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A defining feature in the field of quantum computing is the potential of a quantum device to outperform its
classical counterpart for a specific computational task. By now, several proposals exist showing that certain sam-
pling problems can be done efficiently quantumly, but are not possible efficiently classically, assuming strongly
held conjectures in complexity theory, a feature dubbed quantum speedup. However, the effect of noise on these
proposals is not well understood in general, and in certain cases it is known that simple noise can destroy the
quantum speedup. Here we develop a fault-tolerant version of one family of these sampling problems, based on
nonadaptive measurements on regular graph states composed of m qubits. We show that these sampling problems
can be implemented fault tolerantly using quantum circuits of constant depth. We present two constructions, each
taking poly(m) physical qubits, some of which are prepared in noisy magic states. The first of our constructions
is a constant depth quantum circuit composed of single- and two-qubit nearest-neighbor Clifford gates in four
dimensions. This circuit has one layer of interaction with a classical computer before final measurements.
Our second construction is a constant depth quantum circuit with single- and two-qubit nearest-neighbor
Clifford gates in three dimensions, but with two layers of interaction with a classical computer before the final
measurements. For each of these constructions, we show that there is no classical algorithm which can sample
according to its output distribution in poly(m) time, assuming two standard complexity theoretic conjectures
hold. The noise model we assume is the so-called local stochastic quantum noise. Along the way, we introduce
various concepts such as constant depth magic state distillation and constant depth output routing, which arise
naturally in measurement based quantum computation, but have no constant-depth analog in the circuit model.

DOI: 10.1103/PhysRevResearch.2.033444

I. INTRODUCTION

Quantum computers promise incredible benefits over their
classical counterparts in various areas, from breaking Rivest-
Shamir-Adleman (RSA) encryption [1], to machine learning
[2], to improvements to generic search [3], among others
[4,5]. Although these and other examples of quantum algo-
rithms do outperform classical ones, on the practical level,
they in general require quantum computers with a high level
of fault tolerance and scalability, the likes of which appear to
be out of the reach of current technological developments [6].
An interesting pair of questions is, thus, what can be done
with so-called subuniversal quantum devices which are not
universal, in the sense that they cannot perform an arbitrary
quantum computation, but are realizable in principle by our
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current technologies; and how sure can we be that they are bet-
ter than classical computers (CCs). There are several flavors of
answers to this. In quantum simulation, subuniversal devices
are used to simulate physical systems and processes of interest
[7]. However, though potentially very useful, so far there
is a lack of a convincing complexity theoretical argument
that they beat any possible algorithm on classical computers.
On the other hand, recent work has shown certain constant
depth quantum computations that can, unconditionally, beat
any constant depth classical computer [8], and this can even
be done fault tolerantly [9]. However, these computations can
still be performed on polynomial sized classical circuits. In
this paper we are interested in demonstrations of an expo-
nential (superpolynomial) separation between classical and
quantum computation, conditioned on certain complexity the-
oretic conjectures holding, and which we refer to as quantum
speedup.

Several examples of such practically motivated subuni-
versal models which nevertheless capture quantum speedup
have been discovered in recent years [10–23]. In these works,
sampling from the output probability distribution of these
subuniversal devices has been shown to be classically impos-
sible to do efficiently, provided widely believed complexity
theoretic conjectures hold [10,11].
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The first experimental demonstration of quantum speedup
is a major milestone in quantum information. Recent auda-
cious experimental efforts [21] and subsequent proposals of
their classical simulation [24] bring to light the challenges
and subtleties of achieving this goal. Statements of quantum
speedup are complexity theoretic in nature, making it difficult
to pin down when a problem can in practice be simulated or
not classically, even if we know that classical simulation is
impossible above a certain system size. At the same time,
the role of noise in simplifying the simulation is ever more
important; as systems grow, noise becomes more difficult to
control, and it is a subtle question as to when it dominates;
and even simple noise can very easily lead to breakdown of
quantum speedup. Indeed, in [25–31] it was shown that noise
generally renders the output probabilities of these devices
(which in the noiseless case demonstrate quantum speedup)
classically simulable efficiently. There is clearly a great need
to understand better the effect of noise, and develop methods
of mitigation.

Applying the standard approach to deal with noise in com-
putation, fault tolerance, is nontrivial in this setting for at least
two reasons [32–35]. First, the resources it consumes can be
huge. Second, it typically involves operations that step outside
of the simplified computational model that makes it attractive
in the first place. For example, in [10] the subuniversal model
Instantaneous Quantum Polynomial time (IQP) was defined,
as essentially the family of circuits where all gates are diago-
nal in the X basis, and shown to provide sampling problems
demonstrating quantum speedup in the noiseless case. How-
ever, in [25] it was shown that a simple noise model—each
output bit undergoes a bit flip with probability ε—renders
the output probabilities of sufficiently anti-concentrated IQP
circuits efficiently simulable classically. Interestingly, for this
special type of noise, they also show that quantum speedup
can be recovered using classical fault tolerance and larger
encodings of the problem quantumly, still within the IQP
framework [25]. However, for more general noise (for exam-
ple, Pauli noise in all the Pauli bases), this does not appear to
work, and it is not obvious if it is possible to do so within the
constrained computational mode. In this case that would mean
ensuring all gates be diagonal in X , which is not obvious as
typical encoding and syndrome measurements involve more
diverse gates.

In this paper, we study how quantum speedup can be
demonstrated in the presence of noise for a family of sampling
problems. We take the local stochastic quantum noise (we
will also refer to this noise as local stochastic noise) model,
commonly studied in the quantum error correction and fault-
tolerance literature [9,36,37]. Our sampling problems are built
on a family of schemes essentially based on local measure-
ments on regular graph states, which correspond to constant
depth two-dimensional (2D) nearest-neighbor (NN) quantum
circuits showing quantum speedup [14–16,18,23,38]. We
show that these can be made fault tolerant in a way which
maintains constant depth of the quantum circuits, albeit with
large (but polynomial) overhead in the number of ancilla
systems used, and at most two rounds of (efficient) classical
computation during the running of the circuit.

We present two different constructions based on two dif-
ferent techniques of fault tolerance, the first of which involves

the use of transversal gates and topological codes each en-
coding a single logical qubit [9,32,39]. This construction
results in a constant depth quantum circuit demonstrating a
quantum speedup, but, because of the need for long-range
transversal gates, can only be viewed as a quantum circuit
with single-qubit Clifford gates and nearest-neighbor two-
qubit Clifford gates in four dimensions [we will henceforth
refer to this as our four-dimensional (4D) NN architecture].
Our second construction avoids using transversal gates by ex-
ploiting topological defect-based quantum computation [40],
thereby resulting in a constant depth quantum circuit which is
a three-dimensional (3D) NN architecture. The tradeoff is that
our 3D NN architecture requires polynomially more ancillas
than our 4D NN architecture, and has two layers of interaction
with a classical computer, as compared to one such layer in
our 4D NN architecture.

Our constructions rely on several techniques from [9],
where the authors present a fault-tolerant family of constant
depth (3D NN) Clifford circuits which cannot be simulated by
any constant depth classical computer. In particular we apply
their analysis of the propagation of noise through Clifford
circuits. The main additional technical ingredient developed
here is the inclusion of constant depth distillation of magic
states, and constant depth output routing, which are required
to get the sampling hardness statements, but not needed in
[9]. These additions promote the classical quantum separation
from constant versus scaling depth in [9] to polynomial versus
exponential computations, albeit with the additional complex-
ity theoretic conjectures (standard for sampling problems [13]
but not required in [8,9]) and the need to call on a classical
computer at most twice.

In another related work, the authors of [41] also presented a
fault-tolerant construction of a sampling problem which can-
not be performed by any polynomial time classical algorithm,
conditioned on three complexity theoretic conjectures hold-
ing. This consisted of a constant depth quantum circuit, with
a non-Clifford component, obtained by using defect-based
topological quantum computing [40]. This construction is
nonadaptive (no interaction with a classical computer during
running of the circuit), and can be viewed as a 3D NN archi-
tecture. The main disadvantage of the construction in [41] was
the magic state distillation (MSD) procedure employed, which
makes the scheme impractical in the sense that one should
repeat the experiment an exponential number of times in order
to observe an instance which is hard for the classical computer
to simulate. In both our 3D and 4D NN constructions, we
overcome this problem by optimizing the MSD procedure,
thereby making the appearance of a hard instance very likely
in only a few repetitions of the experiment, a feature called
single-instance hardness [14]. This, however, comes at the
cost of adding adaptive interactions with the classical com-
puter while running the quantum circuit.

This paper is organized as follows. First, we introduce the
family of sampling problems using graph states, on which
our constructions are based. After briefly defining the noise
model, we describe in detail the encoding procedure for our
4D NN architecture. We then describe the effects of noise
on our construction, step by step, starting from the Clifford
part of the circuit and ending with the MSD, while introduc-
ing our optimized MSD techniques based on measurement
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FIG. 1. Graph state |G〉 of [38] together with the prespecified measurements in the XY plane. This graph state is composed of n rows and
k columns as seen in the main text (lower part of figure), and made up of two-qubit gadgets GB (green rectangles) zoomed in at the upper part
of the figure (orange circle and arrow). Blue circles are qubits, blue vertical and horizontal lines are CZ gates, and the symbols inside each
circle correspond to the angle in the XY plane at which this qubit is measured. The π/4 symbol is a measurement at an angle π/4 in the XY
plane, similarly for π/2 and zero. In the original construction of [38], the red horizontal line is a long-range CZ; these are used periodically
in |G〉 to connect two consecutive GB gadgets acting on qubits of either the first row or the last row of |G〉. Here, this red horizontal line is
a linear cluster of 12 qubits measured at an XY angle of zero; this is in order to make the construction nearest neighbor. Note that this only
adds single-qubit random Pauli gates to the random gates of [38], and therefore does not affect their universality capacity in implementing a t
design.

based quantum computation (MBQC) [42], namely, constant
depth nonadaptive MSD, and MBQC routing. Finally, we
explain how to modify, using our optimized MSD techniques,
the 3D NN architecture in [41] in order to give rise to the
single-instance hardness feature [14]. Note that in our 3D NN
architecture we use different (fixed) measurement angles to
those in [41] to construct a different sampling problem having
an anticoncentration property [16,17,38].

II. GRAPH STATE SAMPLING

Our approach is to construct a fault-tolerant version of
the architectures based on MBQC [40,42], which have re-
cently been shown to give rise to sampling problems that are
classically intractable, and therefore demonstrate a quantum
speedup [14–16,18,23,38].

In these constructions, the sampling is generated by per-
forming local measurements on a large entangled state, known
as a graph state. Given a graph G, with vertices V and edges
E , the associated graph state |G〉 of |V | qubits is defined as

|G〉 :=
∏

{i, j}∈E

CZi j

⊗
a∈V

|+〉a, (1)

where |+〉 := |0〉+|1〉√
2

and CZi j is the controlled-Z gate (CZ)
acting on qubits i and j connected by an edge. For certain

graphs of regular structure, such as the cluster [42] or brick-
work [43] states, applying single-qubit measurements, of
particular choices of angles on the XY plane, effectively sam-
ples distributions, in a way that is impossible to do efficiently
classically, up to the standard assumptions [14–16,38,41].

Although our techniques can be applied to any such archi-
tecture where the measurement angles in the XY plane of the
Bloch sphere are chosen from the set {0, π

2 , π
4 } [14–16,38],

for concreteness we will focus on the architecture of [38].
Following [38] we start with a regular graph state, closely

related to the brickwork state [43], composed of n rows and k
columns. Then we (nonadaptively) measure qubits of all but
the last column at prespecified fixed XY angles from the set
{0, π

2 , π
4 } effectively applying a unitary, on the n unmeasured

qubits. This is illustrated in Fig. 1.
Let V1 ⊂ V be the set of qubits which are measured at angle

π
4 and V2 ⊂ V is the set of qubits which are measured at an XY
angle π

2 . One can equivalently perform local rotations to the
graph state and measure all systems in the Z basis. In this way,
if we define

|G′〉 :=
(⊗

a∈V

Ha

⊗
b∈V1

Zb(π/4)
⊗
c∈V2

Zc(π/2)

)
|G〉,

where H is the Hadamard unitary and Z (θ ) := e−i θ
2 Z is a

rotation by θ around Pauli Z , then one can represent the
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outcome by a measurement result bit string s ∈ {0, 1}n.(k−1),
with associated resultant state

〈s|G′〉 = 1√
2n(k−1)

Us|0〉⊗n. (2)

Us is a random unitary; it is the result of measuring non-
adaptively the qubits of all but the last column of |G′〉 in
the Z basis, and depends on the measurement results of these
qubits (see [38,44]). This procedure effectively samples from
the ensemble of random unitaries {Us}s, where each random
unitary Us is sampled with uniform probability 1

2n(k−1) . It was

shown in [38] that, setting k = O{t9[nt + log( 1
ε

)]}, this en-
semble has the property of being an ε-approximate unitary
t design [45], that is, it approximates sampling on the Haar
measure up to the t th moments. This property allows us to
reduce the requirements for the proof of quantum speedup
since it implies anticoncentration for t = 2 from [16].

Measuring qubits of the last column in the computational
(Z) basis and denoting the outcome by a bit string x ∈ {0, 1}n,
our construction samples the bit strings s, x with probability
given by

D(s, x) = 1

2n(k−1)
|〈x|Us|0〉⊗n|2. (3)

Fixing t = 2 and ε to an appropriate value, in this case the
value of k becomes k = O(n); we will use this value of k
throughout this paper. The results of [16,17] directly imply
(see also [18]) that the distribution

D := {D(s, x)} (4)

satisfies the following anticoncentration property [16,17]:

Prs,x

(
D(s, x) � α

2kn

)
� β, (5)

where α is a positive constant, 0 < β � 1, and Prs,x (.) is the
probability over the uniform choice of bit strings s and x.

By using the same techniques as [12,16,18], the following
proposition can be shown.

Proposition 1. Given that the polynomial hierarchy (PH)
does not collapse to its third level, and that the worst-case
hardness of approximating the probabilities of D [Eqs. (3)
and (4)] extends to the average case, there exists a positive
constant μ such that no poly(n)-time classical algorithm C
exists that can sample from a probability distribution DC such
that ∑

s,x

|DC (s, x) − D(s, x)| � μ. (6)

Indeed, as shown in [38], (2) can be viewed as implement-
ing a one-dimensional (1D) random circuit, as those in [46].
In this picture the circuits have depth O(n) (for fixed t and
ε) and are composed of two-qubit gates which are universal
on U (4). These circuits are therefore universal under posts-
election, implying that there exist probabilities D(s, x) which
are hard (#P) to approximate up to relative error 1/4 + O(1)
[47] (this property is referred to as worst-case hardness of
approximating the probabilities of D, or for simplicity worst-
case hardness). #P is the set of all functions which count
the number of accepting paths of any given NP problem
[48]. #P-hard problems, such as approximating the outputs

of a universal (under postselection) quantum computer up to
relative error 1/4 + O(1), are extremely intractable, even for
a quantum computer. However, sampling from these outputs
can be done efficiently quantumly, but can nevertheless be
intractable classically. Indeed, this is the motivation behind
the sampling problems showing quantum speedup in [10–23]
and in this paper. Worst-case hardness together with the anti-
concentration property of Eq. (5) mean that the techniques of
[12] directly prove Proposition 1.

Note that Proposition 1 is a conditional statement, meaning
that it is true up to some conjectures being true. The first
is that the PH does not collapse to its third level, a gener-
alization of P 	= NP, which is widely held to be true [49].
The second conjecture is that the worst-case hardness of our
problem extends to the average case, meaning roughly that
most outputs of our circuit are hard (#P) to approximate up
to relative error 1/4 + O(1). Although this conjecture is less
widely accepted, there exists evidence to support it mainly
in the case of random circuits sampling unitaries from the
Haar measure [50,51]. Particularly relevant to our case are
arguments in [15,18] which give convincing evidence that
worst-case hardness should extend to the average case for
distributions of the form D(s, x) [Eq. (3)], where the uniform
distribution over bit strings s effectively makes D(s, x) more
flat as compared to, say, the outputs of random quantum
circuits [50,51] or standard IQP circuits [12]. Also, in [14]
an average-case hardness conjecture was stated involving an
MBQC construction with fixed XY angles, as is the case here.
Furthermore, we note that a worst-to-average-case conjecture
is effectively always required in all known proofs of hardness
of approximate classical sampling up to a constant error in the
l1 norm [52].

At this point, it is worth putting Proposition 1 in the right
context. In [53], it was shown that for a brickwork state (simi-
lar to that in Fig. 1) where the measurement angles are chosen
from the Haar measure the resulting probability distribution
can be approximately sampled (up to any constant error in the
l1 norm) efficiently classically with high probability over the
choice of measurement angles from the Haar measure [53].
Taking this into consideration, it seems that Proposition 1
is in contradiction with the work of [53]. However, this is
not the case. To see this, note that Proposition 1 corresponds
to output probabilities resulting from a specific set of XY
measurement angles on a brickwork state (see Fig. 1) [38].
This is far from choosing the angles from the Haar measure.
Therefore, as in the works of [14–16,18,23], our construction
is a worst-case instance of the circuits in [53], where their ef-
ficient classical algorithm fails. Indeed, the XY measurement
angles performed here induce an effective 1D dynamics (in
the language of [53]) which is purely unitary, and which for
the specific choice of XY angles we make typically evolves
an input state onto a volume law entangled state. The classical
algorithm in [53] is generally inefficient in simulating such
volume law entangled states.

The circuit implementing our construction is constant
depth. To see this, notice that the regularly structured graph
states of [14–16,18,23,38] can be constructed from constant
depth quantum circuits composed of Hadamard (H) and CZ
gates [54]. The measurements, being nonadaptive, may be
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performed simultaneously (depth 1). The explicit form of the
circuit can be seen by rewriting the state |G′〉 as follows:

|G′〉 =
⊗
a∈V

Ha

⊗
b∈V2

Zb(π/2)
∏

{i, j}∈E

CZi j

⊗
c∈V1

|T 〉c

⊗
d∈V/V1

Hd |0〉d , (7)

where |T 〉 = Z (π/4)H |0〉 = (|0〉 + eiπ/4|1〉)/
√

2 is referred
to as the T state or magic state. Taking out the T state
explicitly, as here, will be useful for applying fault-tolerant
techniques. In this way, these architectures can be viewed as
constant depth 2D circuits with NN two-qubit gates.

We will show that this constant depth property prevails in
our fault-tolerant version of these architectures as well, in our
case using 4D and 3D circuits with NN two-qubit gates. As a
final remark, note that the 2D NN circuit presented here has
the single-instance hardness property, because the choice of
measurement angles is fixed [14].

III. NOISE MODEL

Before going into details of the fault-tolerant techniques,
we present the noise model which we adopt. We will con-
sider the local stochastic quantum noise model, following
[9,36]. Local stochastic noise can be thought of as a type of
noise where the probability of the error E occurring decays
exponentially with the size of its support. This noise model
encompasses errors that can occur in qubit preparations, gate
applications, as well as measurements. It also allows for the
errors between successive time steps of the circuit to be
correlated [9,36]. More precisely, following the notation in
[9,36], a local stochastic noise with rate p, where p is constant
satisfying 0 < p < 1, is an m-qubit Pauli operator:

E = ⊗i=1,...,mPi,

where Pi ∈ {1, X,Y, Z} are the single-qubit Pauli operators,
such that

Pr[F ⊆ Supp(E )] � p|F |,

for all F ⊆ {1, . . . , m}, where Supp(E ) ⊆ {1, .., m} is the
subset of qubits for which Pi 	= 1. Also following notation
in [9,36], we will denote a local stochastic noise with rate
0 < p < 1 as E ∼ N (p).

We will use the following property of local stochastic
noise, shown in [9]. This property is that all errors (local
stochastic noise) for constant depth Clifford circuits com-
posed of single- and two-qubit Clifford gates can be pushed
to the end, and treated as a single local stochastic noise [9].
Consider a constant depth-d noiseless quantum circuit

U = Ud . . .U1,

which acts on a prepared input state and is followed by
measurements, where each Ui for i = {1, . . . , d} is a depth-1
circuit composed of single- and two-qubit Clifford gates. It
was shown in [9] that a noisy version of this circuit satisfies

Unoisy = EoutEdUd . . . E1U1Eprep

= E (Ud . . .U1)

= EU, (8)

where Ei ∼ N (pi ) for i ∈ {1, . . . , d} with constant 0 < pi <

1 is the noisy implementation of depth-1 circuit Ui, and
Eprep ∼ N (pprep) and Eout ∼ N (pout) with constants 0 <

pprep, pout < 1 are the errors in the preparation and measure-
ment, respectively [55].

For constant depth d , E ∼ N (q) is also a local stochastic
noise with rate q, where 0 < q < 1 is a constant which is
a function of p1, . . . , pd , pprep, pout [9]. For example, when
pprep = pout = p1 = . . . = pd = p, then q � p4−d−1

[9]. Note
that p4−d−1

is a constant when d is a constant, meaning that q
is upper-bounded by a nonzero constant. For a suitable choice
of p we can therefore tune q to be below the threshold of
fault-tolerant computing with the surface code [56], where the
classical decoding fails with a probability decaying exponen-
tially with the code distance [9]. Equation (8) shows that the
errors accumulating in a constant depth quantum circuit com-
posed of single- and two-qubit Clifford gates can be treated
as a single error E . Furthermore, for small enough q (i.e.,
small enough p1, . . . , pd , pprep, pout—typically, these should
be smaller than the threshold of fault-tolerant computing with
the surface code [9,35] or of the 3D cluster state [40] in
our case), E can be corrected with high probability by using
standard techniques in quantum error correction [9,39]. Also,
E can be propagated until after the measurements, where the
error correction procedure is completely classical.

IV. 4D NN ARCHITECTURE

In this part of the paper, we will describe the construction
of our 4D NN architecture demonstrating a quantum speedup.
Our approach takes three ingredients, the sampling based on
regular graph states mentioned above [14–16,18,23,38], fault-
tolerant single shot preparations of logical qubit states [9], and
MSD [57–59]. A large part of fault-tolerant techniques follow
the work of [9], where they present a family of constant depth
circuits which give statistics that cannot be reproduced by any
classical computer of constant depth. To do so they introduce
error correcting codes where it is possible to prepare logical
states fault tolerantly with constant depth, and Clifford gates
are transversal. Then, they also show that for local stochastic
quantum noise all errors for Clifford circuits can be traced
through to effectively be treated as a final error, meaning
that errors do not have to be corrected during the circuit.
Together these allow for constant depth fault-tolerant versions
of constant depth Clifford circuits. Compared to [9], the big
difference in our paper is the need for non-Clifford operations
(for the choice of local measurement angle). To address this,
we use so-called magic states which can be distilled fault
tolerantly [57]. Generally, distillation circuits are not constant
depth, however [57], and here we adapt the distillation circuits
of [58] to be constant depth using ideas from MBQC. In par-
ticular we do not use feedforward in the distillation procedure,
and instead translate depth of circuits for cost of having to do
many copies of constant depth circuits (each being an MSD
circuit with no feedforward) many times in parallel. We show
that, for specific MSD techniques [58,60–62], a balance can
be reached which gives sufficiently many magic states of high
enough fidelity to demonstrate quantum speedup in constant
depth with polynomial overhead in number of ancillas. We

033444-5



MEZHER, GHALBOUNI, DGHEIM, AND MARKHAM PHYSICAL REVIEW RESEARCH 2, 033444 (2020)

then use MBQC notions to route the high fidelity magic states
into our sampling circuit. This is also done in constant depth.
At this point, interaction with a classical computer is required.
This is mainly in order to identify which copies of MSD cir-
cuits (which are done in parallel) were successful in distilling
magic states of sufficiently high fidelity. After, these high
fidelity magic states are taken, together with more ancillas, to
make a logical version of the graph state, which is then mea-
sured. Effectively we then have two constant depth quantum
circuits with an efficient (polynomial) classical computation
in between.

The constant depth MBQC distillation, together with the
constant depth MBQC routing, will ensure that enough magic
states with adequately high fidelity are always injected into
our sampling problem, thereby enabling us to observe quan-
tum speedup deterministically at each run of the experiment,
since we would deterministically recover an encoded version
of the 2D NN architecture with the single-instance hardness
property described in earlier sections [38]. This is contrary to
what happens in [41], where an encoded version of this 2D
NN architecture is constructed probabilistically, albeit with
exponentially low probability of success.

1. Logical Encoding

Following [9], we use the folded surface code [9,63,64].
A single logical qubit is encoded into l physical qubits of the
(folded) surface code. We denote the logical versions of states
and fault-tolerant gates using a bar, that is, a state |ψ〉 of m
qubits would be encoded onto its logical version |ψ〉 on ml
qubits and operator U would be replaced by logical operator
U . The choice of encoding onto the folded surface code has
two main advantages. First, Clifford gates have transversal
fault-tolerant versions, meaning the fault-tolerant versions of
a constant depth Clifford circuit are also constant depth and
composed of single- and two-qubit Clifford gates acting on
physical qubits of the code [9]. For example,

X =
⊗

i∈Vdiag

Xi,

where Vdiag is the set of physical qubits lying on the main
diagonal of the surface code and Xi is a Pauli X operator acting
on physical qubit i. Similarly for the logical version of the
Pauli Z operator,

Z =
⊗

i∈Vdiag

Zi.

Second, the preparation of the logical |0〉 and |T 〉 states can
be done fault tolerantly in constant depth [9,59].

The preparation of the logical |0〉 state can be done fault
tolerantly using the single-shot preparation procedure of [9].
This requires a constant depth 3D quantum circuit, together
with polynomial time classical postprocessing, which can be
pushed until after measurements of logical qubits of our cir-
cuit (see Fig. 2). This constant depth quantum circuit consists
of nonadaptive measurements on a 3D cluster state composed
of O(l3/2) (physical) qubits [9]. The 3D cluster state being of
regular structure can be prepared in constant depth. The non-
adaptive measurements create a two-logical qubit Bell state

up to a Pauli operator. The classical postprocessing is in order
to trace these Pauli operators through the Clifford circuits
(Fig. 2) and correct the measurement results accordingly. In
[9] it is shown that this preparation process is fault tolerant, by
showing that in the presence of local stochastic quantum noise
the overall noise induced from the preparation, measurements,
and Pauli correction is a local stochastic noise with constant
rate [9]. For our purposes, we will only use one logical qubit
of the Bell state [65].

The preparation of the logical T state |T 〉 can also be
done in constant depth by using a technique similar to [59].
Indeed, in the absence of noise, a perfect logical T state can
be prepared by the initialization of l physical qubits (over a
constant number of rounds), as well as three rounds of full
syndrome measurements, as detailed in [59,66]. Each of the
syndrome measurement rounds, because of the locality of
the stabilizers in the surface code, can be scheduled in such
a way as to be implemented by a constant depth quantum
circuit composed of controlled-NOT (CNOT) and ancilla qubit
measurements [34,59]. In the presence of noise, this procedure
prepares a noisy logical T state [Eq. (14)], starting from a
noisy physical qubit T state, and noisy preparations, gates,
and measurements [59,67]. However, distillation is required
to get sufficiently high-quality T states, which will be dealt
with separately later. For simplicity, for now we will assume
perfect T states.

Starting with the prepared logical |0〉 and |T 〉, the logical
version of Eq. (7) is written in terms of the constant depth
circuit C2:

|G′〉 = C2

⊗
c∈V1

|T 〉c

⊗
d∈V/V1

|0〉d (9)

where

C2 :=
⊗
a∈V

Ha

⊗
b∈V2

Zb(π/2)
∏

{i, j}∈E

CZi j

⊗
d∈V/V1

Hd . (10)

Since all gates are Clifford, the physical circuit implementing
C2 is constant depth. This circuit is the last circuit element in
Fig. 2 which combines the elements of our construction.

The logical Z measurements are carried out by physical Z
measurements on the physical qubits of the surface code, and
several classical decoding algorithms have been established
[9,34,35,39]. In the noiseless case, the decoding algorithm
consists of calculating the sum (modulo 2) of the measurement
result from measuring Z on the physical qubits of the main
diagonal of the surface code. In the presence of noise, the
decoding algorithm takes as input the (noisy) measurement
results of all the l physical qubits of the surface code which
are measured in the same basis as the qubits on the main
diagonal, and performs a minimal weight perfect matching
to correct for the error induced by the noise [9,32,35]. For
small enough error rates (below the threshold of fault-tolerant
computing with the surface code), the probability that these
decoding algorithms fail, that is, the probability that the noise
changes the parity of the Z measurement result after decoding,
decreases exponentially with the code distance d which for
surface codes obeys l = (d − 1)2 + d2 [9,32,35,63].

Let

s = {s1, . . . , sn(k−1)}
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FIG. 2. Overview of the 4D NN circuit for our sampling problem. The overall circuit takes in noisy logical |0〉 and ρT noisy states, which can
be prepared in constant depth [9,59] (up to Pauli operators, which can be traced through and dealt with efficiently classically after measurements
of the logical qubits of our circuit, as described in the main text). It is composed of three underlying circuits: C1, which implements the MSD,
and then CR, which routes the good outputs to the final circuit C2, which generates the graph state |G′〉. The construction also calls on a classical
computer (CC) to process correction operations, indicated by the dotted lines of different colors. The orange dotted lines are in order to identify
the successful MSD outputs, and create the paths for routing them. The S gate is either a H gate or an identity gate, depending on the classical
control. The black dotted lines are the measurement results of nonoutput qubits of CR and the measurement results of qubits of C2, which are
fed into the classical computer, which performs a postprocessing to output the final sample {s, x} [Eq. (18)].

denote the measurement results of the logical qubits of all but
the last column of |G′〉. Similarly, let

x = {x1, . . . , xn}
denote the measurement results of the logical qubits of the last
column of |G′〉.

If we call D(s, x) the probability of getting (s, x) in the
absence of noise, it follows straightforwardly from the logical
encoding that

D(s, x) = D(s, x), (11)

for all s ∈ {0, 1}n.(k−1), and x ∈ {0, 1}n, where D(s, x) is as
defined in Eqs. (3) and (4). That is, in the absence of noise,
measuring nonadaptively the logical qubits of |G′〉 in Z defines
a sampling problem with probability distribution D demon-
strating a quantum speedup, by Proposition 1. We will now see
that this sampling remains robust under local stochastic noise.
Noise must be addressed at each part of the construction, the
first being that each depth-1 step of the circuit preparing |G′〉
is now followed by a local stochastic noise, as in the example
of Eq. (8). Also, the single-shot preparation procedure of [9]
becomes noisy, however as shown in [9] this noise is local
stochastic with constant error rate and therefore can be treated
as a preparation noise in preparing |G′〉, analogous to Eprep

in Eq. (8). As seen earlier, the circuit preparing |G′〉 is con-
stant depth and composed of single- and two-qubit Clifford
gates acting on physical qubits. Therefore, we can use the
result of [9], which is shown in Eq. (8), and treat all the
noise accumulating through different steps of the circuit as
a single local stochastic noise E ∼ N (q) with a constant rate
0 < q < 1, acting on the (classical) measurement outcomes
[9]. Therefore, when q is low enough [9], E can be corrected
with high probability using the classical decoding algorithms
described earlier [9]. In Appendix A, we show that when l
scales as

l � O[log2(n)], (12)

where n is the number of rows of |G〉 [68], this suffices for our
needs.

More precisely, we denote D̃1(s, x) the probability of get-
ting outcomes (s, x) in the presence of stochastic noise, after
performing a classical decoding of the measurement results
[9], but where logical T states are assumed perfect (noiseless).
Then, if l satisfies Eq. (12), and for small enough error rates
(below the threshold of fault-tolerant computing with the sur-
face code [35]) of preparations, single- and two-qubit gates, as
well as measurements, D̃1(s, x) can be made 1/poly(n) close
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in l1 norm to the noiseless version [Eq. (11)]. That is,∑
s,x

|D̃1(s, x) − D(s, x)| � 1

poly(n)
. (13)

This means that for a given constant μ1 there exists a
large enough constant n0, such that for all n � n0 classically
sampling from D̃1 up to l1-norm error μ − μ1 implies, by
a triangle inequality, sampling from D up to l1-norm error
μ, which presents a quantum speedup by Proposition 1 [12].
Therefore, we have recovered quantum speedup in the pres-
ence of local stochastic noise, assuming perfect T states.

2. Distillation of T States

The final ingredient is the distillation of the T states. The
analysis we have done so far assumes we can still prepare
perfect logical T states. In reality, however, this is not the
case. Indeed, in the presence of noise, the constant depth
preparation procedure of [59] can only prepare a logical T
state with error rate 0 < ε < 1:

ρT noisy := (1 − ε)|T 〉〈T | + εη, (14)

with η an arbitrary l-qubit state. In order to get high-purity
logical T states, one must employ a technique called MSD
[57]. An MSD circuit is a Clifford circuit which usually takes
as input multiple copies of noisy T states ρT noisy, together with
some ancillas, and involves measurements and postselection
in order to purify these noisy input states [57]. The output of
an MSD circuit is a logical T state ρT out with higher purity
than the input one. That is,

ρT out := (1 − εout)|T 〉〈T | + εoutη
′, (15)

with 0 < εout < ε < 1, and η′ an arbitrary l-qubit state. For
small enough ε [69,70], εout could be made arbitrarily small
by repeating the MSD circuit an appropriate number of
times [57].

MSD circuits need not in general be constant depth. Our
approach to depth is, again, via a translation to the MBQC
paradigm [42]. In MBQC one starts off with the graph state,
for example, the 2D grid cluster state, and computation is
carried out through consecutive measurements on individual
qubits. In order to preserve determinism these measurements
must be corrected for. For a general computation this must
be done round by round (the number of rounds typically
scales with the depth of the corresponding circuit, though
there can be some separation thereof [71]). If we forgo these
corrections, we end up applying different unitaries, depending
on the outcome of the measurement results—indeed, this is
effectively what happens in Eq. (2). Thinking of MBQC now
as a circuit, if one could do all measurements at the same time,
one could think of it as a constant depth circuit, since all that
is needed is to construct the 2D cluster state followed by one
round of measurements and corrections, which can be done in
constant depth. This is possible for circuits constructed fully
of Clifford operations, but not generally, and not for the MSD
circuits we use here because of the T gates (or feedforward),
so we are forced to sacrifice determinism.

Now, in order to get constant depth MSD, we translate the
MSD circuits in [58] to MBQC. The choice of this MSD con-
struction is argued in Appendix B2. Since we want to maintain

constant depth, we want to perform all measurements at the
same time, however the cost is that it will only succeed if we
get the measurement outcomes corresponding to the original
circuit of [58] with successful syndromes. In order to produce
enough T states, the trick is simply to do it many times in
parallel. That is, we will effectively implement many copies
of the MBQC computation, so that we get enough successes.
Effectively we trade depth of the corresponding circuit for
number of copies and ancillas. Fortunately, for our specifically
chosen MSD protocols [58,62], we will see that this cost is not
too high.

Furthermore, this is all done in the logical encoding of
the folded surface code. Our construction for this, which we
denote zMSD, is designed to take copies of the noisy encoded
T states ([59]) and ancilla in the encoded |0〉 state, and affect
z iterations of the fault-tolerant version of MSD protocol in
[58]. As discussed above, this happens only when the correct
results occur in the MBQC. In this case we say the zMSD
was successful. We denote the circuit version of this as C1

(see Fig. 2). In Appendix B, we show that when zMSD is
successful εout satisfies

εout � O

(
1

n4

)
. (16)

We also show that performing O[n3log(n)] copies of zMSD
circuits (which can be done in parallel), each of which is
composed of O[log(n)] logical qubits as seen in Appendix B2,
guarantees with high probability

psucc � 1 − 1

epoly(n)
, (17)

that at least O(n2) copies of zMSD will be successful (we
will refer to these often as successful instances of zMSD).
Note that O(n2) = O(kn) is the number of perfect logical T
states needed to create |G′〉 [38]. Furthermore, because zMSD
is constant depth and composed of single- and two-qubit Clif-
ford gates, errors can be treated as a single local stochastic
noise after the measurements with constant rate [see Eq. (8)]
which can be corrected classically with high probability when
the error rates are low enough using the standard decoding
algorithms described previously [9,32].

The remaining task is to route these good states into the in-
puts of the circuit C2 [Eq. (10)] depending on the measurement
outcomes, i.e., make sure that only the good outputs go to
make |G′〉. The most obvious approach, using control SWAP
gates, results in a circuit the depth of which scales with n.
Here, once more, we use MBQC techniques in order to bypass
additional circuit depth. The idea is to feed the outputs through
a 2D cluster graph state, and dependent on the measurement
results of the zMSD the routing can be etched out by Pauli
Z measurements. Since the graph is regular, and, since the
measurements can be made at the same time, this can be
done in constant depth, up to Pauli corrections (which can be
efficiently traced and dealt with by the classical computation
at the end). We denote the fault-tolerant circuit implementing
this as CR (see Fig. 2). Details of the construction can be
found in Appendix C, where we also show that errors remain
manageable.
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Finally, we denote D̃2(s, x) to mean the probability of
observing the outcome (s, x) after measuring all logical qubits
after C2 [Eq. (10)], in the presence of local stochastic noise,
and where each T state fed into C2 is replaced by ρT out, and
performing a classical decoding of these measurement results
[9]. Then, we show, in Appendix B, that when εout satisfies
Eq. (16)

∑
s,x

|D̃2(s, x) − D(s, x)| � 1

poly(n)
. (18)

Therefore, by the same reasoning as that for D̃1, for small
enough error rates, for large enough n, and with very high
probability psucc, we can prepare a constant depth quantum
circuit sampling from a noisy distribution D̃2 under local
stochastic noise, presenting a quantum speedup.

Our main result can therefore be summarized in the follow-
ing theorem, the proof of which follows directly from showing
that Eq. (18) holds and using Proposition 1.

Theorem 1. Assume that the PH does not collapse to its
third level, and that worst-case hardness of the sampling prob-
lem (4) extends to the average case. There exists a positive
constant 0 < p < 1, and a positive integer no, such that for
all n � no, if the error rates of local stochastic noise in all
preparations, gate applications, and measurements in C1, CR,
and C2 are upper-bounded by p, then with high probability
psucc [Eq. (17)] the sampling problem D̃2 defined by (18) can
be constructed, and no poly(n)-time classical algorithm exists
which can sample from D̃2 up to a constant μ′ in the l1 norm.

3. OVERVIEW OF THE 4D NN ARCHITECTURE

The overall construction is presented in Fig. 2 as a combi-
nation of the three circuits mentioned above, C1 implementing
the MSD, the routing of successful T states in CR, and the
circuit for the construction of the state |G′〉 in C2. Overall it
takes the noisy logical |0〉 and ρT noisy states as inputs and the
final measurements are fed back to a CC to output the error
corrected results s, x, according to distribution D̃2 [Eq. (18)].
The preparation of the logical input states is done in constant
depth [9,59] and each of these three composite circuits is
constant depth, using at most three dimensions. Furthermore,
assuming that classical computation is instantaneous, our en-
tire construction can be viewed as a constant depth quantum
circuit. Indeed, as already seen C2 is constant depth; what
remains is to show the same for C1 and CR. We show this in
Appendices B and C.

During the circuit, we require some side classical com-
putation, which inputs back into the circuit at one point.
Classical information to and from the classical computer is
indicated by dotted orange and black lines in Fig. 2. First, the
measurements of the nonoutputs for the zMSD in C1, along
with measurement results (not illustrated in the figure) of
(physical) qubits used in preparing |0〉 [9] states making up the
copies of zMSD, are fed into the classical computer in order to
determine the choice of measurements after the routing circuit
CR, as indicated by the orange dotted lines in Fig. 2. This part
simply identifies the successful zMSD outcomes, followed by
calculating the routing path.

This is the only point that classical results are fed back
into the circuit; all other classical computations can be done
after the final measurements. After these final measurements,
the remaining measurements are fed back into the computer,
indicated by black dotted lines in Fig. 2. Together with the
measurement results from the state preparations [9] (not illus-
trated in the figure) these are incorporated into the classical
error correction [9,72] giving the outputs s, x with probabili-
ties D̃2. The classical computation can be done in poly(n) time
[39,72,73].

The total number of physical qubits required scales as
O{n5poly[log(n)]} [where n scales the size of the original
sampling problem (Proposition 1)]. This breaks down as fol-
lows. C1 takes as input O[n3log2(n)] noisy logical T states
ρT noisy and O[n3log2(n)] ancillas prepared in |0〉. CR takes
the outputs of C1, and additional O[n5log(n)] logical ancillas
prepared in |0〉. This dominates the scaling. CR sends O(n2)
distilled T states to C2, which also takes in O(n2) copies of |0〉.
This means that in total we would need O[n5log(n)] logical
qubits. Now, each logical qubit is composed of l � O[log2(n)]
physical qubits [Eq. (12)], and some of these logical qubits,
which need to be prepared in |0〉, require an additional
overhead of O(l

3
2 ) � O[log3(n)] physical qubits, as seen pre-

viously (see also [9]). Therefore, the total number of physical
qubits needed is ≈ O[n5log4(n)] = O{n5poly[log(n)]}.

A crucial question relevant to experimental implemen-
tations would be calculating the exact values of the error
rates of measurements, preparations, and gates needed to
achieve fault-tolerant quantum speedup in our construction.
Because the quantum depth of our construction is constant
and composed of single- and two-qubit Clifford gates (as
seen previously), we know from [9] and the likes of Eq. (8)
that these error rates are nonzero constants independent of
n. However, their values may be pessimistically low. A crude
estimate of this error rate is p ∼ e−4.6×4−d−1

. This is assuming
preparations (including preparation of noisy logical T states
for distillation), measurements, and gates all have the same
error rate p. d is a constant which is the total quantum depth
of our construction, which is the sum of the depths of all
preparations, gate applications and measurements involved
in constructing zMSD, routing the outputs of successful in-
stances of zMSD, and constructing |G′〉. This expression is
obtained by using the same techniques as [9], where the error
rate q of E in Eq. (8) is chosen such that it satisfies q � 0.01.
This is in order for classical decoding to fail with probability
decaying exponentially with the code distance of the surface
code [9,32].

This construction is a constant depth quantum circuit im-
plementable on a 4D NN architecture (or a 3D architecture
with long-range gates). The reason for this is that our original
(non-fault-tolerant) construction is a 2D NN architecture [38]
as seen previously, and the process of making this architecture
fault tolerant requires adding an additional two dimensions
[9], albeit while keeping the quantum depth constant, as ex-
plained earlier. If we do not want to use long-range transversal
CZ gates in 3D, and want all the CZ gates to be NN, the only
way to do this is to work in four dimensions. Note that this was
not a problem in [9], as there the original (non-fault-tolerant)
circuit was a 1D circuit, and introducing fault tolerance added
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two additional dimensions, making their construction constant
depth with NN gates in three dimensions [9]. Nevertheless,
we will show in the next section how to make our construc-
tion constant depth in three dimensions with NN two-qubit
gates. We will do this by avoiding the use of transversal
gates to implement encoded versions of two-qubit gates, a
feature which is naturally found in defect-based topological
quantum computing [40]. Armed with the ideas of constant
depth MSD and MBQC routing, we shall present in this next
section a constant quantum depth fault-tolerant construction
demonstrating a quantum speedup with only nearest-neighbor
CZ gates in three dimensions.

V. 3D NN ARCHITECTURE

In this part of the paper, we will explain how the con-
struction for fault-tolerant quantum speedup described earlier
can be achieved using a 3D NN architecture, based on the
construction of Raussendorf, Harrington, and Goyal (RHG)
[40]. Note that in this construction (henceforth referred to
as RHG construction) two types of magic states need to be
distilled, the T states seen previously as well as the Y states.
A perfect (noiseless) Y state is given by

|Y 〉 := 1√
2

(|0〉 + ei π
2 |1〉).

This state is a resource for the phase gate Z (π/2). The noisy
Y state ρYnoisy is defined analogously to a noisy T state seen
earlier:

ρYnoisy := (1 − ε)|Y 〉〈Y | + εη,

with 0 < ε < 1 representing the noise, and η an arbitrary
single-qubit state. As already mentioned, the RHG construc-
tion was also used in [41] to achieve fault-tolerant quantum
speedup. However, our construction will differ from [41]
mainly in two ways. The first, as already mentioned, is that
our construction deterministically produces a hard instance,
whereas that in [41] produces such an instance with ex-
ponentially low probability. Second, our sampling problem
verifies the anticoncentration property by construction [38], as
explained previously, whereas in [41] this anticoncentration
was conjectured. Therefore, in our proofs we assume one
less complexity theoretic conjecture (we use two conjectures
in total; see Theorem 1 and Proposition 1) as compared to
[41]. Note that we assume the minimal number of complexity
theoretic conjectures needed to prove quantum speedup, using
all currently known techniques [52].

We now very briefly outline the key points in the RHG
construction. More detailed explanations can be found in
[40,74,75]. In this construction, one starts out with prepar-
ing a 3D regular lattice of qubits (call it the RHG lattice).
This preparation can be done in constant depth by using
nearest-neighbor CZ gates [40]. This lattice is composed of
elementary cells, which can be thought of as smaller 3D lat-
tices building it up. Elementary cells are of two types, primal
and dual, and the RHG lattice is composed of a number of
interlocked primal and dual cells [40,75]. Each elementary
cell can be pictured as a cube, with qubits (usually initialized

in the |+〉 state) living on the edges and faces of this cube. The
RHG lattice is a graph state, and is thus characterized by a
set of (local) stabilizer relations [54]. Errors can be identified
by looking at the parity of these stabilizers. Usually, this is
done by entangling extra qubits with the systems qubits; these
extra qubits are called syndrome qubits. However, in the RHG
construction this is accounted for by including these syndrome
qubits a priori when constructing the RHG lattice; this region
of syndrome qubits is usually called the vacuum region V [40].
Logical qubits in this construction are identified with defects.
These defects are holelike regions of the RHG lattice inside
of which qubits are measured in the Z basis, effectively elim-
inating these qubits. Eliminating these qubits (and some of
their associated stabilizers) results in extra degrees of freedom
which define the logical qubits [40]. Defects can also be pri-
mal or dual, depending on whether they are defined on primal
or dual lattices. Two defects of the same type (either primal
or dual) define a logical qubit. The logical operators X and
Z are products of X operators and Z operators, respectively.
These products of operators act nontrivially on qubits either
encircling each of the two defects or forming a chain joining
the two defects, depending on whether the logical qubit is
primal or dual [40,75]. By measuring single qubits of the RHG
lattice at angles X , Y , Z , and X+Y√

2
, one can perform (primal or

dual) logical qubit preparation and measurement in X and Z
bases, preparation of (primal or dual) logical T states and Y
states, and logical CNOT (CNOT ) gates between two defects
of the same type (this, however, can only be accomplished by
an intermediate step of braiding two defects of different types
[40], which is one of the main reasons for the need for two
types of defects). If performed perfectly (noiseless case), these
operations are universal for quantum computation [42]. Note
that in our case, as in [41], we will replace measuring qubits in
Y and X+Y√

2
by (equivalently) initializing qubits in |Y 〉 and |T 〉,

then measuring these qubits in the X basis. In this way, we
will only perform single-qubit X and Z measurements. One
of the spatial dimensions of the 3D RHG lattice is chosen as
simulated time, allowing one to perform a logical version of
MBQC via single-qubit measurements [40].

The preparation and measurement of logical qubits in the X
and Z bases as well CNOT can all be performed by measuring
qubits of the RHG lattice in X and Z [40,75]. All these op-
erations can be performed fault tolerantly, and nonadaptively
(up to Pauli corrections, which can be pushed until after
measurements and accounted for, since all our circuits are
Clifford [73]), by choosing the defects to have a large enough
perimeter, and a large enough separation [40,75]. Indeed, in
Appendix D, we show that when Lm = O[log(n)], where Lm

is the minimum (measured in units of length of an elementary
cell) between the perimeter of a defect and the separation be-
tween two defects in any direction, we would recover the same
fault-tolerant results as our 4D NN architecture under local
stochastic noise, albeit with different error rates which we will
also calculate in Appendix D. The noisy logical Y -state and
T -state preparations can also be prepared nonadaptively up to
Pauli corrections by performing X and Z measurements on
qubits of the RHG lattice, some of which are initialized in
|Y 〉 (for logical Y -state preparation) or |T 〉 (for logical T -state
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preparation) [75]. However, these preparations are unfortu-
nately non-fault-tolerant (they introduce logical errors), and
therefore these states must be distilled [40].

If we could somehow obtain perfect logical Y states, then
our constant-depth fault-tolerant 3D NN construction under
local stochastic noise would follow a similar analysis as our
4D NN case, and have a circuit exactly the same as that
in Fig. 2 (up to using X measurements in place of H gates
followed by Z measurements), with one difference being that
instead of using concatenated versions of the MSD circuits
of [58] to construct C1 we will use concatenated versions of
the MSD circuits of [62]. This is in order to preserve the
transversality of logical T gates, which allows preparation
of logical T states in the RHG construction by using only
local measurements [40,76]. Unfortunately, distilling logical
Y states in the RHG construction is essential. What makes
matters worse is that using techniques of the likes of those
used in the construction of C1, on MSD circuits capable of
distilling logical Y states up to fidelity 1 − εout [Eq. (16)],
namely, circuits based on the STEANE code [40], leads to
circuits with a quasipolynomial number of ancillas. This is
much worse than the polynomial number of ancillas used
in circuits C1 needed to distill logical T states of the same
fidelity 1 − εout, and based on the MSD circuits of [58,62]
(see Appendices B2 and E).

Happily, we manage to overcome this limitation by ob-
serving two facts about our construction. The first is that
the Z (π/2) rotations (and thus Y states) are not needed in
order to construct our sampling problem. Indeed, in Fig. 1
every qubit measured at an XY angle π/2 in GB could be
replaced by a linear cluster of three qubits measured, respec-
tively, at XY angles π/4, 0, and π/4 (these measurements
can be implemented by only using logical T states in the
fault-tolerant version). To make a graph state of regular shape,
we should also replace all qubits at the same vertical level as
the π/2-measured qubits in GB (see Fig. 1), and which are
always measured at an XY angle zero, with a linear cluster
of three qubits measured at an XY angle zero. By doing this
replacement, the new graph gadget G′

B which is an extension
of GB now defines a so-called partially invertible universal
set [18]. Therefore, by results in [18], using G′

B instead of
GB in our construction (Fig. 1) also results in a sampling
problem with distribution D′ = {D′(s, x)} [where s and x are
bit strings defined analogously to those in (3) and (4)] sat-
isfying both worst-case hardness and the anticoncentration
property [16,18]. Thus, the distribution D′, although different
than D [Eqs. (3) and (4)], can be used in the same way as
D to demonstrate a quantum speedup (see Proposition 1).
Furthermore, all previous results established for D also hold
when D is replaced by D′.

To see why G′
B defines a partially invertible universal set,

call U1 ⊂ U (4) [U2 ⊂ U (4)] the set of all random unitaries
which can be sampled by measuring the qubits of GB (G′

B)
nonadaptively at their prescribed angles. Straightforward cal-
culation shows that U1 ⊂ U2. Furthermore, both U1 and its
complement in U2 (denoted U2 − U1) are (approximately)
universal in U (4) since they are composed of unitaries from
the gate set of Clifford + T [33,38]. The set U1, being both
universal in U (4) and inverse containing [38], implies that U2

satisfies all the properties of a partially invertible universal set
[18].

However, note that in using partially invertible universal
sets, for technical reasons [18], the number of columns of
|G〉 should now satisfy k = O(n3), resulting in an increase of
overhead of ancilla qubits.

One could keep k = O(n) (as in the original construction
with GB) while using only π/4 and zero measurements, by us-
ing one of the constructions of [15]. However, the construction
of [15] does not have a provable anticoncentration, although
extensive numerical evidence was provided to support the
claim that this family of circuits does indeed anticoncentrate
[15].

Although Y states are not needed in the construction of
our sampling problem, they are still needed to construct
MSD circuits for distilling logical T states of fidelity 1 − εout

[Eq. (16)] [62], which brings us to our second observation. In
order to distill logical T states of fidelity 1 − εout [Eq. (16)],
we only need logical Y states of fidelity 1 − ε′

out with

ε′
out = 1

O{poly[log(n)]} . (19)

In other words, the required output fidelity of the logical Y
states need not be as high as that of the logical T states. In
Appendix E, we show that this leads to a construction of a
(constant depth) nonadaptive MSD (analogous to how C1 is
constructed) which takes as input a polynomial number of
logical ancillas, initialized in either noisy logical Y states,
|+〉, or |0〉, and which outputs enough logical Y states of
fidelity 1 − ε′

out needed in the subsequent distillation of logical
T states. This circuit, which we call C′

1 and which is based
on concatenations of the STEANE code [40], is a constant
depth Clifford quantum circuit composed of CNOT gates,
and followed by nonadaptive X and Z measurements. C′

1, as
C1, prepares the graph states needed for nonadaptive MSD
via MBQC (as seen previously). Note that here we will use
CNOT gates instead of CZ gates in order to prepare logical
graph states, since these gates are more natural in the RHG
construction [40]. The preparation procedure is essentially the
same as that with CZ modulo some H gates, but these logical
Hadamards can be absorbed into the initialization procedure
(where some qubits become initialized in |0〉 instead of |+〉)
and the measurements (where some X measurements after
C′

1 are changed to Z measurements, and vice versa). The
same holds for all other circuits based on graph states in this
construction.

With the distillation of logical Y states taken care of, we
now summarize our constant depth construction based on a
3D NN architecture. The circuit of this construction is found
in Fig. 3 . It takes as input logical qubits initialized in the states
|+〉, |0〉, ρT noisy, and ρY noisy, and outputs a bit string (s, x)

sampled from the distribution D̃′
2 demonstrating a quantum

speedup (see Theorem 1 and Proposition 1). Note that D̃′
2 is

the fault-tolerant version of the distribution D′ defined earlier.
D̃′

2 is defined analogously to D̃2 in Eq. (18), which is the
fault-tolerant version of the distribution D [Eq. (4)]. Our 3D
NN architecture is composed of five constant depth circuits
acting on logical qubits, C′

1, C′
R, C1, CR, and C2. C′

1, C1, CR,
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FIG. 3. Constant depth circuit for our 3D NN architecture. Log-
ical states are up to Pauli corrections due to nonadaptivity. The red
box with an M symbol is a measurement in either X or Z . The circuit
is shown up until C1; the remaining part of this circuit is the same as
that in Fig. 2, with Z measurements replaced by M measurements,
and with some ancilla qubits being initialized in |+〉 as well as |0〉.
These slight changes are in order for the construction to be naturally
integrated into the RHG framework [40]. Also shown in the figure is
the additional interaction with the classical computer CC (ingoing
and outgoing red dotted arrows) needed in order to identify the
successfully distilled Y states as well as construct the measurement
pattern for the routing circuit C′

R.

and C2 are as defined previously, and C′
R is a routing circuit,

analogous to CR, which routes successfully distilled logical
Y states to be used in C1. Furthermore, all of these circuits, as
well as the preparation of logical qubits, can be constructed by
nonadaptive single-qubit X and Z measurements on physical
qubits arranged in a 3D RHG lattice, the preparation of which
is constant depth and involves only nearest-neighbor CZ gates.
These physical qubits are initialized in the (noisy) states |+〉,
|Y 〉, and |T 〉 [40]. Our construction has two layers of interac-
tion with a classical computer, needed to identify successfully
distilled logical Y and T states, respectively. The number of
physical qubits needed is O{n11poly[log(n)]}; this calculation
is performed in Appendix E. The additional overhead as com-
pared to our 4D NN construction comes from mainly two
sources, the partially invertible universal set condition [18],
and the circuits C′

R and C′
1 which arise as a result of needing

to distill logical Y states in the 3D RHG construction [40].
As in our 4D NN architecture, the noise model we use here

is the local stochastic quantum noise defined earlier [9,77].
Since the circuit needed to construct the 3D RHG lattice is
composed of single- and two-qubit Clifford gates acting on
prepared qubits [40], all errors of preparations and gate appli-
cations can be pushed, together with the measurement errors,
until after the measurements, as seen previously. Because the
circuit preparing the RHG lattice is constant depth, the overall
local stochastic noise has a constant rate [see Eq. (8)], and
therefore could be corrected with high probability for low
enough (constant) error rates of preparation, gate application,

and measurements [9] (see Appendix D, where we calcu-
late an estimate of these error rates). The error correction,
as in our 4D NN architecture, is completely classical and
involves minimal weight matching [72]. This error correction
is poly(n) time and is performed at each of the two layers
of interaction with the classical computer, as well as after
the final measurements. Also, as in the 4D NN case, other
poly(n)-time classical algorithms are included in the classi-
cal postprocessing; these are in order to identify successful
MSD instances, and identify the measurement patterns of the
routing circuits. The classical computer at each layer of inter-
action as well as after the final measurements takes as input
measurement results of qubits involved in the computation,
as well as measured qubits in the vacuum region V . These
vacuum qubits give the error syndrome at multiple steps in the
computation, and are therefore needed for the minimal weight
matching [40].

VI. DISCUSSION

In summary, we have presented a construction sampling
from a distribution demonstrating a quantum speedup, which
is robust to noise. Our construction has constant depth in its
quantum circuit, and can be thought of as a fault-tolerant ver-
sion of the (noise free) constant depth quantum speedup based
on generating and measuring graph states [14–16,18,23,38].
We have shown how to implement this construction both
by using a 4D architecture with nearest-neighbor two-qubit
gates and by using a 3D architecture with nearest-neighbor
two-qubit gates. The circuits of each of these architectures
interact at most twice with an (efficient) classical device while
running, and have different requirements in terms of overhead
of physical ancilla qubits, owing to the fact that they are based
on two different constructions for fault tolerance [9,40].

Our construction requires a large overhead in the number
of physical qubits. However, as discussed below, this may
be improved. In any case, our construction is considerably
simpler than fault-tolerant full blown quantum computation,
as there, in addition to the large overhead of physical qubits
required, both the circuit depth and the number of interactions
with a classical computer typically scale with the system size.
In our constructions, and owing mainly to the nonadaptivity
of measurements [38] and the use of constant depth MSD
and routing, both the circuit depth and number of interactions
with a classical computer are constant. Therefore our archi-
tectures demonstrate the potential for interim demonstration
of quantum computational advantage, which may be much
more practical. Indeed, if one considers classical computation
temporally free, our construction represents a constant time
implementation of a sampling problem with fault tolerance.

The main contributions discussed in this paper are the
constant depth MSD and constant depth output routing. Both
of these techniques may have potential applications outside of
this paper. Indeed, as discussed in more detail in Appendix B2,
by choosing specific MSD routines [58,62], constant depth
circuits with a poly(n) overhead of physical qubits can dis-
till logical T states with 1 − 1

poly′(n) fidelity with respect to
an ideal logical T state. Therefore, these techniques can be
integrated into any fault-tolerant quantum circuit where one
requires logical T states with the above-mentioned fidelity.
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However, if the desired quantum computation is an MBQC
with adaptive measurements [42], and if the number of these
adaptive measurements scales with the system size, then the
constant depth MSD presents no particular advantage over the
usual MSD. This is because the number of interactions with
the classical computer and the depth of the circuit would still
typically scale due to the adaptivity of the computation.

We note that although we have presented here a fault-
tolerant construction for a specific graph state architecture
[38] the same techniques can be applied to any of the sampling
schemes based on making local XY measurements from the
set {0, π/2, π/4} on regular graph states [14–16,18,38]. In
particular it can be easily adapted to cases where the measure-
ments are not fixed but chosen at random before the running
of the circuit [14–16]. This would essentially just fix the loca-
tions of the distilled T states, but it could be done beforehand
and would not affect the efficiency of the routing circuits.
This has the potential of relating the average-case hardness
conjecture to that of other more familiar problems [12,14,15].

Our paper also has potentially another interest, as it can
alternatively be viewed as a constant depth quantum circuit
which samples from an approximate unitary t design [45]
fault tolerantly. Indeed, our techniques can be used to directly
implement a logical version of Eq. (2), which samples from
an approximate t design. These t designs have many useful
applications across quantum information theory [45,78–82].

Several interesting approaches for optimization may be
considered. One could think of using different quantum error
correcting codes, such as those of [34,77], to decrease the
overhead of physical qubits. One could also aim to optimize
the overhead of both gates and physical qubits of the MSD by
using techniques similar to those of [83,84].

An interesting open question might be extending the anal-
ysis presented here to other more general local error models,
likely to be present in current noisy intermediate scale quan-
tum devices. These include error models where the noise is
more biased [85], or noise which is highly correlated in space
and/or time. Although we do not attempt to answer this ques-
tion here, we believe this task would boil down essentially
to seeing how such error models propagate through Clifford
circuits.

The ability to efficiently verify quantum speedup is also
an important goal. Although this question has already been
pursued in the regime of fault tolerance in [41], and the
techniques developed there are directly applicable to our 3D
NN architecture, it would be interesting to develop verification
techniques more naturally tailored to the graph state approach
[42,54] and MBQC [42,73], which we use heavily here. In this
direction, the work of [86,87] can be used for this purpose
when the measurements (both Clifford and non-Clifford) as
well as the CZ and Hadamard gates (needed for the prepara-
tion of the graph states [54]) are assumed per f ect (noiseless).
Indeed, in this case the verification amounts to verifying that
the graph state was correctly prepared, for which [86,87]
provide a natural path to do so, by giving good lower bounds
(with high confidence) on the fidelity (with respect to the ideal
graph state corresponding to the sampling problem) of the
prepared graph state in the case where a sufficient amount
of stabilizer tests pass [86,87]. These lower bounds on the
fidelity, tending asymptotically to 1 [86,87], allow one to

verify that quantum speedup is being observed, as long as one
trusts the local measurement devices (which, being small, can
be checked by other means efficiently). This verification of
quantum speedup can be done by using the standard relation
between the fidelities of two quantum states (which in our case
are the ideal state and the state accepted by the verification
protocol) and the l1 norm of the two output probability dis-
tributions corresponding to measuring the qubits of these two
states [33].

These techniques, however, do not easily extend to the case
where the measurements and gates needed for preparation
are noisy, since for graph states of size m, even for an arbi-
trarily small (but constant , for example, below the threshold
for fault-tolerant computing) noise strength, the verification
protocol might fail (not accept a good state) in the asymptotic
(m → ∞) limit [see, for example, [87], where the verification
accepts with probability 1 asymptotically only if the noise
strength scales as 1/poly(m)]. We leave this problem for fu-
ture investigation.
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APPENDIX A: SIZE OF ENCODING AND INTERMEDIATE
CASE HARDNESS OF SAMPLING

Here we prove our statements regarding the sufficiency
of the size of logical encoding l [Eq. (12)] and the proof of
hardness in the intermediate case where we have noise in the
circuit, but assume perfect T states [Eq. (13)]. As mentioned
in the main text, the probability p f that the classical decoding
fails to correct an error E ∼ N (p) affecting a surface code
composed of l physical qubits is given by [9,32,35]

p f = e−O(d) = e−O(
√

l ), (A1)

when the error rate p is below the threshold for fault-tolerant
computing with the surface code [35]. We will assume, as
mentioned in the main text, that the error rates of prepara-
tion, single- and two-qubit gates, and measurements in our
construction are small enough, that is, below the threshold of
fault-tolerant computing with the surface code, and classical
postprocessing is instantaneous. We will also assume that the
probabilities of failure of the classical decoding algorithms in
each logical qubit are independent (see [88]). Our construction
involves classical decoding of the measurement results of
O(kn) logical qubits [89]. After decoding, the probability of
observing outcome (s, x) is given by

D̃1(s, x) = (1 − e−O(
√

l ) )O(kn)D(s, x) +
∑

i

piD
e
i (s, x) (A2)
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where D
e
i is a distribution corresponding to sampling from

the outputs (s, x) of |G′〉 in the presence of local stochastic
noise, and where the decoding algorithm has failed in at least
one logical qubit.

∑
i piD

e
i (s, x) enumerates all possible ways

in which decoding on the kn logical qubits of |G′〉 can fail.
Note that ∑

i

pi = 1 − (1 − e−O(
√

l ) )O(kn).

Now,∑
s,x

|D̃1(s, x) − D(s, x)| =
∑
s,x

|(1 − e−O(
√

l ) )O(kn)D(s, x)

+
∑

i

piD
e
i (s, x) − D(s, x)| � 2[1 − (1 − e−O(

√
l ) )O(kn)].

(A3)

The bound on the right-hand side is obtained from a triangle
inequality and by noting that

∑
s,x D(s, x) = ∑

s,x D
e
i (s, x) =

1. Choosing

l = rlog2(n) = O[log2(n)], (A4)

where r is a positive constant chosen large enough so that the
following inequality holds,

deg(eO(
√

l ) ) > deg(kn), (A5)

where deg(.) represents the highest power of n in the expres-
sions of eO(

√
l ) and

O(kn), we can now use (for large enough n) the approxi-
mation

2
[
1 − (1 − e−O(

√
l ) )k.n] ∼ 2e−O(

√
l )kn = O

(
1

nβ

)
, (A6)

with β = deg(eO(
√

l ) ) − deg(kn). Plugging Eq. (A6) in
Eq. (A3) we get∑

s,x

|D̃1(s, x) − D(s, x)| � O

(
1

nβ

)
= 1

poly(n)
.

This completes the proof of Eqs. (12) and (13).

APPENDIX B: BOUNDING D̃2(s, x) AND PROPERTIES
OF zMSD

1. Bounding D̃2(s, x) [proof of Eq. (18)]

Let

ρ̃|G′〉 =
⊗
a∈V

Ha

⊗
b∈V2

Z (π/2)b

∏
{i, j}∈E

CZi j

⊗
c∈V/V1

Hc|0〉c〈0|cHc

⊗
d∈V1

ρT out

∏
{i, j}∈E

CZi j

⊗
b∈V2

Z (−π/2)b

⊗
a∈V

H
†
a. (B1)

ρ̃|G′〉 is exactly the same as |G′〉, but with each single logical

qubit state |T 〉 replaced with ρT out, the output of a success-
ful instance of zMSD [Eqs. (15) and (16)]. The probability
D̃2(s, x) can be calculated by using the following simple
observation:

D̃2(s, x) = p({s, x} ∩ ne) + p({s, x} ∩ e), (B2)

where p({s, x} ∩ ne) is the probability of observing outcome
{s, x} when no logical error (ne) has occurred (that is, that
classical decoding did not fail in any logical qubit), neither in
the distillation process, nor in the routing, nor in constructing
and measuring ρ̃|G′〉. p({s, x} ∩ e) is the probability of observ-
ing {s, x} when the decoding algorithm has failed (e) at least
on one logical qubit. We will assume that in the case where no
logical error has occurred, for large enough n, the probability
psucc [Eq. (17)] of distilling enough [O(n2)] states ρT out to
construct ρ̃|G′〉 is equal to 1. This is a reasonable assumption
since the exponential term in psucc varies much more rapidly
than the polynomial terms in our bounds, for large enough n.
Now,

p({s, x} ∩ ne) = p(ne)p({s, x}|ne),
(B3)

p(ne) = (1 − e−O(
√

l ) )O[n5log2(n)]

is the probability that that the decoding does not fail on all
our O[n5log2(n)] logical qubits (logical qubits of all copies of
zMSD, the routing circuit, as well as ρ̃|G′〉). Now,

p({s, x}|ne) =
∑

i1,...,iknl

〈i1 . . . iknl |ρ̃|G′〉|i1 . . . iknl〉, (B4)

where |i1 . . . iknl〉 is a state of kln physical qubits, correspond-
ing to the measurement of the kn logical qubits of ρ̃|G′〉, which
when decoded gives rise to the bit string (s, x):

p({s, x} ∩ e) =
∑

j

pe j p({s, x}|e j ), (B5)

where the right-hand side of Eq. (B5) enumerates all possible
ways in which decoding on the O[n5log2(n)] logical qubits
could fail. Note that∑

s,x

p({s, x} ∩ e) �
∑

j

pe j � 1 − p(ne)

� 1 − (1 − e−O(
√

l ) )O[n5log2(n)]. (B6)

Replacing Eqs. (B3)–(B5) in Eq. (B2) we get

D̃2(s, x) = (1 − e−O(
√

l ) )O[n5log2(n)] p({s, x}|ne)

+
∑

j

pe j p({s, x}|e j ). (B7)

By using Eqs. (B6) and (B7) as well as a triangle inequality,
we get that∑
s,x

|D̃2(s, x)− p({s, x}|ne)| � 2(1− (1− e−O(
√

l ) )O[n5log2(n)] ).

(B8)
As in Appendix A, choosing

l = rlog2(n),

but with r chosen so that

deg(eO(
√

l ) ) > deg{O[n5log2(n)]},
we get that∑

s,x

|D̃2(s, x) − p({s, x}|ne)| � 1

poly(n)
(B9)
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by using the same approximations as in Appendix A to bound
2[1 − (1 − e−O(

√
l ) )O[n5log2(n)]]. Now, remark that the fidelity

between ρ̃|G′〉 and |G′〉, denoted as F , satisfies [from Eqs. (B1)
and (9)]

F � (1 − εout)
O(n2 ), (B10)

with εout given by Eq. (16). Furthermore, the probabilities
D(s, x) and p({s, x}|ne) satisfy [33,90]∑

s,x

|D(s, x) − p({s, x}|ne)| � 2
√

1 − F 2, (B11)

when εout satisfies Eq. (16):

2
√

1 − F 2 � 2
√

1 − (1 − εout)O(n2 ) ∼ 2
√

O(n2)εout

� 1

poly(n)
.

Plugging this into Eq. (B11), then using Eqs. (B9) and (B11)
and a triangle inequality, we obtain∑

s,x

|D̃2(s, x) − D(s, x)| � 1

poly(n)
.

This completes the proof of Eq. (18).

2. Properties of zMSD

zMSD implements nonadaptively z iterations of the MSD
protocol of Theorem 4.1 in [58]. Note that in the protocol
of [58] the MSD circuit was for magic states of the form
|H〉 = cos(π/8)|0〉 + sin(π/8)|1〉 whereas in our case we
need distillation circuits for T states |T 〉 defined in the main
text. However, since HZ (−π/2)|H〉 = e−iπ/8|T 〉, the circuits
in [58] can be adapted to our case by adding a constant depth
layer of H and Z (−π/2) gates, the logical versions of which
can be done fault tolerantly and also in constant depth in
our construction. We call 1MSD a circuit which implements
nonadaptively one iteration of the protocol of Theorem 4.1
in [58]. Note that both zMSD and 1MSD will be based on
nonadaptive MBQC. We will begin by calculating the number
of qubits of 1MSD.

In Theorem 4.1 in [58], the MSD circuit takes as input
O(d ) qubits, where d is a positive integer, uses O(d2) noisy
input T states with fidelity 1 − ε with respect to an ideal
(noiseless) T state, and outputs O(d ) distilled T states with
fidelity 1 − O(εd ) with respect to an ideal T state (note that
the ratio of the number of noisy input T states to the number
of distilled output T states is ≈ d for large enough constant
d [58]). Each time a noisy T state is inserted it affects a
noisy T gate, inducing a so-called T -gate depth [58]. The
depth of the entire circuit is O[d2log(d )], where O(d ) is the
T -gate depth, and O[dlog(d )] is the depth of the Clifford
part of the circuit, which is composed of long-range Cliffords
[58]. Therefore, the MSD circuit is an O(d )-qubit circuit of
depth O[d2log(d )]. In order to implement this circuit on a
regular graph state (for example, the cluster state [42]), one
must transform the Clifford circuit composed of long-range
gates, to that composed of nearest-neighbor and single-qubit
Clifford gates, since these single-qubit and nearest-neighbor
two-qubit gates can be implemented by measuring O(1) qubits

of a cluster state in the X and Y bases [42,73]. An m-qubit
Clifford gate can be implemented by an O(m2)-depth circuit
composed only of gates from the set {CZi j, H, Z (π/2)} [91].
Furthermore, CZi j could be implemented by a circuit of depth
O(i − j) composed of nearest-neighbor CZ gates [92]. The
same arguments hold in the logical picture by replacing H ,
CZ, Z (π/2), noisy input T states with their logical versions
H , CZ, Z (π/2), and ρT noisy. m = O(d ) in our case, and thus
the number of columns of the cluster state needed to imple-
ment 1MSD, is

nc = O[d2log(d )]O(d2)O(d ) = O[d5log(d )], (B12)

where the O[d2log(d )] comes from the depth of the MSD
circuit with long-range Cliffords; O(d2) is the depth needed
to implement an arbitrary Clifford using H gates, Z (π/2)
gates, and long-range CZ’s; and O(d ) is an overestimate and
represents the number of nearest-neighbor CZ’s needed to
give a long-range CZ. The total number of qubits of the cluster
state implementing 1MSD is then

nT = O(d )nc = O[d6log(d )]. (B13)

zMSD can be thought of as a concatenation of z layers of
1MSD, where the output of layer j is the input of layer
j + 1. Because the noisy input T states in the protocol of
[58] are injected at different parts of the circuit, this means
that the output qubits of layer j should be connected to layer
j + 1 at different positions by means of long-range CZ gates.
Therefore, the graph state implementing zMSD can be seen
as cluster states composed of logical qubits, and connected by
long-range CZ gates, as shown in Fig. 4. One could equiv-
alently replace these long-range CZ gates with a series of
SWAP gates, which can be implemented (up to Pauli correc-
tion by means of nonadaptive X and Z measurements) on a
2D cluster state with only nearest-neighbor CZ gates [42,73].
Because these long-range CZ gates act on qubits separated by
a distance poly(d ), the introduction of SWAP gates introduces
an additional (constant) overhead of O[poly(d )] qubits to nT ,
but makes the construction of 1MSD implementable on a
2D cluster state with only nearest-neighbor CZ gates. The
first layer consists of N copies of cluster states implementing
1MSD (see Fig. 4), and outputs, when successful, NO(d ) =
N
d O(d2) T states with fidelity 1 − Cεd with respect to |T 〉, C
being a positive constant [58]. These T states are the input
of the second layer, which consists of N

d copies of cluster
states implementing 1MSD, and outputs, when successful,
N
d O(d ) = N

d2 O(d2) T states with fidelity C(Cεd )d = Cd+1εd2

with respect to |T 〉. Similarly, the zth layer will consist of N
dz−1

copies, and will output, when successful, N
dz−1 O(d ) T states

with fidelity

εout ∼ Cdz−1
εdz

, (B14)

with respect to |T 〉. The total number of qubits of the graph
state implementing zMSD is then given by

nNMSD =
(

N + N

d
+ N

d2
+ . . .

)
nT = O(N ). (B15)

z is the last layer, therefore N
dz−1 = 1 and thus

N = dz−1. (B16)
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FIG. 4. Part of the graph state implementing the circuit zMSD. Blue filled circles represent logical qubits in the |+〉 state, which when
measured implement the Clifford part of the MSD protocol of Theorem 4.1 in [58]. The green filled circles are noisy input T states ρT noisy.
Purple filled circles are the output qubits of the first layer of zMSD. When zMSD is successful, these qubits are in a state with fidelity
1 − O(εd ) with respect to the ideal T state |T 〉. The orange lines are CZ gates. Note that the output qubits of the first layer (purple circles)
are connected to the second layer at different positions by means of long-range CZ gates. These long-range CZ gates can be implemented in
constant depth, since they each act on distinct pairs of qubits. Also, as mentioned in the main text in this Appendix B2, these long-range CZ
gates can be replaced by a series of SWAP gates making this construction a constant-depth 2D construction with only nearest-neighbor CZ
gates. Measurements consist of nonadaptive X measurements, Z measurements, as well as Y measurements. As described in the main text, we
could equivalently perform all measurements in Z , by introducing additional constant depth layers of H and Z (π/2) gates.

For a successful instance of zMSD, in order to arrive at
Eq. (16), we choose

dz � O[log(n)],

which implies that each copy of zMSD is composed of

nNMSD = O(N ) = O(dz−1) � O[log(n)]

logical qubits, as mentioned in the main text. Indeed, replac-
ing dz = alog(n), with a a positive constant in Eq. (B14),
yields

εout = 1

naα
,

by a direct calculation, where α = log( 1
Cεd )
d while noting that

Cεd < 1 [58]. Equation (16) is therefore obtained for an ap-
propriate choice of a or ε.

Now, we will calculate the probability pszMSD of a single
successful instance of zMSD. We will assume, rather pes-
simistically, that only one string of nonadaptive measurement
results of zMSD corresponds to a successful instance. This

string we will take, by convention, to be the one where all the
measurement binaries (after decoding) are zero. In this case,

pszMSD � 1

2nNMSD
. (B17)

Note that the lower bound is actually higher than that in
Eq. (B17) for two reasons. The first is that not all qubits of
the graph state implementing zMSD are measured. Indeed,
the output qubits of the last layer of zMSD are unmeasured
and, in the case when zMSD is successful, are in the state
ρT out. The second reason is that some of the measurements
correspond, in the successful case, to postselections which
in the protocol of [58] occur with probability greater than
1/2. Indeed, for small enough ε, the acceptance rate of the
protocol of [58] is approximately 1. Now, εout = 1

nβ , with
β � 4, and nNMSD = γ dz [Eqs. (B15) and (B16)], with γ a
positive constant. By choosing

ε = e−γ βlog(2)

C1/d
,
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and performing a direct calculation using Eq. (B14), we get
that nNMSD = log2(n). Therefore,

pszMSD � 1

n
. (B18)

One might ask, why do other MSD protocols like those of
[57,93], for example, not work (using our techniques)? The
answer to this question has to do with the number of noisy
input T states nnoisy with fidelity 1 − ε with respect to an
ideal T state, needed to distill a single T state of sufficiently
high fidelity 1 − εout with respect to an ideal T state. nnoisy is
usually given by [57]

nnoisy = O

[
logγ

(
1

εout

)]
. (B19)

γ is a constant which depends on the error correcting code
from which the MSD protocol is derived [60]. In the pro-
tocol of [58] (as well as those in [62]), γ ∼ 1, whereas for
the STEANE code, for example [40], which we used to dis-
till Y states in our 3D NN architecture, γ > 1. γ ∼ 1 in
the protocol of [58] is what allowed us to get a pszMSD of
the form of Eq. (B18). On the other hand, the protocols of
[40,57,93] have a γ > 1, which leads to a lower bound of
pszMSD which looks like 1/qp(n)—by using similar arguments
for calculating nNMSD—where qp(n) is quasipolynomial in n
[if one requires εout = 1/poly(n)]. Indeed, N is proportional
to αnnoisy, where α is the number of output T states with er-
ror εout. Therefore, it follows that nNMSD = O(N ) = O(nnoisy),
and that 2nNMSD = 2O(nnoisy ), which is a quasipolynomial when
γ > 1. This would mean, using our proof techniques, that we
would need a quasipolynomial in n (which is greater than the
polynomial in n) number of zMSD copies to get a successful
instance, thereby taking us out of the scope of what is consid-
ered quantum speedup [94]. Other protocols which we could
have used and could have worked are that of [61,62], which
gives γ ∼ 1, or that of [60], which gives γ < 1, albeit with a
huge constant overhead of 258 qubits [60].

3. Proof of Eq. (17)

We begin by calculating pfail = 1 − psucc. Suppose we have
constructed M copies of zMSD; the probability pfail of not
getting at least O(n2) successful instances of zMSD is given
by

pfail =
∑

m=0,...,O(n2 )

(
M

O(n2) − m

)
pO(n2 )−m

szMSD

× (1 − pszMSD)M−O(n2 )+m. (B20)

If pszMSD � 1 − pszMSD [Eq. (B18)], then

pfail �
∑

m=0,...,O(n2 )

(
M

O(n2) − m

)
(1 − pszMSD)M . (B21)

Taking M > 2O(n2),

∑
m=0,...,O(n2 )

(
M

O(n2) − m

)
� O(n2)

(
M

O(n2)

)
. (B22)

Replacing Eq. (B22) in Eq. (B21), and using Eq. (B18),
we get

pfail � O(n2)

(
M

O(n2)

)(
1 − 1

n

)M

. (B23)

Also, (
M

O(n2)

)
< MO(n2 ).

Replacing this in Eq. (B23) we get

pfail � O(n2)MO(n2 )

(
1 − 1

n

)M

. (B24)

Noting that for large enough n(
1 − 1

n

)n

∼ 1

e
,

and taking M
n = p(n)O(n2)

pfail � O(n2)

(
M

ep(n)

)O(n2 )

. (B25)

Choosing p(n) � log(M ) = O[log(n)], we get that M
ep(n) � c,

with c < 1 a constant. In this case,

pfail � O(n2)cO(n2 ) � O(n2)
1

eO(n2 )
∼ 1

eO(n2 )
,

for large enough n. Thus,

psucc � 1 − 1

eO(n2 )
.

Note that for our choice of p(n) � O[log(n)] we get that
M = O(n3)p(n) � O[n3log(n)]. This completes the proof of
Eq. (17).

APPENDIX C: THE ROUTING CIRCUIT CR

The main idea of the MBQC based routing is to use the fact
that in a graph state measurements allow us to etch out desired
paths. In particular, performing a Z measurement removes a
vertex and its edges [54], as illustrated in Fig. 5. Once a path is
etched out, X measurements teleport the state along it. Given
m systems to route out of a possible p, a grid of size 2pm is
sufficient for unique paths to be etched out. An example of
how this works for a grid is illustrated in Fig. 6 for m = 2 and
p = 7 [95]. In our case, we have a total of O[n3log(n)] outputs
of all the zMSD, of which O(n2) will be successful, hence the
number of ancilla we require scales as O[n5log(n)].

It is worth explaining why the overall noise on the routed
ρT out will still be local stochastic with constant rate. First,
note that CR is a constant depth Clifford circuit composed
of single- and two-qubit Clifford gates acting on outputs of
zMSD circuits, and therefore all local stochastic noise after
each depth-1 step of this circuit can be treated as a single local
stochastic noise Ed ∼ N (m) with constant rate m at the end of
this circuit, as in Eq. (8) [9]. The outputs of zMSD circuits are
acted upon by local stochastic noise with constant rate [as seen
earlier overall noise on zMSD is local stochastic with constant
rate, therefore noise acting on a subset of qubits of zMSD (the
outputs) is also local stochastic with the same rate [9]], and
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FIG. 5. Performing a Z measurement on a vertex of a graph state removes it, up to local Pauli corrections.

therefore can be incorporated as preparation noise [analogous
to Eprep in Eq. (8)] with Ed to give a net local stochastic noise
E ∼ N (c) with constant rate c acting on qubits of CR. After
measurements, the unmeasured outputs of CR will also be
acted upon by E ′ ∼ N (c), which is local stochastic with the
same rate as E , but with smaller support, from the properties
of local stochastic noise [9].

APPENDIX D: ERROR CORRECTION IN OUR
3D NN ARCHITECTURE

In this section we will show how the probability of failure
pfail of decoding in our 3D NN architecture can be made
polynomially low. pfail here is equivalent to 1 − p(ne) =
1/poly(n) in Appendix B. Thus, obtaining pfail = 1/poly(n)
allows us to recover the same results for error correction as the
4D NN architecture. We will assume that classical postpro-
cessing is instantaneous. We will work with local stochastic

(a) (b)

FIG. 6. Routing via etching out from a grid. The purple vertices
on the left represent outputs of the zMSD. (a) The filled purple
vertices are identified as the successful distilled T states from previ-
ous measurement results, and the paths to the outputs are identified.
(b) All other qubits are measured out in Z and the successful outputs
are teleported via X measurements.

noise and, as discussed in the main text, deal with a single lo-
cal stochastic noise E ∼ N (q) which is pushed forward until
after the measurements [9] [see Eq. (8)]. The (constant) rate q
satisfies q � 0.0075 [40], that is, it is below the threshold of
fault-tolerant computing in the RHG construction. As argued
in [35], the probability pfail can be calculated by calculating
the number of ways in which the minimal weight matching
results in a nontrivial error, that is, an error stretching across
at least Lm qubits, where Lm is the minimum between the
perimeter of the defect and the (minimal) distance between
two defects [35,40]. pfail can be calculated by using the fol-
lowing relation [35]:

pfail � P(n)
∑

L�Lm

n(L)prob(L). (D1)

This relation simply counts the number of ways in which
a relevant nontrivial error can occur, this type of error is
restricted to errors induced by self-avoiding walks (SAWs)
on the lattice, as argued in [35]. n(L) = 6.5L−1 calculates all
possible SAWs of total length L originating from a fixed point
in the lattice [35], P(n) = poly(n) is the the total number
of fixed points (i.e., physical qubits) on the lattice, since
SAWs can originate at any fixed point, and prob(L) � (4q)

L
2

is the probability that the minimal matching induces an error
chain (SAW) of length L; this probability is calculated using
the techniques in [35], but adapted to local stochastic noise
(whereas independent depolarizing noise acting on each qubit
was considered in [35]). The sum is over all nontrivial errors
of length Lm � L � poly(n). Noting that

P(n)
∑

L�Lm

n(L)prob(L) � poly(n)[poly(n) − Lm]
6

5
(100q)

Lm
2

� poly′(n)(0.75)
Lm
2 ∼ poly′(n)

e0.06Lm
, (D2)

where poly′(n) is some polynomial in n, choosing Lm =
αlog(n) with α a positive constant, and replacing Eq. (D2)
in (D1), we get

pfail �
poly′(n)

n0.06α
. (D3)

Finally, choosing

0.06α > deg[poly′(n)],
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and replacing this in Eq. (D3), we obtain our desired polyno-
mially low bound for pfail:

pfail �
1

poly(n)
. (D4)

Now, we want to find an estimate of the individual rates of
preparation, gate application, and measurement in our 3D NN
architecture. Assuming at each layer of the circuit that qubits
are acted upon by a local stochastic noise E ∼ N (p) with 0 <

p < 1 a constant, we get that q � 4p4−D−1
[9], where D is the

total quantum depth of the RHG construction. D = 6: one step
for preparation, one for (nonadaptive) measurements (assum-
ing instantaneous classical computing as mentioned earlier),
and four steps for preparing the RHG lattice [96]. Setting
q � 0.0075 [40], we get that the errors in preparation, gate
application, and measurement should satisfy p �∼ e−40 000.
Note that, for completeness, the threshold error rate for the
distillation ε should also be taken into account. Usually, ε

should be lower than some constant [69] in order for distil-
lation to be possible, but this is accounted for in the chosen
value of q [40].

APPENDIX E: DISTILLATION AND OVERHEAD IN OUR
3D NN ARCHITECTURE

1. Distillation

In this subsection, we will discuss distillation of logical Y
states in our 3D NN construction. The distillation of T states
in this construction is exactly the same as in Appendix B,
but instead of using the protocol of Theorem 4.1 in [58] we
use the protocol with γ ∼ 1 (see Appendix B) in [62], which
allows transversal implementation of logical T gates and is
thus compatible with the RHG construction [40,96].

The distillation of Y states is done with the [7, 1, 3] STEANE

code [40]. This code has a γ ∼ log(7)/log(3) ∼ 1.77 [60].
Therefore, the total number of logical ancilla qubits (including
qubits prepared in initial noisy logical Y states ρY noisy) needed
to distill a logical Y state of fidelity 1 − ε′

out is given by [93]
(see Appendix B)

NY = O

[
log1.77

(
1

ε′
out

)]
. (E1)

Choosing ε′
out = 1/O{poly[log(n)]} as in the main text, we get

that

NY = O(log1.77{poly[log(n)]}) ∼ O{log1.77[log(n)]}. (E2)

It is straightforward to see that, for high enough n,

NY < log(n). (E3)

NY can be thought of as the number of logical qubits of a
2D logical cluster state needed to distill a logical Y state of
fidelity 1 − ε′

out. As in Appendix B, if we do this MBQC
nonadaptively, we only succeed with probability

Ps �
1

2NY
� 1

n
. (E4)

In our case, we need O[n5log2(n)] logical Y states of fidelity
1 − ε′

out in order to distill O(kn) = O(n4) T states to be used
in the construction of C2. O[n5log2(n)] is the number of qubits

of C1 when k = O(n3) (number of columns of |G〉). Therefore,
by results in Appendix B3, we would need C′

1 to be composed
of O[n6log3(n)] logical qubits in order to distill, with expo-
nentially high probability of success, enough {O[n5log2(n)]}
logical Y states with fidelity 1 − ε′

out.
Now, we will see why logical Y states of fidelity 1 − ε′

out =
1 − 1/O{poly[log(n)]} suffice to distill O[n5log2(n)] T states
with fidelity 1 − εout = 1 − 1/O[poly(n)]. In the construction
of C1 in Appendix B2, replacing a perfect logical Y state
with a logical Y state of fidelity 1 − ε′

out, then measuring this
state, results in applying the gate HZ (π/2) with probability
1/2(1 − ε′

out ) instead of 1/2 in the perfect logical Y -state
case. Therefore, the success probability of zMSD becomes in
this case

pzMSD � 1

n
(1 − ε′

out )
O[log(n)], (E5)

as compared with Eq. (B18) in the perfect logical Y case. By
choosing, as we did, ε′

out = 1/poly[log(n)], the above equa-
tion can be rewritten, for large enough n, as

pzMSD � 1

n

(
1 − 1

O{poly[log(n)]}
)O[log(n)]

∼ 1

n

(
1 − 1

O{poly′[log(n)]}
)

∼ 1

n
. (E6)

Thus, we have recovered Eq. (B18), and therefore can now
use the same analysis as in Appendix B to distill logical T
states of fidelity 1 − εout in our 3D NN construction. This will
allow us to construct the sampling problem Eq. (18) showing
a quantum speedup.

2. Overhead

In this subsection, we will estimate the overhead (number
of physical qubits in the 3D RHG lattice) of our 3D NN
construction. As in [40], we will make use of the concept of
a logical elementary cell. Each logical elementary cell is a 3D
cluster state composed of λ × λ × λ elementary cells (each of
which has 18 qubits). Logical elementary cells can be either
primal or dual. Each logical elementary cell contains a single
defect. A defect inside a logical elementary cell has a cross
section of d × d (perimeter 4d) on any plane perpendicular
to the direction of simulated time. For our purposes, we will
choose λ = O(d ), and d = O[log(n)]. This will ensure that
the perimeter of the defect (4d) and the distance between two
defects (λ − d) satisfy the conditions in Appendix D. In this
picture, every logical qubit (composed of two defects of the
same type) needs 2 × 18 × λ3 = O[log3(n)] physical qubits.
In order to not talk about primal or dual logical qubits (recall
that computation is always carried out on logical qubits of the
same type, but we need braiding between two defects of differ-
ent type in order to implement some gates such as CNOT ), we
will assume each logical qubit needs four cells (two primal,
two dual) to be defined, and therefore the number of physical
qubits per logical qubit is 4 × 18 × λ3 = O[log3(n)]. Now,
all we need to do is calculate the number of logical qubits
we need in total. Preparations of logical qubits in states |+〉,
ρT noisy, and ρY noisy, and applying CNOT gates, can be done
using a constant number of intermediate elementary logical
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cells [40]. Therefore, we will only need to count the total
number of logical qubit inputs for circuits C′

1, C′
R, C1, CR,

and C2, then multiply this by a constant in order to get the
total number of needed logical qubits including preparations
and logical CNOT applications. As already calculated in the
previous subsection, the total number of logical qubits of C′

1

is O[n6log3(n)]. The total overhead of circuits C1, CR, and
C2 is O{n9poly[log(n)]} logical qubits; this is obtained by
the same calculations as done in our 4D NN architecture,

but with replacing k = O(n) with k = O(n3), in order for
the partially invertible universal set condition to be satisfied
[18]. Finally, the routing circuit C′

R (see Appendix C) needs
O[n6log3(n)n5log2(n)] = O[n11log5(n)]; this term dominates
the scaling. Multiplying O[n11log5(n)] by a constant (to ac-
count for preparation and logical CNOT gates overhead), then
by O[log3(n)] (to get the number of physical qubits) we
get that the overall number of physical qubits needed is
O{n11poly[log(n)]}.
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