaly-free algebraic higher symmetry, in
this paper, an algebraic higher symmetry is denoted by k.

We would like to remark that there are anomalous algebraic
higher symmetries. For those symmetries, we cannot have
trivial symmetric ground state, and it is difficult to define
its representation category, since representation category, by
definition, is formed by the charged excitations above the
symmetric product state.

E. Categorical symmetry—a holographic view of symmetry

To gain an even deeper understanding of algebraic higher
symmetry, following Ref. [19], we would like to introduce the
notion of a categorical symmetry, which is a holographic point
of view of a symmetry. We know that a symmetry is simply
a restriction on the local operators whose sum gives rise to
the Hamiltonian. Usually, the restriction is imposed by sym-
metry transformations, but in the holographic point of view,
we do not impose restrictions via symmetric transformations.
Instead, we use a topological order without any symmetry in
one higher dimension to encode a symmetry. In other words,
we use long-range entanglement [32] to encode a symmetry.
Then the restrictions to local operators are realized via the
boundary of the topological order.
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Let us consider an nd system with an algebraic higher
symmetry R. When we restrict the system to the symmetric
sub-Hilbert space Viymm of the algebraic higher symme-
try, the system has a potentially noninvertible gravitational
anomaly [24], since Viymm does not have a tensor product
decomposition Viymm # ®;V;. This relates the symmetry to
entanglement. Thus, the system (when restricted to the sym-
metric sub-Hilbert space Vyymm) can be viewed as a boundary
of an anomaly-free topological order M in one higher dimen-
sion. The topological order M is described by an object in
T®n+2.

af

Which topological order M in one higher dimension gives
rise to the desired algebraic higher symmetry R? We note that
‘R is a fusion n-category. We believe that for every fusion n-
category R, there is exist a unique anomaly-free topological
order M in one higher dimension such that M has a boundary
whose excitations realize the fusion n-category R [see (43)].
Therefore, we can find M from R via

M = bulk(R). (141)

As we have discussed in Sec. II D, an nd algebraic higher
symmetry R selects a set of local operators {Or}. {Or} can
be viewed as a set of lattice local operators that commute with
the symmetry generators, or as a set of local operators that de-
scribe all possible short-range interaction between excitations,
as well as local operators that create particle-antiparticle,
small loop excitations, etc., described by R. In Sec. IIF, we
mentioned that an nd categorical symmetry M also selects a
local operators {Oy}, on the boundary of (n + 1)d topological
order M. If M = bulk(R), the two sets {Ox } and {Oy} have an
one-to-one correspondence and the corresponding operators
has identical properties (such as identical algebraic relations
for the corresponding operators). In other words, the algebraic
higher symmetry R and the categorical symmetry M are holo-
equivalent (see Proposition 1).

Let us examine the algebraic higher symmetry R and the
categorical symmetry M in terms of their excitations. Roughly
speaking, the conservation law from the symmetry is encoded
in the fusion rule for the excitations. Thus, the fusion rule of
the excitations with codimension-2 and higher in M encode
the categorical symmetry M. (A codimension-1 excitation in
M has codimension-0 on the boundary and cannot be viewed
as an excitation there.) Those excitations are described by the
braided fusion n-category (see Sec. III H)

M= QM = Q°M, (142)
where M = QM is the fusion n-category describing the bulk
excitations in M. As we move a bulk excitation in M to the
boundary, it may become some boundary excitations in R,
or it may condense (i.e., becomes the trivial excitation in R).
So there is a monoidal functor F; : M — R. The fusion rule
in M induces a fusion rule in R. Thus, the bulk symmetry
encoded in M becomes an algebraic symmetry in R. However,
the bulk excitations of M = Z;(R) are more than that of R.
In this sense, the fusion rule of excitations in M gives rise to a
bigger symmetry than that from the fusion rule of excitations
in R. This bigger symmetry corresponds to the categorical
symmetry [19].

We know that M can have many boundaries (denoted by
Ce ’JF(D;\’,'Jrl ; see Definition 20). The excitations on the bound-
ary are described by a fusion n-category C = Hom(C, C) =
QC, which satisfies (see Proposition 19)

M= Z(C). (143)

As we move a bulk excitation in M to the boundary, it may
become some boundary excitations in C, or it may condense
(i.e., become the trivial excitation in C). So there is a for-
getful functor F¢ : M — C. Because some excitations in M
are condensed on the boundary, we say the boundary sponta-
neously breaks part of the categorical symmetry M. Different
boundaries C’s may spontaneously break different parts of the
categorical symmetry M, since the forgetful functor Fe may
map different excitations in M into the trivial excitations in C
(i.e., condense different excitations of M on the boundary).

We see that all the boundaries have the same categorical
symmetry M, if we view the boundary as a lattice boundary
Hamiltonian. If we view the boundary as a state, then the
categorical symmetry M is spontaneously broken down to a
smaller symmetry. The part of the categorical symmetry M,
described by the excitations that condense on the boundary, is
spontaneously broken. The smaller surviving symmetry is an
algebraic higher symmetry. We know that the bulk fusion rule
only induces the fusion rule for some boundary excitations
(i.e., those in the image of the forgetful functor F¢). Thus, the
image of F¢ is related to this algebraic higher symmetry—the
unbroken part of the categorical symmetry.

One might expect the image of F¢ to be the local fusion
n-category that characterizes the algebraic higher symmetry
in C, but this impression is incorrect. The image of Fz may
not even be a fusion n-category; i.e., there may not be an
anomaly-free bulk topological order M whose boundary ex-
citations realize the image of F¢.

What is the algebraic higher symmetry in C (the unbroken
part of the categorical symmetry M)? First, such an alge-
braic higher symmetry must be described by a local fusion
n-category R. Since R is the unbroken part of the categorical
symmetry M, the corresponding categorical symmetry for R
should be given by the same M. Mathematically, this means
that bulk(R) = M. Since R is the algebraic higher symmetry
in C, C must contain all the charge objects of R as part of
excitations in it. In other words, R can be embedded into C;
i.e., there exists an top-fully faithful functor ¢ : R <% C. Here

Definition 29. Top-fully faithful means the functor is bi-
jective when acting on top morphisms and is injective when
acting on lower morphisms and on objects.

We know that the R-symmetry can be explicitly broken,
via the functors 8, B¢, which changes R to n)ec (see Defini-
tion 27) and changes C to C. C describes the excitations in the
anomaly-free topological order Cy € TO” =@+ 1)Vec
that are induced from C after we explicitly break the R-
symmetry in C. We note that the excitations described by C
contain both the topological excitations and the symmetry-
charge excitations described by R (the charge objects of the
algebraic higher symmetry). One may roughly understand C
as “C/R;” i.e., “C mod R”. More precisely, C is the pushout
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defined in the following diagram:

Lo

nVecC

!

| (144)
R C = Hom(C, C)

—& I

Moreover, the bulk of R — nVec and C — C should co-
incide, which requires that y : Z;(R) >~ Z;(C) satisfies the
condition as later illustrated in (155).

To summarize, the different boundaries of M all have the
same categorical symmetry as a system, but the boundary may
spontaneously break part of the categorical symmetry when
viewed as a state. Because the charge objects of a categorical
symmetry have nontrivial mutual statistics, the boundary that
does not break the categorical symmetry M must be gapless
[19,60]. For a gapped boundary, the categorical symmetry
must be partially (and only partially) broken spontaneously.
For the boundary C discussed above, the categorical sym-
metry is spontaneously broken down to the algebraic higher
symmetry R. We see the following:

Proposition 26. Categorical symmetries in n-dimensional
space are fully characterized and classified by an (n+ 1)d
anomaly-free topological orders M.

A categorical symmetry M may include several different
anomaly-free algebraic higher symmetries %, where R satis-
fies M = bulk(R) (see Proposition 19).

A boundary of M is described by a boundary Hamiltonian.
Such a Hamiltonian always has the full categorical symmetry
M. The ground state of the boundary Hamiltonian, if gapped,
is described by a boundary topological order C that satisfies
Bulk(C) = M. For such a boundary ground state (i.e., the
boundary topological order C), the categorical symmetry is
partially spontaneous broken, down to an algebraic higher
symmetry R that satisfies (144). We say the categorical sym-
metry M contains the algebraic higher symmetry R.

We would like to remark that for an nd categorical sym-
metry, its corresponding topological order M in one higher
dimension may have several different gapped boundaries with
different unbroken algebraic higher symmetries. Thus, an
categorical symmetry can contain several different algebraic
higher symmetries. The gapped ground state of the boundary
Hamiltonian must spontaneously break part of the categorical
symmetry and can only spontaneously break part of the cate-
gorical symmetry. For example, as pointed out in Ref. [19], an
nd system with a O-symmetry described by a finite group G (or
a fusion n-category nRepG) actually has a larger categorical
symmetry. The categorical symmetry is characterized by a
G-gauge theory GT%' = bulk(nRepG) in one higher dimen-
sion. The categorical symmetry include both the 0-symmetry
G (with R = nRepG) and an algebraic (n — 1)-symmetry
GV (with R = nVecg).

VII. GAPPED LIQUID PHASES WITH ALGEBRAIC
HIGHER SYMMETRY

In Sec. VI, we discussed gapped liquid state with algebraic
higher symmetry, which is a trivial symmetric product state. In
this section, we are going to discuss gapped liquid phases with
unbroken algebraic higher symmetry, which may have non-

trivial topological orders. Those states are called SET states
if the topological order is nontrivial (i.e., with long-range
entanglement), or SPT states if the topological order is trivial
(i.e., with short-range entanglement).

Let us first summarize some previous results in literature,
which represent some systematic understanding of gapped
liquid phases [39,40] for boson and fermion systems with and
without symmetry (but only for O-symmetry). In 1 + 1D, all
gapped phases are classified by (Gy, Gy, @) [88,89], where
Gy is the on-site symmetry group of the Hamiltonian, Gy
is the symmetry group of the ground state Gy C Gy, and
wy € H(Gy,R/Z) is a group 2-cocycle for the unbroken
symmetry group Gy.

In 24 1D, all gapped phases are classified (up to Eg
invertible topological orders and for a finite unitary on-
site symmetry Gg) by (Gy, Rep(Gy) C € C M) for bosonic
systems and by (Gy, sRep(G{;) C € ¢ M) for fermionic sys-
tems [45,46,90]. Here Rep(Gy) is the symmetric fusion
category formed by representations of Gy, and sRep(G(;) is
the symmetric fusion category formed by Zg -graded repre-

sentations of G{;, where Zg is a center of G{;. Also C is the
braided fusion category of point-like excitations and M is a
minimal modular extension [45,46].

In 3 + 1D, some gapped phases are liquid phases while
others are nonliquid phases. The 3 + 1D gapped liquid phases
without symmetry for bosonic systems (i.e., 3 4+ 1D bosonic
topological orders) are classified by Dijkgraak-Witten theo-
ries if the point-like excitations are all bosons, by twisted
2-gauge theory with gauge 2-group B(G, Z;) if some point-
like excitations are fermions and there are no Majorana zero
modes, and by a special class of fusion 2-categories if some
point-like excitations are fermions and there are Majorana
zero modes at some triple-string intersections [28,67,91].
Compared with the classification of 3 + 1D SPT orders for
bosonic [2,42] and fermioinc systems [50,51,53-56], this re-
sult suggests that all 3 + 1D gapped liquid phases (such as
SET and SPT phases) for bosonic and fermionic systems with
a finite unitary symmetry (including trivial symmetry, i.e., no
symmetry) are classified by partially gauging the symmetry of
the bosonic/fermionic SPT orders [28].

We see that the previous approaches are quite different
for different dimensions and are only for O-symmetries. In
this section, we describe a classification that works for all
dimensions. We also generalize the O-symmetry in the above
results to algebraic higher symmetry.

A. Partially characterize a symmetric gapped liquid phase
using a pair of fusion higher categories

The classification of gapped liquid phases with algebraic
higher symmetry is quite complicated. In this section, we state
a simple partial result to identify the difficulties and the issues
in the classification.

For a gapped liquid state with unbroken algebraic higher
symmetry R, there are point-like, string-like, etc. excitations
that correspond to the charge objects of the symmetry. Those
charge objects are described by the representation category K.
In general, the gapped liquid state also has extra point-like,
string-like, etc. excitations that are beyond those described by
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the local fusion higher category R, so the total excitations are
described by a bigger fusion higher category C that includes
R. This leads to the following result:

Proposition 27. An nd anomaly-free gapped liquid phase
with an unbroken algebraic higher symmetry described by a
fusion n-category R is fully described by a potentially anoma-
lous topological order C (see Sec. III F). The excitations of C
are described by a fusion n-category C = QC which admits

a top-fully faithful functor R <> C. Thus, we can use the

data R <> C to partially classify the gapped liquid phase with
algebraic higher symmetry k.

One way to see the above result is to note that stacking
a trivial symmetric state R and the symmetric topological
order C together give rise to a fusion n-category R ® C, if
there is no coupling between the trivial symmetric state R
and the symmetric topological order C. The R ® C state has
a larger algebraic higher symmetry R @ R, one from the
trivial symmetric state R and the other from the symmetric
topological order C. However, we can add the so-called “sym-
metric interactions” between R and C to reduce the R ® R
symmetry to the original symmetry R. The stacking with
such symmetric interactions, which preserves the diagonal R
symmetry but break the other symmetries, is denoted by ®z
and R @z R = R. Including the “symmetric interactions”
is similar to adding the symmetry-breaking morphisms in
our definition of local fusion higher category (see Definition
27). Such a process can also be realized by a condensation
of excitations. Since R is local, the condensation does not
confine any excitations in R, and all the excitations in R
become excitations in R ®x C. Physically, we require that
R ®% C = C. Therefore, all the excitations in R become exci-
tations in C. Thus, there is a functor R <4e , which is faithful
(i.e., injective) at each level of morphisms and objects. Since
both R and C have the same algebraic higher symmetry R,
the allowed local symmetric operators are the same. Thus,

the faithful functor R <> C is fully faithful (i.e., bijective) at
the top morphisms (which correspond to the local symmetric
operators).

Does every pair of fusion n-categories (R, C) satisfying

R <> C describe an anomaly-free topological order with an
algebraic higher symmetry? The answer is no, as implied
by some counterexamples when R describes a 0-symmetry
[45,46]. If the pair (R, C) does describe a symmetric topolog-
ical order, does it uniquely describe the symmetric topological
order? The answer is also no. For example, a pair of fusion
n-categories (R, R) can describe a symmetric trivial product
state. The same pair (R, R) can also describe a SPT state of
the same symmetry. This is because, as we mentioned before,
the fusion n-category only describes the excitations which
do not contain all the information of a topological order and
cannot distinguish different invertible topological orders. In
our case here, the pair (R, R) cannot distinguish symmetric
trivial product state from nontrivial SPT state with the same
anomaly-free algebraic higher symmetry.

L . . .
However, the R < C description does not miss much. In

the following, we try to understand which pairs R < C can
describe anomaly-free topological orders with an algebraic
higher symmetry. We also try to seek additional information

beyond R < Cto fully characterize a symmetric topological
order. One way to achieve both goals is to use the notion of
categorical symmetries described in Ref. [19] and Sec. VIE,
which is a holographical way to view a symmetry. This way
to view a symmetry is most suitable for algebraic higher
symmetries. It gives an even more general perspective about
algebraic higher symmetries. So in the next section, we first
study gapped liquid phases in a bosonic system with a cate-
gorical symmetry.

B. Classification of gapped liquid phases in bosonic systems
with a categorical symmetry

Here, we will address the difficulties and the issues identi-
fied in the last section via a holographic approach. We will first
consider a modified problem: classification of gapped liquid
phases in bosonic systems with a categorical symmetry. Note
that the gapped liquid phases do not have the full categorical
symmetry, since gapped phases always partially break the
categorical symmetry spontaneously. After this discussion, we
identify a key difficulty in the classification.

Let us consider an nd bosonic lattice Hamiltonian with an
algebraic higher symmetry R. Such a lattice Hamiltonian can
also be regarded as having a categorical symmetry charac-
terized by an anomaly-free topological order M = bulk(R)
in one higher dimension, since algebraic higher symmetry R
and categorical symmetry M = bulk(R) are holo-equivalent.
What are the gapped liquid phases that have this categor-
ical symmetry M? The answer is that there are no such
phases, since gapped phases in nd lattice Hamiltonians with
a nontrivial categorical symmetry M must partially break and
only partially break the categorical symmetry spontaneously
[19,60]. This is because a gapped phase in an nd bosonic lat-
tice Hamiltonian with a categorical symmetry M corresponds
to a gapped boundary of a (n 4+ 1)d anomaly-free topological
order M. The gapped boundary comes from the condensa-
tion of some of the excitations in M, and thus part of the
categorical symmetry is spontaneously broken. In fact, the
condensing excitations form a Lagrangian condensable alge-
bra, which corresponds to spontaneously breaking part of the
categorical symmetry. Also, the excitations that can condense
(i.e., those in the Lagrangian condensable algebra) must have
trivial mutual statistics between them. Therefore, we cannot
condense all the excitations in M simultaneously. This is why
we cannot completely break a categorical symmetry spon-
taneously. (Certainly, we can always partially or completely
break a categorical symmetry explicitly.) This picture leads to
the following result [see Fig. 8(a)]:

Proposition 28. For nd bosonic lattice Hamiltonians with
a categorical symmetry M, their gapped liquid phases are
classified by the gapped boundaries of (n 4+ 1)d anomaly-free
topological orders M. In other words, the gapped liquid phases
are classified by (potentially anomalous) topological orders
C’s (objects in T(DR’A“’S; see Sec. I F) satisfying the condi-
tion

M = Bulk(C). (145)

In light of Propositions 15 and 16, the above result implies
the following [see Fig. 8(a)]:
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Proposition 29. For nd bosonic lattice Hamiltonians with a
categorical symmetry M, the excitations in their gapped liquid
phases are described by fusion n-categories C such that

bulk(C) = M.

For every fusion n-category C satisfying bulk(C) = M, there
are one or more gapped liquid phases, C’s, to realize it: C =
QC.

Let us remark on the second part of the above result. Given
a fusion n-category C describing the excitations in a gapped
phase of nd bosonic lattice Hamiltonian with categorical sym-
metry M, do we have another gapped phase of another nd
bosonic lattice Hamiltonian with categorical symmetry M that
also has excitations described by C? In general, the answer
is yes. This is because two gapped phases, differing in the
stacking of invertible topological orders or SPT orders, have
the same set of excitations.

Proposition 30. The gapped liquid phases in nd bosonic
lattice Hamiltonians with a categorical symmetry M are par-
tially classified by the fusion n-categories C that satisfy
bulk(C) = M.

Here partially means that the classification is one-to-many:
The same fusion n-category C may correspond to several
different gapped liquid phases, C’s, of systems with the cat-
egorical symmetry M. As we have mentioned before, the
gapped liquid phases must break only part of the categorical
symmetry M spontaneously.

To get a full one-to-one classification, we need to find extra
information beyond the excitations, i.e., the fusion n-category
C, to characterize the gapped liquid states. One way to get
extra information is to study the boundaries of the gapped
liquid states. This will be done later.

Here, we consider another type of extra information. As we
have mentioned above, stacking invertible topological orders
or SPT orders to a gapped phase does not change the exci-
tations. Let us consider a boundary of M with excitations C
(see Fig. 8). We can use the trivial excitations in M to form
an nd invertible topological order, which is a domain wall
in M. We can also use the topological excitations in M to
form an nd SPT order, which is also a domain wall in M. The
protecting symmetry of the SPT order comes from the fusion
rule (the conservation law) of the topological excitations that
form the SPT order. Both kinds of domain walls are invertible
domain walls. There are also invertible domain walls that
correspond to braided automorphisms of the braided fusion
n-category M = Q>M describing the excitations in M. In fact,
each invertible domain wall { corresponds to a braided auto-
morphism y of M (see Fig. 17). Thus, stacking an invertible
domain wall 7 to the boundary C give us a boundary (C, 7)
that is related to the boundary C via an automorphism y, so
the two boundaries are described by fusion n-categories that
are equivalent to C. However, the boundaries (C, y), with dif-
ferent invertible domain walls {, may correspond to different
boundary phases, i.e., inequivalent C’s. We conjecture that all
different boundary phases, C’s, with sets of boundary excita-
tions equivalent to C can be obtained this way: C = (C, ).
This leads to the following result [see Fig. 8(b)]:

Proposition 31. For nd bosonic lattice Hamiltonians with
a categorical symmetry M, their gapped liquid phases are
classified by a pair (C, ), where C is a fusion n-category C

(146)

M X N

,,,,*,,,H ,,,,,,, ,::, .

FIG. 17. Consider a topological order M separated by a invertible
domain wall . Moving an excitation (with codimension-2 or higher)
across the invertible domain wall $ (with codimension-1) induces
an braided automorphism y of the braided fusion higher category
M = Q°M: M = M.

that satisfies bulk(C) ~ M, and 7 is an invertible domain wall
between bulk(C) and M.

The possible invertible domain wall § is, of course, not
unique. However, when we are considering gapped liquid
phases with an algebraic higher symmetry R [instead of
gapped liquid phases that may spontaneously break the cat-
egorical symmetry M = bulk(R)], the different invertible
domain walls may have different physical meanings with re-
spect to R. An invertible domain wall may either preserve
the algebraic higher symmetry R, or (partially or completely)
break R. To classify gapped liquid phases with an algebraic
higher symmetry R, we need to select ’s that preserve the
algebraic symmetry R.

How to select 7’s is a key difficulty in the classification. In
the next section, we give several (hopefully equivalent) crite-
ria when an invertible domain wall § preserves an algebraic
symmetry R.

C. Classification of SET orders and SPT orders
with an algebraic higher symmetry

1. A simple result

Let us first give a simple partial result by ignoring the
invertible domain wall $ (i.e., by overlooking the key diffi-
culty). Given an algebraic higher symmetry R, there is an
(n + 1)d anomaly-free topological order M = bulk(R) (i.e.,
the holo-equivalent categorical symmetry) that has one bound-
ary with excitations described by R = QR. The boundary
topological order R corresponds to a trivial product state with
the algebraic higher symmetry R. (More precisely, the trivial
product state with the algebraic higher symmetry R, plus
its excitations, when restricted to the symmetric sub-Hilbert
space Vsymm, correspond to the boundary topological order R.)

Now consider another boundary C of M, with the excita-
tions described by a fusion n-category C = QC). However,
the boundary C may spontaneously break the algebraic higher
symmetry R. Here we would like to classify gapped liquid
phases, C’s, that do not spontaneously break the algebraic
higher symmetry R. To do so, we just need to select C’s
such that the excitations C contain R. We believe that all
the anomaly-free topological orders with the algebraic higher
symmetry R can be viewed in this way. If we replace C by
C to get a partial classification, we obtain (see Fig. 18) the
following:

Proposition 32. Anomaly-free gapped liquid phases with
an algebraic higher symmetry R in n-dimensional space
are partially classified by fusion n-categories C that satisfy
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bulk(c)
C

Le )
R B > nVec

FIG. 18. A gapped liquid phase with an algebraic higher sym-
metry R can be characterized by a pair (C, $), or more precisely,

byC ® $ ® ,wherey is an invertible domain wall between
bulk(c) bulk(Rr)

bulk(R) and bulk(C): bulk(R) = bulk(C). The fusion n-category C
on the boundary describes the excitations on top of the gapped liquid
state, which include R;i.e., R <5 C. Since R is local, we also has a
fiber functor 8 : R — n)ec. Not every invertible domain wall can be
included. Finding the condition to select the proper invertible domain
walls 7 is the key to classify gapped liquid phases with symmetry R.
The cross is a generic excitation in C. The white circles are R-charge
objects in C.

bulk(C) >~ bulk(R) and admit a top-fully faithful functor
R <> C.

Here bulk(C) >~ bulk(R) means that the two bulk topo-
logical orders, bulk(C) and bulk(R), are connected by an
invertible domain wall (see Fig. 17). We used a more relaxed
condition, just requiring bulk(C) and bulk(R) to be equivalent
rather than equal. This is because we are not considering
different boundaries of a fixed bulk. Here we are considering
different boundaries and their bulks, and hoping the bulks are
the same, but when we compare two bulks to see if they are
the “same,” the best we can do is to see whether they are
equivalent, i.e., whether they are connected by an invertible
domain wall.

We would like to point out that the above C classifies the
excitations in the anomaly-free topological order C with an
algebraic higher symmetry R (i.e., C can be realized by a
bosonic lattice model in the same dimensions with the sym-
metry R). We know that topological orders differ by invertible
gapped liquids have the same excitations. Thus, the above
C’s cannot distinguish different invertible gapped liquids, i.e.,
different invertible topological orders and SPT orders. The
above C’s only classify anomaly-free topological orders with
the algebraic higher symmetry R, up to invertible topological
orders and SPT orders for symmetry k.

To obtain a more complete classification, i.e., to include
the SPT orders with symmetry R, we should include the
invertible domain walls  : bulk(R) >~ bulk(C) as our data as
we discussed in Sec. VII B (see Fig. 18):

Proposal 1. Bosonic anomaly-free gapped liquid phases in
n-dimensional space with an anomaly-free algebraic higher
symmetry R are classified by data (C, t: R—C, ¥ :
bulk(R) >~ bulk(C)), where C is a fusion n-category that in-
cludes R (i.e., t : R — C is a top-fully faithful functor; see
Proposition 27), and  : bulk(R) ~ bulk(C) is a invertible
domain wall between bulk(R) and bulk(C).

However, the above proposal is incorrect. We cannot use
an arbitrary invertible domain wall $ : bulk(R) ~ bulk(C).
The reason is that C contains the symmetry R via the embed-

[ R )

FIG. 19. Similar to Fig. 18, with C = R. An SPT state is char-
acterized by a pair (R, o), or more precisely, by the stacking of R

and o through the bulk Z;(R): R ® o ® . Here « is a braided
ZI(R) Zi(R)

automorphism of Z; (R). Not every automorphism can be included.
Finding the condition to select the proper automorphisms « is the key
to classify R-SPT orders.

ding ¢ : R — C. bulk(C) also contains the symmetry R via
the forgetful functor F¢ : Qbulk(C) = Z,(C) — C. bulk(R)
also contains the symmetry R via the forgetful functor Fr :
Q2bulk(R) = Z,(R) — R.If we allow an arbitrary invertible
domain wall  which induces an arbitrary braided equivalence
y 1 Z1(R) >~ Z;(C), then the R symmetry contained in Z;(C)
and Z,(C) may not be compatible (i.e., may not be matched
by y). Thus, the key is to find proper conditions to select
proper p’s. In the following, we describe several, hopefully
equivalent, ways to do so.

When C = R, the above reduces to a classification of SPT
phases with algebraic higher symmetry R via a pair (R, «),
where « is an automorphism of Z;(R) (see Fig. 19). To de-
scribe this classification of SPT phases in more detail, we like
to remark that the map from the invertible domain walls &
in bulk(R) to the braided automorphisms « of Q?bulk(R) =
Z1(R) may not be one to one. We conjecture the following:

Conjecture 1. The kernel of the map & — « is the set
of invertible domain walls in bulk(R) that correspond to
invertible topological orders formed by trivial excitations in
Q*bulk(R) = Zi(R).

This conjecture is based on the belief that any properties of
excitations Z; (R) cannot see invertible topological orders.

Because the classification of SPT phases does not include
invertible topological orders, we can replace the invertible
domain walls & by the braided automorphisms «. This allows
us to obtain the following proposal (see Fig. 19):

Proposal 2. Bosonic SPT phases in n-dimensional space
with an anomaly-free algebraic higher symmetry R are clas-
sified by the braided automorphisms « of Z;(R).

Again, the above proposal is not correct since some braided
automorphisms « may break the symmetry R [i.e., change
the symmetry R contained in Z;(R)]. To make it correct,
we need to find proper conditions to select proper braided
automorphisms « that do not break the symmetry R.

The above discussions reveal the key difficulty in classify-
ing gapped liquid phases with an algebraic higher symmetry.
In the next few subsections, we propose several approaches to
address this issue, which leads to several, hopefully equiva-
lent, classification results.

2. A classification assuming R to be symmetric

When R is symmetric, it can be lifted to the bulk Z;(R)
via a canonical braided embedding (g : R < Z;(R). In this

043086-39



KONG, LAN, WEN, ZHANG, AND ZHENG

PHYSICAL REVIEW RESEARCH 2, 043086 (2020)

/Y\

bulk( )

O

bulk(

O

R C

|
|
|
|
|
|
|
1
|
|

FIG. 20. Similar to Fig. 18, but now we assume R to be symmet-
ric. In this case, the R-charges in R can be lifted into the bulk via
the embedding (. The equivalence y should be compatible with the
lifting 1z of R, the embedding ¢ : R < C, and the bulk-to-boundary
functor Fr.

case, we have a simple criteria for y to make the two R
symmetries in C and Z;(R) compatible (i.e., to preserve the
R symmetry; see Fig. 20):

Proposition 33. Anomaly-free gapped liquid phases in n-
dimensional space with an anomaly-free algebraic higher
symmetry R (which is assumed to be symmetric) are classi-
fied by data (C, ¢ : R — C, 7 : bulk(R) =~ bulk(C)), where
C is a fusion n-category that includes R (i.e.,t: R — Cisa
top-fully faithful functor), and { is an invertible domain wall
rendering the following diagram commutative (up to a natural
isomorphism),

‘T ch , (147)
Z\(R) ¢——— Z1(C)

~ 7,(C) in-
bulk(C)

where y is the braided equivalence y : Z;(R)
duced by the invertible domain wall § : bulk(R) ~
and F¢ : Z;(C) — C is the forgetful functor.
Reference [68] proposed this result in a slightly different
manner. An embedding (¢ : R < Z;(C) is considered as the
data for gapped liquid phases instead of ¢ : R < C, and it is
required that Fz ot¢ : R — C is an embedding, thus repro-
ducing the data ¢. Then, (147) is replaced by (see Fig. 21)

Ve \
v

Z1(R) <—> Zl(C)

(148)

When C = R, the above result reduces to a classification of
SPT orders with symmetry R (see Fig. 22):

/Y\

bulk(

O
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O
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|
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|
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FIG. 21. The graphic representation of (148) which is equivalent
to Fig. 20. We assume R to be symmetric. In this case, the 7R-charges
in R and in C can be lifted into the bulk via the embedding (x
and (c.

Z (R Z,(RIZ (R

O O O

FIG. 22. Three SPT phases A, B, C with symmetry R. A and B
differ by an invertible domain wall characterized by the equivalence
o) [satistying (149)]. B and C differ by an invertible domain wall
o. Then A and C differ by an invertible domain wall characterized
by the composite equivalences «; o ;. We see that the SPT phases
are classiﬁed by the invertible domain walls, i.e., by the equivalences

oa:Zi(R)~ Zl(”R) satistying (149).

Proposition 34. SPT phases in n-dimensional space with
an anomaly-free algebraic higher symmetry R (which is as-
sumed to be symmetric) are classified by data (R, «), where

a :Z1(R) ~ Z;(R) is a braided equivalence rendering the fol-
lowing diagram commutative (up to a natural isomorphism):
]]3 idg
Lf F/IL . (149)

Remark 6. Note that Froa ot =idgr =Fr ot is a
central functor, where the central structure comes from the
symmetric structure of R. By the universal property of center
[27], (149) is equivalent to

/‘/ \R\

Z1(R) = (R)

~

(150)

3. First version of general classification

Now we discuss a classification for more general algebraic
higher symmetry where R may not be symmetric. To do so,
we need a very different approach. Let us first consider the
classification of bosonic SPT orders with an algebraic higher
symmetry R in n-dimensional space. Those SPT orders all
have excitations described by the same local fusion n-category
R. To distinguish different SPT orders, we need to include
extra information beyond R, and to use pairs (R, @) to de-
scribe the SPT orders, where « is an automorphism of Z; (R).
To identify the proper «’s, we notice that the physical way
to distinguish different SPT orders is to include the boundary
of a SPT state. Here we consider the canonical boundary that
spontaneously breaks all the symmetry R.

In the following, we develop a theory for the canonical
boundary that breaks all the symmetry R, using a holographic
point of view of the symmetry R, i.e., using a topological
order with excitations Z;(R) in one higher dimension to de-
scribe the symmetry R. In other words, we need to use the
holographic point of view to describe the boundary that breaks
all the symmetry R. Such a symmetry-breaking boundary also
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Z,(R) Z(REC
e
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J{(a)ﬁnecﬁ J{(b)ﬁnecﬁ

FIG. 23. (a) A SPT state with symmetry R (the red line) can be
viewed as a gapped boundary of a topological order in one higher
dimension with excitations Z;(R). The boundary nVecg of SPT
state R that breaks all the R-symmetry also has a bulk, which can
be viewed as a gapped boundary of Z;(R) for the dual symmetry
R. (b) The automorphism « of Z;(R) corresponds to an invertible
domain wall in the bulk (the dashed line), which also has an invertible
boundary (the white square). The boundary-bulk relation between
Z1(R) and R is described by the bulk-to-boundary functor Fj. Such
a boundary-bulk relation is preserved by the automorphisms «, @,
which classify the R-SPT orders.

has a bulk in one higher dimension. Such a bulk has a different
set of excitations described by another local fusion n-category,
denoted as R. In fact, R can be viewed as another gapped
boundary of the bulk Z;(R) [see Fig. 23(a)], and therefore
Z1(R) = Zi1(R). R is nothing but the local fusion n-category
that describes the dual symmetry of R (see Sec. IIE). For
example, when R = nRepG, the symmetry is the O-symmetry
described by the group G. The dual symmetry is an algebraic
higher symmetry described by R = nVecg.

We know that the bulk Z;(R) and the boundaries, when
viewed as systems, have a categorical symmetry Z;(R) that
includes both the symmetry R and the dual symmetry R. The
boundary R in Fig. 23 has the symmetry R but spontaneously
breaks the dual symmetry R, while the boundary R has the
dual symmetry R but spontaneously breaks the symmetry R.
The intersection nVecg of the two boundaries breaks both the
symmetry R and the dual symmetry R [see Fig. 23(a)].

The “bulk” of the canonical boundary nVecg of R (nVecg
is the same n-category as nVec with R-module structure
induced by B : R — nVec), which is also a “boundary” of
the bulk of R, gives us the criteria when the automorphism
o Z1(R) = Zi(R) preserves the symmetry R and thus rep-
resents an R SPT order [see Fig. 23(a)]. To identify the proper
automorphisms, we note that o can be viewed as an invertible
domain wall in the bulk Z;(R) [see Fig. 23(b)]. Such an
invertible domain wall has a boundary on the boundary R [the
white square in Fig. 23(b)]. Since the difference between SPT
orders are invertible, the boundary of the invertible domain
wall should also be invertible. This motivates us to conjecture
that the boundary of the invertible domain wall o corresponds
to an automorphism & of R. The automorphisms « for the
bulk Z;(R) and @ for the boundary R should preserve the
whole structure of R and its boundary nVecg [the red line and
the black box in Fig. 23(b)]. This can be achieved by requiring
o, o to preserve the bulk-boundary relation described by the
bulk to boundary functor Fiz : Z;(R) — R. This leads to the
following result:

Proposition 35. Bosonic SPT orders with an anomaly-
free algebraic higher symmetry R in n-dimensional space
are classified by braided equivalence o : Z;(R) ~ Z;(R) and
monoidal equivalence @ : R >~ R, such that the following

diagram is commutative (up to a natural isomorphism):

e i

e ~ e
Rée—2 2R

(151)

Remark 7. Note that @ in the above contains some redun-
dant information. This can be seen from the fact that even
when o = idz (r), there can still be nontrivial &. We believe
that such extra @’s are higher structures (such as lower di-
mensional SPT or invertible phases) and should be regarded
as equivalent when considering the classification of SPT/SET
orders. See also Remark 10.

The above is just for SPT orders. In the following, we
use a similar approach to develop a more general categorical
theory to classify both SPT and SET orders. We also allow
more general algebraic higher symmetry, by allowing R to be
V-local (recall Definition 28), to include at least both boson
and fermion systems. When V = n)Vec, R describes the alge-
braic higher symmetry in bosonic systems. When V = nsVec,
the fusion n-category of super vector spaces, R describes the
algebraic higher symmetry in fermionic systems.

Remark 8. Physically, we think V as the building blocks of
our system. R is built upon V with some additional symmetry
that can be totally broken. 8 : R — V exactly describes the
symmetry breaking that leaves only the intrinsic symmetry V
of the building blocks which is not physically breakable (for
example, fermion parity).

A gapped liquid state with symmetry R has excitations
C that is equipped with a top-fully faithful monoidal func-
tor ¢ : R — C. There is an anomaly-free topological order C
underlying C by breaking all the R symmetry. Mathemati-
cally, we may define C to be the pushout (i.e., the colimit)

of V Z R = C in the category of fusion n-categories,

lﬁ Jﬁc. (152)

As a colimit, C, B¢, and ¢ are uniquely determined by V ﬁ

RS>C up to isomorphisms. In particular, for SPT orders, we
take C =R, =1idg,and thenC =V, B¢ = B, 1o = idy:

R idgr R
JB Jﬁ- (153)
v idy Y

Alternatively, B can be consider as condensing some exci-
tations (which form an algebra Ag, and condensing means
taking the modules over this algebra) in R. Condensing the
same excitations in C (identified via ¢), gives C.

C constitutes a symmetry-breaking domain wall between C
and C. Mathematically, C is C-C-bimodule; the left action is
by fusion in C and right action is by first mapping C into C
via f¢ and then fusion in C. To emphasize this, we denote the
bimodule by C fe- The bulk of C, C, as well as the domain wall
C s> can be defined via bimodule functors (see Sec. III1):
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FIG.24. R, V, and their domain wall Vg describe a trivial
product state with symmetry R (as well as the symmetry-breaking

R L V). C, C, and their domain wall C,, describe a gapped liquid
state with symmetry R. The bulk of two structures (the categorical
symmetry and its breaking) must coincide. This is just the anomaly
matching condition, since the categorical symmetry can be viewed as
anomaly. As a result, the R-symmetric gapped liquid phase and the
R-symmetric trivial phase can be two phases of the same system.
The data (R —ﬁ> V., R < C, 7,7, po) classify the bosonic gapped
liquid phases with R-symmetry when V = nVec. They classify the
fermionic gapped liquid phases with R-symmetry when V = nsVec.

(1) The bulk of C is Z;(C) := Fungc(C, C).
(2) The bulk of C is Z;(C) := Fungc(C, C).
(3) The bulk of the domain wall Cg_, is

Re := Funcic(Ce Cp,)- (154)

ﬁc is also a symmetry-breaking domain wall in the bulk,
between Z;(C) and Z;(C).
(4) There are also bulk to wall functors

Ff_: Z1(C) = Funge(C, €) — Fungie(Cy, . Cp.) = Re
[ fde)®—,
Fi, : Z1(C) = Funce(C, C) — Fungie(Cy,. Cy,) = Re

f=—=®Bc(fe)).

In conclusion, if we view C,C with a domain wall Cg,
between them as a whole, the bulk of this structure is given

FL _
by Z1(C) —% Re e Z1(C) (see Fig. 24), i.e., two non-
degenerate braided fusion n-categories Z;(C) and Z(C), a
fusion n-category R¢, and two bulk to wall functors Fs ’~
Fx

and Fz, . Physically, Z;(C) e, Rc <— Z1(C) is the cate-
gorical symmetry and how it breaks down corresponding to
B:R— V.

Clearly, the bulk of the product state with the R- symmetry

(and its breaking R —> V) is given by Z;(V) —> ﬁ &
Zi(R). As before, we require that the bulk of C coin-
cide with the R-symmetric product state, which amounts
to say that there should be three equivalences y : Z;(R) =~
Z1(C),Y : R~ TRe¢, and yp : Z1(V) >~ Z;(C). The criteria for
these equivalences to preserve R are given below:
Proposition 36. An anomaly-free gapped liquid phase in
n-dimensional space with a generalized anomaly-free al-
gebraic higher symmetry described by a V-local R is

characterized by the data ¢ : R < C, and 9, ¥, $, where C is
a fusion n-category, y is an invertible domain wall between
bulk(R) and bulk(C), 7 is an invertible domain wall be-
tween bulk()) and bulk(C), and ¥ : R >~ R¢ is a monoidal
equivalence. The two invertible domain walls induce braided
equivalences y : Z; (R) Zi(C)and yy : Z(V) >~ Z;(C). The
three equivalences y, ¥, o must render the following diagram
commutative:

Z1(R) ———— Z1(C)
el
R————Re . (155)
[ [
Zl(V)—>Zl(

In the above, we have used the invertible domain walls
and 7 to capture invertible topological orders. We use the
equivalences y and y; of braided fusion higher categories,
induced by the invertible domain walls, to formulate the con-
dition to select the proper domain walls.

In particular, taking C = R and then C =V, Re =R, we
obtain a classification of R-SPT orders:

Proposition 37. An SPT phase in n-dimensional space
with a generalized anomaly-free algebraic higher symmetry
described by a V-local R is characterized by the three au-
tomorphisms & : Z;(R) >~ Z|(R), d : R>R, ag: Z;(V)
Z,(V), rendering the following diagram commutative:

Z1(R) ——=— Z1(R)
R J{F"

(156)

S
I

\
=R

Z,(V) —=— Z1(V)

The above triples of automorphisms («, @, o) that label dif-
ferent R-SPT orders can be composed, which correspond to
the stacking of the SPT orders.

If we choose V = n)Vec, the above classifies SET/SPT
orders for bosonic systems with an algebraic higher symmetry.
If we choose V = nsVec, the above classifies SET/SPT orders
for fermionic systems with a generalized algebraic higher
symmetry. Again, as pointed out in Remarks 7 and 10, it is
very likely that different choices ¥, yy or @, o correspond to
the same SET/SPT order, and thus only y or @ needs to be
kept.

In this formulation, there is no need to assume that R is
symmetric or even braided. But assuming R, Vand §: R —
V are braided, we want to show that the Proposition 36 and
Proposition 33 are equivalent. We sketch a tentative proof
here. There is a canonical braided embedding (g : R —

Z(R). Then consider the pushout of VV <E R & Zi(R). In
the category of fusion n-categories, the pushout is just R:

R Z1(R)

l/ﬂ JFR (157)

Ve — SR
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Indeed, B can be considered as condensing some excitations
Ag in R. Condensing the same excitations in Z; (R) (identified
via LR ) gives R. Moreover, Z; (V) should be a full subcategory
of R corresponding to the deconfined excitations and F% is the
embedding. Therefore, the embedding (z determines all the
other structures Z;()), R FR,F’ Also y : Z1(R) ~ Z,(C)
with such embedding (g determlnes y and yp. Then it should
be straightforward to verify that (155) is equivalent to (147).

Example 3. For R = C = RepG, V = Vec, B : RepG —
Vec, the forgetful functor, we have R = Vecg. Since Fj
corresponds to condensing the algebra Fun(G) € RepG, pre-
serving the embedding RepG < Z;(RepG) is the same as
preserving Fun(G) and thus Fx. The G = Z, x Z, case is
explicitly calculated in Sec. VIIC 7.

4. Second version of classification based on condensable algebra

In this section, we are going to describe another version of
classification. Let us first consider an R-SPT state character-
ized by a pair (R, o), where « is a braided automorphism of
Z1(R) (see Fig. 19). We would like to explore other equivalent
ways to select proper «’s. We first restrict to bosonic systems
for simplicity, assuming that R is a local fusion n-category.
A key feature of SPT order is that a SPT state has no topo-
logical order; i.e., it becomes a product state if we break the
symmetry. How to impose such a condition, when we use the
holographic point view of the symmetry R?

Here we would like to point out that if we stack R and its
dual R through their common bulk M = Z;(R), denoted as
R % R, we get a trivial product state n)ec (see Fig. 6). We

may use this property to define a more general notion of dual
symmetry.

Definition 30. Let M be the braided fusion n-category
describing excitations in a (n 4+ 1)d anomaly-free bulk topo-
logical order, and R and B (together with bulk to boundary
functors M — R, M — B) be two nd boundaries of M. R
and B are said to be dual to each other if

R ® B = nVec. (158)
M

In fact, there is an one-to-one correspondence between dual
symmetries of R and the monoidal functors R — nVec. If a
boundary B of Z;(R) satisfies R ® B™' = n)lec, we may

Z1(R)
define

Bg: R —>nVec=R ® B,
Z1(R)

x—>x ® 1g.
ZiI(R)

(159)

Recall that for the given 8 : R — nVec, the dual symmetry
is defined by R = Fung,pec(nVecg, nVecy) [see Fig. 23(a)].
We have the following correspondence:

Proposition 38. The maps B+ g and
Fung,vec(nVecg, nVecg) are inverse to each other.

In particular, R also defines a monoidal functor B —
n)ec.

Proposition 39. it Z(R)

B —

=Z(B) and R ® B* =
Zi(R)
nVec, then both R and B are local fusion n-categories.
Physically, when R and R are dual to each other, every

excitation in M = Z;(R), either condenses to R-boundary or

Z
nVec 1R
Z,@® R
R
FIG.25. (R,a) =R ® o ® describes an SPT state only if
ZI(R) Zi(R)

it can be canceled by R (i.e., producing a product state n)ec).

condenses to 7~Q-b0undary, or both. In this case, every excita-
tion in M is condensed and the resulting state is trivial. We
know that R can be obtained from M via a Lagrangian con-
densable algebra Az in M. Similarly, R can be obtained from
M via another Lagrangian condensable algebra A . Roughly,
a condensable algebra is formed by excitations with trivial
mutual statistics with each other, and those excitations can
all condense simultaneously to form a gapped boundary (see
Fig. 6). Thus, in the R boundary, the excitations in Ag con-
dense. The noncondensing excitations become the boundary
excitations that is described by R. So, roughly, R = M/Ax.
(In precise mathematical language, R identifies with the cat-
egory of modules over Az in M.) Similarly, R = M/A3.
When R and R are dual to each other, the overlap of Ax and
Az is minimal and is given by the trivial excitations. Also
A and Ay together generate the whole M. (More precisely,
any excitation in M is contained in Agx ® Aj.) Thus, roughly,
Ar @ Az ~ M. We see that A is formed by excitations in
R and A is formed by excitations in R.

Proposition 38 tells us that dual symmetry is an equivalent
way to describe symmetry breaking. If R can be canceled by
its dual R ® R = nVec, then R (as well as R) is a local

fusion n- category, i.e., R can be reduced to the trivial product

state if we break the symmetry: R LA nVec. Since R can be
viewed as (R, @ =id) in Fig. 19, we see that (R, id) can be
canceled by R, which implies that (R, id) is a product state if
we break the symmetry. This implies that if we do not break
the symmetry, then (R, id) is a SPT state. Therefore, to see
if (R, @) is a SPT state or not, we can just check if it can be
canceled by R or not. This allows us to obtain (see Fig. 25)
the following:

Proposition40. (R,a) =R ® a & describes a
Zi(R) Zi(R)
bosonic R-SPT state if the automorphism « of Z; (R ) satisfies
R ® a ® R™ ~nVec. (160)
Z(R) Zi(R)

Using the condensable algebra, we find that one class of the
solutions of (160) is given by «’s that keep the Ax unchanged
(see Fig. 26),

a(AR) ~ Ax, (161)

where (o is an algebra isomorphism. In this case, Fig. 26(a)
can be deformed into Fig. 26(b). By comparing Fig. 26(b)

with Fig. 25, we see thatboth R ® o ® and R ® are
Zi(R) Zi(R) Z1(R)

determined by the same condensable algebra Ak, and hence

are equivalent: R ® o ® ~R ® . This allows us to
Z(R) Zi(R) Z(R)
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Z,(® Z,(R)

,,,,,,, A’R%”d ‘:> 7”;/{4};;@

Z(R) ZI(R): }(% o
@ X (b) R

FIG. 26. If o keeps the Az unchanged, then (R,0) =R ®
Z1(R)

a @ is also determined by the condensable algebra Ax and is
Z1(R)

equivalentto R ® .

Z1(R)

show that

R ® a ® RY~R ® R ~nVec.  (162)
Zi(R)  Zi(R) Z1(R)
R ® o ® @R ® also tell us that the SPT state de-
Z(R) Zi(R) Z1(R)

scribed by R ® « ® is equivalent to the SPT state
Z(R) Zi(R)

described by R ® , which is the trivial SPT state. In fact, «
Zi(R)

that keeps Ag ~ R unchanged may change R. Thus, we be-

lievethat R ® o ® and R ® only differ by a relabeling
Zi(R) Zi(R) Z (R

of the symmetry (i.e., differ by an automorphlsm of R), and
thus correspond to the same SPT state.

Equation (160) has another class of solutions, given by a’s
that keep A unchanged:

a(Az) = Az. (163)
By comparing Fig. 27(b) with Fig. 25, we see that ® o ®
~ ~ Zi(R) Zi(R)
R ~ ® R™. This allows us to show that, indeed,
Zi(R)
R ®a @ RY>R ® R ~nVec.  (164)
Zi(R)  Zi(R) Z(R)

As we have mentioned, the condensable algebra A5 is formed
by excitations in R. So, keeping A part of M unchanged
corresponds to keeping R part of M unchanged. Therefore,
the automorphisms e, that satisfy (163), do not change the R
symmetry, but «’s generate nontrivial automorphisms of R,
a: R >R (see Fig. 28).

Figure 28 also describes the canonical symmetry-breaking

boundary, nVecg ® a® of the SPT state R ® o ® . We
ZiI(R) Zi(R)

see that different palrs of automorphisms (a, &) give rise to
different boundaries (due to different &’s). This leads to the
following result:

Z,(R) Z,(R) [ R o)
e | Az o a
”””” Ao a ™ Ao
Z,(R) Z,(R)
@@ % (b) X
FIG.27. If « keeps the Ap unchanged, then (ﬁ,a)z

®a ® Rrev,\, ® Rrev
ZI(R) Zi(R) Zi1(R)

FIG. 28. The R-SPT orders are classified by the automorphisms
a of Z,(R) that keep A5 unchanged. « corresponds to an invertible
domain wall in the bulk (the dash-line), which also has an invertible
boundary (the white square). The boundary-bulk relation between
Zi(R) and R is described by the bulk-to-boundary functor Fj,
which maps the condensable algebra A% to the trivial excitons on
the R boundary.

Proposition 41. Bosonic SPT phases in n-dimensional
space with an anomaly-free algebraic higher symmetry R
are classified (up to invertible topological orders) by braided
equivalences « : Z;(R) =~ Z;(R) together with algebra iso-
morphisms i : ¢(Ag) = Aj.

We would like to remark that, for a given «, different
choices of p differ by automorphisms of the condensable
algebra A5. Those different u’s may lead to the same SPT
order. This is because if we gauge the R-symmetry in a SPT
state, the resulting topological order does not depend on u
(see Remark 10). Thus, the bosonic SPT phases with a R-
symmetry may actually be classified by «’s rather than the
pairs (o, i)’s.

We can generalize the above result to include SET orders
with R-symmetry for bosonic or fermionic systems, as well as
invertible topological orders by using invertible domain walls
(see Fig. 29):

Proposition 42. Anomaly-free gapped liquid phases in
n-dimensional space with a generalized anomaly-free alge-
braic higher symmetry R are classified by the data (R <
C, P, u), where R is a V-local fusion n-category, C is a
fusion n-category that includes R, 7 is a invertible domain
wall between bulk(R) and bulk(C), and . : y(A) >~ Ag, is
an algebra isomorphism. Here y : Z;(R) >~ Z;(C) is a braided
equivalence, R is defined in Proposition 36, and A, Aﬁc are
the condensable algebras in Z;(R), Z;(C) that produces the

R c
B DBC
v, Cp,

7| bulk(®) | bulk(C) |C

bulk(®) ¥ bulk(C)
0 0
.

FIG. 29. Similar to Fig. 24, but here the invertible domain wall
7 induces an automorphism y, which is required to map the two
condensable algebras, Az and Aﬁc, into each other: u : y(Ap) =~

Az, The data (R 5> V, R <> €, 9, ) classify the bosonic gapped
liquid phases with R-symmetry when V = n)Vec. They classify the
fermionic gapped liquid phases with R-symmetry when V = nsVec.
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ﬁ, 75(; domain walls between Z;(R), Z;(C) and Z;(V), Z,(C),
respectively.

Although we have included u in the above, it is possible
that different choices of w correspond to the same gapped
liquid phases, as we discussed later in Remark 10. Thus, the
different gapped liquid phases may actually be classified by

the data (R < C, 7)suchthat y(A) ~ Az,

When V = nVec, the above classifies SET/SPT orders
in bosonic systems. When V = nsVec, the above classifies
SET/SPT orders in fermionic systems.

Remark 9. Here we would like to sketch the reasoning that
Proposition 36 and Proposition 42 are equivalent. From the
condensation point of view, condensing the algebra Ag in R
induces the symmetry breaking 8 : R — V. Similarly, the
symmetry breaking Fiz : Z;(R) — R in the bulk is induced
by condensing the algebra Az in Z;(R). Ay is the lift of Ag
inthebulk,i.e.,Ag = Fr(Aj), where Fr : Z;(R) — Ris the
forgetful functor. Intuitively, we can think that A 5 replaces the
role of embedding R < Z;(R); instead of embedding R into
the bulk which is only possible when R is braided, we lift the
algebra Ag in R to the algebra A in Z;(R). Ag consists of all
objects in R when V = nVec. Mathematically, R should be
the category of modules over A in Z; (R) while Z;()) should
be the full subcategory of local modules, with F% being the
embedding (see Fig. 24). (Physically, Z;())) corresponds the
deconfined excitations after condensation while R includes
both confined and deconfined excitations.) Therefore, y to-
getherwith @ y(Ap) =~ AR, determines ¥ as an equivalence
functor between the categories of modules over Az and Az ;
yo 18 the restriction of ¥ to Z; (V). Equation (155) is equivalent

to saying that y preserves the lifted algebra y (A) ~ AR,

5. R-gauge theory obtained by “gauging” the algebraic
higher symmetry R

Using the data (C, t: R < C, § : bulk(R) >~ bulk(C)),
we can explicitly construct the corresponding gapped liquid
state with anomaly-free symmetry R that the data describe.
This is done in Fig. 18. Since the gapped liquid state has
the symmetry R, we can gauge the symmetry R to obtain
a new topologically ordered stated with no symmetry. This
is achieved in Fig. 30(a), by stacking R and C through

bulk(R) L bulk(C), with an invertible domain wall $ in the

middle. We denote such a stackingby R ® 7 ® C™.
bulk(R) ~ bulk(C)

The resulting topologically ordered state is anomaly-free
since it is surrounded by the trivial product state (with its
codimension-2 excitations described by n'Vec). As a bonus,
such a gauging picture leads to third version of classification,
which will be described in the next subsection.

Both 0-symmetries and higher symmetries have an holon-
omy interpretation, which allows us to gauge them via
a geometric approach. In contrast, the above proposal to
“gauge” algebraic higher symmetries (which include O-
symmetries and higher symmetries) is a purely algebraic
approach. No geometric interpretation is used.

To understand such a proposal, let us consider a very
simple case, by assuming y = trivial, n =2, and C =R =
2RepG. So the boundary R is in 2d while the bulk bulk(R) is

¥ a
vgnzyg“ | A v € ol
< X < X 32
R|8i1B|C R|Bi3|R R R
" ; L
OO | nlec | Q0 | nVec |g 0
n‘Vec.ﬁODOTgBC BOOOMN [ | |
(a) B (b) ()

FIG. 30. (a) Same as Fig. 24, assuming V = nVec. The stacking

of the two boundaries R and C through the bulk bulk(R) < bulk(C)
with an invertible domain wall § (denotedby R ® 7 & C(C™)
bulk(rR) bulkC)
gives rise to an anomaly-free topological order with no symmetry,
which is obtained by gauging the algebraic higher symmetry R in
the gapped liquid state (SET or SPT state) characterized by the
data (C, t: R C, 7 :bulk(R)=>bulk(C)). (b) When C =R

and P =& R ®@ & @ R* describes the twisted R-gauge
bulk(R) bulk(R)

theory GT'}{L obtained by gauging the symmetry R in the SPT
state stacked with tirivial or nontrivial invertible topological orders.

(c) When C =R and y = trivia, R ® R™ describes the R-
bulk(R)
n+1

gauge theory GT7% obtained from a symmetric product state by
gauging its symmetry R.

in 3d. The resulting state R &
bulk(R)

is actually a 2d gauge theory with group G (i.e., the 2d
topological order GT{,). To see this, we note that the bulk
bulk(R) is the 3d gauge theory with group G (i.e., the 3d
topological order GT‘é7 = bulk(2RepG)]. The 2d boundary
R = 2RepG is obtained from the 3d G-gauge theory GT‘& by
condensing the G-flux loops. Thus, a G-flux loop in the bulk
corresponds to a trivial excitation in the 2d G-gauge theory
order GT3G. A G-flux string connecting two boundaries cor-
responds to a point-like G-flux excitation in the 2d G-gauge
theory GT3G. The point-like G-charges in the 3d G-gauge the-
ory GT‘&7 becomes the point-like G-charges in the 2d G-gauge

theory GT%. This suggests that, in general, R ® R™ in
bulk(R)
Fig. 30(c) is a R-gauge theory in n-dimensional space. When

R =nRepG, R @ R"isannd G-gauge theory. When R
bulk(R)

describes a higher symmetry, R &
bulk(R)

theory, but when R describes an algebraic higher symmetry,

R ® R™ is something new, which is called a gauge the-
bulk(R)

ory from “gauging” the algebraic higher symmetry R in a
product state.
When C =R and p = & # trivial, the resulting state
R ® 7 & R*inFig.30(b)is atwisted R-gauge the-
bulk(R) ~ bulk(R)
ory, obtained from “gauging” the algebraic higher symmetry
R in a SPT state stacked with trivial or nontrivial invertible
topological order, so gauged SPT states stacked with triv-
ial or nontrivial invertible topological order are classified by
(R, &).If we just consider gauged SPT states, by ignoring the
stacked with trivial or nontrivial invertible topological order,
we can replace the invertible domain wall & by its induced

R™ given by Fig. 30(c)

R™ is a higher gauge
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FIG. 31. The data R 5 V, R <> C, and bulk(R) £ bulk(C)
classify gapped liquid phases (SET or SPT phases) with generalized
algebraic higher symmetry R, provided that invertible domain wall

7 is chosen (see Proposition 43) to make the stacking R ®
bulk(Rr)

7 ® C™ to describe the gauging of the R-symmetry. The con-

bulk(C)

densations of the excitations in bulk(R) and bulk(C) form the R and

C boundaries, which leave parts of the two categorical symmetries,

bulk(R) and bulk(C), unbroken.  is chosen so that the two unbro-

ken parts of the two categorical symmetries match with the same R,

giving rise to an unbroken R symmetry.

automorphism « of Z; (R ). We see that gauged SPT states are
described by (R, « : Z1(R) ~ Z(R)) (see Fig. 7, where R
is replaced by ZR).

When C # R, the resulting state R ® § ® Cin
bulk(R) ~ bulk(C)

Fig. 30(a) is a topological order obtained from “gauging”
the algebraic higher symmetry R in the gapped liquid state
(SET or SPT state) characterized by data (C, t : R — C, § :
bulk(R) >~ bulk(C)).

Remark 10. We note that the algebra isomorphism u :
y(Ag) ~ Aﬁc and the equivalence functor ¥ : R >~ R are
similar data that are additional to y : Z;(R) =~ Z;(C). The fact
that these additional data are not manifestly visible in the
gauged theory may suggest that they are fixed by y up to
certain natural higher structures (such as lower dimensional
SPT or invertible phases). As an analogy, 1 or y are similar to
the n-coboundaries generated by (n — 1)-cochains that should
be mod out when considering the nth cohomology., but the
exact physical meaning of u and ¥ is unclear to us for now.
Moreover, i and ¥ may need to satisfy some additional condi-
tions that involve even higher structures, and so forth until the
top morphisms. The study of these higher structures is beyond
our current scope and will be left for future work.

6. Third version of classification based on gauging
the R-symmetry

We can also use the gauging of the R-symmetry, and the

resulting topological order R ® ® C*inFig.31to
bulk(R) ~ bulk(C)

obtain  that keeps the R part in bulk(R) unchanged, which
leads to another version of classification. We note that the

excitations in the topological order R ® P & C™ is
bulk(R) = bulk(C)

described a fusion n-category R ® y ® C™,wherey isa
Zi(R)  Zi(©O)

braided equivalence Z;(R) =~ Lz 1(C) induced by the invertible
domain wall . To make sense of the above statement, let us

consider the natural functors fromRtoR ® y ® C*,
ZI(R)  Zi(©C)

VRSR ® 9 ® C,
Zi(R)  Zi(©)
(165)
X x & 1)7 ® 1c,
Zi(R) Z,(C)

and fromCtoR ® § ® C,
Zi(R)  Zi(C)

p:C>R ® P ® C*,
Zi(R)  Zi(C)

x=1lg @ 1, ® x.
ZiI(R) Z,(C)

(166)
Here X means mapping from the “left” boundary and p means
mapping from the “right” boundary (p may not be monoidal
here, but it is monoidal when restricted to a subcategory, as
we will show later). The above gives two ways to map R

moR ® ® C™', namely A and p o ¢. They correspond
Z(R)  Zi(C)

to observing the R symmetry from the left R boundary and
from the right C boundary as in Fig. 31. Thus, we expect that
A and p o coincide. However, recall that in (155) 7 is only
required to preserve the “breakable” symmetry with respect to
B : R — V. Similarly, we only require the breakable symme-
try to agree on left and right boundaries of the gauged theory.
Let ker B be the preimage of the trivial excitation in ). More
precisely, if condensing Ag gives B : R — V (Ag consists
of all the excitations that becomes trivial in V), ker 8 is the
smallest fusion subcategory of R containing Ag. ker 8 is then
the breakable symmetry. The restriction Alyer g and (o o t)lker g
should agree.

Besides, there is a natural half-braiding between the ex-
citations from the left boundary and those from the right
boundary. After mapping into the gauged theory,

Ax) ® p(y) = p(y) ® Ax). (167)
On the image A(ker 8) = p o t(ker B), the above further de-
fines a braiding:

A(x) @ A(y) = A(x) ® p(t(y))

~ p(U(y) @ A(x) = Ay) ® Alx). (168)
Such braiding makes o a monoidal functor when restricted to
t(ker B). We require the above braiding to be trivial, in the
sense that there exists a braided monoidal functor A(ker 8) —
n'Vec.

These considerations lead to another version of classifica-
tion (see Fig. 31):

Proposition 43. Let R with :R — )V be a V-local
fusion n-category. Anomaly-free gapped liquid phases in n-
dimensional space with an anomaly-free algebraic higher

symmetry R are classified by data (R <, 7), where C

is a fusion n-category that includes R (ie., t : R < Cis
a top-fully faithful functor), and § : bulk(R) >~ bulk(C) is
an invertible domain wall between bulk(R) and bulk(C).
7 induces a braided equivalence y : Z;(R) =~ Zl(C) such
that the following diagram is commutative (up to a natural
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isomorphism),
ker 3¢ ‘ C
\ /
R ® v ® Crev
Z1(R)  Z1(C)

(169)

and the braiding in the image A(ker 8) defined above is trivial.
When C =R, the above gives a classification of SPT
phases with symmetry R.

7. A simple example for 7, x 7, symmetry in 1-dimensional space

We would like to apply the above results to compute the
Zy x Z, SPT phases in 1-dimensional space. This leads to
deeper understanding of SPT order.

Let R = Rep(Z> X Z3), B: R — Vec be the forgetful
functor, R = Vecz,xz,, and M = Z;(R). We would like to
compute the automorphisms of M that preserves the em-
bedding 1z : R < M or the bulk-to-boundary functor Fj :

M is pointed. It is most efficiently represented by a metric
group (Z‘z‘, 0), where 6 is a nondegenerate quadratic form
which is physically the topological spin. We denote elements
in Z3 by four-component mod 2 integer vectors (a, b, ¢, d).
We pick 6 to be

O(a, b, c,d) = (—1)%+hd, (170)
In other words, (1,0,1,0) and (0,1,0,1) are fermions. If one

views M as a double-layer toric code, the generators are
identified as the following:

(1,0,0,0) ~ el,
(0,0,1,0) ~ ml,

(0,1,0,0) ~ 1e,
(0,0,0,1) ~ 1m. 171)
R = Rep(Z, x Z,) is generated by four simple objects
11, el, 1e, ee. Thus, the embedding is

tr(a,b) = (a,b,0,0). (172)

R = Vecz,xz, 1s generated by four simple objects
11, m1, 1m, mm. Thus, the bulk-to-boundary functor is
Fz(a, b, c,d) = (c,d). (173)

An automorphism of M is the same as a group automor-
phism « of Z3 that preserves 6, i.e.,

0(a(a, b,c,d)) = (1) (174)
Case 1. a preserves embedding as in (150):
We require that
a(a,b,0,0) = (a,b,0,0). (175)
Thus,
ala,b,c,d)=(a,b,0,0)+ a(0,0,c,0)+«(0,0,0,d).
(176)

Let «(0,0,c¢,0) =c(x1,x2,x3,x4) and «(0,0,0,d) =
d(y1,¥2,¥3,y4). Since « should preserve spin (174), we
have

ac + bd = (a + cx; + dy1)(cx3 + dy3)

+ (b + cxp +dyr)(cxs +dys) mod 2. (177)

Rearrange the terms to obtain
ac(1 + x3) + adys + bd(1 + y4) + bexy
+ A (xxs + x0x4) + d>(1ys + y2ya)

+ cd(x1y3 + x3y1 + X2y4 + x4y2) =0 mod 2. (178)
One must have x3 = y4 = 1, y3 = x4 = 0. Then
c2x1 +d*y, + cd(yy + x2) =0 mod 2. (179)
Thus, x; =y, = 0, y; = x,. We got two solutions:
aola, b,c,d) = (a,b,c,d), (180)
ay(a,b,c,d)=(a+d,b+c,c,d). (181)

Case 2. a preserves bulk-to-boundary functor as in (155):
Now we require that

Fpa(a, b, c,d) = (c,d). (182)

In other words,
a(a,b,c,d) = (%, *,¢,d). (183)

Leta(a,0,0,0)=a(p1, p2,0,0), «(0,5,0,0)=>b(q1,9>,0,0),
2(0,0,c,0) =c(r;,m,1,0), «(0,0,0,d)=d(s,s,0,1).
a preserves spin (174) and gives

ac + bd = (apy + bgy + cry +dsi)c

+ (ap> +bgy + cr, +dsy)d mod 2. (184)

One must have p, =¢q;=r =5=0, py=¢g»=1, and
s1 = rp. We also have two solutions:

aola, b, c,d) = (a, b, c,d), (185)

ai(a,b,c,d)y=(a+d,b+c,c,d). (186)

We see that the two approaches indeed give rise to the same
solutions.

Although for pointed modular tensor categories (metric
groups), the automorphism is fully determined by the map
on objects, it is not the case for the automorphisms on fusion
categories. Below, we briefly explain the nontrivial structures
of @: R — R. By Lemma 2.1.5 in Ref. [92], we know
that Fz and Fj o« differ by a nontrivial automorphism
a@ of R =Vecz,xz, = {11, m1, Im, mm}, corresponding to
the nontrivial cohomology class in H*(Z, x Z,,U(1)) =

Z5. Such automorphism is identity on objects &(g) = g but

.. ~ ~ h
has nontrivial tensor structures, namely a(g) ® a(h) M

&(gh), where w(g, h) € H*(Z» x Z,, U(1)) is nontrivial.

The nontrivial cohomology class in H*(Z, x Z,,U(1))
can be represented by w((cy, dy), (¢2, d>)) = (— 1)21% . We can
also see the nontrivial tensor structure of «;. Denote the ten-
sor structure of oy by u(x,y) 1 o;(x) @ @1 (y) = a1 (x ® y). It
needs to preserve braiding, namely,

Cay(@),aq(y)

a(y) ® ax(x)
lu(y,:x:) . (187)
oy © )

a1 (r) ® a1(y)

lu(m,y)

ar(z @y)

a1 (ce,y)
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Letx=(0,0,1,0) ~mlandy = (0,0,0,1) ~1m.c,, =1
since it braids m in different layers. o; (x) = (0, 1, 1, 0) ~ me
and a;(y) =(1,0,0,1) ~ em. Therefore, cy ) () = —1
since it means braiding m with e in the first layer and
braiding e with m in the second layer, and thus in total a
full braiding between e and m. Clearly the values of these
two special braidings are independent of gauge. We conclude
that, independent of gauge, u((0,0,1,0),(0,0,0,1)) =
—u((0,0,0,1),(0,0,1,0)), which means u cannot be
cohomologically trivial. It is not hard to check that
u((0, 0, 1, 0), (0, 0, 0, 1)) = —u((0, 0, 0, 1), (0,0, 1,0))
agrees with w((c1, d)), (c2,dp)) = (—1)“'2. This way, we
show that

, (188)

which is an example of Proposition 36.

Next, we examine the condensable algebras Az and Aj.
By definition, A is the direct sum of anyons that maps to
trivial under F3. It is easy to see that

Aﬁ =11 D el D le D ee = @ab(ay b’ 07 O)v

AR =11®ml & Im & mm = .,4(0,0,¢,d).  (189)

One can check that the overlap of Az and A is (0,0,0,0),
which implies that R ® R™ = Vec. This result can be veri-

M
fied explicitly using the techniques developed in Refs. [93,94].
Also, Az ® AR = @upea(a, b, c,d).
It is obvious that an automorphism preserving Az is

the same as preserving the embedding R M, and
also the same as preserving the bulk-to-boundary functor
Fp :M— R.

VIII. EMERGENT LOW-ENERGY EFFECTIVE
ALGEBRAIC HIGHER SYMMETRY AND
CATEGORICAL SYMMETRY

A. Emergent of categorical symmetry from energy
scale separation

In real nd condensed matter systems, we usually have
0-symmetry described by a group G and the associated cat-
egorical symmetry M = bulk(nRepG) (which is also denoted
as G Vv G"™V), but it is hard to have higher symmetry and
algebraic higher symmetries, unless we fine-tune the lattice
model (if we do not include dynamical electromagnetic field
[16]). However, emergent algebraic higher symmetries and
associated categorical symmetries can appear at low energies,
if our models have an energy scale separation [16]. This is
a practical way to realize algebraic higher symmetries and
associated categorical symmetries, which makes the results of
this paper useful.

In this subsection, we will discuss how to compute the
emergent algebraic higher symmetries and the categorical
symmetries. It turns out we just need to compute the emer-
gence of categorical symmetries M. The emergent algebraic
higher symmetries R can be determined from the emergent

categorical symmetries directly, by solving two equations

bulk(R) ~M and R A nVec. The solutions are usually not
unique, but the different solutions are holo-equivalent.

Let us consider a gapped liquid state in n-dimensional
lattice. We assume the excitations in the gapped state has a
large separation of energy scale. The low-energy excitations
(point-like, string-like, etc.) are closed under fusion and form
a fusion n-category C'°. All other topological excitations
have very high energies, which are assumed to be infinite.
Now we add interactions among those low-energy excitations
to drive phase transitions by condensing the low-energy ex-
citations to form gapless states, etc. We assume that, in such
a process, the high-energy excitations still have high energies
(i.e., infinite energy). What are the possible phases and gapless
states?

Some constraints to the low-energy physics come from
the underlying symmetry, while other constraints come from
the fusion and statistics of those low-energy topological ex-
citations. It looks hard to understand the effects of all those
different constraints, but it turns out that the holographic point
of view and the associated categorical symmetry can help us
to solve this problem.

We know that some excitations in C'°% are topological
excitations, while others are charge objects of the underlying
symmetry. To use the holographic point of view and to use
categorical symmetry, we restrict discussion to the symmetric
sub-Hilbert space of the underlying symmetry. In this case,
every excitations in C'°" can be viewed as topological exci-
tations in a hypothetical system without symmetry. However,
the fusion n-category C'° that describes those excitations is
in general anomalous; i.e., it cannot be realized by a lattice
system in the same dimension without symmetry, but it can
be realized as a boundary of a topological order M'% =
bulk(C'*") in one higher dimension [see (43)]. In fact, M'*¥
is nothing but the emergent categorical symmetry, which pro-
vides all the constraints to the low energy physics and solves
our problem.

We see that the only input is the low-energy excitations
C' so we do not need to have a lattice model. The above
discussion remains valid for field theories without a given or
known lattice regularization. (In this paper, we use the term
field theory to mean theory without a given or known lattice
regularization.)

Proposition 44. For a lattice system or a field theory with
low-energy excitations C'°%, the system has a low-energy ef-
fective (i.e., emergent) categorical symmetry given by M'°% =
bulk(C'®") that provides all the constraints to the low-energy
physics.

Such a low-energy effective categorical symmetry M¥
is present even when low-energy excitations condense, un-
dergo phase transitions, etc., as long as all other higher
energy excitations have very high energies. The emergent
categorical symmetry controls all the low-energy behaviors of
the system, including allowed phases, allowed phase transi-
tions, allowed critical points, etc. This is because the allowed
phases, allowed phase transitions, allowed critical points, etc.
one-to-one correspond to different boundaries of MY, the
categorical symmetry. In some sense, MV is a “topologi-
cal invariant” of low-energy physics and, we believe, is a
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complete topological invariant. All other low-energy topolog-
ical invariants can be obtained from M™¥,

Such an emergent categorical symmetry is the most prac-
tical and useful application of the notion of categorical
symmetry and the holographic point of view. For example,
consider Proposition 45.

Proposition 45. Consider a gapped liquid state in n-
dimensional space whose low-energy energy excitations are
described by a fusion n-category C'°. When all other excita-
tions have higher energies, the gapped liquid phases formed
by low-energy excitations in C'°" must have excitations de-
scribed by a fusion n-category C that satisfies bulk(C) ~
bulk(C™).

In fact, bulk(C) ~ bulk(C'*¥) is nothing but the anomaly
matching condition, since the categorical symmetries bulk(C)
and bulk(C'®"), as topological orders in one higher dimension,
are the effective noninvertible gravitational anomalies [3,25],
after we view the charge objects of the symmetry as topologi-
cal excitations.

Remark 11. We like to point out that the effective grav-
itational anomaly here is more general then the usual
gravitational anomaly from the noninvariance of the path inte-
gral. The usual gravitational anomaly is invertible, while our
effective gravitational anomaly, as topological order in one
higher dimension, is in general noninvertible [24-26]. Since
the usual gravitational anomaly is invertible, it corresponds to
invertible topological order in one higher dimension, which
contains no nontrivial topological excitations. Thus, the usual
gravitational anomaly does not encode any conservation law,
since the conservation law must come from the fusion rule
of excitations for the topological order in one higher dimen-
sion. In contrast, a noninvertible gravitational anomaly does
encode a conservation law, since its corresponding topological
order in one higher dimension has nontrivial excitations and
nontrivial fusion rule. Therefore, a noninvertible gravitational
anomaly can be viewed as a symmetry. This is why we also
refer to a noninvertible gravitational anomaly as categorical
symmetry, to stress its connection to symmetry.

B. States with the full categorical symmetry

Since all the gapped liquid states in systems with an (emer-
gent) categorical symmetry must spontaneously break part
of the categorical symmetry, the states with the full unbro-
ken categorical symmetry must be gapless. A system with a
categorical symmetry M may have many different symmetric
gapless states. Those gapless states may have additional emer-
gent categorical symmetry. So what is the minimal gapless
state with the categorical symmetry M? To define the notion
of “minimal gapless state” in n-dimensional space, we assume
that the gapless excitations all have the same linear dispersion
w = vk. The low-temperature specific heat of the gapless state
has a form

cy = cy,T", (190)
where
kg\" d"k k|
= Dkg| = —_— . 191
Yo =+ )B<U) oy T (191)

For a system described by a single gapless real scalar field,
we find that ¢ = 1. The minimal gapless state has minimal c.

From the above discussions, we see that minimal gapless
states with the categorical symmetry M are actually minimal
gapless boundary of topological order with excitations de-
scribed by M in one higher dimension. References [24,61,62]
discussed how to obtain gapless boundaries for 2d topological
orders, using modular covariant partition functions or topolog-
ical Wick rotation. Those gapless boundaries do not break the
categorical symmetry M. Those approaches also allow us to
obtain the minimal gapless boundaries with minimal central
charge. However, for a given categorical symmetry, it is not
clear whether its minimal gapless state is unique or not [19].

IX. EXAMPLES

In the section, we discuss some gapped liquid phases. In
particular, we identify their algebraic higher symmetry and
categorical symmetry. We also discuss low-energy effective
(i.e., emergent) categorical symmetry when some topological
excitations have low energies.

A. The category of 0d topological orders

The category of 0d topological orders TO! is the category
of 0d gapped phases with no symmetry. In 0d, a stable gapped
phase has nondegenerate ground state, which corresponds to a
simple object in the category of 0d gapped phases, denoted
as TO'. This is the only simple object in TO' and is the
unit object of stacking operation ®, which is the tensor prod-
uct of vector spaces. We denote this unit object as 1. There
are accidental degenerate ground states, which corresponds
to a composite object 1®1@---@®1=ml. In TO', a 1-

m copies
morphism from m1 to nl is an n x m complex matrix M:
m1 2 nl. Such a fusion 1-category happen to be 1Vec. We
see that TO! = 1Vec = Vec.

B. The 2d topological order described by 7, gauge theory

The 2d Z, topological order described by the Z, gauge
theory is denoted by GT> ,- Codimension-2 excitations are de-

scribed by the following braided fusion 1-category QZGT3Z2,
which has four simple objects (the point-like excitations):
1, e, m, f with the following Z, fusion rule:

eQRe=mm=fQ f =1, (192)

where 1 is the trivial excitation. e, m, f are topological exci-
tations which have mutual 7 -statistics between them. e, m are
bosons, and f is a fermion. Such a topological order GT3Zz
can be realized by lattice models in the same dimension (see
Refs. [5,81,82]). Therefore, the bulk of G|T3Zz is a 3d product
state, i.e., Bulk(GTSZZ) = I* [see (41)]. The 2d topological
order GT‘%2 has no categorical symmetry since Bulk(GT3ZZ) =
I* or bulk(QGT3,) = I*.

Next, we consider the situation when e particles have low
energies, and m, f particles have very high energies. The low-
energy excitations form a fusion 2-category 2RepZ, (after
condensation completion), which simply describes 2d bosons
with mod-2 conservation. In this limit, we have a low-energy

effective categorical symmetry characterized by the 3d Z,
gauge theory GT%2 = bulk(2RepZ,).
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2RepZ, describes the excitations in a system with Z;
symmetry in the Z, symmetric phase (within the symmetric
sub-Hilbert space). 2RepZ, also describes the excitations
in one of the gapped boundaries of 3d Z, gauge theory
GT}Z, obtained by condensing the Z,-flux lines in GuT}2

at the boundary. The 3d Z, gauge theory GuT%2 has an-
other gapped boundary whose excitations are described by
the fusion 2-category 2Vecz, (a Z, symmetry-breaking phase
with e boson condensation), obtained from condensing the
Z, charges in GT% at the boundary. The second boundary
corresponds to another gapped phase of the system with the Z,
symmetry—the spontaneous symmetry-breaking phase. The
continuous phase transition between the two gapped phases
is described by a critical point which has the full categorical
symmetry characterized by GT‘%2 (the 3d Z, gauge theory).
This critical point is the same as the critical point of 2d
quantum Ising model (or 3d statistical Ising model), which
has the same categorical symmetry GT%Z, as discussed in
Ref. [19].

When e bosons have low energies, the resulting Z, sym-
metric system can have infinity many different symmetric
gapped phases, and one of them is the 2d Z,-SPT phase.
The critical point at the continuous transition from the Z,-
SPT phase to the Z, spontaneous symmetry-breaking phase is
described by the same critical point discussed above; this is
because the transition is also described by the same Z, charge
condensation.

Last, we consider the situation when f particles have
low energies and e, m particles have very high energies.
The low-energy excitations form a fusion 2-category 2s)Vec,
which simply describes 2d fermions with mod-2 conservation.
There is a Z; symmetry from the mod-2 conservation of
the fermions. In this limit, we have a low-energy effective
categorical symmetry characterized by 3d twisted Z, gauge
theory with fermionic Z, charge, denoted by GT%. (The 3d

twisted Z, gauge theory GT% is obtained by gauging 7, a
Z, symmetry with fermionic Z, charge.) The categorical sym-
metry GT; s is different from the categorical symmetry GT}2

discussed above. So when f fermions have low energies, our
system has different properties from when e bosons have low
energies.

When f fermions have low energies, our system can have
16 gapped phases (up to Eg 2d bosonic invertible topological
order) labeled by o € Z ¢, which correspond to 2d fermionic
invertible topological orders. The continuous transition be-
tween « and « + 1 phases is described by the following 2d
noninteracting Majorana fermion theory [95,96]:

H= / d*x[AT(x)y din(x) + maT (x)io A (x)],

x:(k‘), M=a yl=ol, =03 (193)

A2

where ¢’ is the Pauli matrix. The transition happens when m
changes sign, which changes the chiral central charge of the
edge state by 1/2 [95,96]. The gapless state at m = 0 has the
full categorical symmetry GTZ 7

2

C. The 3d topological order described by Z, gauge theory

The 3d Z, topological order GT%2 (described by the Z,
gauge theory) has codimension-2 and codimension-3 exci-
tations described by the braided fusion 2-category QZGT‘%Z:
The simple objects (the string-like excitations) are labeled by
1, my, e5, my ® ey, with the following symmetric fusion:

ls Q my = my, ls & e = ey,

(194)

ms®ms:139 €S®€S:263,

where 1; is the trivial string. m; is a bosonic topological string-
like excitation that corresponds to the Z,-flux string.

The simple 1-morphisms (the pointlike excitations), that
connect 1; — 1, are labeled by 1,, e,,, with the following Z,
fusion:

ep®e,=1,, (195)

where 1, is the trivial particle. e, is a bosonic topological
excitation with trivial mutual statistics. However, e, and m;,
have a nontrivial mutual r-statistics between them. We also
have simple 1-morphisms that connect m; — mj,, which are
labeled by 1,,, e,,, with the following Z, fusion:

en, ® ey, = 1p,. (196)

They correspond to the point-like excitations on the string .

The e, string mentioned above is a descendent excitation,
formed by condensing e, point-like excitations along the
string. Since e, has a mod 2 conservation, the e, condensed
state is a spontaneously Z, symmetry-breaking state. This
leads to the fusion rule e; ® e, = 2e;.

Such a GuT%2 topological order has a trivial categori-
cal symmetry since Bulk(GT}z) =P or bulk(QGT3,) =P
(where SZGT%2 describes the excitations in GT}Z). However,
when some excitations have low energy and other have high
energies, the system may have a low-energy effective categor-
ical symmetry.

When e, particles have low energies and m strings have
very high energies, the low-energy excitations are described
by a fusion 3-category 3RepZ, generated by e, particles. In
this limit, the low-energy effective categorical symmetry is
bulk(3RepZ,) = GT5,_, which is nothing but the 4d Z, gauge
theory. Such a categorical symmetry has the following two
gapped phases (plus many others):

(1) a phase with low-energy excitations 3RepZ, (corre-
sponding to the symmetric phase of 3d quantum Ising model);

(2) a phase with low-energy excitations 3Vecz, (corre-
sponding to the spontaneous symmetry-breaking phase of 3d
quantum Ising model).

The transition between the two gapped phase is Higgs
transition of the 3d Z, gauge theory. The critical point has
the full categorical symmetry GTSZO. Such a critical point is
the same as the critical point in 3d quantum Ising model or 4d
statistical Ising model, which is described by noninteracting
massless real scaler field

S = /dtd3x B(atmz + %U2(3x¢)2:|. (197)

When my strings have low energies and e, particles have
very high energies, the low-energy excitations are described
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by a fusion 3- category generated by my strings, which are
denoted as 3RepZ D, Ignoring the descendant excitations,
3RepZ(21) has only a single trivial object, two simple 1-
morphisms (trivial string 1; and Z, flux string my), and a
single trivial 2-morphism. In this limit, the low- energy effec-
tive categorical symmetry is bu|k(3RepZ(])) = GT3,,,, where

GTZ“)

1-symmetry. The 4d Z;l) 2-gauge theory has a string-like
Z, charge and string-like Z, flux. The Z, string-charge and
the Z, string-flux has mutual m-statistics. Such a categorical
symmetry has two gapped phases:

(1) a phase with low energy excitations SRepZ(l)

2) another phase also with low energy excitations
3RepZ

The transition between the two phases is the confinement
transition of the 3d Z, gauge theory. The critical point of
the transition has the full categorical symmetry GTSZQ). Such

Z(l)a
is the 4d Z, 2-gauge theory obtained by gauging Zgl)

a critical point is different from the Higgs transition critical
point which has a categorical symmetry GT5Zz (for details, see
Ref. [19]).

D. The 3d topological order described by twisted Z,
gauge theory

The 3d topological order described by the twisted Z, gauge
theory (i.e., 3d Z, gauge theory with fermionic point-like
Z, charge) is denoted as GT% Its excitations are described

by a braided fusion 2-category Q2GT?,, which is similar to

70
QZGT42, except now the Z, charge ¢, is a fermion. Many
results discussed above remain unchanged. In particular, when
the Z, flux strings m; have low energies and Z, point charges
e, have high energies, the system has a low-energy effective

categorical symmetry GT2,,, as discussed above.

Z(1)9

But when Z, point charges e, have low energies and the
Z, flux strings my have high energies, the system has a very
different behavior since the Z, point charges are fermions. In
this limit, the low-energy excitations are described by fusion
3-category 3RepZ£ (with trivial object, trivial 1-morphism,
and Zf 2-morphisms which contain fermions). The categor-
ical symmetry is GT> 20 = bulk(3Repi) (the 4d Z, gauge

theory with ferm10n1c Zz point charge) What are the gapped
liquid phases in a system with GT® 2! categorical symmetry?
There is no 3d fermionic invertible topologrcal order, so there
is only one gapped state (up to stacking of bosonic topological
orders with no symmetry) that break the categorical symmetry
GTS down to Z, fermionic O-symmetry. There should also be

gapless states with the full GT? 2{ categorical symmetry.

We like to point out that the Z, fermionic 0-symmetry
is not an algebraic higher symmetry described by a local
fusion higher category R (i.e., not a bosonic algebraic higher
symmetry). The categorical symmetry GTSZ{ is not associ-

ated with any bosonic algebraic higher symmetries, since

GTZf ~ bulk(R) and R £ 3Vec has no solution. The Z,
fermionic O-symmetry described by R = 3RepZ satisfies

GTZf =~ bulk(R), but does not satisfy R A 3Vec.

One particular realization of the gapped phase is via a
Majorana fermion field theory. Here we use a single Weyl
fermion field 1 (with two complex components) to describe a
single Majorana fermion field (with four real components):

H = /d3x Vlio'd;y + (my Teyr + Hoe)), (198)
where ¥ = (¥ 7)* and € = io?. The mass m can be com-
plex. The gapless state at m = 0 should have the full GTSZf

2

categorical symmetry. However, it is not clear if it is the min-
imal gapless state with the full GTSZ s categorical symmetry.
2

E. nd bosonic systems with S; symmetry

We consider the class of bosonic nd lattice Hamiltonians
{Hs,} with S3 = Z3 % Z, symmetry. We also consider the class

of boundary Hamiltonians {HSb}“dry} of (n+ 1)d S5 topologi-
cal order G‘rngr2 with energy gap approaching co. The class
of lattice boundary Hamiltonians {Hbndry }, by definition, is

said to have GT"+2 categorical symmetry. We have argued
that the class of lattlce Hamiltonians {Hs,}, when restricted
to the symmetric subspace, is holo-equivalent to the class
of boundary Hamiltonians {H;ndry}. For example, for each
S3-symmetric Hamiltonian in the class {Hs,}, we can find

a boundary Hamiltonian in the class {H;}“dry}, such that the
two Hamiltonians have the same low-energy properties. In
this sense, we say the S3-symmetric lattice Hamiltonians also
have the GT"Jr2 categorical symmetry. In this section, we
ask whether there are other algebraic higher symmetry R,
such that the R-symmetric lattice Hamiltonians also have
the GT;:r2 categorical symmetry. In this case, we may say
the algebraic higher symmetry R is holo-equivalent to the
S3-symmetry (i.e., the nRepSs;-symmetry).

Certainly, the dual symmetry of the nRepS;-symmetry,
nVecs,, is holo-equivalent to the nRepSs;-symmetry. Do
we have other algebraic higher symmetry R that is holo-
equivalent to the nRepS3-symmetry?

We first try to solve bulk(R) = bulk(nRepS;) = G
in a physical way. We consider an (n 4 1)d S3 gauge theory
GT”+2 whose excitations are described by QzGuT”Jr2 The ex-

citations R on a gapped boundary satisfy bulk(R) = GT":FZ.

Let us start with a gauge-flux-condensed boundary, whose
excitations are described by nRepSs. Such a boundary cor-
responds to a Ss3-symmetric phase. Next, we try to obtain
other boundaries by condensing the point S3 charges on this
boundary.

The S5 charges are described by two bosonic fields: a real
field o and a complex field ¢. Under the Z, transformation in
S3,0 — —o and ¢ — ¢*. Under the Z; transformation in S3,
o — oand ¢ — ei%ﬂdb.

In the first case, we condense the o bosons but not
the ¢ bosons on the nRepS; boundary by setting o =
1, ¢ = 0. This condensation will change the nRepS; bound-
ary to another gapped boundary, denoted as R,. This
new boundary R, corresponds to a S3 — Z3 spontaneous
symmetry-breaking phase of S3 symmetric systems.

In the second case, we condense the ¢ bosons but not the o
bosons on the nRepSs boundary, by setting ¢ =1, o =0.

n+2
TS,
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This condensation will change the nRepSs boundary to a
gapped boundary, denoted as Ry4. The boundary Ry corre-
sponds to a S3 — Z, spontaneous symmetry breaking-phase
of S3 symmetric systems.

Does R, describe the algebraic higher symmetry in the
S3 — Z3 spontaneous symmetry breaking phase? That is,
can the S3 — Z3 spontaneous symmetry-breaking phase be
viewed as the trivial symmetric phase of the R,-symmetry?
Also, does Ry describe the algebraic higher symmetry in the
S3 — Z, spontaneous symmetry-breaking phase?

Although R, and Ry satisfy bulk(R,) = bulk(Ry) =
GT’S’jz, we still need to show they are local fusion higher
categories in order for them to describe algebraic higher
symmetries. For this purpose, we start with the nd S3-gauge
theory constructed by stacking two n’RepS; via their com-
mon bulk GT§3+2 [a (n + 1)d S3-gauge theory], as shown in
Fig. 5. The excitations in the ndSs;-gauge theory are given
by nRepSs ® , (nRepS3)™. Now we condense o on one

GTer
boundary and condense ¢ on the other boundary. The resulting

nd state has excitations given by R, ® Ry". From our
GTg?

physical understanding, when both o and ¢ condense, the
S3-gauge symmetry is completely broken, and the nd topolog-
ical order described by the S3-gauge theory becomes a trivial
phase. This implies that R, ®+2 Ry" = nVec. Then using
GT}!

Proposition 39, we find that R, and Ry are both local fu-
sion higher categories. They describe a pair of dual algebraic
higher symmetries.
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