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The infamous sign problem leads to an exponential complexity in Monte Carlo simulations of generic
many-body quantum systems. Nevertheless, many phases of matter are known to admit a sign-problem-free
representative, allowing efficient simulations on classical computers. Motivated by long-standing open problems
in many-body physics, as well as fundamental questions in quantum complexity, the possibility of intrinsic sign
problems, where a phase of matter admits no sign-problem-free representative, was recently raised but remains
largely unexplored. Here we establish the existence of an intrinsic sign problem in a broad class of gapped, chiral,
topological phases of matter. Within this class, we exclude the possibility of stoquastic Hamiltonians for bosons
(or “qudits”) and of sign-problem-free determinantal Monte Carlo algorithms for fermions. The intrinsically
sign-problematic class of phases we identify is defined in terms of topological invariants with clear observable
signatures: the chiral central charge and the topological spins of anyons. We obtain analogous results for phases
that are spontaneously chiral, and present evidence for an extension of our results that applies to both chiral and
nonchiral topological matter.
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I. INTRODUCTION

Utilizing a random sampling of phase-space according to
the Boltzmann probability distribution, Monte Carlo simula-
tions are arguably the most powerful tools for numerically
evaluating thermal averages in classical many-body physics
[1]. Though the phase-space of an N-body system scales ex-
ponentially with N , a Monte Carlo approximation with a fixed
desired error is usually obtained in polynomial time [2,3]. In
quantum Monte Carlo (QMC), one attempts to perform Monte
Carlo computations of thermal averages in quantum many-
body systems, by following the heuristic idea that quantum
systems in d dimensions are equivalent to classical systems in
d + 1 dimensions [4,5].

The difficulty with any such quantum to classical mapping,
henceforth referred to as a method, is the infamous sign prob-
lem, where the mapping can produce complex, rather than
non-negative, Boltzmann weights p, which do not correspond
to a probability distribution. Faced with a sign problem, one
can try to change the method used and obtain p � 0, thus
curing the sign problem [6,7]. Alternatively, one can per-
form QMC using the weights |p|, which is often done but
generically leads to an exponential computational complexity
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in evaluating physical observables, limiting one’s ability to
simulate large systems at low temperatures [2].

Conceptually, the sign problem can be understood as an
obstruction to mapping quantum systems to classical systems,
and accordingly, from a number of complexity theoretic per-
spectives, a generic curing algorithm in polynomial time is
not believed to exist [2,6–10]. In many-body physics, how-
ever, one is mostly interested in universal phenomena, i.e.,
phases of matter and the transitions between them, and there-
fore representative Hamiltonians which are sign-free often
suffice [11]. In fact, QMC simulations continue to produce
unparalleled results, in all branches of many-body quantum
physics, precisely because new sign-free models are con-
stantly being discovered [5,11–17].

Designing sign-free models requires design principles
(or “de-sign” principles) [11,18]—easily verifiable properties
that, if satisfied by a Hamiltonian and method, lead to a sign-
free representation of the corresponding partition function. An
important example is the condition 〈i|H | j〉 � 0 where i �= j
label a local basis, which implies non-negative weights p in a
wide range of methods [10,11]. Hamiltonians satisfying this
condition in a given basis are known as stoquastic [8], and
have proven very useful in both application and theory of
QMC in bosonic (or spin, or “qudit”) systems [2,6–11].

Fermionic Hamiltonians are not expected to be stoquastic
in any local basis [2,5], and alternative methods, collectively
known as determinantal quantum Monte Carlo (DQMC), are
therefore used [4,5,17,19,20]. The search for design prin-
ciples that apply to DQMC, and applications thereof, has
naturally played the dominant role in tackling the sign prob-
lem in fermionic systems and has seen a lot of progress
in recent years [5,17,18,21–24]. Nevertheless, long-standing
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TABLE I. Examples of intrinsic sign problems based on the criterion e2π ic/24 /∈ {θa}, in terms of the chiral central charge c and the topolog-
ical spins θa = e2π iha . The number of spins ha is equal to the dimension of the ground-state subspace on the torus. We mark bosonic/fermionic
phases by (B/F). The quantum Hall Laughlin phases correspond to U (1)q Chern-Simons theories. The �-wave superconductor is chiral, e.g.,
p + ip for � = 1, and comprising a single flavor of spin-less fermions. Data for the spin-full case are identical to that of the Chern insulator,
with −� odd (even) in place of ν, for triplet (singlet) pairing. The modulo 8 ambiguity in the central charge of the Fibonacci anyon model
corresponds to the stacking of a given realization with copies of the E8 K-matrix phase. Data for the three quantum Hall Pfaffian phases are
given at the minimal filling 1/2. The physical filling 5/2 is obtained by stacking with a ν = 2 Chern insulator, and an intrinsic sign problem
appears in this case as well. Relevant computations can be found in the Supplemental Material [68].

Phase of matter Parameterization c {ha} Intrinsic sign problem?

Laughlin (B) [36] Filling 1/q, (q ∈ 2N ) 1 {a2/2q}q−1
a=0 In 98.5% of first 103

Laughlin (F) [36] Filling 1/q, (q ∈ 2N − 1) 1 {(a + 1/2)2/2q}q−1
a=0 In 96.7% of first 103

Chern insulator (F) [App. B] Chern number ν ∈ Z ν {ν/8} For ν /∈ 12Z

�-wave superconductor (F) [61] Pairing channel � ∈ 2Z − 1 −�/2 {−�/16} Yes

Kitaev spin liquid (B) [46] Chern number ν ∈ 2Z − 1 ν/2 {0, 1/2, ν/16} Yes

SU(2)k Chern-Simons (B) [69] Level k ∈ N 3k/(k + 2) {a(a + 2)/4(k + 2)}k
a=0 In 91.6% of first 103

E8 K-matrix (B) [70] Stack of n ∈ N copies 8n {0} For n /∈ 3N

Fibonacci anyon model (B) [69] 14/5 (mod 8) {0, 2/5} Yes

Pfaffian (F) [71] 3/2 {0, 1/2, 1/4, 3/4, 1/8, 5/8} Yes

PH-Pfaffian (F) [71] 1/2 {0, 0, 1/2, 1/2, 1/4, 3/4} Yes

Anti-Pfaffian (F) [71] −1/2 {0, 1/2, 1/4, 3/4, 3/8, 7/8} Yes

open problems in quantum many-body physics continue to
defy solution and remain inaccessible for QMC. These in-
clude the nature of high-temperature superconductivity and
the associated repulsive Hubbard model [20,25–27], dense
nuclear matter and the associated lattice QCD at finite baryon
density [28–30], and the enigmatic fractional quantum Hall
state at filling 5/2 and its associated Coulomb Hamilto-
nian [31–36], all of which are fermionic.

One may wonder if there is a fundamental reason that no
design principle applying to the above open problems has so
far been found, despite intense research efforts. More gener-
ally,

Are there phases of matter which do not admit a sign-free
representative? Are there physical properties that cannot be
exhibited by sign-free models?

We refer to such phases of matter, where the sign problem
simply cannot be cured, as having an intrinsic sign prob-
lem [9]. From a practical perspective, intrinsic sign problems
may prove useful in directing research efforts and compu-
tational resources. From a fundamental perspective, intrinsic
sign problems identify certain phases of matter as inherently
quantum—their physical properties cannot be reproduced by
a partition function with positive Boltzmann weights.

To the best of our knowledge, the first intrinsic sign prob-
lem was discovered by Hastings [9], who proved that no
stoquastic, commuting projector, Hamiltonians exist for the
“doubled semion” phase [37], which is bosonic and topolog-
ically ordered. In a parallel work [38], we generalize this
result considerably—excluding the possibility of stoquastic
Hamiltonians in a broad class of bosonic nonchiral topological
phases of matter. Additionally, Ref. [39] demonstrated, based
on the algebraic structure of edge excitations, that no trans-
lationally invariant stoquastic Hamiltonians exist for bosonic
chiral topological phases.

In this paper, we establish a new criterion for intrinsic sign
problems in chiral topological matter, and take the first step
in analyzing intrinsic sign problems in fermionic systems.
First, based on the well established “momentum polarization”
method for characterizing chiral topological matter [40–44],
we obtain a variant of the result of Ref. [39]—excluding
the possibility of stoquastic Hamiltonians in a broad class
of bosonic chiral topological phases. We then develop a for-
malism with which we obtain analogous results for systems
comprising both bosons and fermions—excluding the possi-
bility of sign-free DQMC simulations.

All of the above mentioned topological phases are gapped,
2+1-dimensional, and described at low energy by a topolog-
ical field theory [45–47]. The class of such phases in which
we find an intrinsic sign problem is defined in terms of robust
data characterizing them: the chiral central charge c, a rational
number, as well as the set {θa} of topological spins of anyons,
a subset of roots of unity. Namely, we find that

An intrinsic sign problem exists if e2π ic/24 is not the topological
spin of some anyon, i.e., e2π ic/24 /∈ {θa}.
The above criterion applies to “most” chiral topological

phases; see Table I for examples. In particular, we identify
an intrinsic sign problem in 96.7% of the first 1000 fermionic
Laughlin phases, in all chiral triplet superconductors, and in
the three non-Abelian candidate phases for the quantum Hall
state at filling 5/2. We also find intrinsic sign problems in
91.6% of the first 1000 SU(2)k Chern-Simons theories. Since,
for k �= 1, 2, 4, these allow for universal quantum computa-
tion by manipulation of anyons [48,49], our results support the
strong belief that quantum computation cannot be simulated
with classical resources, in polynomial time [50]. This conclu-
sion is strengthened by examining the Fibonacci anyon model,
which is known to be universal for quantum computation [49],
and is found to be intrinsically sign-problematic.
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We stress that both c and {θa} have clear observable
signatures in both the bulk and boundary of chiral topo-
logical matter, some of which have been experimentally
observed. The chiral central charge controls the boundary
thermal Hall conductance [51–54], which was recently mea-
sured in quantum Hall and spin systems [31,55–57]. In
the bulk it is predicted to contribute to the Hall (or odd)
viscosity at finite wave vector, as well as in curved back-
ground [58–61]. The chiral central charge also affects the
angular momentum at conical defects [62], as was recently
observed in an optical realization of integer quantum Hall
states [63,64]. The topological spins determine the exchange
statistics of anyons, predicted to appear in interferometry
experiments [49], though experimental observation remains
elusive [65]. A measurement of anyonic statistics via current
correlations [66] was recently reported in the Laughlin 1/3
quantum Hall state [67].

The paper is organized as follows. In Sec. II we collect rel-
evant facts regarding chiral topological matter, arriving at the
“momentum polarization”, Eq. (3). Section III then obtains
Result 1—an intrinsic sign problem in bosonic chiral topo-
logical matter. In Sec. IV we perform a similar analysis for
the case where chirality (or time-reversal symmetry breaking),
appears spontaneously rather than explicitly, arriving at Result
2. We then turn to fermionic systems. In Sec. V we develop a
formalism which unifies and generalizes the currently used
DQMC algorithms, and the corresponding design principles.
In Sec. VI we obtain within this formalism Result 1F and
Result 2F, the fermionic analogs of Result 1 and Result 2.
Section VII describes a conjectured extension of our results
that applies beyond chiral phases and unifies them with the
intrinsic sign problems found in our parallel work [38]. In
Sec. VIII we discuss our results and provide an outlook for
future work.

II. CHIRAL TOPOLOGICAL MATTER AND SIGNS
FROM GEOMETRIC MANIPULATIONS

In this section we review the necessary details regard-
ing chiral topological phases of matter, and, following
Refs. [40–44], obtain the “momentum polarization”, Eq. (3),
which is the main tool we use in the this paper. Later we
will show that gapped bosonic and fermionic Hamiltonians
which are sign-free (due to the an appropriate design princi-
ple) cannot obey Eq. (3), unless the chiral central charge and
topological spins obey a tight constraint.

A. Chiral topological matter

A gapped Hamiltonian is said to be in a topological phase
of matter if it cannot be deformed to a trivial reference Hamil-
tonian, without closing the gap. If a symmetry is enforced,
only symmetric deformations are considered, and it is ad-
ditionally required that the symmetry is not spontaneously
broken [72,73]. For Hamiltonians defined on a lattice, as con-
sidered in this paper, a natural trivial Hamiltonian is given by
the atomic limit of decoupled lattice sites, where the symme-
try acts independently on each site.

Topological phases with a unique ground state on the
two-dimensional torus exist only with a prescribed symmetry

(b)(a)

FIG. 1. Chiral topological phases of matter on the cylinder.
(a) The low-energy description of a chiral topological phase com-
prises two, counterpropagating, chiral conformal field theories
(CFTs) on the boundary, and a chiral topological field theory (TFT)
in the bulk. (b) Examples: schematic single-particle spectrum of a
Chern insulator and of the Majorana fermions describing the Kitaev
spin liquid. Assuming discrete translational symmetry with spacing
a in the x direction, one can plot the single-particle eigenenergies ε

on the cylinder as a function of (quasi) momentum kx . This reveals
an integer number of chiral dispersion branches whose eigenstates
are supported on one of the two boundary components. In the
Chern insulator (Kitaev spin liquid) these correspond to the Weyl
(Majorana-Weyl) fermion CFT, with c = ±1 (c = ±1/2) per branch.
The velocity, v = |∂ε/∂kx| at the chemical potential μ, is a nonuni-
versal parameter.

group and are termed symmetry-protected topological phases
(SPTs) [74–76]. When such phases are placed on the cylin-
der, they support anomalous boundary degrees of freedom
which cannot be realized on isolated one-dimensional spatial
manifolds, as well as corresponding quantized bulk response
coefficients. Notable examples are the integer quantum Hall
states, topological insulators, and topological superconduc-
tors [77].

Topological phases with a degenerate ground-state sub-
space on the torus are termed topologically ordered, or
symmetry enriched if a symmetry is enforced [78,79]. Beyond
the phenomena exhibited by SPTs, these support localized
quasiparticle excitations with anyonic statistics and fractional
charge under the symmetry group. Notable examples are frac-
tional quantum Hall states [49,80], quantum spin liquids [81],
and fractional topological insulators [82,83].

In this work we consider chiral topological phases, where
the boundary degrees of freedom that appear on the cylinder
propagate unidirectionally. At energies small compared with
the bulk gap, the boundary can be described by a chiral con-
formal field theory (CFT) [84,85], while the bulk reduces to
a chiral topological field theory (TFT) [46,47]; see Fig. 1(a).
We consider both bosonic and fermionic phases. These may be
protected or enriched by an on-site symmetry, but we will not
make use of this symmetry in our analysis—only the chirality
of the phase will be used.

A notable example for chiral topological phases is given
by Chern insulators [86–88]: SPTs protected by the U(1)
fermion number symmetry, which admit free-fermion Hamil-
tonians. The single-particle spectrum of a Chern insulator on
the cylinder is depicted in Fig. 1(b). Another notable example
is the topologically ordered Kitaev spin liquid [46,89], which
can be described by Majorana fermions with a single-particle
spectrum similar to Fig. 1(b), coupled to a Z2 gauge field.
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Note that the velocity v of the boundary CFT is a
nonuniversal parameter which generically changes as the mi-
croscopic Hamiltonian is deformed. Furthermore, different
chiral branches may have different velocities.

The chirality of the boundary CFT and bulk TFT is man-
ifested by their nonvanishing chiral central charge c, which
is rational and universal—it is a topological invariant with
respect to continuous deformations of the Hamiltonian which
preserve the bulk energy gap, and therefore constant through-
out a topological phase [46,60,90,91]. On the boundary c
is defined with respect to an orientation of the cylinder, so
the two boundary components have opposite chiral central
charges.

B. Boundary finite-size corrections

The nonvanishing of c implies a number of geometric,
or “gravitational”, physical phenomena [58–61,84,85,92,93].
In particular, the boundary supports a nonvanishing energy
current JE , which receives a correction

JE (T ) = JE (0) + 2πT 2 c

24
, (1)

at a temperature T > 0, and in the thermodynamic limit L =
∞, where L is the circumference of the cylinder. Note that we
set KB = 1 and h̄ = 1 throughout. Within CFT, this correc-
tion is universal since it is independent of v. Taking the two
counterpropagating boundary components of the cylinder into
account, and placing these at slightly different temperatures,
leads to a thermal Hall conductance KH = cπT/6 [51–53],
a prediction that recently led to the first measurements of
c [31,55–57].

In analogy with Eq. (1), the boundary of a chiral topologi-
cal phase also supports a nonvanishing ground state (at T = 0)
momentum density p, which receives a universal correction on
a cylinder with finite circumference L < ∞,

p(L) = p(∞) + 2π

L2

(
h0 − c

24

)
. (2)

Equation (2) is the main property of chiral topological
matter that we use below, so we discuss it in detail. First,
the rational number h0 is a chiral conformal weight, which
is an additional piece of data characterizing the boundary
CFT. Like the chiral central charge, the two boundary com-
ponents of the cylinder have opposite h0s. From the bulk
TFT perspective, h0 corresponds to the topological spin of
an anyon quasiparticle, defined by the phase θ0 = e2π ih0 ac-
cumulated as the anyon undergoes a 2π rotation [46]. The set
{θa}N

a=1 of topological spins of anyons is associated with the
N-dimensional ground-state subspace on the torus, and the
unique θ0 = e2π ih0 defined by (2) corresponds to the generi-
cally unique ground state on the cylinder, with a finite-size
energy separation ∼1/L from the low-lying excited states; see
Appendix A.

As the equation θ0 = e2π ih0 suggests, only h0 mod 1 is
universal for a topological phase. The integer part of h0 can
change as the Hamiltonian is deformed on the cylinder, while
maintaining the bulk gap, and even as a function of L for a
fixed Hamiltonian. Additionally, the choice of θ0 from the
set {θa} is nonuniversal and can change due to bulk gap-
preserving deformations or as a function of L. Both types

(a)

y

x

TR

a

y

x
L

*

a
(b)

FIG. 2. Momentum polarization. (a) Hamiltonian, or spatial,
point of view. The operator TR translates the right half of the cylinder
by one unit cell, a distance a, in the x direction. It acts as the identity
on the left boundary component, and as a translation on the right
boundary component. The object Z̃/Z is the thermal expectation
value of TR. (b) Field theory, or space-time, point of view. The object
Z̃ is the partition function on a space-time carrying a screw dislo-
cation. The space-time region occupied by the boundary components
of the spatial cylinder is colored in orange. The screw dislocation can
be described as an additional boundary component, on which TR acts
as a translation, with a high effective temperature 1/β∗.

of discontinuous jumps in h0 may be accompanied by an
accidental degeneracy of the ground state on the cylinder.
Therefore, the universal and L-independent statement regard-
ing h0 is that, apart from accidental degeneracies, e2π ih0 =
θ0 ∈ {θa}—a fact that will be important in our analysis.

The nontrivial behavior of h0 described above appears
when the boundary corresponds to a nonconformal deforma-
tion of a CFT, by, e.g., a chemical potential. As demonstrated
analytically and numerically in Appendix B, such behavior
appears already in the simple context of Chern insulators with
nonzero Fermi momenta, as would be the case in Fig. 1(b) if
the chemical potential μ is either raised or lowered.

C. Momentum polarization

In this section we describe a procedure for the extraction
of h0 − c/24 in Eq. (2), given a lattice Hamiltonian on the
cylinder. Since the two boundary components carry opposite
momentum densities, the ground state on the cylinder does not
carry a total momentum, only a “momentum polarization”. It
is therefore clear that some sort of one-sided translation will
be required.

Following Ref. [40], we define Z̃ := Tr(TRe−βH ), which
is related to the usual partition function Z = Tr(e−βH ) (β =
1/T ), by the insertion of the operator TR, which translates the
right half of the cylinder by one unit cell in the periodic x
direction; see Fig. 2(a). The object Z̃ satisfies

Z̃ = Z exp
[
αNx + 2π i

Nx

(
h0 − c

24

)
+ o

(
N−1

x

)]
, (3)

where Nx is the number of sites in the x direction, α ∈ C
is nonuniversal and has a negative real part, and o(N−1

x ) in-
dicates corrections that decay faster than N−1

x as Nx → ∞.
Equation (3) is valid at temperatures low compared to the
finite-size energy differences on the boundary, β−1 = o(N−1

x );
see Appendix A.

Equation (3) follows analytically from the low-energy de-
scription of chiral topological matter in terms of chiral TFT
and CFT [40] and was numerically scrutinized in a large
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number of examples in Refs. [40–44], as well as in Ap-
pendix B. Nevertheless, we are not aware of a rigorous proof
of Eq. (3) for gapped lattice Hamiltonians. Therefore, in stat-
ing our results we will use the assumption “the Hamiltonian H
is in a chiral topological phase of matter”, the content of which
is that H admits a low-energy description in terms of a chiral
TFT with chiral central charge c and topological spins {θa},
and in particular, Eq. (3) holds for any bulk-gap preserving
deformation of H , with e2π ih0 ∈ {θa}, apart from accidental
degeneracies on the cylinder. In the remainder of this section
we further discuss the content of Eq. (3) and its expected
range of validity, in light of the Hamiltonian and space-time
interpretations of Z̃ .

From a Hamiltonian perspective, Z̃/Z is the thermal expec-
tation value of TR, evaluated at a temperature β−1 low enough
to isolate the ground state. The exponential decay expressed
in Eq. (3) appears because TR is not a symmetry of H , and
−Re(α) can be understood as the energy density of the line
defect where TR is discontinuous; see Fig. 2(a). In fact, we
expect Eq. (3) to hold irrespective of whether the uniform
translation is a symmetry of H or of the underlying “lattice”
on which H is defined, which may be any polygonalization of
the cylinder (see Ref. [94] for a similar scenario). The only
expected requirement is that the low energy description of H
is homogeneous. Furthermore, if Eq. (3) holds only after a
disorder averaging of Z̃/Z , our results and derivations in the
following sections remain unchanged.

There is also a simple space-time interpretation of Z̃ , which
will be useful in the context of DQMC. The usual partition
function Z = Tr(e−βH ) has a functional integral representa-
tion in terms of bosonic fields φ (fermionic fields ψ) defined
on space, the cylinder C in our case, and the imaginary time
circle S1

β = R/βZ, with periodic (antiperiodic) boundary con-
ditions [95]. In Z̃ = Tr(TRe−βH ), the insertion of TR produces
a twisting of the boundary conditions of φ,ψ in the time
direction, such that Z̃ is the partition function on a space-time
carrying a screw dislocation; see Fig. 2(b).

The above interpretation of Z̃ , supplemented by Eq. (2),
allows for an intuitive explanation of Eq. (3), which loosely
follows its analytic derivation [40]. As seen in Fig. 2(b),
the line where TR is discontinuous can be interpreted as an
additional boundary component at a high effective temper-
ature, β∗ 
 L/v. Since the effective temperature is much
larger than the finite-size energy differences 2πv/L on the
boundary CFT, the screw dislocation contributes no finite-size
corrections to Z̃ . This leaves only the contribution of the
boundary component on the right side of the cylinder, where
TR produces the phase eiaLp(L), assuming β∗ 
 L/v 
 β.
Equation (2) then leads to the universal finite-size correction
(2π i/Nx )(h0 − c/24).

III. EXCLUDING STOQUASTIC HAMILTONIANS
FOR CHIRAL TOPOLOGICAL MATTER

In this section we consider bosonic (or “qudit”, or spin)
systems, and a single design principle - existence of a local
basis in which the many-body Hamiltonian is stoquastic. A
sketch of the derivation of Result 1 is that the momentum
polarization Z̃ is positive for Hamiltonians H ′ which are sto-
quastic in an on-site and homogenous basis, and this implies

that θ0 = e2π ic/24 for any Hamiltonian H obtained from H ′ by
conjugation with a local unitary.

A. Setup

The many-body Hilbert space is given by H = ⊗x∈XHx,
where the tensor product runs over the sites x = (x, y) of a
two-dimensional lattice X , and Hx are on-site “qudit” Hilbert
spaces of finite dimension d ∈ N. With finite-size QMC sim-
ulations in mind, we consider a square lattice with spacing
1, Nx × Ny sites, and periodic boundary conditions, so that
X = ZNx × ZNy is a discretization of the flat torus (R/NxZ) ×
(R/NyZ). Generalization to other two-dimensional lattices is
straightforward. On this Hilbert space a gapped r-local Hamil-
tonian H = ∑

x Hx, which is in a chiral topological phase of
matter, is assumed to be given. Here the terms Hx are sup-
ported within a range r of x—they are defined on ⊗|y−x|�rHy
and act as 0 on all other qudits.

Fix an tensor product basis |s〉 = ⊗x∈X |sx〉, labeled by
strings s = (sx)x∈X , where sx ∈ {1, . . . , d} labels a basis |sx〉
for Hx. For any vector d ∈ X , the corresponding transla-
tion operator T d is defined in this basis, T d|s〉 = |tds〉, with
(tds)x = sx+d. These statements assert that |s〉 is both an on-
site and a homogeneous basis, or on-site homogeneous for
short. Note that T d acts as a permutation matrix on the |s〉s,
and in particular, has non-negative matrix elements in this
basis.

In accordance with Sec. II C, we assume that the low
energy description of H is invariant under T d, as defined
above. In doing so, we exclude the possibility of generic
background gauge fields for any on-site symmetry that H may
posses, which is beyond the scope of this work. Neverthe-
less, commonly used background gauge fields, such as those
corresponding to uniform magnetic fields with rational flux
per plaquette, can easily be incorporated into our analysis,
by restricting to translation vectors d in a sublattice of X .
A restriction to sublattice translations can also be used to
guarantee that T d acts purely as a translation in the low-
energy TQFT description. In particular, a lattice translation
may permute the anyon types a.1 Since the number of anyons
is finite, restricting to large enough translations will eliminate
this effect. An example is given by Wen’s plaquette model,
where different anyons are localized on the even or odd sites
of a bipartite lattice [96], and a restriction to translations that
maps the even (odd) sites to themselves will be made.

Finally, it is assumed that H is locally stoquastic: it is
termwise stoquastic in a local basis. This means that a local
unitary operator U exists, such that the conjugated Hamil-
tonian H ′ = UHU † is a sum of local terms H ′

x = UHxU †,
which have nonpositive matrix elements in the on-site homo-
geneous basis, 〈s|H ′

x|s̃〉 � 0 for all basis states |s〉, |s̃〉. Note
that we include the diagonal matrix elements in the definition,
without loss of generality.

The term local unitary used above refers to a depth-D quan-
tum circuit, a product U = UD · · ·U1 where each Ui is itself a

1We thank Michael Levin for pointing out this phenomenon.
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x
Nx

1
y

l

1Ny

FIG. 3. Cutting the torus to a cylinder along the line l . Orange
areas mark the supports of Hamiltonian terms H ′

x which are removed
from H ′, while blue areas mark the supports of terms which are kept.

product of unitary operators with nonoverlapping supports2 of
diameter w. It follows that H ′ has a range r′ = r + 2rU , where
rU = Dw is the range of U . Equivalently, we may take U to
be a finite-time evolution with respect to an r̃-local, smoothly
time-dependent, Hamiltonian H̃ (t ), given by the time-ordered
exponential U = TOe−i

∫ 1
0 H̃ (t )dt . The two types of locality

requirements are equivalent, as finite-time evolutions can be
efficiently approximated by finite-depth circuits, while finite-
depth circuits can be written as finite-time evolutions over
time D with piecewise constant w-local Hamiltonians [73,97].

B. Constraining c and {θa}
In order to discuss the momentum polarization, we need

to map the stoquastic Hamiltonian H ′ from the torus X to a
cylinder C. This is done by choosing a translation vector d ∈
X , and then cutting the torus X along a line l parallel to d. To
simplify the presentation we restrict attention to the case d =
(1, 0). All other cases amount to a lattice-spacing redefinition;
see Appendix C. The cylinder C = ZNx × {1, . . . , Ny} is then
obtained from the torus X = ZNx × ZNy by cutting along the
line l = {(i, 1/2): i ∈ ZNx }. A stoquastic Hamiltonian on the
cylinder can be obtained from that on the torus by removing
all local terms H ′

x whose support overlaps l; see Fig. 3. Note
that this procedure may render H ′ acting as 0 on certain qudits
Hx with x within a range r′ of l , but this does not bother us.
Since all terms H ′

x are individually stoquastic, this procedure
leaves H ′, now defined on the cylinder, stoquastic. One can
similarly map H and U to the cylinder C such that the relation
H ′ = UHU † remains valid on C.

Let us now make contact with the momentum polarization
Eq. (3). Having mapped H ′ to the cylinder, we consider the
“partition function”

Z̃ ′ := Tr(e−βH ′
TR), (4)

where TR = T d
R is defined by TR|s〉 = |TRs〉, (TRs)x,y =

sx+�(y),y, and � is a heavy side function supported on the right
half of the cylinder. Though Z̃ ′ is generally different from

2The support of a unitary u = eih is the support of its Hermitian
generator h.

Z̃ = Tr(e−βH TR) appearing in Eq. (3), it satisfies two useful
properties:

(1) Z̃ ′ > 0. Both −H ′ and TR have non-negative entries in
the on-site basis |s〉, and therefore so does e−βH ′

TR.
(2) Z̃ ′ satisfies Eq. (3), with nonuniversal α′ in place of

α, but c′ = c, and e2π ih′
0 ∈ {θa}. This follows from the fact

that H ′ = UHU † is in the same phase of matter as H , and
therefore c′ = c, and {θ ′

a} = {θa}. Indeed, treating U as a
finite-time evolution, we have H (λ) = U (λ)HU (λ)†, where
U (λ) := TOe−i

∫ λ

0 H̃ (t )dt , as a deformation from H to H ′ which
maintains locality and preserves the bulk gap. In fact, since
the full spectrum on the cylinder is λ-independent, we have
h′

0 = h0 for all Nx.
Combining the two above properties leads to

1 = Z̃ ′/|Z̃ ′| = exp 2π i
[
ε′Nx + 1

Nx

(
h0 − c

24

)
+ o

(
N−1

x

)]
,

(5)

where ε′ := Im(α′)/2π . The nonuniversal integer part of h0

can then be eliminated by raising Eq. (5) to the Nxth power,

1 = e2π iε′N2
x θ0(Nx )e−2π ic/24 + o(1), (6)

where we used θ0 = e2π ih0 , and o(1) → 0 as Nx → ∞. We
also indicated explicitly the possible Nx dependence of θ0,
as described in Sec. II B. We proceed under the assumption
that no accidental degeneracies occur on the cylinder, so that
θ0(Nx ) ∈ {θa} for all Nx, deferring the degenerate case to
Appendix D. Now, for rational ε′ = n/m, the series e2π iε′N2

x

(Nx ∈ N) covers periodically a subset S of the mth roots of
unity, including 1 ∈ S. On the other hand, for irrational ε′

the series e2π iε′N2
x is dense in the unit circle. Combined with

the fact that θ0(Nx ) is valued in the finite set {θa}, while c
is Nx-independent, Eq. (6) implies that ε′ must be rational,
and that the values attained by θ0(Nx )e−2π ic/24 cover the set
S periodically, for large enough Nx. It follows that 1 ∈ S ⊂
{θae−2π ic/24}. We therefore have the following result:

Result 1. If a local bosonic Hamiltonian H is both locally
stoquastic and in a chiral topological phase of matter, then one
of the corresponding topological spins satisfies θa = e2π ic/24.
Equivalently, a bosonic chiral topological phase of matter
where e2π ic/24 is not the topological spin of some anyon, i.e.,
e2π ic/24 /∈ {θa}, admits no local Hamiltonians which are locally
stoquastic.

The above result can be stated in terms of the topological
T matrix, which is the representation of a Dehn twist on the
torus ground-state subspace and has the spectrum Spec(T) =
{θae−2π ic/24}a [40,41,45,46,80,98]:

Result 1′. If a local bosonic Hamiltonian H is both locally
stoquastic and in a chiral topological phase of matter, then the
corresponding T matrix satisfies 1 ∈ Spec(T). Equivalently, a
bosonic chiral topological phase of matter where 1 /∈ Spec(T),
admits no local Hamiltonians which are locally stoquastic.

The above result is our main statement for bosonic phases
of matter. The logic used in its derivation will be extended
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in the following sections, where we generalize Result 1 to
systems which are fermionic, spontaneously chiral, or both.

IV. SPONTANEOUS CHIRALITY

The invariants h0 and c change sign under both time rever-
sal T and parity (spatial reflection) P , and therefore require
a breaking of T and P down to PT to be nonvanishing.
The momentum polarization Eq. (3) is valid if this symmetry
breaking is explicit, i.e., H does not commute with P and
T separately. Here we consider the case where H is P, T -
symmetric, but these are broken down to PT spontaneously,
as in, e.g., intrinsic topological superfluids and superconduc-
tors [61,99,100]. We first generalize Eq. (3) to this setting, and
then use this generalization to obtain a spontaneously chiral
analog of Result 1.

Note that the physical time-reversal T is an on-site antiu-
nitary operator acting identically on all qudits, which implies
[T , TR] = 0, while P is a unitary operator that maps the qu-
dit at x to that at Px, where P is the nontrivial element in
O(2)/SO(2), e.g., (x, y) �→ (−x, y).

A. Momentum polarization for spontaneously
chiral Hamiltonians

For simplicity, we begin by assuming that H is “classi-
cally symmetry breaking”—it has two exact ground states
on the cylinder, already at finite system sizes. We therefore
have two ground states |±〉, such that |−〉 is obtained from
|+〉 by acting with either T or P . In particular, |±〉 have
opposite values of h0 and c. The β → ∞ density matrix is
then e−βH/Z = (ρ+ + ρ−)/2, where ρ± = |±〉〈±|, and this
modifies the right-hand side of Eq. (3) to its real part,

Z̃ := Tr(TRe−βH )

= Ze−δNx cos 2π
[
εNx + 2π

Nx

(
h0 − c

24

)
+ o

(
N−1

x

)]
, (7)

where −δ ± 2π iε are the values of the nonuniversal α ob-
tained from Eq. (3), by replacing e−βH by ρ±. Indeed, it
follows from [T , TR] = 0 that if two density matrices are re-
lated by ρ− = T ρ+T −1, then Z̃± := Z±Tr(TRρ+) are complex
conjugates, Z̃− = Z̃∗

+.
Now, for a generic symmetry-breaking Hamiltonian H ,

exact ground-state degeneracy happens only in the infi-
nite volume limit [101]. At finite size, the two lowest
lying eigenvalues of H would be separated by an exponen-
tially small energy difference �E = O(e− f Nλ

x ), with some
f > 0, λ > 0. The two corresponding eigenstates would be
T ,P-even/odd, of the form W [|+〉 ± |−〉], where W is a
T ,P-invariant local unitary [73]. One can think of these
statements as resulting from the existence of a bulk-gap
preserving and T ,P-symmetric deformation of H to a “clas-
sically symmetry-breaking” Hamiltonian.3

3The canonical example is the transverse field Ising model H (g) =
−∑Nx

i=1 (ZiZi+1 + gXi ) in 1+1d. Exact ground-state degeneracy ap-
pears at finite Nx only for g = 0, though spontaneous symmetry
breaking occurs for all |g| < 1, where a splitting ∼|g|Nx appears.

In the generic setting, we have

e−βH/Z = W (ρ+ + ρ−)W †/2 + O(β�E ), (8)

and, following our treatment of the local unitary U in the
previous section, Equation (7) remains valid, with modi-
fied δ, ε, but unchanged h0 − c/24. This statement holds for
temperatures much higher than �E and much smaller that
the CFT energy spacing, �E 
 β−1 
 N−1

x , or more accu-
rately β−1 = o(N−1

x ) and β�E = o(N−1
x ) (cf. Sec. II C). Note

that the universal content of Eq. (7) is the absolute value
|h0 − c/24|, since the cosine is even and sgn(ε) is nonuni-
versal.

B. Constraining c and {θa}
Let us now assume that a gapped and local Hamiltonian H

is T ,P-symmetric, and is locally stoquastic, due to a unitary
U . It follows that Z̃ ′ = Tr(TRe−βH ′

) > 0, where H ′ = UHU †.
If U happens to be T ,P-symmetric, then so is H ′, and Eq. (7)
holds for Z̃ ′, with δ′, ε′ in place of δ, ε. For a general U , we
have

e−βH ′
/Z ′ = UW (ρ+ + ρ−)W †U †/2 + O(β�E ), (9)

where UW need not be T ,P-symmetric. As result, Z̃ ′ satisfies
a weaker form of Eq. (7),

0 < Z̃ ′ = (Z ′/2)
∑
σ=±

e−δ′
σ Nx e2π iσ [ε′

σ Nx+ 1
Nx

(h0− c
24 )+o(N−1

x )], (10)

where δ′
+, ε′

+ may differ from δ′
−, ε′

−, and we also indicated
the positivity of Z̃ ′. Now, if δ′

+ �= δ′
−, one of the chiral con-

tributions is exponentially suppressed relative to the other
as Nx → ∞, and we can apply the analysis of Sec. III. If
δ′
+ = δ′

−, we obtain

0 <
∑
σ=±

exp 2π iσ
[
ε′
σ Nx + 1

Nx

(
h0 − c

24

)
+ o

(
N−1

x

)]
, (11)

in analogy with Eq. (5). Unlike Eq. (5), taking the Nxth power
of this equation does not eliminate the mod 1 ambiguity in
h0. This corresponds to the fact that, as opposed to explic-
itly chiral systems, stacking copies of a spontaneously chiral
system does not increase its net chirality. One can replace TR

in Z̃ ′ with a larger half-translation T m
R , which would multiply

the argument of the cosine by m. However, since the largest
translation on the cylinder is obtained for m ≈ Nx/2, this does
not eliminate the mod 1 ambiguity in h0. Moreover, even
if it so happens that ε′

+ = ε′
− = 0, Eq. (11) does not imply

h0 − c/24 = 0 (mod 1) since Nx is large.
In order to make progress, we make use of the bagpipes

construction illustrated in Fig. 4. We attach M identical cylin-
ders, or “pipes”, to the given lattice, and act with TR on
these cylinders. The global topology of the given lattice is
unimportant—all that is needed is a large enough disk in
which the construction can be applied. The construction does
require some form of homogeneity in order to have a unique
extension of the Hamiltonian H ′ to the pipes and which will
be identical for all pipes. We will assume a strict translation
symmetry with respect to a sublattice, but we believe that this
assumption can be relaxed.
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TR
… 

M

FIG. 4. Bagpipes construction. We attach M identical cylinders,
or “pipes”, to the given lattice, and define the half translation TR to
act on their top halves, as indicated by blue arrows. The contributions
of the pipes to the momentum polarization adds, producing the factor
M in Eq. (12).

The resulting surface, shown in Fig. 4, has negative curva-
ture at the base of each pipe, which requires a finite number
of lattice disclinations in this region. In order to avoid any
possible ambiguity in the definition of H ′ at a disclination,
one can simply remove any local term H ′

x whose support
contains a disclination, which amounts to puncturing a hole
around each disclination. The resulting boundary components
do not contribute to the momentum polarization since TR acts
on these as the identity.

With the construction at hand, the identical contributions
of all cylinders to Z̃ ′ add, which implies

0 <
∑
σ=±

exp 2π iσM
[
ε′
σ Nx + 1

Nx

(
h0 − c

24

)
+ o

(
N−1

x

)]
. (12)

Setting M = Nx gives

0 < e2π iε′
+N2

x θ0(Nx )e−2π ic/24 + e−2π iε′
−N2

x θ∗
0 (Nx )e2π ic/24 + o(1),

(13)

where we indicate explicitly the possible Nx dependence of
θ0. This is the spontaneously chiral analog of Eq. (6) and
can be analyzed similarly. Since θ0(Nx ) is valued in the finite
set {θa}, both ε′

± must be rational, ε′
± = n±/m±. Restricting

then to Nx = nxm+m−, such that e2π iε±N2
x = 1, and θ0 attains a

constant value θa for large enough nx, we have

0 < Re(θae−2π ic/24), (14)

for some anyon a. Repeating the analysis with k times more
pipes M = kNx replaces θae−2π ic/24 in Eq. (14) with its kth
power, for all k ∈ N. This infinite set of equations then
implies θae−2π ic/24 = 1. We summarize with the following
result:

Result 2. If a local bosonic Hamiltonian H is both locally
stoquastic and in a spontaneously chiral topological phase
of matter, then one of the corresponding topological spins
satisfies θa = e2π ic/24. Equivalently, a bosonic spontaneously
chiral topological phase of matter where e2π ic/24 is not the
topological spin of some anyon, i.e., e2π ic/24 /∈ {θa}, admits no
local Hamiltonians which are locally stoquastic.

This extends Result 1 beyond explicitly chiral Hamiltonians,
and clarifies that the essence of the intrinsic sign problem
we find is the macroscopic, physically observable, condition
e2π ic/24 /∈ {θa}, as opposed to the microscopic absence (or
presence) of time-reversal and reflection symmetries.

V. DQMC: LOCALITY, HOMOGENEITY,
AND GEOMETRIC MANIPULATIONS

In order to obtain fermionic analogs of the bosonic re-
sults of the previous sections, we first need to establish a
framework in which such results can be obtained. In this
section we develop a formalism that unifies and generalizes
the currently used DQMC algorithms and design principles,
and implement within it the geometric manipulations used in
previous sections, in a sign-free manner. Since we wish to
treat the wide range of currently known DQMC algorithms
and design principles on equal footing, the discussion will
be more abstract than the simple setting of locally stoquastic
Hamiltonians used above. In particular, Secs. V A–V B lead
up to the definition of locally sign-free DQMC, which is our
fermionic analog of a locally stoquastic Hamiltonian. This
definition is used later on in Sec. VI to formulate Result 1F
and Result 2F, the fermionic analogs of Result 1 and 2. The
new tools needed to establish these results are the sign-free
geometric manipulations described in Sec. V D.

A. Local DQMC

In the presence of bosons and fermions, the many-body
Hilbert space is given by H = HF ⊗ HB, where HF is a
fermionic Fock space, equipped with an on-site occupa-
tion basis |ν〉F = ∏

x,α ( f †
x,α )νx,α |0〉F, νx,α ∈ {0, 1}, generated

by acting with fermionic (anticommuting) creation opera-
tors f †

x,α on the Fock vacuum |0〉F. The product is taken
with respect to a fixed ordering of fermion species α ∈
{1, . . . , dF} and lattice sites x ∈ X . We will also make use
of the single-fermion space H1F

∼= C|X | ⊗ CdF , spanned by
|x, α〉F = f †

x,α|0〉F, where |X | = NxNy is the system size. As
in Sec. III, HB is a many-qudit Hilbert space with local di-
mension d. It can also be a bosonic Fock space where d = ∞.

We consider local fermion-boson Hamiltonians H , of the
form

H =
∑
x,y

f †
x hx,y

0 fy + HI , (15)

where the free-fermion Hermitian matrix hx,y
0 is r0-local, it

vanishes unless |x − y| � r0, and we suppress, here and in
the following, the fermion species indices. The Hamiltonian
HI describes all possible r0-local interactions which preserve
the fermion parity (−1)Nf , where Nf = ∑

x f †
x fx, including

fermion-independent terms HB as in Sec. III. Thus HI is of the
form

HI =HB +
∑
x,y

f †
x Kx,y

B fy +
∑

x,y,z,w

f †
x f †

y V x,y,z,w
B fz fw + · · · ,

(16)

where Kx,y
B (for all x, y ∈ X ) is a local bosonic operator with

range r0, and vanishes unless |x − y| � r0, and similarly for
V x,y,z,w

B , which vanishes unless x, y, z, w are contained in a
disk or radius r0. In Eq. (15) dots represent additional pairing
terms of the form f f , f † f †, or f f f f , f † f † f † f †, as well as
terms with a higher number of fermions, all of which are r0-
local and preserve the fermion parity.

Since locality is defined in terms of anticommuting Fermi
operators, a local stoquastic basis is not expected to exist, and
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accordingly, the sign problem appears in any QMC method in
which the Boltzmann weights are given in terms of Hamilto-
nian matrix elements in a local basis [2,5]. For this reason, the
methods used to perform QMC in the presence of fermions
are distinct from the ones used in their absence. These are
collectively referred to as DQMC [4,5,17,19,20] and lead to
the imaginary time path integral representation of the partition
function Z = Tr(e−βH ),

Z =
∫

DφDψe−Sφ−Sψ,φ

=
∫

Dφe−Sφ Det(Dφ )

=
∫

Dφe−Sφ Det(I + Uφ ), (17)

involving a bosonic field φ with an action Sφ , and a
fermionic (Grassmann-valued) field ψ , with a quadratic
action Sψ,φ = ∑

x,x′
∫

dτψx,τ [Dφ]x,yψy,τ defined by the φ-
dependent single-fermion operator Dφ . In the third line of
Eq. (17) we assumed the Hamiltonian form Dφ = ∂τ + hφ(τ ),
and used a standard identity for the determinant in terms of
the single-fermion imaginary-time evolution operator Uφ =
TOe− ∫ β

0 hφ(τ )dτ [19], where TO denotes the time ordering. The
field φ (ψ) is defined on a continuous imaginary-time circle
τ ∈ R/βZ, with periodic (antiperiodic) boundary conditions,
and on the spatial lattice X . The second and third lines of
Eq. (17) define the Monte Carlo phase space {φ} and Boltz-
mann weight

p(φ) = e−Sφ Det(Dφ ) = e−Sφ Det(I + Uφ ). (18)

In applications, the DQMC representation (17) may be
obtained from the Hamiltonian H in a number of ways. If
a Yukawa-type model is assumed as a starting point [17],
i.e., HI = HB + ∑

x,y f †
x Kx,y

B fy, then the action Sφ is obtained
from the Hamiltonian HB, and hφ(τ ) = h0 + KB. Alterna-
tively, the representation (17) may be obtained through a
Hubbard-Stratonovich decoupling and/or a series expan-
sion of fermionic self-interactions [18,21,102]. Such is the
case, e.g., when there are no bosons H = HF, and HI =∑

f †
x f †

y V x,y,z,w fz fw. Note that for a given fermionic self-
interaction, there are various possible DQMC representations,
obtained, e.g., via a Hubbard-Stratonovich decoupling in dif-
ferent channels.

To take into account and generalize the above relations
between H and the corresponding DQMC representation, we
will assume only (i) that the effective single-fermion Hamil-
tonian hφ(τ ) reduces to the free fermion matrix h(0) in the
absence of φ, i.e., hφ(τ )=0 = h0, (ii) that the boson field φ

is itself an r0-local object,4 and (iii) that the r0 locality of
h0 and HI implies the r locality of Sφ and hφ(τ ), where r is
some function of r0, independent of system size. The physical

4Thus φ is a map from sets of lattice sites with diameter less
than r0, such as links, plaquettes, etc., to a fixed vector space Ck .
Additionally, the φ integration in (17) runs over all such functions.
As an example, restricting to constant functions φ leads to nonlocal
all to all interactions between fermions.

content of these assumptions is that the fields ψ and operators
f correspond to the same physical fermion,5 and that the
boson φ mediates all fermionic interactions HI and therefore
corresponds to both the physical bosons in HB and to com-
posite objects made of an even number of fermions within a
range r0 (e.g., a Cooper pair φ ∼ f f ).

We can therefore write

Sφ =
∑
τ,x

Sφ;τ,x, hφ(τ ) =
∑

x

hφ(τ );x, (19)

where each term Sφ;τ,x depends only on the values of φ at
points (x′, τ ′) with |τ − τ ′|, |x − x′| � r, and similarly, each
term hφ(τ );x is supported on a disk of radius r around x, and
depends on the values of φ(τ ) at points x within this disk.

Note that even though H is Hermitian, we do not assume
the same for hφ(τ ). Non-Hermitian hφ(τ )s naturally arise in
Hubbard–Stratonovich decouplings; see, e.g., Refs. [18,103].
Even when hφ(τ ) is Hermitian for all φ, its time dependence
implies that Uφ is non-Hermitian, and therefore Det(I + Uφ )
in Eq. (18) is generically complex valued [19]. This is the
generic origin of the sign problem in DQMC. Section V B
describes the notion of fermionic design principles, algebraic
conditions on Uφ implying Det(I + Uφ ) � 0 and defines what
it means for such design principles to be local and homoge-
nous.

In the following analysis, we exclude the case of “clas-
sically interacting fermions”, where φ is time-independent
and hφ is Hermitian. In this case the fermionic weight
Det(I + e−βhφ ) is trivially non-negative, and sign-free DQMC
is always possible, provided Sφ ∈ R. We view such models
as “exactly solvable”, on equal footing with free-fermion and
commuting projector models. Given a phase of matter, the
possible existence of exactly solvable models is independent
of the possible existence of sign-free models. Even when
an exactly solvable model exists, QMC simulations are of
interest for generic questions, such as phase transitions due
to deformations of the model [104]. In particular, Ref. [105]
utilized a classically free description of Kitaev’s honeycomb
model to obtain the thermal Hall conductance and chiral cen-
tral charge, which should be contrasted with the intrinsic sign
problem we find in the corresponding phase of matter; see
Table I and Sec. VI.

B. Local and homogenous fermionic design principles

The representation (17) is sign-free if p(φ) =
e−Sφ Det(I + Uφ ) � 0 for all φ. A design principle then
amounts to a set of polynomially verifiable properties6

of Sφ and hφ(τ ) that guarantee that the complex phase of

5Technically, via the fermionic coherent state construction of the
functional integral [95].

6That is, properties which can be verified in a polynomial-in-
β|X | time. As an example, given a local Hamiltonian, deciding
whether there exists a local basis in which it is stoquastic is NP-
complete [6,7]. In particular, one does not need to perform the
exponential operation of evaluating p on every configuration φ to
ensure that p(φ) � 0. Had this been possible, there would be no need
for a Monte Carlo sampling of the phase space {φ}.
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Det(I + Uφ ) is opposite to that of e−Sφ . For the sake of
presentation, we restrict attention to the case where Sφ

is manifestly real valued, and Det(I + Uφ ) � 0 due to an
algebraic condition on the operator Uφ , which we write
as Uφ ∈ CU . This is assumed to follow from an algebraic
condition on hφ(τ ), written as hφ(τ ) ∈ Ch, manifestly satisfied
for all φ(τ ). The set Ch is assumed to be closed under addition,
while CU is closed under multiplication: h1 + h2 ∈ Ch for all
h1, h2 ∈ Ch, and U1U2 ∈ CU for all U1,U2 ∈ CU .

The simplest example, where CU = Ch is the set of matri-
ces obeying a fixed time-reversal symmetry, is discussed in
Sec. V C. In Appendix F we review all other design principles
known to us, demonstrate that most of them are of the sim-
plified form above, and generalize our arguments to those that
are not. Comparing with the bosonic Hamiltonians treated in
Sec. III, we note that Ch is analogous to the set of stoquastic
Hamiltonians H in a fixed basis, while CU is analogous to the
resulting set of matrices e−βH with non-negative entries.

Design principles, as defined above (and in the literature),
are purely algebraic conditions, which carry no information
about the underlying geometry of space-time. However, as
demonstrated in Sec. V C, in order to allow for local inter-
actions, mediated by an r0-local boson φ, a design principle
must also be local in some sense. We will adopt the following
definitions, which are shown to be satisfied by all physical
applications of design principles that we are aware of, in
Sec. V C and Appendix F.

Definition (termwise sign-free). We say that a DQMC rep-
resentation is termwise sign-free due to a design principle
Ch, if each of the local terms Sφ;τ,x, hφ(τ );x obey the design
principle separately, rather than just they sums Sφ, hφ(τ ). Thus
Sφ;τ,x is real valued, and hφ(τ );x ∈ Ch, for all τ, x.

This is analogous to the requirement in Sec. III A that
H ′ be termwise stoquastic. Note that even when a DQMC
representation is termwise sign-free, the resulting Boltzmann
weights p(φ) are sign-free in a nonlocal manner: Det(I + Uφ )
involves the values of φ at all space-time points, and splitting
the determinant into a product of local terms by the Leib-
niz formula reintroduces signs, which capture the fermionic
statistics. In this respect, the “classical” Boltzmann weights
p(φ) are always nonlocal in DQMC.

Definition (on-site homogeneous design principle). A de-
sign principle is said to be on-site homogenous if any
permutation of the lattice sites σ ∈ SX obeys it. That is, the
operator

O(σ )
(x,α),(x′,α′ ) = δx,σ (x′ )δα,α′ , (20)

viewed as a single-fermion imaginary-time evolution opera-
tor, obeys the design principle: O(σ ) ∈ CU , for all σ ∈ SX .

This amounts to the statement that the design principle
treats all lattice sites on equal footing, since it follows that
Uφ ∈ CU if and only if O(σ )UφO(σ̃ ) ∈ CU , for all permutations
σ, σ̃ . It may be that a design principle is on-site homogeneous
only with respect to a sublattice X ′ ⊂ X . In this case we
simply treat X ′ as the spatial lattice and add the finite set
X/X ′ to the dF internal degrees of freedom. Comparing with
Sec. III A, on-site homogeneous design principles are analo-
gous to the set of Hamiltonians H ′ which are stoquastic in an

on-site homogeneous basis—any qudit permutation operator
has non-negative entries in this basis, like the imaginary time
evolution e−βH ′

.
With these two notions of locality and homogeneity in

design principles, we now define the DQMC analog of locally
stoquastic Hamiltonians (see Sec. III).

Definition (locally sign-free DQMC). Given a local
fermion-boson Hamiltonian H , we say that H allows for a
locally sign-free DQMC simulation, if there exists a local
unitary U , such that H ′ = UHU † has a local DQMC repre-
sentation (17), which is termwise sign-free due to an on-site
homogeneous design principle.

Note that the DQMC representation (17) is not of the
Hamiltonian but of the partition function, and clearly Z ′ =
Tr(e−βH ′

) = Tr(e−βH ) = Z . What the above definition entails
is that it is H ′, rather than H , from which the DQMC data
Sφ, hφ(τ ) are obtained, as described in Sec. V A. These data
are then assumed to be termwise sign-free due to an on-site
homogeneous design principle. The local unitary U appear-
ing in the above definition is generally fermionic [106]: it
can be written as a finite-time evolution U = TOe−i

∫ 1
0 H̃ (t )dt ,

where H̃ is a local fermion-boson Hamiltonian, which is either
piecewise-constant or smooth as a function of t ; cf. Sec. III A.

C. Example: Time-reversal design principle

To demonstrate the above definitions in a concrete setting,
consider the time-reversal design principle, defined by an
antiunitary operator T acting on the single-fermion Hilbert
space H1F

∼= C|X | ⊗ CdF , such that T2 = −I . The set Ch con-
tains all T-invariant matrices, [T, hφ(τ )] = 0. It follows that
[T,Uφ] = 0, so that CU = Ch in this case, and this implies
Det(I + Uφ ) � 0 [28,103].

A sufficient condition on T that guarantees that the design
principle it defines is on-site homogenous is that it is of
the form T0 = I|X | ⊗ t, where I|X | is the identity matrix on
C|X |, and t is an antiunitary on CdF that squares to −IdF .
Equivalently, T is block diagonal, with identical blocks t cor-
responding to the lattice sites x ∈ X . It is then clear that the
permutation matrices O(σ ) defined in Eq. (20) commute with
T, so O(σ ) ∈ CU for all σ ∈ SX . Note that the design principle
T may correspond to a physical time-reversal T , discussed in
Sec. IV, only if it is on-site homogenous, which is why we
distinguish the two in our notation.

Additionally, if the operator T is rT-local with some range
rT � 0, then any local hφ(τ ) which is sign-free due to T can be
made termwise sign-free. Indeed, if [T, hφ(τ )] = 0 then

hφ(τ ) = 1

2
(hφ(τ ) + Thφ(τ )T−1)

=
∑

x

1

2
(hφ(τ );x + Thφ(τ );xT−1)

=
∑

x

h̃φ(τ );x, (21)

where h̃φ(τ );x is now supported on a disk of radius r + 2rT and
commutes with T, for all x. We see that the specific notion
of rT-locality coincides with the general notion of “termwise
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sign-free”. In particular, T = T0 has a range rT = 0, and can
therefore be applied termwise.

The above statements imply that if T = uT0u†, where u
is a single-fermion local unitary, and H has a local DQMC
representation which is sign-free due to T, then H allows
for a locally sign-free DQMC simulation. Indeed, extending
u to a many-body local unitary U , we see that H ′ = UHU †

admits a local DQMC representation where [T0, h′
φ(τ )] = 0.

Since T0 is on-site homogenous, and h′
φ(τ ) can be assumed

termwise sign-free [see Eq. (21)], we have the desired result.
As demonstrated in Appendix F, much of the above analysis
carries over to other known design principles.

All realizations of T presented in Ref. [103] in the context
of generalized Hubbard models, and in Ref. [17] in the context
of quantum critical metals, have the on-site homogeneous
form T0, and therefore correspond to locally sign-free DQMC
simulations.

We now consider a few specific time-reversal design prin-
ciples T. The physical spin-1/2 time reversal T = T (1/2),
where T (1/2)

(x,α),(x′,α′ ) = δx,x′εαα′K, and α, α′ ∈ {↑,↓} correspond
to up and down spin components, is an on-site homogeneous
design principle, which accounts for the absence of signs in
the attractive Hubbard model [103]. The composition T =
MT (1/2) of T (1/2) with a modulo 2 translation, M(x,α),(x′,α′ ) =
δ(−1)x,(−1)x′+1δxe,x′

e
δy,y′δα,α′ , where xe = 2�x/2� is the even part

of x, is an on-site homogeneous design principle with respect
to the sublattice X ′ = {(2x1, x2) : x ∈ X }, but not with respect
to X . On the other hand, the composition T = P (0)T (1/2) of
T (1/2) with a spin-less reflection (or parity) P (0)

(x,α),(x′,α′ ) =
δx,−x′δy,y′δαα′ , is not on-site homogeneous with respect to any
sublattice.

The latter example is clearly nonlocal, and we use it to
demonstrate the necessity of locality in design principles. As
discussed in Sec. IV, the breaking of P and T down to PT
actually defines the notion of chirality, and therefore PT is
a natural symmetry in chiral topological matter. Accordingly,
the design principle T = P (0)T (1/2) applies to a class of mod-
els for chiral topological phases; see Appendix E. This seems
to allow, from the naive algebraic perspective, for a sign-free
DQMC simulation of certain chiral topological phases. How-
ever, the weights p(φ) will be non-negative only for bosonic
configurations φ which are invariant under T = P (0)T (1/2).
Restricting the φ integration in Eq. (17) to such configurations
leads to nonlocal interactions between fermions ψ , coupling
the points (x, y) and (−x, y). These interactions effectively
fold the nonlocal chiral system into a local nonchiral system of
half of space; see Fig. 5. Thus, T = P (0)T (1/2) does not allow
for sign-free DQMC simulations of chiral topological matter.

D. Sign-free geometric manipulations in DQMC

Let Z be a partition function in a local DQMC form (17), on
the discrete torus X = ZNx × ZNy and imaginary time circle
S1

β = R/βZ, which is termwise sign-free due to an on-site
homogenous design principle. In this section we show that it is
possible to cut X to the cylinder C, and subsequently introduce
a screw dislocation in the space-time C × S1

β , which corre-
sponds to the momentum polarization (3), while maintaining
the DQMC weights p(φ) non-negative.

(a) (b)

(c) (d)

FIG. 5. PT symmetry as a “nonlocal design principle” for chiral
topological matter. (a, c) PT symmetry, where P is a reflection (with
respect to the orange lines) and PT is an on-site time-reversal, is a
natural symmetry in chiral topological phases. If (PT )2 = −I , as is
the case when P = P (0) is spin-less and T = T (1/2) is spin-full, it
implies the non-negativity of fermionic determinants. Nevertheless,
as PT is nonlocal, it allows only for QMC simulations with PT
invariant bosonic fields, which mediate nonlocal interactions (blue
lines) between fermions. Arrows indicate the chirality of boundary
degrees of freedom. (b, d) Such nonlocal interactions effectively
fold the system into a nonchiral locally interacting system supported
on half the cylinder, where PT acts as an on-site time reversal.
In particular, the boundary degrees of freedom are now nonchiral.
Thus, PT does not allow for sign-free QMC simulations of chiral
topological matter. More generally, fermionic design principles must
be local in order to allow for sign-free DQMC simulations of local
Hamiltonians.

1. Introducing spatial boundaries

Given a translation T d (d ∈ X ), we can cut the torus X
along a line l parallel to d, and obtain a cylinder C where
T d acts as a translation within each boundary component, as
in Sec. III. Given the DQMC representation (17) on X , the
corresponding representation on C is obtained by eliminating
all local terms Sφ;τ,x, hφ(τ );x whose support overlaps l , as in
Fig. 3. This procedure may render Sφ, hφ(τ ) independent of
certain degrees of freedom φ(x, τ ), ψ (x, τ ), with x within a
range r of l , in which case we simply remove such degrees of
freedom from the functional integral (17).7 Since Sφ;τ,x, hφ(τ );x
obey the design principle for every x, τ , the resulting Sφ, hφ(τ )

still obey the design principle and the weights p(φ) remain
real and non-negative.

2. Introducing a screw dislocation in space-time

Let us now restrict attention to d = (1, 0), and make con-
tact with the momentum polarization (3). Given a partition
function on the space-time C × S1

β , consider twisting the
boundary conditions in the time direction,

φτ+β,x,y = φτ,x−λ�(y),y, ψτ+β,x,y = −ψτ,x−λ�(y),y. (22)

7For r0-local φ, which is defined on links, plaquettes, etc., we also
remove from the functional φ integration those links, plaquettes, etc.
which overlap l .
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Note that λ ∈ ZNx , since x ∈ ZNx . In particular, the full twist
λ = Nx is equivalent to the untwisted case λ = 0, which is
equivalent to the statement that the modular parameter of the
torus is defined mod 1 (see, e.g., example 8.2 of Ref. [107]).
The case λ = 0 gives the standard boundary conditions, where
the partition function is, in Hamiltonian terms, just Z =
Tr(e−βH ). In this case Z > 0 since H is Hermitian, though
its QMC representation Z = ∑

φ p(φ) will generically involve
complex valued weights p. The twisted case λ = 1 includes
the insertion of the half-translation operator

Z̃ = Tr(TRe−βH ), (23)

which appears in the momentum polarization (3). Since TR

is unitary rather than hermitian, Z̃ itself will generically be
complex. However, we make the following claim:

Claim: If Z has a local DQMC representation (17), which
is termwise sign-free due to an on-site homogeneous design
principle, then Z̃ also has a sign-free QMC representation:
Z̃ = ∑

φ p̃(φ), with p̃(φ) � 0. In particular, Z̃ � 0.
Proof of the claim is provided below. It revolves around

two physical points: (i) For the boson φ, we use only the
fact that all boundary conditions, and those in Eq. (22) in
particular, are locally invisible. (ii) For the fermion ψ , the
local invisibility of boundary conditions does not suffice, and
the important point is that translations do not act on internal
degrees of freedom, and therefore correspond to permutations
of the lattice sites. The same holds for the half translation TR.
This distinguishes translations from internal symmetries, as
well as from all other spatial symmetries, which involve point
group elements, and generically act nontrivially on internal
degrees of freedom. For example, a C4 rotation will act non-
trivially on spin-full fermions.

Proof. We first consider the fermionic part of the Boltz-
mann weight, Det(I + Uφ ). The Hamiltonian hφ(τ ) depends on
the values of φ at a single time slice τ and is therefore unaf-
fected by the twist in bosonic boundary conditions. It follows
that Uφ is independent of the twist in bosonic boundary con-
ditions. On the other hand, the fermionic boundary conditions
in (22) correspond to a change of the time evolution operator
Uφ �→ TRUφ , in analogy with (23). Since the design principle
CU is assumed to be on-site homogeneous, and TR = O(σ ) is a
permutation operator, with σ :(x, y) �→ (x + �(y), y), we have
TRUφ ∈ CU , and Det(I + TRUφ ) � 0.

Let us now consider the bosonic part of the Boltzmann
weight e−Sφ , where each of the local terms Sφ;τ,x is manifestly
real valued for all φ. We assume that the imaginary time
circle S1

β is discretized, such that the total number of space-
time points (τ, x) = u ∈ U is finite. Such a discretization is
common in DQMC algorithms [19,21], and the continuum
case can be obtained by taking the appropriate limit. The term
Sφ;τ,x can then be written as a composition f ◦ gV , where f
is a real-valued function, and gV :(φu)u∈U �→ (φu)u∈V chooses
the values of φ on which Sφ;τ,x depends, where V ⊂ U is the
support of Sφ;τ,x. The bosonic boundary conditions (22) then
amount to a modification of the support V �→ Vλ, as depicted
in Fig. 6, but not of the function f , which remains real valued.
In particular, for λ = 1 we have Sφ;τ,x �→ S̃φ;τ,x = f ◦ gV1 , and
Sφ �→ S̃φ = ∑

τ,x S̃φ;τ,x ∈ R.

τ
β

0
r

x

λ

FIG. 6. Implementing the bosonic boundary conditions (22). The
lattice lies in the x-τ plane, at y > 0 where the boundary conditions
are nontrivial. The orange area marks the support, of diameter r, of
a local term Sφ;τ,x which is unaffected by the boundary conditions.
Blue areas correspond to the support of a local term which is affected
by the boundary conditions, with pale blue indicating the untwisted
case λ = 0.

Combining the above conclusions for the bosonic and
fermionic parts of p̃(φ) = e−S̃φ Det(I + TRUφ ), we find that
p̃(φ) � 0 for all φ.

VI. EXCLUDING SIGN-FREE DQMC FOR CHIRAL
TOPOLOGICAL MATTER

We are now ready to demonstrate the existence of an in-
trinsic sign problem in chiral topological matter comprised of
bosons and fermions, using the machinery of Secs. III–V.

Let H be a gapped local fermion-boson Hamiltonian on
the discrete torus, which allows for a locally sign-free DQMC
simulation. Unpacking the definition, this means that H ′ =
UHU † has a local DQMC representation which is termwise
sign-free due to an on-site homogeneous design principle.
As shown in Sec. V D, this implies that Z̃ ′ := Tr(TRe−βH ′

),
written on the cylinder, also has a local DQMC representa-
tion, obeying a local and on-site design principle, and as a
result, Z̃ ′ > 0. Now, as shown in Sec. III, the positivity of Z̃ ′
implies θa = e2π ic/24 for some anyon a. We therefore have the
fermionic version of Result 1,

Result 1F. If a local fermion-boson Hamiltonian H , which is
in a chiral topological phase of matter, allows for a locally
sign-free DQMC simulation, then one of the corresponding
topological spins satisfies θa = e2π ic/24. Equivalently, a chiral
topological phase of matter where e2π ic/24 is not the topo-
logical spin of some anyon, i.e., e2π ic/24 /∈ {θa}, admits no
local fermion-boson Hamiltonians for which locally sign-free
DQMC simulation is possible.

As shown in Sec. IV, the positivity of Z̃ ′ implies θa =
e2π ic/24 for some anyon a, even if chirality appears only
spontaneously. We therefore obtain the fermionic version of
Result 2:

Result 2F. If a local fermion-boson Hamiltonian H , which is
in a spontaneously chiral topological phase of matter, allows
for a locally sign-free DQMC simulation, then one of the
corresponding topological spins satisfies θa = e2π ic/24. Equiv-
alently, a spontaneously chiral topological phase of matter
where e2π ic/24 is not the topological spin of some anyon, i.e.,
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e2π ic/24 /∈ {θa}, admits no local fermion-boson Hamiltonians
which allow for a locally sign-free DQMC simulation.

In stating these results, we do not restrict to fermionic phases,
because bosonic phases may admit a fermionic description,
for which DQMC is of interest. When a bosonic phase admits
a fermionic description, the bosonic field φ in Eq. (17) will
contain a Z2 gauge field that couples to the fermion parity
(−1)Nf of ψ . An important series of examples is given by the
non-Abelian Kitaev spin liquids, which admit a description
in terms of gapped Majorana fermions with an odd Chern
number ν, coupled to a Z2 gauge field [46]. As described
in Table I, the criterion e2π ic/24 /∈ {θa} applies to the Kitaev
spin liquid, for all ν ∈ 2Z − 1. Result 1 then excludes the
possibility of locally stoquastic Hamiltonians for the micro-
scopic description in terms of spins, while Result 1F excludes
the possibility of locally sign-free DQMC simulations in the
emergent fermionic description.

VII. CONJECTURES: BEYOND CHIRAL MATTER

In Secs. III–VI we established a criterion for the exis-
tence of intrinsic sign problems in chiral topological matter:
if e2π ic/24 /∈ {θa}, or equivalently 1 /∈ Spec(T) (see Result
1′), then an intrinsic sign problem exists. Even if taken at
face value, this criterion never applies to nonchiral bosonic
topological phases, where c = 0, due to the vacuum topologi-
cal spin 1 ∈ {θa}. The same statement applies to all bosonic
phases with c ∈ 24Z. In this section we propose a refined
criterion for intrinsic sign problems in topological matter,
which nontrivially applies to both chiral and nonchiral cases,
and also unifies the results of this paper with those obtained
by other means in our parallel work [38].

Reference [94] proposed the “universal wave-function
overlap” method for characterizing topological order from any
basis {|i〉} for the ground-state subspace of a local gapped
Hamiltonian H on the torus X . The method is based on the
conjecture

〈i|Tm| j〉 =e−αTA+o(A−1 )Ti j, (24)

where A is the area of the torus, αT is a nonuniversal com-
plex number with non-negative real part, the microscopic
Dehn-twist operator Tm implements the Dehn twist (x, y) �→
(x + y, y) on the Hilbert space, and Ti j are the entries of the
topological T matrix that characterizes the phase of H , in the
basis {|i〉}. The same statement applies to any element M of
the mapping class group of the torus, isomorphic to SL(2,Z),
with M in place of T in Eq. (24). The nonuniversal exponential
suppression of the overlap is expected because Mm will not
generically map the ground-state subspace to itself, but if
Mm happens to be a symmetry of H , then αM = 0 [80,108].
Though we are not aware of a general analytic derivation
of Eq. (24), it was verified analytically and numerically in
a large number of examples in Refs. [94,98,109–111], for
Hamiltonians in both chiral and nonchiral phases.

Note the close analogy between Eq. (24) and the momen-
tum polarization (3), where the microscopic Dehn-twist Tm

on the torus and the half translation TR on the cylinder play
a similar role, and nonuniversal extensive contributions are
followed by subextensive universal data. To make this analogy

clearer, and make contact with the analysis of Secs. III and VI,
we consider the object ZT = Tr(Tme−βH ), which satisfies

ZT =Ze−αTA+o(A−1 )Tr(T), (25)

and can be interpreted as either the (unnormalized) thermal
expectation value of Tm, or the partition function on a space-
time twisted by T, in analogy with Sec. II C. Equation (25)
is valid for temperatures �E 
 1/β 
 Eg, much lower than
the bulk gap Eg and much higher than any finite-size splitting
in the ground-state subspace, �E = o(A−1).

Just like TR, the operator Tm acts as a permutation of the
lattice sites. Therefore, following Secs. III and VI, if H is
either locally stoquastic, or admits a locally sign-free DQMC
simulation, then Tr(T) � 0. In terms of c and {θa}, this im-
plies e−2π ic/24 ∑

a θa = Tr(T) � 0, where the sum runs over
all topological spins.

The last statement applies to both bosonic and fermionic
Hamiltonians. For bosonic Hamiltonians, it can be
strengthened by means of the Frobenius-Perron theorem. If
H ′ = UHU † is stoquastic in the on-site basis |s〉, Hermitian,
and has a degenerate ground-state subspace, then this
subspace can be spanned by an orthonormal basis |i′〉 with
positive entries in the on-site basis, 〈s|i′〉 � 0; see, e.g.,
Ref. [38]. This implies that

0 � 〈i′|Tm| j′〉 =e−α′
TA+o(A−1 )Ti′ j′ , (26)

where α′
T is generally different from αT, but the matrix Ti′ j′

has the same spectrum as Ti j in Eq. (24). This is a stronger
form of (25), which implies Ti′ j′ � 0. Since Ti′ j′ is also
unitary, it is a permutation matrix, Ti′ j′ = δi′,σ ( j′ ) for some
σ ∈ SN , where N is the number of ground states. In turn, this
implies that the spectrum of T is a disjoint union of complete
sets of roots of unity,

{θae−2π ic/24}N
a=1 = Spec(T) =

K⋃
k=1

Rnk , (27)

where Rnk is the set of nkth roots of unity, nk, K ∈ N, and∑K
k=1 nk = N . Therefore,

Conjecture 1. A bosonic topological phase of matter where
{θae−2π ic/24} is not a disjoint union of complete sets of roots of
unity admits no local Hamiltonians which are locally stoquas-
tic.

In particular, this implies an intrinsic sign problem whenever
1 /∈ {θae−2π ic/24}, thus generalizing Result 1. Moreover, the
above statement applies nontrivially to phases with c ∈ 24Z.
In particular, for nonchiral phases, where c = 0, it reduces
to the result established in Ref. [38], thus generalizing it as
well. The simplest example for a nonchiral phase with an
intrinsic sign problem is the doubled semion phase, where
{θa} = {1, i,−i, 1} [37].
Though we are currently unaware of an analog of the
Frobenius-Perron theorem that applies to DQMC, we expect
that an analogous result can be established for fermionic
Hamiltonians.

Conjecture 1F. A topological phase of matter where
{θae−2π ic/24} is not a disjoint union of complete sets of roots of
unity, admits no local fermion-boson Hamiltonians for which
locally sign-free DQMC simulation is possible.
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The above conjectures suggest a substantial improvement over
the criterion e2π ic/24 /∈ {θa}. To demonstrate this, we go back
to the 1/q Laughlin phases and SU(2)k Chern-Simons theories
considered in Table I. We find a conjectured intrinsic sign
problem in all of the first 1000 bosonic Laughlin phases (q
even), fermionic Laughlin phases (q odd), and SU(2)k Chern-
Simons theories. In particular, we note that the prototypical
1/3 Laughlin phase is not captured by the criterion e2π ic/24 /∈
{θa}, but is conjectured to be intrinsically sign-problematic.

VIII. DISCUSSION AND OUTLOOK

In this paper we established the existence of intrinsic sign
problems in a broad class of chiral topological phases, namely,
those where e2π ic/24 does not happen to be the topological
spin of an anyon. Since these intrinsic sign problems persist
even when chirality, or time-reversal symmetry breaking, ap-
pears spontaneously, they are rooted in the macroscopic and
observable data c, {θa}, rather than the microscopic absence
(or presence) of time-reversal symmetry. Going beyond the
simple setting of stoquastic Hamiltonians, we provided the
first treatment of intrinsic sign problems in fermionic sys-
tems. In particular, we constructed a general framework which
describes all DQMC algorithms and fermionic design prin-
ciples that we are aware of, including the state-of-art design
principles [18,22–24] which are only beginning to be used
by practitioners. Owing to its generality, it is likely that our
framework will apply to additional design principles which
have not yet been discovered, insofar as they are applied lo-
cally. We also presented conjectures that strengthen our results
and unify them with those obtained in Refs. [9,38], under a
single criterion in terms of c and {θa}. These conjectures also
imply intrinsic sign problems in many topological phases not
covered by existing results.

Conceptually, our results show that the sign problem is not
only a statement of computational complexity: it is, in fact,
intimately connected with the physically observable proper-
ties of quantum matter. Such a connection has long been
heuristically appreciated by QMC practitioners and is placed
on a firm and quantitative footing by the discovery of intrinsic
sign problems.

Despite the progress made here, our understanding of in-
trinsic sign problems is still in its infancy, and many open
questions remain:

Quantum computation and intrinsic sign problems. Intrinsic
sign problems relate the physics of topological phases to their
computational complexity, in analogy with the classification
of topological phases which enable universal quantum com-
putation [48,49]. As we have seen, many phases of matter
that are known to be universal for quantum computation are
also intrinsically sign-problematic, supporting the paradigm
of “quantum advantage” or “quantum supremacy” [50]. De-
termining whether intrinsic sign problems appear in all phases
of matter which are universal for quantum computation is an
interesting open problem. Additionally, we identified intrinsic
sign problems in many topological phases which are not uni-
versal for quantum computation. The intermediate complexity
of such phases between classical and quantum computation is
another interesting direction for future work.

Unconventional superconductivity and intrinsic sign prob-
lems. As described in the introduction, a major motivation for
the study of intrinsic sign problems comes from long-standing
open problems in fermionic many-body systems, the nature
of high temperature superconductivity in particular. It is cur-
rently believed that many high temperature superconductors,
and the associated repulsive Hubbard models, are nonchiral d-
wave superconductors [17,27], in which we did not identify an
intrinsic sign problem. The optimistic possibility that the sign
problem can in fact be cured in repulsive Hubbard models is
therefore left open, though this has not yet been accomplished
in the relevant regime of parameters, away from half filling,
despite intense research efforts [26]. Nevertheless, the state of
the art DMRG results of Ref. [27] does not exclude the possi-
bility of a chiral d-wave superconductor (� = ±2 in Table I).
In this case we do find an intrinsic sign problem, which would
account for the notorious sign problems observed in repulsive
Hubbard models. More speculatively, it is possible that the
mere proximity of repulsive Hubbard models to a chiral d-
wave phase stands behind their notorious sign problems. The
possible effect of an intrinsic sign problem in a given phase on
the larger phase diagram was recently studied in Ref. [112].
There is also evidence for chiral d-wave superconductivity
in doped graphene and related materials [113,114], and our
results therefore suggest the impossibility of sign-free QMC
simulations of these. We believe that the study of intrinsic sign
problems in the context of unconventional superconductivity
is a promising direction for future work.

Nonlocality as a possible route to sign-free QMC. The
intrinsic sign problems identified in this work add to ex-
isting evidence for the complexity of chiral topological
phases—these do not admit local commuting projector Hamil-
tonians [54,115–117], nor do they admit local Hamiltonians
with a PEPS state as an exact ground state [43,118–120].

Nevertheless, relaxing the locality requirement does lead to
positive results for the simulation of chiral topological matter
using commuting projectors or PEPS. First, commuting pro-
jector Hamiltonians can be obtained if the local bosonic or
fermionic degrees of freedom are replaced by anyonic (and
therefore nonlocal) excitations of an underlying chiral topo-
logical phase [121]. Second, chiral topological Hamiltonians
can have a PEPS ground state if they include interactions (or
hopping amplitudes) that slowly decay as a power law with
distance.

One may therefore hope that sign-free QMC simulations of
chiral topological matter can also be performed if the locality
requirements made in Sec. V are similarly relaxed. Do such
“weakly local” sign-free models exist?

Easing intrinsic sign problems. In this paper we proved
the existence of an intrinsic sign problem in chiral topolog-
ical phases of matter, but we did not quantify the severity
of this sign problem, which is an important concept in both
practical applications and theory of QMC. The severity of a
sign problem is quantified by the smallness of the average
sign of the QMC weights p with respect to the distribution
|p|, i.e., 〈sgn〉 := ∑

p/
∑ |p|. Since 〈sgn〉 can be viewed as

the ratio of two partition functions, it obeys the generic scal-
ing 〈sgn〉 ∼ e−�βN , with � � 0, as βN → ∞ [2,10]. A sign
problem exists when � > 0, in which case QMC simulations
require exponential computational resources, and this is what
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the intrinsic sign problem we identified implies for “most”
chiral topological phases of matter. From the point of view of
computational complexity, all that matters is whether � = 0
or � > 0, but for practical applications the value of � is very
important; see, e.g., Ref. [113]. One may hope for a possible
refinement of our results that provides a lower bound �0 > 0
for �, but since we have studied topological phases of matter,
we view this as unlikely. It may therefore be possible to obtain
fine-tuned models and QMC methods that lead to a � small
enough to be practically useful. More generally, it may be
possible to search for such models and methods algorithmi-
cally, thus easing the intrinsic sign problem [10,122–124].
We also note that the results presented in this paper do not
exclude approaches to the sign problem based on a modified
or constrained Monte Carlo sampling [13,125,126], as well
as machine-learning-aided QMC [127], and infinite-volume
diagrammatic QMC [128].

Possible extensions. The chiral central charge appears only
modulo 24 in our results. Nevertheless, the full value of c is
physically meaningful, as reviewed in the introduction. Does
an intrinsic sign problem exist in all phases with c �= 0? The
results of Ref. [39] strongly suggest this.

The arguments of Ref. [38] and Sec. VII apply equally
well to any element of the modular group, rather than just
the topological T matrix, implying that the spectrum of all
elements decomposes into full sets of roots of unity. This
may imply a more restrictive constraint on the TFT data than
conjectured in Sec. VII.

It is believed that all SPT phases can be characterized
by universal complex phases acquired by their partition
functions, when placed on certain nontrivial space-times
[75,129–132], in analogy with Eq. (3). Loosely speaking, for
an SPT with on-site symmetry group G, the relevant space-
time would be obtained by purely geometric manipulations
as performed in this paper, along with a twisting of boundary
conditions by elements g ∈ G. Since each G acts on-site, we
do not expect intrinsic sign problems whenever a nontrivial
g is required to detect the SPT [133–136]. Nevertheless, it
may be possible to obtain weaker statements, constraining the
possible bases in which a Hamiltonian in a G-SPT may be
stoquastic. Such constraints may be more useful for designing
sign-free models than the stronger intrinsic sign problems
discussed in this paper. Similar questions arise in the context
of topologically ordered phases, enriched by an on-site sym-
metry.

Finally, going beyond gapped topological phases, are there
intrinsically sign-problematic phases which are not gapped,
not topological, or both? It is the authors’ hope that answers
to some of these questions will shed new light on the quantum
many-body problem.
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APPENDIX A: FURTHER DETAILS REGARDING EQ. (3)

This Appendix involves basic facts in CFT, which can be
found in, e.g., Refs. [84,85].

1. Definition of h0 and ambiguities in its value

A chiral topological phase of matter has a finite-
dimensional ground-state subspace on the spatial torus. A
basis {|a〉}N

a=1 for the torus ground-state subspace exists, such
that each state |a〉 corresponds to a conformal family in the
boundary CFT [40,41,108], constructed over a primary with
right- or left-moving conformal weights h(l )

a , h(r)
a � 0. The

corresponding chiral and total conformal weights are then
given by ha = h(l )

a − h(r)
a and h+

a = h(l )
a + h(r)

a , respectively.
The chiral and total central charges of the CFT are similarly
defined in terms of the left- or right-moving central charges,
c = c(l ) − c(r) and c+ = c(l ) + c(r).

When the torus is cut to a cylinder with finite circum-
ference L, the ground-state degeneracy is lifted, generically
leaving a unique ground state. The lowest energy eigenstates
on the cylinder can also be labeled as {|a〉}N

a=1. Each |a〉
corresponds to a nonuniversal choice of state in the conformal
family labeled by h(l )

a , h(r)
a , which need not be the primary, as

demonstrated explicitly in Appendix B.
If the boundary is described by an idealized CFT, all |a〉s

correspond to primaries, and the corresponding energies are
given by Ea = (4πv/L)(h+

a − c+/24), relative to the ground-
state energy on the torus, where v is the velocity of the CFT
and L is the circumference of the cylinder. These expres-
sions receive exponentially small corrections of O(Le−R/ξ )
and O(Re−L/ξ ), where ξ is the bulk correlation length and R
is the length of the cylinder [80]. The cylinder ground state
then corresponds to the CFT ground state, the primary with
minimal h+

a .
More generally, each state |a〉 corresponds to either a

primary or a descendent and has conformal weights h(l )
a +

n(l )
a , h(r)

a + n(r)
a , where n(l )

a , n(r)
a ∈ N0. The corresponding en-

ergies Ea differ from the idealized (4πv/L)(h+
a − c+/24),

and the choice of conformal family a0 with minimal Ea0

is nonuniversal. In terms of na = n(l )
a − n(r)

a , we then define
h0 := ha0 + na0 , the chiral conformal weight associated with
the cylinder ground state |a0〉. The value of h0 therefore carries
two ambiguities: a choice of conformal family a0 ∈ {a}, and
the choice of a state in the conformal family, na0 ∈ N0. As
described in Sec. II B, the only universal statement is θ0 =
e2π ih0 ∈ {θa}, where θa = e2π iha are the topological spins of
bulk anyons.

The result of Ref. [40] for the momentum polarization is
given in terms of the low-lying cylinder eigenstates |a〉,

〈a|TR|a〉 = exp
[
αNx + 2π i

Nx

(
ha − c

24

)
+ o

(
N−1

x

)]
, (A1)
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where the lattice spacing is set to 1, Nx = L. It follows that
the thermal expectation value Z̃/Z = Tr(TRe−βH )/Z is equal
to exp [αNx + 2π i

Nx
(h0 − c

24 ) + o(N−1
x )], if the temperature β−1

is much lower than the boundary energy differences ∼N−1
x ,

namely, β−1 = o(N−1
x ), as described in Sec. II.

2. The value of h0 in fermionic phases of matter

Fermionic topological phases are microscopically com-
prised of fermions (and possibly bosons) and have the fermion
parity (−1)Nf as a global symmetry [47,75,137,138]. It is
therefore useful to probe such phases with a background Z2

gauge field corresponding to (−1)Nf or a spin structure. For
our purposes, this amounts to considering both periodic and
antiperiodic boundary conditions around noncontractible cy-
cles in space-time.

In the main text we were interested only in locally sign-
free QMC representations of thermal partition functions, and
sign-free geometric manipulations that can be performed to
these. We therefore restricted attention to thermal boundary
conditions in the imaginary time direction (see Sec. V A) and
to periodic boundary conditions around the spatial cylinder.
These boundary conditions cannot generically be modified
without introducing signs into the QMC weights.

Here we provide a fuller picture by considering the be-
havior of h0 with both periodic and antiperiodic boundary
conditions, in the closed x direction of the spatial cylinder.
Since h0 is a ground-state property, the time direction is open
and does not play a role.

For a fermionic chiral topological phase, the boundary
CFT is also fermionic. The primary conformal weights {ha}
then depend on the choice of boundary conditions (in the x
direction), and as a result, so will the set of topological spins
{θa} in which θ0 = e2π ih0 is valued. In particular, the vacuum
spin θI = 0 will not be included in {θa} for periodic boundary
conditions, while for antiperiodic boundary conditions, both
the vacuum θI = 1 and the spin θψ = −1 of the microscopic
fermion will appear [41,84]. Note that θψ does not correspond
to an emergent fermion, as in, e.g., the toric code [139], and
therefore does not imply an additional ground state on the
torus.

As an example, consider the series of Laughlin phases at
filling 1/q, with q ∈ N, all of which have the chiral central
charge c = 1. First, for q ∈ 2N the phase is bosonic, and
we consider only periodic boundary conditions. The primary
conformal weights are given by ha = a2/2q [36,140], with
a ∈ N0. The topological spins θa = e2π iha depend only on a
mod q, and the q spins {θa}q−1

a=0 (appearing in Table I) cor-
respond to the q degenerate ground states on the torus. In
particular, the vacuum spin θI = 1 is obtained for a = 0.

For q ∈ 2N − 1 the phase is fermionic, and we consider
both periodic and antiperiodic boundary conditions. For pe-
riodic boundary conditions the weights are given by ha =
(a + 1/2)2/2q [36]. As in the bosonic case, θa = e2π iha de-
pend only on a mod q, with {θa}q−1

a=0 (appearing in Table I)
corresponding to the q degenerate ground states on the torus.
Unlike the bosonic case, the vacuum spin θI = 1 is not in-
cluded in {θa}q−1

a=0. For antiperiodic boundary conditions, the
weights are given by ha = a2/2q as in the bosonic case [140].

The set {θa}q−1
a=0 again corresponds to the q torus ground states,

but now θψ = θa=q = −1 is an additional topological spin that
corresponds to the physical fermion ψ [69].

The simplest fermionic Laughlin phase is given by q = 1,
and corresponds to a Chern insulator with Chern number
ν = 1 [86,87], which is studied in detail in Appendix B. The
Chern insulator has a unique ground state on the torus, and
accordingly, there is a unique topological spin θσ = e2π i(1/8)

for periodic boundary conditions on the cylinder, and two
topological spins θI = 1, θψ = −1 for antiperiodic boundary
conditions. Here ψ corresponds the physical fermions from
which the Chern insulator is comprised. The object carrying
the spin θσ is the complex analog of the celebrated Majorana
zero mode supported on vortices in the bulk of a p + ip
superconductor [46,52].

APPENDIX B: MOMENTUM POLARIZATION
WITH NON-CFT BOUNDARIES

As reviewed in Sec. II, the existing analytic derivation
of Eq. (3) relies on the CFT description of the physical
boundaries of the cylinder, and of the line y = 0 where TR is
discontinuous [40]. In this Appendix we perform an analytic
and numerical study that shows that, at least for free fermions,
the relevant CFT expressions and the resulting Eq. (3) hold
even if the boundary is not described by an idealized CFT.
We will, however, find a number of subtleties which have
not been demonstrated in the literature, as already described
below Eq. (2) and in Appendix A.

1. CFT finite-size correction in non-CFT boundaries

The main ingredient in the analytic derivation of Eq. (3)
is the expression (2) for the finite-size correction to the mo-
mentum density in CFT [40]. In this Appendix we show that,
at least in the noninteracting case, Eq. (2) remains valid,
with θ0 = e2π ih0 ∈ {θa}, even when the boundary cannot be
described by a CFT.

We will consider a Chern insulator, such as the proto-
typical Haldane model [86]. When the boundary degrees
of freedom can be described by a CFT, they correspond
to the Weyl fermion CFT, where c = ±1 and the primary
conformal weights are hσ = ±1/8 (hI = 0, hψ = ±1/2) for
periodic (antiperiodic) boundary conditions, as described in
Appendix A 2. The sign corresponds to the two possible
chiralities. More generally, on a lattice with spacing 1, the
boundary supports a complex fermion with an energy dis-
persion εk , where k = kx takes values in the Brillouin zone
R/2πZ for an infinite circumference L = ∞, or its discretiza-
tion (2π/L)ZL [(2π/L)(ZL + 1/2)], for L < ∞ and periodic
(antiperiodic) boundary conditions. The only requirement on
εk is that it be chiral, in the sense that it connects the two
separated bulk energy bands. If the intersections kl and ku with
the lower and upper bulk bands, respectively, satisfy kl < ku

(kl > ku), we say that the boundary is right (left) moving, or
has a positive (negative) chirality; see Fig. 7.

More generally, the dispersion will contain several disper-
sion branches {ε j,k}J

j=1, but since the momentum density is
additive in j we restrict attention to a single branch. Without
loss of generality, we also fix the chemical potential μ = 0,
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FIG. 7. Schematic band structure, energy ε as a function of mo-
mentum k = kx in the periodic x direction, of a Chern insulator on
the cylinder. The figure shows the bulk energy bands (blue) and the
chiral boundary dispersion, with two dispersion branches, on a single
boundary component (orange and red curves). The opposite chirality
branches on the second boundary component are not drawn. The
momenta kl and ku correspond to the intersections of the boundary
dispersion with the lower and upper bulk bands, respectively. Since
ku > kl , both dispersion branches have a positive chirality. The or-
ange line indicates the idealized linear dispersion with a single Fermi
momentum kF = 0, which corresponds to the Weyl fermion CFT.
The solid red curve corresponds to a more general chiral branch, with
three Fermi momenta kF,1, kF,2, kF,3, where the dispersion around kF,2

takes a (nongeneric) nonlinear form. With periodic boundary condi-
tions around the cylinder, both dispersion branches produce the same
L−2 correction to the momentum density in Eq. (B2), with a positive
chirality +, up to a mod 1 ambiguity: 1/12 �→ 1/12 + n, n ∈ N.

in which case the Fermi momentum kF satisfies εkF = 0. The
value of kF plays an important role is the subsequent analysis.

The simplest dispersion that satisfies the above require-
ments is the linear one εk = v(k − kF ). For kF = 0 this
corresponds to the Weyl fermion CFT. The presence of kF �=
0 corresponds to the addition of a chemical potential vkF ,
which breaks the conformal symmetry. The generic form is
εk = v(k − kF ) + O(k − kF )2. A nongeneric dispersion can
take the form εk = v3(k − kF )3 + O(k − kF )4, and there may
be several Fermi momenta if the dispersion is non monotonic;
see Fig. 7.

In all cases the many-body ground-state momentum is
given by summing the momenta of all filled single Fermion
states p(L) = 1

L

∑
εk<0 k, where the sum runs over k ∈

(2π/L)ZL such that εk is negative and in the bulk energy gap.
In order to obtain p as a continuous function of L, we treat the
bulk energy gap as a smooth cutoff p(L) = 1

L

∑
εk<0 kC(εk ),

where the function C(ε) goes to 1 (0) fast enough as ε goes
to 0 (εkl or εku ).8 The cutoff C represents the smooth delocal-
ization of boundary eigenstates as their energy nears the bulk
energy bands.

To obtain the L dependence of p(L), we will use the Euler-
Maclaurin formula

n2∑
n=n1

f (n) =
∫ n2

n1

f (x)dx + f (n2) + f (n1)

2
+ 1

6

f ′(n2) − f ′(n1)

2!

− 1

30

f ′′′(n2)− f ′′′(n1)

4!
+ R, (B1)

8It suffices that C′(ε) vanish at ε = 0, εkl , εku .

where the remainder satisfies |R| � 2ζ (5)
(2π )5

∫ n2

n1
| f (5)(x)|dx. We

begin by considering periodic boundary conditions, where we
set f (n) = (2πn/L2)C(ε2πn/L ). Assuming a single, vanish-
ing, Fermi momentum kF = 0, we set (n1, n2) = (−∞, 0) for
positive chirality, and (n1, n2) = (0,∞) for negative chirality.
Equation (B1) then gives

p(L) =p(∞) ± 2π

L2

1

12
+ O

( 1

L4

)
, as L → ∞, (B2)

where p(∞) = ∫
εk<0 kC(εk )dk/2π and ± = sgn(ku − kl ) is

the chirality. The 1/L2 correction in (B2) comes from f ′(0) =
2π/L2 in (B1). We see that the leading finite-size correction
h0 − c/24 is unchanged from its CFT value hσ − c/24 =
±1/12, even when a CFT description does not apply.

The case of a single nonzero Fermi momentum kF �= 0 is
more interesting, as it demonstrates that the integer part of h0

can change as a function of L and kF . The direct derivation
of the end result from the Euler-Maclaurin formula is surpris-
ingly lengthy, so we omit it and present a more direct route to
the end result. To be concrete, assume a positive chirality and
kF > 0. The Euler-Maclaurin formula leads to cutoff indepen-
dent results, so we can restrict attention to cutoff functions
C(εk ) which are identically 1 for 0 < k < kF . Since these
can serve as cutoff functions for the case kF = 0 as well, we
can deduce the kF �= 0 momentum density p(L, kF ) from the
kF = 0 momentum density p(L),

p(L, kF ) = 1

L

∑
k<kF

kC(εk )

= 1

L

∑
k<0

kC(εk ) + 1

L

∑
0<k<kF

k

= p(L) + 2π

L2

n∑
l=1

l, (B3)

where n = �kF L/2π�. Using Eq. (B2), we then have

p(L, kF ) =p(∞) + 2π

L2

[
1

12
+

n∑
l=1

l

]
+ O

( 1

L4

)
, (B4)

where p(∞) is the momentum density at L = ∞ and kF =
0. We see that the value of h0 − c/24 is only equal to the
idealized CFT result hσ − c/24 = 1/12 modulo 1, while the
integer part jumps periodically as a function of kF at fixed
number of sites L, or as the number of sites L at fixed kF .
Treating kF as fixed and valued in (−π, π ], the period in L is
given by q = |2π/kF | � 2, which need not be an integer. As
described in Appendix A, the mod 1 ambiguity is attributed
to h0 rather than c, which corresponds to the topological spin
θ0 = θσ = e2π i(1/8).

The interpretation of Eq. (B4) is straightforward. As the
number of sites L increases, the single-particle momenta
(2π/L)ZL become denser in the Brillouin zone R/2πZ. The
nth jump in h0 correspond to the motion of a single-particle
state with momentum 2πn/L through kF and into the Fermi
sea, adding a momentum density 2πn/L2 to the ground state.

Figure 8 presents the results of numerical computations
of the momentum polarization Eq. (3) in a Chern insulator
with kF �= 0 on a square lattice. Details of the model and
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FIG. 8. Numerical results for the momentum polarization
Eq. (3), in a Chern insulator with kF �= 0. Black dots mark numer-
ically obtained values of Nx arg Z̃ as a function of N2

x . (a) Periodic
boundary conditions. Purple lines indicate linear fits, with approxi-
mately the same slope and intercepts 2π (1/12 + ∑n

l=1 l ) with the y
axis, with n = 0, 1, 2, 3, in accordance with Eq. (B4). This allows
for the extraction of the topological spin θσ = e2π i(1/8). To illustrate
the possibility of accidental degeneracies, we choose kF = 3/34,
where a degeneracy occurs for Nx = 34, and the average value
of Nx arg Z̃ between the two ground states is obtained. A gray
dotted line indicates the average of the two neighboring purple
lines. (b) Antiperiodic boundary conditions. Colored lines indi-
cate linear fits, with approximately the same slope, and intercepts
2π [−1/24 + ∑n

l=1 (l − 1/2)], with n = 1, 2, 3, 4, in accordance
with Eq. (B5). The value n = 0 is not obtained as it occurs only
for small circumferences Nx < 6 where Nx arg Z̃ is not computed.
Orange lines correspond to the fermion spin θψ = −1, while blue
lines correspond to the vacuum spin θI = 0. To illustrate the possi-
bility of accidental degeneracies, we choose kF = (5/2)/24, where
an accidental degeneracy occurs for Nx = 24.

computations can be found in the Supplemental Material [68].
In particular, Fig. 8(a) verifies Eq. (B4).

A subtle point, not mentioned above, is that when
kF L/2π ∈ Z, which happens only when kF /2π = a/b is ra-
tional and L ∈ bN, a single-particle state with momentum
exactly kF exists, leading to an accidental degeneracy on the
cylinder, between two many-body ground states with mo-
mentum densities given by Eq. (B4) with n and n + 1. The
momentum polarization (3) then gives the average momentum
density in the two ground states, as visualized by the gray dot-
ted line in Fig. 8(a). For such system sizes the value θ0 = −θσ

may be obtained rather than the generic θ0 = θσ .
The same analysis can be performed for antiperiodic

boundary conditions, where we sum over single-particle mo-
menta k ∈ 2π

L (ZL + 1
2 ). Equation (B4) is then modified to

p(L, kF ) =p(∞) + 2π

L2

[
− 1

24
+

n∑
l=1

(
l − 1

2

)]
+ O

( 1

L4

)
,

(B5)

where n = � kF L
2π

− 1
2�. As a function of L, jumps in h0 −

c/24 occur with the same period q = |2π/kF | � 2, but are
shifted by q/2. Moreover, h0 − c/24 now attains two val-
ues modulo 1, namely, hI − c/24 = −1/24 and hψ − c/24 =
1/2 − 1/24.

Equation (B5) therefore demonstrates explicitly the state-
ments made in Appendix A 1. For kF = 0, the cylinder ground
state of the Chern insulator corresponds to the idealized Weyl
fermion CFT. A single value h0 = 0 is attained, which is the

conformal weight hI of the CFT vacuum. A nonvanishing kF

corresponds to the addition of a chemical potential to the CFT,
which changes the energies of the CFT states, favoring a CFT
exited state over the CFT vacuum. The cylinder ground state
of the Chern insulator may then correspond to any CFT state
in the conformal family of either the vacuum I or fermion ψ ,
which need not be primary. From the bulk TFT perspective,
we see that θ0 = e2π ih0 may be equal to either of the topologi-
cal spins θI = 1, θψ = −1 as a function of L.

As in the case of periodic boundary conditions, accidental
degeneracies on the cylinder occur when kF L/2π ∈ Z + 1/2,
changing the value of h0 attained from the momentum po-
larization to its average over the degenerate states. For such
system sizes, the value θ0 = ±√

θIθψ is obtained than the
generic θ0 ∈ {θI , θψ }.

Equation (B5) is verified numerically in Fig. 8(b), which
demonstrates that the value of θ0 = e2π ih0 , obtained from the
momentum polarization (3), takes different values in the set
{θa} of topological spins as a function of system size L, apart
from accidental degeneracies.

2. No finite-size correction at finite temperature

The line y = 0 where TR jumps can be interpreted as an
additional boundary component at the “entanglement temper-
ature” β−1

∗ . Reference [40] used the modular transformations
of CFT partition functions to demonstrate that when β∗ 

L/v, this boundary component does not contribute to the 1/L
correction to log Z̃ . Here we note that the same result holds for
free fermions with a general dispersion εk . The contribution
of the additional boundary component to log Z̃ is given by
log Z̃∗(L) = L f∗(L), with the free energy density

f∗(L) = 1

L

∑
k

log(1 + eiake−β∗εk )C(εk ). (B6)

Using Eq. (B1) one finds f∗(L) = f∗(∞) + O(L−4) for both
periodic and antiperiodic boundary conditions, which implies
log Z̃∗ = L f∗(∞) + O(L−3), with no 1/L contribution. The
complex number f∗(∞) = ∫

log (1 + eiake−β∗εk )C(εk )dk/2π

contributes to the nonuniversal α in Eq. (3).

APPENDIX C: CUTTING THE TORUS ALONG
AN ARBITRARY VECTOR

For d = (dx, 0) we restrict to Nx = nxdx, n ∈ N, viewing
dx as an enlarged lattice spacing, and treating n as a reduced
number of sites along the circumference in place of Nx. The
same logic applies to d = (0, dy). For d = (dx, dy ) with both
dx, dy �= 0, we restrict to system sizes (Nx, Ny) = nd, such that
the line l = spanRd is a diagonal of the rectangle nNx × nNy

and corresponds to a circle on the torus (R/NxZ) × (R/NyZ).
Cutting X along this line produces a cylinder C of circumfer-
ence L = n|d|. We then view |d| as a lattice spacing and n as
a the number of sites along the circumference. Note that the
distance between the boundary components of the resulting
cylinder is R = ndxdx/|d|, and the thermodynamic limit is
indeed obtained as n → ∞. With these identifications the
momentum polarization (3) remains unchanged, apart from a
modification of the nonuniversal α to α|d|2.
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APPENDIX D: DEALING WITH ACCIDENTAL
DEGENERACIES ON THE CYLINDER

As demonstrated in Appendix B, for certain system sizes
Nx accidental degeneracies occur on the cylinder, and the
function θ0(Nx ) = e2π ih0(Nx ) obtained from Eq. (3) may take
values outside the set {θa}, namely, θ0 = ±√

θaθb for a
twofold degeneracy. In this Appendix we complete the deriva-
tion of Results 1 and 1F by considering the possibility of such
degeneracies.

First, even in the presence of degeneracies, θ0 is valued in a
finite set. Therefore, Eq. (6) still implies that ε′ = n/m is ratio-
nal, and that θ0(Nx )e−2π ic/24 = e−2π iε′N2

x periodically covers a
subset S � 1 of mth roots of unity, for all large enough Nx.
We denote by N ⊂ N the set of circumferences Nx for which
a degeneracy appears and θ0(Nx ) /∈ {θa}. If circumferences
Nx ∈ mN, where e2π iε′N2

x = 1, are not all contained in N ,
then 1 = θ0(Nx )e−2π ic/24 ∈ {θae−2π ic/24}, as stated in Results 1
and 1F.

We are left with the complementary case, where degen-
eracies occur for all Nx ∈ mN, i.e., mN ⊂ N . Note that this
case is highly fine tuned, as it ties together the nonuniversal
ε′ = n/m and the set N of Nxs where accidental degenera-
cies appear. In order to deal with this case, we make use
of the Frobenius-Perron theorem to resolve the degenerate
ground-state subspace, without introducing signs. The anal-
ysis applies only to the bosonic setting of Result 1 and is
similar to that made in Sec. VII. We now have a Hamil-
tonian H ′ on the cylinder, which has an exactly degenerate
ground-state subspace for all Nx ∈ mN and has nonposi-
tive matrix elements in the on-site homogenous basis |s〉.
The Frobenius-Perron theorem implies that an orthonormal
basis |i〉 with non-negative entries may be chosen for the
ground-state subspace, 〈s|i〉 � 0 for all s, i. It follows that
the matrix elements of TR in the basis |i〉 are non-negative,
Mi j := 〈i|TR| j〉 � 0. Taking the Nxth matrix power of M we
have (MNx )i j � 0. Equation (3) implies that the eigenval-

ues of MNx are of the form e−δ′N2
x e−2π iε′N2

x +o(1)θae−2π ic/24, so
we can write (MNx )i j = e−δ′N2

x e−2π iε′N2
x +o(1)Ti j , where Ti j has

eigenvalues {λ} ⊂ {θae−2π ic/24}. In particular, Ti j is unitary.
Since e2π iε′N2

x = 1 for all Nx ∈ mN, we see that Ti j also has
non-negative entries and is therefore a permutation matrix,
containing 1 in its spectrum (see Sec. VII). It follows that
1 ∈ {λ} ⊂ {θae−2π ic/24}, asserting Result 1.

We are currently unaware of an analog of the Frobenius-
Perron theorem in the context of DQMC, that may be used
to resolve the degenerate ground-state subspace without in-
troducing signs. Instead, we will make a physical assumption
under which Result 1F holds. Namely, we will assume that the
fine-tuned constraint ε′ = n/m and mN ⊂ N may be lifted
by a sign-free perturbation. This includes (i) perturbations
to the effective single-fermion Hamiltonian hφ(τ ) that do not
violate the algebraic condition hφ(τ ) ∈ Ch, (ii) perturbations
to the bosonic action Sφ that maintain its reality, and (iii)
changes of the vector d along which the torus is cut to a
cylinder, as described in Appendix C, which will generically
change the details of the boundary spectrum, including the
nonuniversal number ε′ and the set N of Nx’s where acci-
dental degeneracies appear. A robustness of ε′ and the set N ,
both nonuniversal, under all three of the above deformations

certainly goes beyond the low-energy description of a chiral
TFT in the bulk and a chiral CFT on the boundary. We also
adopt this assumption in the fermionic spontaneously chiral
setting of Result 2F.

A stoquastic variant of the above assumption may also
be adopted to establish the bosonic spontaneously chiral Re-
sult 2, but a stronger statement can in fact be made, by again
making use of the Frobenius-Perron theorem to resolve the
accidentally degenerate ground states. The Frobenius-Perron
theorem does not immediately complete the derivation of
Result 2, since the former is a ground-state statement, while
the latter made use of the finite temperature �E 
 β−1 

N−1

x , where �E is the exponentially small finite-size splitting
between low-lying symmetry-breaking eigenstates. This dif-
ficulty does not arise in the “classical symmetry-breaking”
scenario, where �E = 0. In the generic case �E �= 0, we
can make progress under the assumption that the T ,P-even
state W [|+〉 + |−〉] has lower energy than the T ,P-odd
state W [|+〉 − |−〉], rather than the opposite possibility. The
derivation of Result 2 in Sec. IV A can then be repeated at
zero temperature. In particular, Eq. (10) and its analysis are
unchanged.

APPENDIX E: A “NONLOCAL DESIGN PRINCIPLE”
FOR CHIRAL TOPOLOGICAL MATTER

As stated in Sec. V C, the composition T = P (0)T (1/2) of
the spin-less reflection with the spin-1/2 time reversal nat-
urally provides a design principle for a class of models for
chiral topological matter. Here we describe such T-invariant
models for chiral topological superconductors.

The simplest model comprises two copies, labeled by
σ =↑,↓, of a spin-less p + ip superconductor,

H =
∑

x,x′,σ,σ ′
[ψ†

σ,xhx,x′,σ,σ ′ψσ,x′ + ψ†
σ,x�xx′,σ,σ ′ψ

†
σ,x′ + H.c.].

(E1)

Here

� =
(
�0(dx + idy) 0

0 �0(dx + idy)

)
, (E2)

where dx
xx′ (dy

xx′ ) is the antisymmetric x (y) difference operator,

dx
xx′ = (δx,x′+1 − δx+1,x )δy,y′/2,

dy
xx′ = δx,x′ (δy,y′+1 − δy+1,y′ )/2, (E3)

and �0 ∈ R − {0}. Additionally,

h =
(t 0

0 t

)
, (E4)

and the hopping t is real and reflection symmetric, e.g.,

tx,x′ = 1
2 t0(δx,x′+1 + δx+1,x′ )δy,y′ + (x ↔ y) − μ, (E5)

with t0 > 0, μ ∈ R. It is well known that the chemical po-
tential μ can be used to tune the model between gapped
SPT phases with c = 0,−1, 1, for |μ| > 2t0,−2t0 < μ <

0, 0 < μ < 2t0, respectively; see, e.g., Ref. [93]. Addition-
ally, the Hamiltonian is invariant under the combination of
the unitary spin-less reflection P (0) : ψσ,(x,y) �→ ψσ,(x,−y) and
the antiunitary spin-full time reversal T (1/2) : ψ↑,x �→ ψ↓,x,

ψ↓,x �→ −ψ↑,x.
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The model can be written in the BdG form

H =
∑
x,x′

�†
x hx,x′

BdG�x′ , (E6)

where �T
x = (ψ↑x, ψ↓x, ψ

†
↑x, ψ

†
↓x ) is the Nambu spinor (a

Majorana spinor), and

hBdG =
( h �

−�∗ −h∗
)
. (E7)

The “single-fermion”’ space on which hBdG acts is H1F =
HX ⊗ Hspin ⊗ HNambu

∼= C|X | ⊗ C2 ⊗ C2. The spin-less re-

flection acts on H1F as P (0) = P (0)
X ⊗ I2 ⊗ I2, where P (0)

X =
δx,x′δy,−y′ . The spin-full time-reversal acts by T (1/2) = I|X | ⊗
iY ⊗ I2K, where Y is the Pauli matrix and K is the complex
conjugation. The operator T = P (0)T (1/2) satisfies T2 = −I
and [T, hBdG] = 0 and is therefore a time-reversal design
principle which applies to hBdG, implying det(∂τ + hBdG) �
0. Since hBdG acts on the Majorana spinor �, the rel-
evant quantity is actually the Pfaffian Pf(∂τ + hBdG) =√

det(∂τ + hBdG) � 0, where the principal branch of the
square root is chosen.

The Hamiltonian hBdG can be considerably generalized
while maintaining [T, hBdG] = 0, by taking

h =
( t r
−r∗ t∗

)
, � =

(
eiα (|�x|dx + i|�y|dy)|�| eiα̃ (|�̃x|dx + i|�̃y|dy)|�̃|

−e−iα̃ (|�̃x|dx + i|�̃y|dy)|�̃| e−iα (|�x|dx + i|�y|dy)|�|

)
, (E8)

where tx,x′ , rx,x′ are general matrices, and � ∈ 2Z + 1 (�̃ ∈
2Z) is the angular momentum channel of the triplet (singlet)
pairing. This can be further generalized to a sum over all angu-
lar momentum channels

∑
�∈2Z+1 eiα� (|��,x|dx + i|��,y|dy)|�|

and similarly for �̃. The model is Hermitian for t = t†, r =
−rT , but this is not required to avoid the sign problem.

In order to obtain an interacting model, the parameters
φ = {t, r, α�, α̃�̃, |��,x|, |��,y|, |�̃�̃,x|, |�̃�̃,y|} can now be pro-
moted to space-time-dependent bosonic fields, with any action
Sφ ∈ R. The model will be sign-free as long as hBdG re-
mains T-invariant for all configurations φ, which requires that
only reflection-even configurations φ(τ, x, y) = φ(τ, x,−y)
are summed over. As discussed in Sec. V C, this implies
nonlocal interactions, which effectively fold the chiral system
into a nonchiral system on half of space.

APPENDIX F: LOCALITY AND HOMOGENEITY
OF KNOWN DESIGN PRINCIPLES

In this Appendix we review all fermionic design principles
known to us, clarify their common features, and describe the
conditions under which they are on-site homogeneous, imply a
termwise sign-free DQMC representation, and allow a locally
sign-free DQMC simulation, as defined in Sec. V B. The de-
sign principles are stated as algebraic conditions satisfied by
the effective single-fermion Hamiltonian hφ = hφ(τ ) and the

corresponding imaginary-time evolution Uφ = TOe− ∫ β

0 hφ(τ )dτ ,
or in terms of the operator Dφ = ∂τ + hφ ; see Sec. V A.

Contraction semigroups and Majorana time reversals. The
time-reversal design principle covered in Sec. V C is a special
case of a broad class of design principles that were recently
discovered and unified [22–24]. These are stated in terms of
Majorana fermions, where ψ is real and ψ = ψT , in which
case hφ is antisymmetric and the determinants in (17) are
replaced by their square roots. Reference [24] shows that if

J1hφ − h∗
φJ1 = 0, (F1)

i(J2hφ − h∗
φJ2) � 0, (F2)

where the matrices J1, J2 are real and orthogonal, and obey
JT

1 = ±J1, JT
2 = −J2, {J1, J2} = 0, then Det(I + Uφ ) � 0.

The equality (F1) corresponds to an antiunitary symmetry
T1 = J1K, T2

1 = ±I , where K is the complex conjugation. If
the inequality (F2) is replaced by an equality, it corresponds
to an additional antiunitary symmetry, T2 = J2K, T2

2 = −I .
The case T2

1 = −I then reduces to the standard time-reversal
T described in Sec. V C, while T2

1 = I corresponds to the
“Majorana class” of Ref. [22]. More generally, the inequal-
ity (F2) states that the left-hand side is a positive semidefinite
matrix and implies that hφ is a generator of the contraction
semigroup defined by the Hermitian metric η2 = iJ2, η2

2 = I ,
[T1, η2] = 0. Explicitly, Eqs. (F1) and (F2) can be written as

[T1, hφ] = 0, η2hφ + h†
φη2 � 0, (F3)

and imply

[T1,Uφ] = 0, η2 − U †
φ η2Uφ � 0. (F4)

In the language of Sec. V B, for fixed T1, η2, the set Ch

contains all matrices hφ satisfying (F3). It is clear that this set
is additive: h1 + h2 ∈ Ch for all h1, h2 ∈ Ch. The set CU con-
tains all matrices Uφ satisfying Eq. (F4), and is multiplicative:
U1U2 ∈ CU for all U1,U2 ∈ CU .

A sufficient condition on T1, η2 that guarantees that the
design principle they define is on-site homogenous is that they
are of the form T1 = I|X | ⊗ t1, η2 = I|X | ⊗ e2, written in terms
of the decomposition H1F

∼= C|X | ⊗ CdF of the single-fermion
space. The permutation matrices O(σ ) defined in Eq. (20)
then commute with η2 and T1. Since O(σ ) are also unitary,
we have O(σ ) ∈ CU for all σ ∈ SX . All examples described
in Refs. [22–24] are of the on-site homogenous form T1 =
I|X | ⊗ t1, η2 = I|X | ⊗ e2.

As in our discussion of T in Sec. V C, the locality of T1 =
I|X | ⊗ t1 means that it can be applied termwise, by symmetriz-
ing the local terms hφ;x �→ 1

2 (hφ;x + T1hφ;xT−1
1 ). A similar

procedure for η2 is possible only if the inequality in Eq. (F3)
holds as an equality (as in Ref. [22]). The contraction semi-
group defined by η2 then reduces to an orthogonal group, and
one can enforce the termwise relations η2hφ;x + h†

φ;xη2 = 0 by

hφ;x �→ 1
2 (hφ;x − η2h†

φ;xη2).
Collecting the above, we see that if T1, η2 can be

brought to the form T1 = I|X | ⊗ t1, η2 = I|X | ⊗ e2 by the same
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single-fermion local unitary u, then a DQMC representation
which is T1-symmetric, and respects Eq. (F3) termswise, leads
to a locally sign-free DQMC simulation.

Split orthogonal group. Another recently discovered design
principle is defined in terms of the split orthogonal group
O(n, n) [18]: if Uφ ∈ O(n, n), then the sign of Det(I + Uφ )
depends only on the connected component of O(n, n) to which
Uφ belongs. If the sign of e−Sφ is manifestly compatible with
the connected component of Uφ in O(n, n), one has p(φ) =
e−Sφ Det(I + Uφ ) � 0. More explicitly, the statement Uφ ∈
O(n, n) implies that Uφ is a real matrix and η − U T

φ ηUφ = 0,
where η = diag(In,−In). Restricting to the identity compo-
nent O0(n, n), this amounts to the statements that hφ is in the
Lie algebra o(n, n): it is real and satisfies ηhφ + hT

φ η = 0.
In a basis-independent formulation, the data that define the

design principle are an antiunitary T̃, such that T̃2 = I , and a
Hermitian metric η̃ with canonical form η, such that [T̃, η̃] =
0. The set Ch is then given by matrices hφ satisfying

[T̃, hφ] = 0, η̃hφ + h†
φη̃ = 0, (F5)

while CU is defined by

[T̃,Uφ] = 0, η̃ − U †
φ η̃Uφ = 0. (F6)

The analogy with (F3) and (F4) is now manifest, with the in-
equalities strengthened to equalities. Accordingly, the O(n, n)
design principle is on-site homogeneous if T̃ = I|X | ⊗ t̃ and
η̃ = I|X | ⊗ ẽ. If these forms can be obtained by conjugation
of T̃, η̃ with the same single-fermion local unitary u, then a
DQMC representation which is sign-free due to T̃, η̃ leads to
a locally sign-free DQMC simulation.

The above statements hold for Uφ in the identity compo-
nent O0(n, n), which is always the case when hφ ∈ o(n, n)

and Uφ = TOe− ∫ β

0 hφ(τ )dτ . Time evolutions in the additional
three connected components of O(n, n) can be obtained
by operator insertions generalizing Uφ = Uk · · ·U2U1 to
Uk · · · O2U2O1U1, where O ∈ O(n, n)/O0(n, n) [18]. These
can be incorporated into the framework of Sec. V, if each
Ok is supported on a disk of radius w around a site xk ,
i.e., (Ok )x,y = δx,y if |x − xk| > w or |y − xk| > w. With this
generalization, all sign-free examples described in Ref. [18]
amount to locally sign-free DQMC.

Solvable fermionic and bosonic actions. Reference [21]
described a design principle that nontrivially relates the
fermionic action Sψ,φ = ψDφψ and bosonic action Sφ . A
fermionic action was termed “solvable” if Dφ has the form

Dφ =
(

0 Mφ

−M†
φ 0

)
, (F7)

which clearly implies Det(Dφ ) = |Det(Mφ )|2 � 0. Here the
imaginary time circle R/βZ is discretized to Zβ = Z/βZ,
and Dφ is treated as a matrix on Cβ × H1F = Cβ × C|X | ×

CdF , with indices (τ, x, α), (τ ′, x′, α′) for time, space, and
internal degrees of freedom. For example, the Hamiltonian
form Dφ = ∂τ + hφ(τ ) is discretized to

[Dφ](τ,x,α),(τ ′,x′,α′ )

= (δτ,τ ′ − δτ−1,τ ′ )δx,x′δα,α′ + δτ−1,τ ′ [hφ(τ )](x,α),(x′,α′ ). (F8)

In a basis-independent language, Eq. (F7) corresponds to

{�, Dφ} = 0, D†
φ = −Dφ, (F9)

where � is a “chiral symmetry”, �2 = I, � = �†. Equa-
tion (19) is then obtained in a basis where � = diag(I,−I ).
Note, however, that � acts on Dφ rather than hφ , and that
the form (F7) requires a noncanonical transformation away
from the Hamiltonian form (F8). We refer to � as on-
site homogeneous if it is of the form � = Iβ ⊗ I|X | ⊗ γ ,
and to Dφ as local if Dφ = ∑

τ,x Dφ;τ,x where each term
Dφ;τ,x is supported on a disk of radius r around (τ, x)
and depends on the values of φ at points within this disk.
The action Dφ is “termwise solvable” if each Dφ;τ,x satis-
fies (F9). Any local Dφ obeying (F9) with � = Iβ ⊗ I|X | ⊗
γ can be made termwise solvable by replacing Dφ;τ,x �→
1
2 (Dφ;τ,x − �Dφ;τ,x�) and then Dφ;τ,x �→ 1

2 (Dφ;τ,x − D†
φ;τ,x).

The twisted fermionic boundary conditions in (22) are im-
plemented by declaring that the index “(τ = 0, x, α)” that
appears in Eq. (F8) corresponds to (τ = β, x + λ�(y), y, α)
with λ �= 0. Equation (F9) then holds for all λ if � = Iβ ⊗
I|X | ⊗ γ . Under these conditions, solvable fermionic actions
can then be incorporated into the definition of locally sign-free
DQMC given in Sec. V.

All examples given in Ref. [21] have an on-site � and local
Dφ , and it follows from the above discussion that, under these
conditions, solvable fermionic actions can then be incorpo-
rated into the definition of locally sign-free DQMC given in
Sec. V.

A bosonic action Sφ for a complex valued field φ = |φ|eiθ

was termed “solvable” in Ref. [21] if

Sφ = S|φ| −
∑
u,u′

βu,u′ |φu||φu′ | cos(εuθu + εu′θu′ ), (F10)

where u = (x, τ ), u = (x′, τ ′), and εu, εu′ ∈ {±1}, and βu,u′ �
0. For such actions, it was shown that all correlators∫

Dφe−Sφ φu1 · · ·φuk are non-negative, and therefore φ can be
added to the diagonal in (F7) with a positive coupling constant

Dφ =
(

gφ M
−M† gφ

)
, g > 0, (F11)

without introducing signs, though Dφ is no longer solvable.
Solvable bosonic actions are easily incorporated into the
framework of Sec. V, as long as they are local in the sense
of Eq. (19), and in particular, βu,u′ = 0 unless the points u and
u′ are close.
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