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Discovering symmetry invariants and conserved quantities by interpreting siamese neural networks
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We introduce interpretable siamese neural networks (SNNs) for similarity detection to the field of theoretical
physics. More precisely, we apply SNNs to events in special relativity, the transformation of electromagnetic
fields, and the motion of particles in a central potential. In these examples, SNNs learn to identify data points
belonging to the same event, field configuration, or trajectory of motion. We demonstrate that in the process of
learning which data points belong to the same event or field configuration, these SNNs also learn the relevant
symmetry invariants and conserved quantities. Such SNNs are highly interpretable, which enables us to reveal
the symmetry invariants and conserved quantities without prior knowledge.
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I. INTRODUCTION

Machine learning (ML) algorithms have experienced a
surge in the physical sciences. This is based on the introduc-
tion of ML methods to fulfill tasks beyond the scope for which
they were originally designed. These include finding phase
transitions [1–12], simulating quantum systems [13–19], and
rediscovering physical concepts [20–27].

Even though ML in theoretical physics is a young dis-
cipline, it has so far been successful in reproducing results
in many complicated systems in just a few years. This suc-
cess often comes at the cost of a lack of understanding of
what ML algorithms intrinsically learn. Physics, as a scien-
tific discipline, benefits from a “deeper understanding” of the
underlying models used for making predictions.

The question of whether ML models can “understand”
physics is a deeply philosophical one and we do not pre-
sume to address it in all its complexity. Assuming that a ML
algorithm is successfully trained to predict the outcome of
a physical experiment or calculation, it is not always clear
whether the algorithm has deduced physical concepts or has
merely managed to perform some basic pattern matching.
However, if the ML model is “interpretable” in the sense that
we can recover a compact and simple mathematical represen-
tation of a physical equation by analyzing the said model, then
we take the position that such a model has indeed learned to
understand the underlying physics.
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The most successful ML algorithms are artificial neural
networks (ANNs), which are famously inscrutable. Never-
theless, there have been many recent attempts at interpreting
the learned features of a fully trained ANN. The simplest
way to interpret a neural network is to examine the weights
and biases of individual neurons, which can only yield suc-
cessful results in shallow ANNs. In the field of explainable
artificial intelligence, there are different methods that deter-
mine which features of the given input are responsible for a
learned model’s classification [28,29]. Similarly, in the field
of computer vision, there have been many developments to
examine the contribution of the pixels in an image to the
ANN prediction [30–34]. One of the most popular methods
is feature visualization by enhancing learned patterns on input
images [35].

In physics, one has a distinct advantage when it comes to
interpreting ANNs. In the field of computer vision or natural
language processing, it is very hard to come up with math-
ematical equations uniquely describing the ground truth. In
contrast, physicists have worked for hundreds of years to for-
mulate their theories and experimental measurements in terms
of mathematical equations. This means that if we can recover
such an equation by analyzing an ANN, we have immediate
access to its interpretation. This also opens up the possibility
to check for consistency and reveal new concepts. Indeed, a
few recent works have presented successful interpretations of
ANNs in physics [22,36–39].

In this article, we propose a change in traditional siamese
neural network (SNN) architectures that makes them easier
to interpret. Specifically, the key feature is a bottleneck layer,
where the SNN is forced to compress all available information
from previous layers. The output of this bottleneck can be
analyzed, for example, by applying known regression meth-
ods. A similar approach has been taken in [22]. While there
does not exist a related interpretation procedure in computer
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vision, the idea of interpreting bottleneck layers is also seen
in disentangling autoencoders [40].

The ANNs we are considering in this work are a variant
of the previously proposed SNNs, a class of ANNs that have
been applied to object tracking, face recognition, and image
similarity detection [41–44]. An SNN consists of two (iden-
tical) ANNs that are applied to a pair of input data points.
The two networks share their weights and biases, which are
updated simultaneously during training. The goal of the net-
work is to map the input pairs to a set of latent variables that
determine the similarity of the pair.

The general problem an SNN attempts to solve can be
stated as follows: Given two data points x and y related by an
equivalence relation (e.g., the same event in a relativistic set-
ting measured by two observers in different reference frames),
is it possible to correctly and automatically classify them as
related? Further, if x and y are not related, then we require the
ANN to classify them as not related.

Siamese neural networks can solve an extension of a clas-
sification problem with relatively little training data per class.
Instead of training a traditional neural network to distinguish
between a fixed number of classes, an SNN can probe the
similarity of one data point with another prototypical data
point for a certain class. This reformulation bears many ad-
vantages. First, the number of classes does not need to be
fixed. Further, it is no longer necessary to train on all of the
classes. A successfully trained SNN might be able to share its
learned representation to distinguish between classes that are
not in the training set. These properties become important in
the limit of many (possibly infinitely many) classes or in the
case where only a few data points are available in each class.

The following are the contributions we make in this paper.
(i) We introduce the SNN to the field of theoretical physics.
(ii) We demonstrate its usage in the well known contexts

of special relativity, electromagnetism, and the motion of par-
ticles in a central potential. In the case of special relativity,
these SNNs learn whether or not two different observations of
physical phenomena correspond to the same event. In the case
of electromagnetism, these SNNs learn whether or not given
two field configurations, one can be transformed into the other
via a Lorentz transformation. In the case of motion of parti-
cles, these SNNs discover whether or not two observations of
position and momenta describe the same particle.

(iii) Further, we successfully interpret the intermediate
output representations of the SNN and recover the mathe-
matical formulations of known physical conserved quantities
and invariants, e.g., the space-time interval or the angular
momentum.

(iv) Since the interpretation of the SNN yields signatures of
known physical equations, we argue that our SNN has indeed
learned to understand physical concepts instead of merely
performing basic pattern matching.

II. NEURAL NETWORK ARCHITECTURE

In this paper, we employ SNNs to determine whether or not
two samples belong to the same class (see Fig. 1). In this con-
text, our input data are a pair of samples Xi = (xi, x′

i ). In order
to formulate a supervised learning problem, we associate the
label yi = 0 with pairs that correspond to the same class (i.e.,
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FIG. 1. Schematic architecture of an interpretable SNN. Our
SNN contains a bottleneck of only a single neuron; the output of this
layer is called the intermediate output of the network. We observe
that this bottleneck encodes quantities which are strongly correlated
with invariants such as the energy or the space-time interval.

xi and x′
i are related via an equivalence relation) and yi = 1 to

pairs that belong to different classes (i.e., the input pairs are
not related). In this sense, we can reformulate a classification
problem with many (possibly infinitely many) classes into a
traditional binary classification problem.

For this purpose, we construct our SNN consisting of sev-
eral building blocks. The first building block is composed of
a pair of identical neural networks. This pair of networks is
applied simultaneously to each of the samples in a data point
pair xi and x′

i . The last layer of the network pair only contains
a single neuron; we refer to this layer as the bottleneck. The
output of the bottleneck layer is the intermediate output of
the SNN. The intermediate output is merged by performing
appropriate algebraic operations. Let us denote by f (xi ) and
f (x′

i ) the output of each of the neural networks. Then the
algebra layer calculates [ f (xi ) − f (x′

i )]
2 before supplying it

to a sigmoid neuron such that the output of the full SNN can
be written as

F (Xi ) = sigmoid{w[ f (xi) − f (x′
i )]

2 + b}. (1)

The SNN outputs a probability that signifies whether the
two samples belong to the same class or not (see Fig. 2). For
the purpose of training, we minimize the binary cross-entropy
loss function between the SNN F (Xi ) and the label yi on
the training set. After training is complete, the generalization
performance is measured on the test set. While training the
SNN, we enforce weight sharing in the network pair to make
sure these networks learn the same function. We note that, in
the context of our physical examples, a natural minimization
of the binary cross-entropy loss function is achieved if f (xi )
learns a symmetry invariant or a conserved quantity.

After having successfully trained the SNN, our goal is to
answer the question of which features this neural network
bases its decision on. In general, there is no easy answer
to this question, since analyzing even small neural networks
can be extremely challenging. So far, there does not exist a
comprehensive theory of what is learned by artificial neural
networks.
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FIG. 2. Schematic description of the task solved by the siamese neural network. (a) In the case of special relativity and electromagnetism,
our network is tasked to learn if two descriptions from different perspectives correspond to the same event or the same electromagnetic field
configuration. (b) In the context of Newtonian gravity, we train our network to detect if two observations of velocities and positions correspond
to the same particle moving in a central potential.

One of our crucial insights is that in order to interpret
what our SNN learns, we have designed the SNN to include
a bottleneck at the output of the first building block before
merging (see Fig. 1). We will see later that our SNN learns
conserved quantities and invariants at the bottleneck in order
to make its decision about whether two samples belong to
the same class. Further, by interpreting the network, we can
predict conserved quantities and invariants with no additional
prior knowledge.

If the number of neurons in the bottleneck layer increases,
one can achieve better accuracy at the cost of interpretability.
The interpretability can in principle be retained if one enforces
decorrelated intermediate outputs. More details about our neu-
ral network architecture and the learning procedure can be
found in Appendix B.

III. PERFORMING MACHINE LEARNING

A. Space-time in special relativity

1. Introduction

The first physical system we consider in this work is the
Minkowski space-time in special relativity. An event is a four-
vector (t, x, y, z) ∈ R4 that combines spatial coordinates and
a moment in time. The Minkowski space-time is R4 with a
scalar product induced by the metric ημν = diag(−1, 1, 1, 1),

〈x, y〉 = ημνxμyν = xμyν, (2)

where we have used xμ = ημνxν . Thereby we define the
space-time interval s by

〈x, x〉 = −t2 + x2 + y2 + z2 = s2. (3)

The Lorentz group is the set of transformations which pre-
serve the scalar product on the Minkowski space-time

O(3, 1) = {� ∈ M(R4) : 〈�x,�y〉 = 〈x, y〉 ∀ x, y ∈ R4}
(4)

and thus also preserve the space-time interval.

2. SNN training

In this section, we discuss how to teach the neural network
to identify, in special relativity, whether two observations
by different observers correspond to the same event. These
observers are at the same position but move with a relative ve-
locity in some direction. For this purpose, we prepare positive
training data of pairs of observations that correspond to the
same event and negative data where a pair of measurements
does not describe the same event.

More specifically, in order to train our neural networks
with data we prepare a training data set consisting of pairs
of measurements of the same event in Minkowski space-time
seen from two different observers X μ = (xμ, x′μ = � μ

ν xν ) =
((t, x, y, z), (t ′, x′, y′, z′)). Here � is a random Lorentz trans-
formation which is sampled from all possible Lorentz
transformations. More details can be found in Appendix A.
We sample 50 000 space-time events xμ and Lorentz transfor-
mations � to create pairs of events that form the positive data
set. We associate with each pair the label y = 0. Further, we
create a negative data set where each pair of space-time coor-
dinates is not related by a Lorentz transformation. In practice,
we implement this by randomly permuting among all second
elements of all pairs of space-time events in the positive data
set. Each pair in the negative data set is labeled with y = 1. In
addition to this training set, we prepare a similar test data set
of 5000 positive pairs and 5000 negative pairs.

The SNN is trained to predict if a pair of observations
describe the same event or not. This is done by optimizing the
weights of the neural network via backpropagation to mini-
mize the binary cross-entropy loss between network output yp

and true label yt . After training, the neural network is able
to correctly predict if a pair of observations belong to the
same event with an accuracy of approximately 94% on the
training data set and approximately 92% on the test data set.
The training and testing accuracies during training can be seen
in Fig. 9.

Following the successful training of our SNN, we want to
understand what the neural network has learned. This can be
achieved by examining the intermediate output of the neu-
ral network, which acts as an interpretable bottleneck. We
perform a hierarchy of linear regressions with polynomial
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TABLE I. Regression scores of the regression on the interme-
diate output in the case of special relativity, which measures the
normalized distance between regression and data. The score metric
is known as the coefficient of determination or R2 score. The best
possible score is 1; the score can be negative.

Order Train score Test score

1 0.0013 0.0005
2 0.9894 0.9893
3 0.9900 0.9899
4 0.9907 0.9906

features (i.e., polynomial regression) on the intermediate out-
put with respect to the input. If we assume that the Taylor
expansion of the decision function is sufficiently accurate at
the decision boundary, we can hope to get insightful results.

We perform ridge regression with polynomial features of
the input on the intermediate output of the SNN. We start with
polynomials of degree 1 and increase the degree of the poly-
nomial features until the regression becomes accurate. From
Table I one can immediately infer that the optimal degree of
the polynomial features is 2.

The result of the regression in an ordered manner is

f (x) ≈ − 87.41t2 − 60.48 − 0.11x

− 0.10yz + 0.04ty + 0.06z

+ 0.07y + 0.10tx + 0.12tz

+ 0.15xz + 0.21xy + 2.50t

+ 88.10z2 + 88.61y2 + 88.63x2

≈ 88 (−t2 + x2 + y2 + z2)︸ ︷︷ ︸
=s2

−60. (5)

We can see that four nontrivial features dominate all others. If
we assume that the regression includes small approximation
errors, we can infer that the SNN has learned the invariant
quantity s2 = −t2 + x2 + y2 + z2. This quantity is the space-
time interval, a known invariant of the Lorentz group. In cases
where the regression does not yield a clear result, one can
cross-check the second-order regression result with higher
orders of regression and observe if the dominant features stay
the same. Another option is to do the whole training procedure
with a different random seed and see what parts of the results
keep the same ratio.

To summarize, as long as the ANN is only able to use a
single scalar function to decide if two events are the same, it
calculates the space-time interval. If the space-time interval
is the same, the ANN predicts that both coordinates in a
pair belong to the same event. While it is often difficult to
decide if neural networks learn to understand physical con-
cepts to make decisions, here we argue that our SNN does
so. To confirm our derivation, we draw a scatter plot for a
subset of our data points of the intermediate output versus
the space-time interval in Fig. 3 and observe a nearly perfect
nonlinear correlation between these two. Note that we have
cross-checked the second-order regression result with higher
orders of regression and found that the dominant features stay
the same.

FIG. 3. Special relativity: correlation between the intermediate
output of the siamese neural network at the bottleneck layer and the
space-time interval.

Finally, we examine whether the SNN can also learn a
different quantity to decide if two observations from different
observers belong to the same event. For this purpose, we again
prepare a training and a test data set, as explained above.
However, in the preparation of the data set, we keep the
space-time interval fixed. We attempt to train the SNN to learn
to associate corresponding observations. However, the ANN
fails to train in this case. After the best training cycle, the ANN
can only predict if two observations belong to the same event
with an accuracy of 58% on the training set or 57% on the
testing set, which is barely better than random. This fact leads
to the conclusion that the SNN is unable find another invariant
of the Lorentz group besides the space-time interval.

The fact that the SNN fails to distinguish observations in
this reduced data set hints that all observations with the same
space-time interval can be transformed into each other by a
Lorentz transformation. Further, it indicates that there is no
other symmetry invariant. Both of these statements are of
course known to be true. However, one needs to be careful
since the same conclusions could be drawn if the neural net-
work is not powerful enough to learn an underlying invariant.

B. Motion in a central potential

1. Introduction

As a second system we consider the motion of a particle
in a central potential, such as the movement of a planet in the
gravitational potential of the sun. Newtonian gravity can be
formulated via the Hamiltonian

H = p2

2m
− GmM

r
. (6)

Here p is the momentum, r =
√

x2 + y2 is the distance from
the potential center, m is the mass of the planet, M is the mass
of the sun, and G is Newton’s constant of gravitation. Given an
initial position x and velocity v one can calculate the trajectory
of motion by solving Hamilton’s equations

ẋ = ∂px H, ṗx = −∂xH,

ẏ = ∂py H, ṗy = −∂yH.
(7)
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TABLE II. Regression scores of the regression on the intermedi-
ate output in the case of the motion of a particle in a central potential.

Order Train score Test score

1 0.0003 −0.0003
2 0.9936 0.9939
3 0.9937 0.9940
4 0.9952 0.9858

There are conserved quantities in this system: the energy E ,
the components of the angular momentum L, and the compo-
nents of the Laplace-Runge-Lenz vector A. They are related
by two equations, which effectively reduces the number of
scalar conserved quantities to five.

2. SNN training

When examining the motion of particles in a central po-
tential, the SNN is tasked with determining whether two
observations of the same particle correspond to the same
particle trajectory.

We simulate particles of fixed mass m moving in a New-
tonian static gravitational potential produced by a stationary
mass M by solving the Hamilton equations for a set of random
initial positions and velocities. For simplicity we set m = 1
and GmM = 1. We measure the position and the velocity of
the particle at two different times to get pairs of inputs X =
(x, x′) = ((x, y, vx, vy), (x′, y′, v′

x, v
′
y)). We generate 50 000

pairs belonging to the same particle trajectories to form the
positive training data set labeled by yi = 0. By permuting the
second entry in the pairs, we create a negative data set labeled
with yi = 1. Similarly, a testing set is produced with 5000
positive and 5000 negative examples.

The SNN is then trained to correctly predict if a pair
of coordinates belong to the same trajectory. After being
successfully trained, the network achieves an accuracy of ap-
proximately 98% on the training set and approximately 97%
on the test set.

In order to interpret on what quantity the neural network
bases its decision, we again examine the bottleneck at the
intermediate output. We again perform a hierarchy of linear
regressions with increasing polynomial features on the inter-
mediate output. The optimal degree of the regression is 2 (see
Table II).

The result of the regression in an ordered manner is

f (x) ≈ − 403.71xvy − 4.85x − 0.58xy

− 0.17xvx − 0.02v2
y − 0.01vxvy

+ 0.00v2
y + 0.01vy + 0.02vx

+ 0.45x2 + 0.66y2 + 0.74

+ 0.99yvy + 1.24y + 402.44yvx

≈ − 403 (xvy − yvx )︸ ︷︷ ︸
=Lz

. (8)

This quantity is an approximation to the angular momentum
Lx = m(xvy − yvx ). A confirmation of this result is visualized

FIG. 4. Particle in a central potential: correlation between the
intermediate output and (a) the angular momentum or (b) the energy.

in the very good correlation between the angular momen-
tum and the intermediate output, illustrated in Fig. 4(a). This
means that the SNN learns to distinguish between pairs orig-
inating from the same trajectory and different trajectories, by
calculating the angular momentum. Another conserved quan-
tity in this system is the energy. In Fig. 4(b) we see that the
intermediate prediction is not correlated with the energy.

We now fix the angular momentum and perform the simu-
lation again to produce 50 000 positive and 50 000 negative
data pairs. We train the SNN again to distinguish if a pair
of observations belong to the same trajectory. Even though
the neural network cannot use the angular momentum to de-
termine if the pair correspond to the same trajectory, it still
manages to perform well on this task. The SNN achieves an
accuracy of approximately 95% on both the training and the
test set.

When using linear regression with polynomial features to
determine what the SNN has learned in order to make its
prediction we fail. On the one hand, there is no clear optimal
degree of the polynomial regression. On the other hand, all the
regression results do not yield a clear dominant feature. If we
compare the intermediate output to the remaining invariants
in the system, we find that the intermediate output is strongly
correlated with the energy of the system (see Fig. 5). This
means that the SNN probes the pair of observations for energy
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FIG. 5. Particle in a central potential with fixed angular momen-
tum: correlation between the intermediate output and the energy.

conservation. However, the energy cannot be well approxi-
mated by a polynomial function with which we perform our
regression.

To circumvent this problem we extend the input features
to include the term 1/r = 1/

√
x2 + y2 such that the input

feature vector reads (x, y, vx, vy, 1/r). From this point we can
start the polynomial regression, go on to identify the best
polynomial order (see Table III), and formulate the findings
in the equation

f (x) ≈ − 174.57 − 88.28
1

r
− 87.39yvx

− 1.43
1

r2
+ · · · + 1.27

x

r

+ 46.22v2
x + 46.53v2

y + 87.18xvy

≈ − 175 + 87(xvy − yvx︸ ︷︷ ︸
=Lz=const

) + 90

(
1

2
v2

x + 1

2
v2

y − 1

r︸ ︷︷ ︸
=E

)
.

(9)

We see that the result includes the energy and the angular
momentum. The angular momentum evaluates to a constant.
Since constants can be absorbed, we conclude that the SNN
has learned energy conservation. One might ask whether the
SNN is able to find the Laplace-Runge-Lenz vector, which
remains open for further investigation.

TABLE III. Regression scores of the regression on the intermedi-
ate output in the case of the motion of a particle in a central potential
with fixed angular momentum.

Order Train score Test score

1 0.0019 0.0069
2 0.9145 0.9077
3 0.9258 0.7925
4 0.9498 −0.0359

TABLE IV. Regression scores of the regression on the interme-
diate output in the case of electromagnetism.

Order Train score Test score

1 0.0000 0.0000
2 0.9902 0.9902
3 0.9902 0.9902
4 0.9946 0.9946

C. Electromagnetism

1. Introduction

Finally, we consider electric E and magnetic fields B and
their behavior under Lorentz transformations. For this purpose
we incorporate the fields in the electromagnetic field strength
tensor

Fμν =

⎛
⎜⎝

0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞
⎟⎠. (10)

The Lorentz transformation of the field strength tensor

F ′
μν = Fαβ�α

μ�β
ν (11)

implies the transformations for the electric and magnetic
fields. The known Lorentz invariants of the electromagnetic
fields are the determinant of the field strength tensor B · E =
det F and |B|2 − |E|2 = 1/2FμνFμν .

2. SNN training

In this section, we study the behavior of electromag-
netic fields under Lorentz transformations with SNNs. For
this purpose, we again produce 200 000 true pairs X =
((Ex, Ey, Ez, Bx, By, Bz ), (E ′

x, E ′
y, E ′

z, B′
x, B′

y, B′
z )) of electric

and magnetic field configurations, which are connected by a
Lorentz transformation, and 200 000 negative pairs of fields
by permuting the positive pairs.

We again train the SNN to predict if the two measure-
ments belong to the same field configuration. After having
successfully trained the neural network, we find that the neural
network can fulfill the task to the high accuracy of approxi-
mately 95% on the training set and approximately 94% on the
test set.

In order to determine what the neural network has learned,
we perform polynomial regression on the intermediate output
of the neural network. The function which approximates the
output best is of degree 2 (see Table IV) and is given by

f (x) ≈ − 170.53E2B2 − 170.22E1B1 − 170.20E3B3

− 4.13B2
3 + · · · + 4.92E2

2 + 53.43

≈ − 170 (E1B1 + E2B2 + E3B3)︸ ︷︷ ︸
=E ·B

+53. (12)

This function is an approximation to a known invariant, the
determinant of the field strength tensor B · E = det F . A con-
firmation of this deduction is the correlation between det F
and the intermediate output as depicted in Fig. 6.
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FIG. 6. Electromagnetism: correlation between the intermediate
output and (a) the determinant of the field strength tensor and (b) a
specific contraction of two field strength tensors.

Let us perform the same experiment again, however this
time we fix the determinant of the field strength tensor when
sampling the pairs of electromagnetic field configurations.
The neural network still trains successfully and performs well
in identifying pairs of data belonging to the same fields, with
an accuracy of approximately 91% on the training set and
approximately 90% on the test set. Performing the bottleneck
regression on the intermediate output of the neural network
reveals the remaining invariant to be of degree 2 (see Table V)
and is approximated by

f (x) ≈ − 216.26E2
2 − 216.016E2

1 − 215.59E2
3

− 1.83E1B2 + · · · + 5.55E3B3 + 13.59

TABLE V. Regression scores of the regression on the intermedi-
ate output in the case of electromagnetism with fixed determinant of
the field strength tensor.

Order Train score Test score

1 0.0002 −0.0003
2 0.9956 0.9956
3 0.9957 0.9956
4 0.9962 0.9962

FIG. 7. Electromagnetism with fixed determinant of the field
strength tensor: correlation between the intermediate output and a
specific contraction of two field strength tensors.

+ 215.80B2
3 + 216.57B2

2 + 217.31B2
1

≈ − 216
(
E2

1 + E2
2 + E2

3 − B2
1 − B2

2 − B2
3

)
︸ ︷︷ ︸

=|E |2−|B|2
+14. (13)

This function is another known invariant of the field strength
tensor |B|2 − |E|2 = 1/2FμνFμν , confirmed in Fig. 7. To sum-
marize, in the context of electromagnetism, we have revealed
the two invariants of the electric and magnetic fields which are
preserved under Lorentz transformations.

IV. CONCLUSION AND FUTURE DIRECTIONS

We have introduced siamese neural networks to the field of
theoretical physics. They are successful in predicting whether
two data instances are connected by a deterministic transfor-
mation. We examined space-time events and electromagnetic
fields which transform under Lorentz transformations, as well
as the movement of particles in a central potential. By in-
terpreting our neural network, we found that it learns the
underlying symmetry invariants and conserved quantities to
perform its prediction. Most interestingly, we were able to
interpret our SNNs via the use of polynomial regression. This
procedure revealed an excellent approximation of the under-
lying symmetry invariants and conserved quantities. These

FIG. 8. Detailed architecture of an interpretable siamese neural
network.
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FIG. 9. Losses and accuracies.

invariants range from the space-time interval over angular mo-
mentum conservation to the determinant of the field strength
tensor. If the underlying system does not contain human
readable invariants, the neural network could act as an approx-
imation to such an invariant.

Future directions of this work include an upgrade of the
polynomial regression to symbolic regression [45]. Another
exciting direction is to combine interpretable SNNs with
semiautomated mathematical reasoning tools, e.g., solvers or
theorem provers. The idea is to check the physical law learned

by the SNN for consistency against known laws and invariants
by leveraging such reasoning tools [46]. It does not take much
imagination to envision how this technology can be used in
applications such as quantum error correction or in particle
tracking at the Large Hadron Collider.

It remains to be seen if SNNs will ever find an invariant
or conserved quantity unknown to modern physics. Even if
this does not happen, the contribution of this work is the
introduction of SNNs as a useful tool in theoretical physics.
Furthermore, we challenged the black box nature of artificial
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neural networks by a very clear interpretation that reveals
polynomial quantities without prior knowledge. The inter-
pretation procedure might also be adopted into the field of
computer science, where the interpretability of neural net-
works poses a major problem.
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APPENDIX A: LORENTZ TRANSFORMATION

Let us describe the representation of the Lorentz transfor-
mations which are used to generate the data pairs in the special
relativity and electromagnetism sections. An arbitrary Lorentz
transformation can be decomposed as

� = D1�vD2. (A1)

Here �v is a Lorentz boost in the x direction,

�v =

⎛
⎜⎝

γ −γ β 0 0
−γ β γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠, (A2)

where

β = v

c
, γ = 1√

1 − β2
. (A3)

Here c is the speed of light, which we conveniently set to c =
1. The matrices D1 and D2 perform the rotation in the three-
dimensional subspace

D =
(1 0

0 R
)
, (A4)

where R ∈ O(3).

APPENDIX B: NEURAL NETWORK DETAILS

In this Appendix we explain the details of the training of
the SNN on pairs of data with a number of data points N
between 50 000 and 200 000. For the sake of understandability
we use the same architecture and hyperparameters for all
learning tasks. The architecture of the SNN is depicted in
Fig. 8.

The training of the neural network is the adjustment of the
weights wL

i j and biases bL
i of the neural network to achieve a

minimum of the binary cross-entropy loss function for all N
training data points

L(yt , yp) = − 1

N

N∑
i=0

yi,t ln(yi,p) + (1 − yi,t ) ln(1 − yi,p),

(B1)

where yt denotes the true label, while yp is the neural network
prediction. Our neural networks are trained using the Adadelta
optimizer. We found that starting learning rates of η = 100 are
needed to train the neural network; this learning rate is much
higher than normally used in traditional classification prob-
lems. Each update is performed by calculating the gradient on
a batch of size 256. We employ learning rate decay callbacks
which reduce the learning rate by a factor of 2 if the training
loss has not improved for 50 epochs. We train our networks
for 10 000 epochs; however, we employ an early stopping
callback which aborts the training process if the training loss
has not improved over 200 epochs. We do not use any kind
of regularization in our neural networks. The evolution of the
losses and accuracies during training are depicted in Fig. 9

APPENDIX C: INTERPRETING NEURAL NETWORKS

If a neural network intrinsically learns a physical observ-
able O(x) as a function of the input data x, this observable is
often encoded in an elusive manner distributed among many
neurons. The bottleneck interpretation forces all information
of this observable through a single neuron. In general, this
observable is encoded in a deformed manner such that the
output of the bottleneck neuron is h(O(x)). If we restrict our-
selves to a small output range, the function h can be linearized
such that h(O(x)) = h0 + h1 × O(x). This form helps us to
perform linear regression and h0 and h1 can be identified as
adjustments to the weights and bias of the neuron.

[1] J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431
(2017).

[2] E. P. L. van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Nat.
Phys. 13, 435 (2017).

[3] L. Wang, Phys. Rev. B 94, 195105 (2016).
[4] S. J. Wetzel, Phys. Rev. E 96, 022140 (2017).
[5] Y. Zhang and E.-A. Kim, Phys. Rev. Lett. 118, 216401 (2017).
[6] F. Schindler, N. Regnault, and T. Neupert, Phys. Rev. B 95,

245134 (2017).
[7] W. Hu, R. R. P. Singh, and R. T. Scalettar, Phys. Rev. E 95,

062122 (2017).
[8] T. Ohtsuki and T. Ohtsuki, J. Phys. Soc. Jpn. 86, 044708 (2017).

[9] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst, Sci.
Rep. 7, 8823 (2017).

[10] D.-L. Deng, X. Li, and S. D. Sarma, Phys. Rev. B 96, 195145
(2017).

[11] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, Phys.
Rev. X 7, 031038 (2017).

[12] P. Huembeli, A. Dauphin, and P. Wittek, Phys. Rev. B 97,
134109 (2018).

[13] G. Torlai and R. G. Melko, Phys. Rev. B 94, 165134 (2016).
[14] G. Carleo and M. Troyer, Science 355, 602 (2017).
[15] E. M. Inack, G. E. Santoro, L. Dell’Anna, and S. Pilati, Phys.

Rev. B 98, 235145 (2018).

033499-9

https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4037
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1103/PhysRevLett.118.216401
https://doi.org/10.1103/PhysRevB.95.245134
https://doi.org/10.1103/PhysRevE.95.062122
https://doi.org/10.7566/JPSJ.86.044708
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1103/PhysRevB.96.195145
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevB.97.134109
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevB.98.235145


WETZEL, MELKO, SCOTT, PANJU, AND GANESH PHYSICAL REVIEW RESEARCH 2, 033499 (2020)

[16] M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G.
Melko, and J. Carrasquilla, Phys. Rev. Res. 2, 023358
(2020).

[17] J. Carrasquilla, D. Luo, F. Pérez, A. Milsted, B. K. Clark, M.
Volkovs, and L. Aolita, arXiv:1912.11052.

[18] F. Ferrari, F. Becca, and J. Carrasquilla, Phys. Rev. B 100,
125131 (2019).

[19] O. Sharir, Y. Levine, N. Wies, G. Carleo, and A. Shashua, Phys.
Rev. Lett. 124, 020503 (2020).

[20] M. Schmidt and H. Lipson, Science 324, 81 (2009).
[21] R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, Phys.

Rev. Lett. 124, 010508 (2020).
[22] S. J. Wetzel and M. Scherzer, Phys. Rev. B 96, 184410

(2017).
[23] P. Ponte and R. G. Melko, Phys. Rev. B 96, 205146 (2017).
[24] J. Greitemann, K. Liu, and L. Pollet, Phys. Rev. B 99,

060404(R) (2019).
[25] Y.-i. Mototake, arXiv:2001.00111.
[26] S.-M. Udrescu and M. Tegmark, Sci. Adv. 6, eaay2631

(2020).
[27] C. Wang, H. Zhai, and Y.-Z. You, Sci. Bull. 64, 1228 (2019).
[28] S. M. Lundberg and S.-I. Lee, in Proceedings of the 31st Con-

ference on Neural Information Processing Systems, Long Beach,
2017, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Curran, Red Hook,
2017), pp. 4765–4774.

[29] D. Gunning, XAI: Explainable Artificial Intelligence, DARPA
report, 2017, available at https://www.darpa.mil/attachments/
XAIProgramUpdate.pdf

[30] G. Montavon, W. Samek, and K.-R. Müller, Digital Signal
Process. 73, 1 (2018).

[31] M. T. Ribeiro, S. Singh, and C. Guestrin, Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (ACM, New York, 2016).

[32] K. Simonyan, A. Vedaldi, and A. Zisserman, Workshop at
the International Conference on Learning Representations,
arXiv:1312.6034 (2014).

[33] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
and W. Samek, PLoS One 10, e0130140 (2015).

[34] M. D. Zeiler and R. Fergus, in Computer Vision—ECCV 2014,
edited by D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
Lecture Notes in Computer Science Vol. 8689 (Springer, Cham,
2014), pp. 818–833.

[35] A. Mordvintsev, DeepDream—A code example for visualizing
neural networks, 2015, available at https://ai.googleblog.com/
2015/07/deepdream-code-example-for-visualizing.html.

[36] D. Kim and D.-H. Kim, Phys. Rev. E 98, 022138 (2018).
[37] P. Suchsland and S. Wessel, Phys. Rev. B 97, 174435 (2018).
[38] Y. Zhang, P. Ginsparg, and E.-A. Kim, Phys. Rev. Res. 2,

023283 (2020).
[39] S. Bluecher, L. Kades, J. M. Pawlowski, N. Strodthoff, and J. M.

Urban, Phys. Rev. D 101, 094507 (2020).
[40] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G.

Desjardins, and A. Lerchner, arXiv:1804.03599.
[41] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. Lecun,

C. Moore, E. Säckinger, and R. Shah, Int. J. Pattern Recog.
Artif. Intell. 07, 669 (1993).

[42] S. Chopra, R. Hadsell, and Y. LeCun, in 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’05) (IEEE, Piscataway, 2005).

[43] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, Proceedings
of the 2014 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (IEEE, Piscataway, 2014).

[44] S. Appalaraju and V. Chaoji, arXiv:1709.08761.
[45] J. Koza, Stat. Comput. 4, 87 (1994).
[46] J. Scott, M. Panju, and V. Ganesh, Proceedings of the 34th AAAI

Conference on Artificial Intelligence, New York, 2020 (AAAI,
Palo Alto, 2020).

033499-10

https://doi.org/10.1103/PhysRevResearch.2.023358
http://arxiv.org/abs/arXiv:1912.11052
https://doi.org/10.1103/PhysRevB.100.125131
https://doi.org/10.1103/PhysRevLett.124.020503
https://doi.org/10.1126/science.1165893
https://doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1103/PhysRevB.96.205146
https://doi.org/10.1103/PhysRevB.99.060404
http://arxiv.org/abs/arXiv:2001.00111
https://doi.org/10.1126/sciadv.aay2631
https://doi.org/10.1016/j.scib.2019.07.014
https://www.darpa.mil/attachments/XAIProgramUpdate.pdf
https://doi.org/10.1016/j.dsp.2017.10.011
http://arxiv.org/abs/arXiv:1312.6034
https://doi.org/10.1371/journal.pone.0130140
https://ai.googleblog.com/2015/07/deepdream-code-example-for-visualizing.html
https://doi.org/10.1103/PhysRevE.98.022138
https://doi.org/10.1103/PhysRevB.97.174435
https://doi.org/10.1103/PhysRevResearch.2.023283
https://doi.org/10.1103/PhysRevD.101.094507
http://arxiv.org/abs/arXiv:1804.03599
https://doi.org/10.1142/S0218001493000339
http://arxiv.org/abs/arXiv:1709.08761
https://doi.org/10.1007/BF00175355

