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Robustness of topological corner modes in photonic crystals
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We analyze the robustness of corner modes in topological photonic crystals, taking a C6-symmetric breathing
honeycomb photonic crystal as an example. First, we employ topological quantum chemistry and Wilson
loop calculations to demonstrate that the topological properties of the bulk crystal stem from an obstructed
atomic limit phase. We then characterize the topological corner modes emerging within the gapped edge modes
employing a semianalytical model, determining the appropriate real-space topological invariants. We provide a
detailed account of the effect of long-range interactions on the topological modes in photonic crystals, and we
quantify their robustness to perturbations. We conclude that, while photonic long-range interactions inevitably
break chiral symmetry, the system is reducible to a chirally symmetric limit and the corner modes are protected
by this together with lattice symmetries.
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Introduction. Photonic topological insulators host pro-
tected boundary modes that are robust against a range
of defects and imperfections [1]. While the paradigmatic
case of two-dimensional (2D) topological photonic crystals
(PhCs) hosting one-dimensional (1D) edge modes immune to
backscattering has been extensively studied [2], a hierarchy
of protected boundary states of lower dimensionality are pos-
sible in higher-order topological insulators (HOTIs) [3]. For
instance, quantized quadrupole insulators in 2D, which were
introduced in a generalization of the Su-Schrieffer-Heeger
(SSH) model to a square lattice with a flux [3], host 1D edge
states, as well as zero-dimensional (0D) corner modes. These
higher-order topological modes (HOTMs) localized at the 0D
corners of a 2D lattice benefit from topological protection.
Just as HOTIs in condensed matter systems are characterized
by charge fractionalization due to a filling anomaly of the bulk
states [4–7], classical wave HOTIs reveal an analogous frac-
tional corner anomaly of the density of states [8]. In systems
with short-range hoppings and approximate chiral symmetry,
these corner modes are midgap states [9,10].
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HOTMs have been realized in a variety of classical systems
[11–25], and their robustness has been exploited for stable
lasing [26–28]. However, a rigorous study of the effect of
long-range interactions (LRIs) which is unavoidable in many
photonic systems [15,29–33], as well as a detailed analysis
of the robustness of the HOTMs has not been undertaken.
Notice that in this Rapid Communication “interactions” re-
fer to the photonic coupling between different sites. Here
we consider a PhC with a C6-symmetric lattice [16,34,35],
and fill the aforementioned gap by taking advantage of a
semianalytical model with LRIs [36], that is, interactions
beyond nearest neighbors between all the lattice elements.
This allows us to perform an extensive study of the ro-
bustness of these modes against defects and imperfections.
Crucially, we show that the HOTMs are protected by lattice
symmetries; we quantify their degree of robustness against
chiral symmetry breaking LRIs, as well as to strong defects.
With our analysis, we clarify some misconceptions about the
topological origin of corner states in C6-symmetric lattices
[35,37].

Photonic crystal. We consider the breathing honeycomb
PhC in Fig. 1(a). Each unit cell in the triangular lattice consists
of six silicon rods (ε = 11.7) in vacuum of radius r = 0.12a0

located at a distance R = R0(1 ± δ) from the origin of the
unit cell. Here, a0 is the lattice parameter, and R0 = a0/3
the location of the rods in the unperturbed honeycomb ar-
rangement. The perturbation of the honeycomb lattice of rods
by ±δ yields expanded and contracted phases, respectively,
where the doubly degenerate Dirac point at � splits and a bulk
band gap opens between ωa/(2πc) = 0.4–0.5, Fig. 1(b). This
band gap hosts 1D edge states as measured in several photonic
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FIG. 1. (a) Unit cells of the bulk lattice in the contracted and ex-
panded phases, characterized by a contraction/expansion parameter,
δ. The relevant Wyckoff positions are labeled 1a (black circle) and
3c (red star). (b) Band structure of the silicon photonic crystal in the
expanded phase for the TM modes. The expansion coefficient δ is
0.11, and the radius of the cylinders is 0.12a0, a0 being the lattice
constant of the crystal. (c) Wilson loops for bands 4–6 (Wilson loops
for bands 1–3 are similar [38]).

experiments [39–45]. We now discuss how they are not an
instance of a Z2 topological insulator [46].

Figure 1(b) presents the band structure of the expanded
phase (δ = 0.11). We first determine the topological prop-
erties of the system through the application of topological
quantum chemistry [47,48]. The irreducible representations
of the eigenfields at the high symmetry points (irrep labels),
displayed in the band structure, are calculated using GTPack
[49,50]. Using the catalog of elementary band representations
(EBRs) in the Bilbao Crystallographic Server [47,51–55],
along with the irrep labels we can identify the topological
properties of each set of connected bands. Counting from
ω = 0, bands 4–6 are all interconnected and their irrep labels
are accordant to Wannier functions centered in the 3c Wyckoff
position transforming in the (E1 ↑ G)3c band representation
[56]. Since these bands can be identified with an EBR, we
conclude that the system presents a trivial Z2 topological
invariant. Nevertheless, the 3c Wyckoff position of the band
representation indicates that the Wannier functions of this
set of bands are not centered around the origin of the unit
cell, but at their edges. This can be understood as a 2D
analog of the topological hybridization of eigenstates of a 1D
SSH chain. This topological phase was labeled in the past in
analogy with solid-state systems as the photonic obstructed
atomic limit (OAL), because although an atomic limit exists,
it is “obstructed” since the Wannier centers are not located
at the position where the photonic “atoms” sit [57], the pho-
tonic atom being the collection of the six contracted/expanded
cylinders inside the unit cell. Moreover, we characterize our
system through the calculation of the eigenvalues of the Wil-
son loop [57] for this set of connected bands, Fig. 1(c). The
resulting Wilson loops present no windings (characteristic of
Z2 or Chern insulators), but the Wannier centers are not only
localized in the origin of the unit cell (W = 0) as in a trivial
system, but also at its edges (W = ±π ), indicating that the
system presents an obstruction similar to the 1D SSH chain
[58]. On the other hand, the PhC in the contracted phase is a
trivial photonic insulator. This can be seen from the Wannier
centers of the EBRs being located at the origin of the unit cell

(1a Wyckoff position), and by looking at the eigenvalues of
the Wilson loop [38].

It should be emphasized here that in 2D systems, there is
a subtle relationship between OAL and HOTIs. In toy models
with nearest-neighbor interactions, provided there is an even
number of elements in the unit cell, then a lattice is chirally
symmetric [59]. Chiral symmetry, or sublattice symmetry,
forces the energy spectrum to be symmetrical about a fixed
value (often taken to be zero in the literature). If an OAL
model has chiral symmetry, then it is sometimes possible to
define a bulk topological invariant which counts the number of
0D corner modes in a finite-sized system preserving the crys-
tal symmetries. Systems with nonzero values of this invariant
are properly termed HOTIs.

In the absence of chiral symmetry, there is no guarantee
that a finite-sized system will have corner modes pinned to a
special frequency. These systems are regarded as OAL sys-
tems and can be characterized by the centers of their Wannier
functions (as above, and see Ref. [60]), by real-space in-
variants (see [38] and Refs. [61,62]) or by a filling anomaly
(see [38] and Refs. [5,6]). The photonic finite-sized breathing
honeycomb lattice breaks chiral symmetry due to unavoidable
LRIs. However, for the remainder of this work we will exploit
the fact that the system is deformable to a chiral-symmetric
limit. This allows us to make semianalytical predictions about
the presence and robustness of corner modes. We emphasize
that this is possible because in the limit of short-range in-
teractions, the system is chirally symmetric. In comparison,
any lattice with an odd number of elements in the unit cell
is incompatible with chiral symmetry, even in the limit of
short-range interactions [4,15,60,63].

While the 0D corner modes in 2D SSH-like PhC particles
(finite-size crystals) with C4 symmetry have been extensively
explored [12–14,26,27], in PhC particles with C6 symmetry,
only the 1D edge states have been studied [64–66]. We ana-
lyze the emergence of 0D photonic corner states in this system
by looking at 2D particles made of cells in the expanded
phase and surrounded by cells in the contracted phase [see
Fig. 2(a)]. With the chosen edge termination [Fig. 2(b)], the
lattice sites along the interface are well dimerized, resulting in
corner modes well isolated in frequency; in comparison to an
interface with complete unit cells at the interface [16,35,37],
see [38] for more details. Results of MIT Photonic Bands
(MPB) supercell calculations [67] are shown in Figs. 2(c)
and 2(d). The frequency eigenvalues 2(c) show a band gap
with six midgap states. The real part of the displacement field
eigenvectors Dz for these six states are shown in Fig. 2(d).
These are concentrated at the corners of the particle, thus we
classify them as corner modes, marked in red in Fig. 2(c).
States 2A and 2B and 3A and 3B are degenerate pairs. The
states immediately above and below the band gap are edge
states (cyan) [64–66], followed by bulk eigenstates (gray).
Thus, the 0D corner states in this PhC particle are hosted
within the gapped 1D edge states, in contrast to corner modes
in C3- and C4-symmetric PhCs [13–15].

Coupled dipole model. Since the spectrum of the PhC par-
ticle is determined by lattice symmetries together with LRIs,
we now exploit a semianalytical model to unveil the properties
of corner modes in a closely related nanophotonic system,
an array of subwavelength-spaced dipolar nanoparticles. The
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FIG. 2. (a) Scheme for the topological particle supercell. (b) Particle lattice, with sublattices a (green) and b (purple). (c), (d) Modes of
a photonic crystal particle: Frequency (ω) of topological corner (red), edge (cyan), and bulk (gray) states (c), and displacement field plots,
showing Dz (d). (e), (f) Quasistatic model of the topological particle. (e) Frequency of topological corner, edge, and bulk states, for silver
nanoparticles with radius 10 nm and height 40 nm. (f) Dipole moments of the six corner eigenmodes. In the color scale used in (d) and (f) red
(blue) represents positive (negative) values. In both cases, δ = 0.11.

coupled dipole model (CDM) is a versatile method for in-
vestigating the optical response of arrays of subwavelength
elements such as cold atoms or plasmonic nanoparticles (NPs)
[36]. Within this model we can reproduce all the relevant
features found in full field simulations of the PhC topological
particle. Then, we use it to shed further light on the properties
of the corner modes, particularly on their robustness against
disorder.

For a system of point dipoles (in the absence of an external
electric field), a coupled dipole equation can be written to
model the interaction between all dipoles. The electric dipole
moment p at position di due to a dipole at d j is

1

α(ω)
pi = Ĝ(di j, ω) · p j, (1)

with frequency ω and separation di j . The polarizability α(ω)
describes the optical response of a single NP. The dipole-
dipole interactions are given by the dyadic Green’s function
Ĝ. For a periodic system, we can write the following system
of an eigenvalue equation:[

Î
1

α(ω)
− Ĥ(k‖, ω)

]
· p = 0, (2)

with Bloch wave vector k‖. The interaction matrix Ĥ contains
the lattice sums [36] and this model goes beyond tight-
binding, nearest-neighbor models by including interactions
between all the lattice elements. The modes of the system
can be found by solving the eigenvalue equation, and the
resonance frequencies can then be extracted from the polar-
izability [38].

In Figs. 2(e) and 2(f) we present the results of the CDM for
the OAL particle with the same geometry as the PhC. Here
we particularize the system to the out-of-plane modes of sub-
wavelength spheroidal metallic NPs, which correspond to the
TM modes in the PhC. We take a quasistatic approximation,
and only include the near-field interaction term in the Green’s
function (∝1/d3), which is accurate for these subwavelength
NPs. Figure 2(e) shows the frequency spectrum around the
band gap with corner modes within the gapped edge and bulk
bands. For the plasmonic system, zero eigenvalue (E = 0)
maps to ωLSP, the localized surface plasmon frequency of the
NPs. We see that the center of the band gap is located close

to but not exactly at ωLSP, and that the spectrum is not exactly
symmetric around that point. This is a consequence of chiral
symmetry breaking due to LRIs, as we discuss below.

In Fig. 2(f) we plot the dipole moments of the first midgap
corner eigenmode, which reproduce well the Dz field distribu-
tions of the PhC. Importantly, the corner modes are localized
on one sublattice, while the dipole moments in the opposite
sublattice remain virtually zero [see Fig. 2(b)]. A similar
sublattice localization of corner modes is present in the PhC,
though weaker due to the fully retarded interactions. Never-
theless, this shows that both systems are approximately chiral
symmetric despite the LRIs, which has implications on the
robustness of these 0D modes. In addition, these modes are
well separated from the gapped bulk and edge states and are
tightly confined to the corners. We now use the CDM to
better characterize the properties of the corner modes. First,
we study the behavior of the system as a function of δ, the
deviation of the lattice of NPs away from a honeycomb. In
Fig. 3(a), we plot the eigenvalue spectrum, such that the
symmetry properties of the spectrum around zero eigenvalue

FIG. 3. Topological particle eigenvalues. (a) Evolution with in-
creasing unit cell perturbation δ, with topological corner modes (red)
well separated from the edge (cyan) and bulk (gray) modes. Other
corner modes are shown in magenta. (b) Dependence on interaction
length between lattice sites, γ , for δ = 0.2. As interactions go from
nearest neighbors γ = 0.1 to long range, chiral symmetry is broken
and the spectrum is no longer symmetrical about E = 0.
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are clearer. Starting from the unperturbed honeycomb lattice
(δ = 0), we see how increasing δ controls the size of the bulk
band gap. At the same time, the corner modes (red) stay at
approximately constant eigenvalue, only slightly shifted away
from zero due to the inherent breaking of chiral symmetry.
Edge modes (cyan) appear at the edges of the bulk bands. As
δ increases, the corner modes are more isolated in the band
structure, and hence more strongly confined to corners of the
particle. For δ � 0.12 new sets of corner modes (magenta)
emerge from the bulk for positive and negative eigenvalues.
In contrast to the corner modes discussed here, these modes
do not lie at the middle of the gap, and they are not localized
only on one of the sublattices.

The CDM also enables us to analyze the photonic corner
modes analytically, as detailed in the Supplemental Mate-
rial [38]. We find that when interactions are short range,
the eigenvalue problem for the coupled dipoles maps onto
a tight-binding Schrödinger equation for a system with six
s orbitals at the 6d Wyckoff position in the unit cell (there
is one s orbital at the position of each NP). As δ increases,
the model undergoes a transition between an atomic limit
phase with Wannier centers on the 1a position, to an OAL
phase with Wannier centers on the 3c position; in the short-
range limit these Wannier functions are compactly supported,
and can be found exactly. For a finite-sized system, the two
atomic limits are distinguished by the p6mm real-space invari-
ants of Ref. [61], which confirms that HOTMs are protected
by lattice symmetries. Furthermore, we can solve for the cor-
ner modes in a topological particle in the long-wavelength
approximation. We find that the low-energy theory of the
domain between trivial and OAL particles naively resembles
the edge of a quantum spin Hall (QSH) insulator if only
the lowest-order terms are considered. However, when we
include crystalline- and chiral-symmetric perturbations, we
find that the QSH edge states gap to yield six corner modes
pinned to mirror lines and related by sixfold rotational sym-
metry. Since the corner modes are eigenstates of the chiral
symmetry, they must be localized to a single sublattice. We
can then include chiral symmetry breaking perturbatively to
find that the corner modes are lifted from zero eigenvalue
(or ω = ωLSP), consistent with calculations as we discuss
next.

We study the effect of LRIs by introducing an artifi-
cial cutoff in the CDM. We introduce an exponential decay
to the dipole-dipole interactions, fc.o.(di j ) = exp[−(di j −
d0

i j )/(d0
i jγ )], where d0

i j is the nearest-neighbor separation for
each dipole and γ is a cut-off parameter to control the in-
teraction range [38]. This allows us to continuously tune
the interaction range from nearest neighbors (γ = 0.1), to
electronic-like exponentially suppressed ones, all the way to
full dipolar interactions (γ ≈ 5), as we show in Fig. 3(b)
for δ = 0.2. For small values of γ , interactions in practice
are only between nearest neighbours, such that there is no
coupling between dipoles of the same sublattice. This pre-
serves chiral symmetry and results in a spectrum that is
symmetric about zero eigenvalue, with six degenerate topo-
logical corner modes (red) that are pinned at zero. Increasing
the range of the interaction breaks chiral symmetry through
coupling of elements in the same sublattice. This shifts the
corner modes away from zero eigenvalue, lifts their de-

FIG. 4. Robustness of corner states against defects and disorder
in the quasistatic model, for δ = 0.2. (a) A C6-symmetry breaking
defect in the lattice affects the midgap corner modes. (b) The corner
states are robust against another kind of C6-symmetry breaking defect
due to the corner modes being close to chiral symmetric. (c) The
degeneracy of the corner modes is lifted by random disorder: the po-
sition of the lattice sites is shifted randomly up to 5%. (d) Eigenvalue
spectrum for increasing positional disorder.

generacy (from six degenerate states to 1+2+2+1, as in
Fig. 2), and removes the symmetry of the spectrum about zero
eigenvalue.

Robustness against defects and disorder. We now take ad-
vantage of the CDM to test the degree of protection of the
corner modes against defects. We quantify protection by eval-
uating if the number of states within the band gap, together
with the symmetries and degeneracies they satisfy, are left
invariant. First, we create a strong defect in the crystal by
removing one lattice site next to the corner of the particle,
Fig. 4(a). Since this breaks the C6 and mirror symmetries
that protect the corner modes, one of them disappears and
the remaining five satisfy new symmetry relations and de-
generacies (see field plots and eigenvalue spectrum). Next,
we consider removing one lattice site at exactly the corner
Fig. 4(b), breaking the C6 symmetry but respecting one mirror
symmetry. Remarkably, the corner states are robust against
this defect: there are six midgap states and they satisfy the
same symmetries and degeneracies as before the perturbation.
This is a consequence of the system being deformable to
a chirally symmetric system. Despite the presence of LRIs,
the modes still sit on alternating lattice sites, and the mode
intensity is virtually zero at the removed lattice site. As a
consequence, the C6 symmetry of the mode is not affected
by the removal of this lattice site, such that the 1+2+2+1
degeneracy is mantained.

Finally, we test robustness against random positional dis-
order. In Fig. 4(c) we consider a system with maximum 5%
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random disorder in lattice sites. Crucially, this breaks the C6

symmetry across the whole lattice, such that the degeneracies
of the corner modes are lifted, and each of the six midgap
states localizes at one of the corners. On the other hand,
we see in the spectrum how, despite the other corner modes
and edge modes being lost to the bulk, the midgap corner
modes remain well isolated at midgap energies. For practical
purposes they are robust against random spatial perturbations.
This is confirmed in Fig. 4(d), where we plot a closeup of the
band gap and the HOTMs for increasing random positional
disorder, up to a maximum of 10%.

Conclusions. We have studied the emergence of topolog-
ically protected corner modes in breathing honeycomb PhC
particles. By analyzing the lattice through topological quan-
tum chemistry, Wilson loops, and the calculation of real-space
topological invariants, we conclude that the topological prop-
erties emerge from an obstructed atomic limit phase, which in
2D is reminiscent of higher-order topology. Finally, we quan-
tify the robustness of topological corner modes in PhCs to
different kinds of perturbations. We conclude that, while LRIs
inevitably break chiral symmetry, the corner modes are still

protected by lattice symmetries. Although we have focused
here on the breathing honeycomb lattice PhC, our analysis
applies to all classical wave systems.
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