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For a zero-temperature Landau symmetry-breaking transition in n-dimensional space that completely breaks
a finite symmetry G, the critical point at the transition has the symmetry G. In this paper, we show that the
critical point also has a dual symmetry—a (n − 1)-symmetry described by a higher group when G is Abelian or
an algebraic (n − 1)-symmetry beyond a higher group when G is non-Abelian. In fact, any G-symmetric system
can be viewed as a boundary of G-gauge theory in one higher dimension. The conservation of gauge charge
and gauge flux in the bulk G-gauge theory gives rise to the symmetry and the dual symmetry, respectively. So
any G-symmetric system actually has a larger symmetry called categorical symmetry, which is a combination
of the symmetry and the dual symmetry. However, part (and only part) of the categorical symmetry must be
spontaneously broken in any gapped phase of the system, but there exists a gapless state where the categorical
symmetry is not spontaneously broken. Such a gapless state corresponds to the usual critical point of Landau
symmetry-breaking transition. The above results remain valid even if we expand the notion of symmetry to
include higher symmetries and algebraic higher symmetries. Thus our result also applies to critical points for
transitions between topological phases of matter. In particular, we show that there can be several critical points
for the transition from the 3 + 1-dimensional Z2 gauge theory to a trivial phase. The critical point from Higgs
condensation has a categorical symmetry formed by a Z2 0-symmetry and its dual, a Z2 2-symmetry, while the
critical point of the confinement transition has a categorical symmetry formed by a Z2 1-symmetry and its dual,
another Z2 1-symmetry.
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I. INTRODUCTION

Consider a Landau symmetry-breaking transition [1,2] in
a quantum system in n-dimensional space at zero temper-
ature that completely breaks a finite on-site symmetry G.
The critical point at the transition is a gapless state with
G symmetry. When n = 1, it is well known that the 1+1-
dimensional (1 + 1D) gapless critical point has two decoupled
sectors at low energies: right movers and left movers [3,4].
Thus the critical point has a low-energy emergent symmetry
G × G. In this paper, we would like to show that a similar
symmetry “doubling” phenomenon also appears for critical
points of Landau symmetry-breaking phase transitions in all
other dimensions. In this paper we will use nD to refer to space
dimensions and (n + 1)D to refer to spacetime dimensions.

In general, the quantum critical point always connects two
nD phases: a symmetric phase with no ground-state degen-
eracy and a symmetry-breaking phase with |G| degenerate
ground states. The symmetric phase is characterized by its
pointlike excitations that carry irreducible representations of
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G. The collection of those pointlike excitations, plus their
trivial braiding and nontrivial fusion properties, give us a local
fusion n-category denoted by nRep(G) (see, for example,
Refs. [5–8] and Appendix A). The conservation of those
pointlike excitations is encoded by the nontrivial fusion of the
irreducible representations Rq:

Rq1 ⊗ Rq2 =
⊕

q3

Nq3
q1q2

Rq3 , (1)

which reflects the G symmetry. In fact, due to Tannaka duality,
the local fusion n-category nRep(G) completely characterizes
the symmetry group G. Since the critical point touches the
symmetric phase, the ground state at the critical point is also
symmetric under G.

The symmetry-breaking phase has ground states labeled
by the group elements g ∈ G, |�g〉, that are not invariant un-
der the symmetry transformation: Uh|�g〉 = |�hg〉, g, h ∈ G.
We can always consider a symmetrized ground state |�0〉 =∑

g |�g〉 that is invariant under the symmetry transformation:
Uh|�0〉 = |�0〉. The symmetry-breaking phase has domain-
wall (DW) excitations and we only consider the symmetrized
states with domain walls. The domain walls can also fuse in a
nontrivial way, and form a local fusion n-category, denoted by
nVecG (see Refs. [7,8] and Appendix A). The nontrivial fusion
also leads to a “conservation” of domain-wall excitations.
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It turns out that the “conservation” of (n − 1)-dimensional
domain-wall excitations can be viewed as a result of algebraic
higher symmetry [7,8] generated by closed string operators
Wq(S1) that commute with the lattice Hamiltonian

Wq(S1)H = HWq(S1), (2)

for all the closed loops S1 (see Sec. V). Reference [8] con-
jectured that there is a generalization of Tannaka duality:
a local fusion n-category R (such as nVecG) completely
characterizes an algebraic higher symmetry [in the present
case, an algebraic (n − 1)-symmetry]. When the symmetry
group is Abelian, such an algebraic (n − 1)-symmetry is a
(n − 1)-symmetry described by a higher group. When the
symmetry group is non-Abelian, such an algebraic (n − 1)-
symmetry is beyond higher group description and is not a
(n − 1)-symmetry.

To contrast higher symmetry (described by higher group)
and algebraic higher symmetry (beyond higher group), we
note that for grouplike higher symmetry the string operators
satisfy a grouplike algebra

Wq1 (S1)Wq2 (S1) = Wq1·q2 (S1), (3)

while for algebraic higher symmetry, the string operators
satisfy a more general algebra

Wq1 (S1)Wq2 (S1) =
∑

q3

Nq3
q1q2

Wq3 (S1). (4)

The notion of algebraic higher symmetry has appeared in
Refs. [9–13] for 1 + 1D conformal field theory (CFT) via
noninvertible defect lines and for lattice models in general di-
mensions in Refs. [7,8]. This generalizes the notion of higher
form symmetry [14–22] (or higher symmetry [23–29]).1 A
higher symmetry is described by a higher group, while an
algebraic higher symmetry is beyond higher groups. The
charged excitations (the charge objects) of an algebraic higher
symmetry are in general characterized by a local fusion higher
category (see Ref. [8] and Appendix A).

We see that the G symmetry-breaking phase, with domain-
wall excitations forming nVecG, actually has an algebraic
(n − 1)-symmetry, denoted as G(n−1). Since the critical point
touches the symmetry-breaking phase, the critical point also
has the algebraic (n − 1)-symmetry G(n−1). Therefore, the
gapless state, at the critical point of G symmetry-breaking
transition, has both the G zero symmetry and the algebraic
(n − 1)-symmetry G(n−1). We call this combined symmetry a
categorical symmetry. In fact, the categorical symmetry even
appears off the critical point, but in a spontaneously broken
form.

There is a holographic way to see the appearance of
categorical symmetry in any G-symmetric system. We note

1Higher form symmetry and higher symmetry are similar. They
have only a small difference: The action of higher form symmetry
becomes an identity when it acts on contractible closed subspaces,
while the action of higher symmetry may not be an identity when
it acts on contractible closed subspaces. Higher symmetry is a sym-
metry in a lattice model. Higher symmetry reduces to higher form
symmetry in gapped ground-state subspaces (i.e., in the low-energy
effective topological quantum field theory).

that when restricted to the symmetric sub-Hilbert space a nD
G-symmetric system can be viewed as a system that has a
noninvertible gravitational anomaly, i.e., can be viewed as
the boundary of the G-gauge theory in one higher dimen-
sion [30,31]. The bulk gauge charges, when brought to the
boundary, are the excitations of the G 0-symmetry, and the
gauge fluxes, brought to the boundary, are excitations of the
algebraic (n − 1)-symmetry. The conservation of the gauge
charges and gauge fluxes in G-gauge theory in the bulk leads
to the G 0-symmetry and algebraic (n − 1)-symmetry G(n−1),
respectively, in our G-symmetric system that corresponds to
the boundary (for details, see Sec. II D). Therefore, the G-
symmetric system actually has a larger symmetry—the cat-
egorical symmetry, which is a combination of the symmetry
(from the conservation of gauge charges) and the algebraic
(n − 1)-symmetry (from the conservation of gauge flux), with
nontrivial mutual statistics between gauge charges and gauge
flux. Such a categorical symmetry is fully characterized by the
G-gauge theory in one higher dimension.

Since the gapped boundaries of G-gauge theory always
come from the condensation of the gauge charges and/or
the gauge flux, the gapped ground state of the G-symmetric
system always breaks the categorical symmetry partially, ei-
ther the G symmetry, or the algebraic (n − 1)-symmetry, or
some other mixtures of the two symmetries. A state with the
full categorical symmetry [i.e., both the G symmetry and the
algebraic (n − 1)-symmetry] must be gapless. We show that
such a gapless state describes the critical point of the Landau
symmetry-breaking transition.

More generally, all possible gapless states in a G-
symmetric system are classified by gapless boundaries of
G-gauge theory in one higher dimension. This universal
emergence of categorical symmetry at the critical point, and
its origin from a noninvertible gravitational anomaly (i.e.,
topological order in one higher dimension), may help us to
systematically understand gapless states of matter.

It is worthwhile to point out that a structure similar
to categorical symmetry was found previously in Anti-
de Sitter/Conformal field theory (AdS/CFT) correspon-
dence [32–35], where a global symmetry G in a CFT at the
boundary is related to an appearance of a gauge theory of
group G in the bulk. In this paper, we stress that the categorical
symmetry encoded by the bulk is actually a bigger symmetry
than the usual symmetry at the boundary. We point out that the
G-symmetric gapless critical theory at the (n + 1)D boundary
actually has both the zero symmetry G and the dual algebraic
(n − 1)-symmetry, which together form the categorical sym-
metry. For a more detailed discussion, see Sec. VIII.

In the following, we begin with studying a few concrete
examples, to show the appearance of categorical symmetries
in Landau symmetry-breaking transitions and in topological
phase transitions, as well as neighboring gapped states that
partially break the categorical symmetries spontaneously. In
Secs. II–IV, we discuss the example of models associated
with the Z2 group in 1 + 1D and 2 + 1D cases without and
with ’t Hooft anomaly. We introduce the patch operators,
as a main tool to detect local charges in sub-Hilbert space
that is symmetric under global symmetries. We show how
to use the patch operators to describe categorical symmetry.
In Sec. V, we discuss the categorical symmetries in the
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lattice models with general finite group G in any n spatial
dimensions. In Sec. VI, we discuss the emergence of algebraic
higher symmetry. In Sec. VII, we discuss the emergence of
categorical symmetry for a set of low-energy excitations, and
how the categorical symmetry can constrain on the possible
phases and phase transitions induced by those low-energy
excitations. In particular, we discuss how the emergent cat-
egorical symmetry determines the duality relations between
low-energy effective field theories. In Sec. VIII, we summa-
rize our results and point out their implication for a particular
AdS/CFT dual.

II. Z2 AND DUAL ˜Z2 SYMMETRIES IN THE 1 + 1D
ISING MODEL

A. Duality transformation in the 1 + 1D Ising model

A common scenario happening at the critical point between
the symmetric phase and the symmetry-breaking phase is the
emergent symmetry. The example we know the best is the
Ising transition in one dimension. The paramagnetic phase
is Z2 symmetric, and the ferromagnetic phase spontaneously
breaks the Z2 symmetry. The critical point is Z2 symmetric.
More than that, it also has an additional Z2 symmetry [11,36–
39].

To see both Z2 symmetries, we consider an Ising model on
a ring of L sites, where on each site i there are spin-up and
spin-down states in the Pauli-Zi basis. So the Hilbert space
is V = ⊗L−1

i=0 {|↑i〉, |↓i〉}. Each state in the Hilbert space can
be also labeled in an alternative way, that is, via the absence
or presence of a DW in the dual lattice of L links. On each
link i + 1

2 , a domain wall means the spins on i and i + 1 are
antiparallel. It follows that each basis state |ψ〉 of V and its
Z2 partner |ψ ′〉 are labeled by the same kink variable on the
dual lattice. So the Z2-symmetric state in V is labeled uniquely
by the DW variable. Moreover, a configuration of an odd
number of domain walls on links cannot be mapped to any
configuration of spins on sites. Thus each DW variable with
an even number of DW’s labels a unique Z2-symmetric state.
Therefore, we say that the Z2-symmetric Hilbert space of spins
on the sites is in one-to-one correspondence with the Hilbert
space of an even number of DWs on the links. Each Hilbert
space is of dimension 2L−1.

Next, we demonstrate an isomorphism between a set of
operators on sites and one on links:

XiIi+1 → X̃i− 1
2
X̃i+ 1

2
, ZiZi+1 → Ĩi− 1

2
Z̃i+ 1

2
. (5)

Here, we use the following notation:

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
. (6)

Physically, the spin-flipping Xi is the same as creating two
DW’s on i − 1

2 and i + 1
2 links, represented by X̃i− 1

2
X̃i+ 1

2
. The

Ising coupling term ZiZi+1 also measures the energy cost of
a domain wall, which is represented by Z̃i+ 1

2
. Formally, the

two sets of operators {Xi, ZiZi+1} and {X̃i− 1
2
X̃i+ 1

2
, Z̃i+ 1

2
} are

two representations of the same set of operators {Wi,Wi+ 1
2
}

defined by the operator algebra, for i = 1
2 , 1, · · · , L:

(i) W 2
i = 1,

(ii) WiWi+ 1
2

= −Wi+ 1
2
Wi,

(iii) [Wi,Wj] = 0, |i − j| � 1. (7)

We also have a further global condition:

UZ2 =
∏

i=1,2,··· ,L
Wi = 1 ,

UZ̃2
=

∏
i= 1

2 , 3
2 ,···L− 1

2

Wi = 1 . (8)

We have two 2L−1 dimensional representations of Wi’s,
satisfying the relations (7) and (8). In particular, the following
Hamiltonian,

H = −
∑

i=1,2··· ,L

(
BWi + JWi+ 1

2

)
, (9)

has the same spectrum independent of the representation. In
the “spin representation,” the Hamiltonian reduces to

H Is = −
∑

i=1,2,··· ,L
(BXi + JZiZi+1),

UZ2 =
∏

i=1,2,···L
Xi = 1, UZ̃2

= ZL+1Z1 = 1. (10)

In the “DW representation,” the Hamiltonian reduces to

HDW = −
∑

i=1,2,··· ,L

(
BX̃i− 1

2
X̃i+ 1

2
+ JZ̃i+ 1

2

)
,

UZ2 = X̃L+ 1
2
X̃ 1

2
= 1, UZ̃2

=
∏

i=1,2,···L
Z̃i− 1

2
= 1. (11)

The unitary transformation (5) between the spin represen-
tation and DW representation is also known as Z2 gauging.
In the current case, it is also the same as Kramers-Wannier
duality.

The Ising model has two exact Z2 symmetries. However,
in our spin and DW representations, we do not see them
simultaneously. In the spin representation, we see one Z2

symmetry generated by

UZ2 =
∏

i=1,··· ,L
Xi, (12)

which is denoted as Z2. In the DW representation, we see the
other Z2 symmetry generated by

UZ̃2
=

∏
i=0,··· ,L

Z̃i+ 1
2
, (13)

which is denoted as Z̃2. Z2 and Z̃2 are two different Z2 sym-
metries, as one can see from their different charge excitations.
Despite the fact that we only see one symmetry in one for-
mulation, the Ising model actually has both symmetries. The
combination of the two symmetries is the so-called categorical
symmetry, which is denoted as Z2 ∨ Z̃2. Certainly, the critical
model at |J| = |B| also has the Z2 ∨ Z̃2 categorical symmetry
(see Fig. 1). It is interesting to note that, in the ground state
of the Ising model, either Z2 ∨ Z̃2 categorical symmetry is
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FIG. 1. The same Ising model can be described by H Is or by
HDW. The Z2 symmetry is explicit in the H Is description, while the Z̃2

dual symmetry is explicit in the HDW description. The Ising model
has both the Z2 symmetry and Z̃2 dual symmetry. The ground state
usually spontaneously breaks one of the symmetries, except at the
B = J critical point, where both the symmetry and the dual symmetry
(i.e., the full Z2 ∨ Z̃2 categorical symmetry) are not spontaneously
broken.

spontaneously broken partially (for example, one of the Z2 is
spontaneously broken) or the ground state is gapless [40]. This
indicates that Z2 symmetry and the dual Z̃2 symmetry are not
independent. There must be a special relation between them.
To reveal it, we need to discuss the charge excitations of the
symmetries.

B. Patch symmetry transformation

In the above, we argue that the lattice model Eq. (9) [or
Eq. (10) or Eq. (11)] in the symmetric sub-Hilbert space has
two Z2 symmetries generated by UZ2 and UZ̃2

. But in the sym-
metric sub-Hilbert space, the two operators are identity opera-
tor UZ2 = UZ̃2

= 1. The two Z2 transformations are do-nothing
transformations. So what does it mean that the lattice model in
symmetric sub-Hilbert space has two Z2 symmetries? In this
section, we are going to solve this problem by introducing
patch symmetry transformations. Such kind of operators has
been studied mostly for continuous global symmetries, known
in the literature [41] as splittable symmetry operators, dating
back to the 1980s [42–44].

We notice that even though UZ2 and UZ̃2
act as identities in

the symmetric sub-Hilbert space the sub-Hilbert space does
not consist of only a vacuum state. Rather, spin-flip as well as
domain-wall excitations are still present, and they are subject
to mod-2 conservations. So the effect of two Z2 symmetries
is still there within the symmetric sub-Hilbert space. For
example, there exists a state on the ring containing two well-
separated spin excitations, each carrying the UZ2 charge 1
while the total UZ2 charge is zero mod 2. How do we measure
the local UZ2 charge via a symmetry transformation operator?

To diagnose the conserved local charges of UZ2 and UZ̃2

symmetries, subject to conservation laws, we now introduce
two sets of patch symmetry operators2 for the simple model
Eq. (10) or Eq. (11).

The first patch symmetry is generated by the following
transformations:

UZ2 (i, j) =
j∏

l=i

Xl , for j − i � 0, (14)

which are required to act within the symmetric sub-Hilbert
space. They also have the properties that for any j − i �

2We hope the name is intuitive even when generalized to higher
dimensions.

1, j′ − i′ � 0,

UZ2 (i, k) = UZ2 (i, j)UZ2 ( j + 1, k),

UZ2 (i, j)2 = 1, [UZ2 (i, j),UZ2 (i′, j′)] = 0. (15)

In condensed-matter physics, a symmetry is simply a con-
straint on the lattice Hamiltonian H . We usually describe such
a constraint as a constraint on the Hamiltonian H as a whole.
Under such constraint, the Hamiltonian H is allowed to be
local or nonlocal. This actually is a drawback of the standard
formulation of the symmetry, since it does not care about the
locality of the Hamiltonian. In our description of symmetry,
using patch operators, we assume the Hamiltonian H to be
sum of local operators H = ∑

x Ox. Then the constraint on
the Hamiltonian H is expressed in terms of the constraint
on the local terms Ox. In other words, a system is said to
have the patch symmetry, if it has the following properties:
each local term in the Hamiltonian commutes with all the
patch symmetry operators, as long as the local term is far
away from the boundary of the patch operator. For example,
if Hl is a term on l, l + 1, and if it commutes with all patch
symmetry operators UZ2 (i, j) with i, j 
= l, l + 1, this term is
symmetric under the patch symmetry. If every term in the
Hamiltonian has this property, we say the Hamiltonian has the
patch symmetry.

Each patch symmetry operator UZ2 (i, j) measures the Z2

spin excitations in its “bulk,” the sites covered by the patch,
from site i to site j. More precisely, a local operator ψk carries
Z2 charge 1 if it satisfies

UZ2 (i, j)ψk = −ψkUZ2 (i, j), i � k � j. (16)

ψkψl creates two Z2 charges at k and l within the symmetric
sub-Hilbert space.

In Eq. (14), the patch symmetry operator is given in the
spin representation. In the DW representation, it will have the
form

UZ2 (i, j) = X̃i− 1
2
X̃ j+ 1

2
, (17)

which has a trivial “body of the string” but only two end
points. By the definition given above about a system sym-
metric under the patch symmetry, and due to the trivial bulk,
any local Hamiltonian in the DW representation is symmetric
under UZ2 (i, j). We may also take the patch operators UZ2 (i, j)
as creating a pair of Z̃2-charged excitations (i.e., a pair of Z2

domain walls) at the ending links i − 1
2 and j + 1

2 .
The second patch symmetry is generated by the following

operators, in the spin and DW representations:

UZ̃2
(i, j) = ZiZ j, UZ̃2

(i, j) =
j−1∏
l=i

Z̃l+ 1
2
, (18)

which have the properties that they act within the symmetric
sub-Hilbert space, for any j − i � 1, j′ − i′ � 1:

UZ̃2
(i, k) = UZ̃2

(i, j)UZ̃2
( j, k),

UZ̃2
(i, j)2 = 1,

[
UZ̃2

(i, j),UZ̃2
(i′, j′)

] = 0. (19)

We see that any local Hamiltonian in spin representation
has the UZ̃2

symmetry. However, for the Hamiltonian in the
DW representation, the second patch symmetry gives rise to
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a nontrivial constraint on the Hamiltonian. These symmetry
operators serve to measure local domain-wall excitations. We
can see this in the spin representation: when Zi and Zj have
opposite sign, i.e., there is a domain between i and j, then
UZ̃2

(i, j) = ZiZ j = −1.
In summary, we identify two patch symmetries, each of

which is generated by a set of commuting operators. The
two kinds of patch symmetries act nontrivially even in the
symmetric sub-Hilbert space, and can impose constraints on
Hamiltonians. The symmetric Hamiltonians ensure the mod-2
conservation of the Z2 charges and domain walls.

The patch symmetry transformations also allow us to iden-
tify a special new property—the “mutual statistics” between
charges of the two global symmetries (or patch symmetries),
given by the following relation, for i � i′ � j � j′:

UZ2 (i, j)UZ̃2
(i′, j′) = −UZ̃2

(i′, j′)UZ2 (i, j). (20)

Alternatively, a local charge under the Z2 global symmetry
is created at each end point of a Z̃2 patch operator. If a Z2

symmetry patch and a Z̃2 symmetry patch partially overlap,
the single charge at one end point can be measured by the
Z2 patch symmetry operator. All such statements remain true
if exchanging Z2 and Z̃2. We call such properties the mutual
statistics between charges of the two patch symmetries. The
collection of all patch symmetries is nothing but the categor-
ical symmetry. The property (20) justifies the symmetry to be
Z2 ∨ Z̃2, rather than Z2 × Z̃2.

We see that the categorical symmetry in a system can
be fully described by a set of patch operators, without the
need to go to one higher dimension. Alternatively, later in
Sec. II D, we describe the categorical symmetry in terms of the
topological order and the associated long-range entanglement,
by viewing the system as a boundary of a topological order
in one higher dimension. The above result confirms that the
categorical symmetry is indeed a property of the system itself.

Note that 〈UZ̃2
(i, j)〉 also turns out to be the correlation

of order parameters of the Z2 symmetry, while 〈UZ2 (i, j)〉
happens to be the correlation of order parameters of the Z̃2

symmetry. If there is a state, where both the Z2 symmetry and
the Z̃2 symmetry are spontaneously broken, then UZ̃2

(i, j) and
UZ2 (i, j) behave like complex numbers for the state. This will
contradict with Eq. (20). Therefore, the Z2 symmetry and the
Z̃2 symmetry cannot be both spontaneously broken. A more
rigorous proof was given in Ref. [40].

C. A model where both Z2 symmetry and dual ˜Z2

symmetry are explicit

The Ising model in its spin representation Eq. (10) or in its
DW representation Eq. (11) only shows one of the Z2 and dual
Z̃2 symmetries explicitly. In this section, we will discuss the
third representation of the Ising model, where both the Z2 and
dual Z̃2 symmetries appear explicitly.

Consider a model with spin-up and down states defined on
N sites as well as on N links. So we begin with 22N states. The
model has the following Hamiltonian:

H = −
∑

i

(
BX̃i− 1

2
XiX̃i+ 1

2
+ JZ̃i+ 1

2

)
+ U

(
1 − ZiZ̃i+ 1

2
Zi+1

)
. (21)

We only consider the low-energy limit U → ∞, as well as
the projection UZ2 = ∏

i Xi = 1. (Note that the B term and
the J term commute with the constraint U term and UZ2 .)
In the restricted low-energy sector, we are left with 2N−1

states. The above Hamiltonian is conventionally known as
describing the Z2 matter field coupled to the Z2 gauge field
in the 1 + 1D dual lattice.3 The Ising model (10) with the
Z2-symmetric sub-Hilbert space turns out to be equivalent
as the low-energy effective theory of the above model with
B, J > 0, and U → +∞. There is more than one way to
prove this. In Appendix B, we give a proof using the stabilizer
formalism in quantum information. In the next subsection, we
will show that the same Hamiltonian together with the same
projected sub-Hilbert space arises as the boundary theory of
the Z2 topological order.

The Z2 × Z̃2 symmetry (or more precisely, the Z2 ∨ Z̃2

categorical symmetry) is explicit in the above model, which is
generated by UZ2 in Eq. (12) and UZ̃2

in Eq. (13) as an on-site
symmetry of the model. Even though the Z2 × Z̃2 symmetry
is on site in the model (21), it is anomalous when restricted in
the low-energy sector in the sense that in the U = +∞ limit
the model cannot have a gapped ground state that breaks the
full Z2 × Z̃2 symmetry. (Certainly, when U < J, B, the model
can have a gapped ground state that breaks the full Z2 × Z̃2

symmetry, such as when J = B = 1,U = 0.) In the U = +∞
limit, only the gapless state at J = B has the full Z2 × Z̃2

symmetry that is not spontaneously broken.
What are the patch symmetry transformations for the Z2

and Z̃2 symmetry? The first guesses are

UZ2 (i, j) =
j∏

k=i

Xk, UZ̃2
(i, j) =

j∏
k=i

Z̃k+ 1
2
. (22)

But UZ2 (i, j) = ∏ j
k=i Xk does not act within the low-energy

sub-Hilbert space (in the U = +∞ limit). To get around this,
we modify it at the boundary, which leads to

UZ2 (i, j) = X̃i− 1
2

(
j∏

k=i

Xk

)
X̃ j+ 1

2
,

UZ̃2
(i, j) =

(
j∏

k=i

Z̃k+ 1
2

)
. (23)

The two sets of patch symmetry transformations still sat-
isfy the algebras Eqs. (15) and (19) as previously. Most
importantly, the two sets of patch symmetry transformations
have a π mutual statistics described by Eq. (20). It is this
property of the patch operators that we mean when we say that
the symmetry we consider is Z2 ∨ Z̃2, but not Z2 × Z̃2. One
can also easily check that the local terms in the Hamiltonian
(21) commute with the patch symmetry transformations when
far away from the boundary. So the Hamiltonian (21) has the
Z2 and Z̃2 patch symmetries. In short, although the global

3Here, Z̃i+ 1
2

and X̃i+ 1
2

are the matter field and momenta on the sites
of the dual lattice. Zi and Xi are the gauge field and momenta on the
links of the dual lattice. The Gauss law ZiZ̃i+ 1

2
Zi+1 = 1 is imposed as

a dynamical constraint.
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symmetry transformations of Z2 and Z̃2 commute, the patch
operators, which create charges at their end points, do not
commute in the low-energy sub-Hilbert-space limit when
U → ∞.

We would like to remark that the same symmetry can be de-
scribed by different yet equivalent choices of patch symmetry
transformations. Two sets of patch symmetry transformations
are equivalent if the patch symmetry transformations only dif-
fer by “local neutral operators” at the boundary of the patches.
Here a local neutral operator is a local operator that commutes
with all patch symmetry transformations the boundary of
which is far away from the operator. The mutual statistics of
the patch symmetry transformations is not affected by those
local neutral operators. For example, we may instead choose
UZ2 (i, j) = Ỹi− 1

2
(
∏ j

k=i Xk )Ỹj+ 1
2

in (23).

D. Symmetric sector of the 1 + 1D Ising model as the boundary
of 2 + 1D Z2 topological order

In the previous section, we discuss the anomaly property of
Z2 ∨ Z̃2 categorical symmetry, the mutual statistics of Z2 and
Z̃2 charges in the low-energy limit. This forbids a symmetric
gapped ground state within the low-energy sector. In this
section, we will show that the anomaly property of the Z2 ∨ Z̃2

categorical symmetry is actually an effect of a noninvertible
gravitational anomaly [31]. More precisely, the theory with
the categorical symmetry can be a boundary theory of a Z2

topological order in one higher dimension. The charges and
their mutual statistics Eq. (20) of the symmetry is determined
by the bulk topological order. To see the noninvertible gravi-
tational anomaly in the 1 + 1D Ising model, we concentrate
on the so-called symmetric sub-Hilbert space Vsymm that is
invariant under the UZ2 transformation. The space Vsymm of
a L-site system does not have tensor product expansion of the
form ⊗L

i=1Vi:

Vsymm 
= ⊗L
i=1Vi. (24)

Thus the symmetric sector of the Ising model can be
viewed as having a noninvertible gravitational anomaly [31].
Indeed, the symmetric sector of the Ising model can be viewed
as a boundary of 2 + 1D Z2 topological order (the topological
order characterized by Z2 gauge theory), and thus has a
1 + 1D noninvertible gravitational anomaly characterized by
2 + 1D Z2 topological order [31].

A 2 + 1D Z2 topological order has four types of exci-
tations 11, e, m, and f . Here 11 is the trivial excitation, and
e, m, and f are topological excitations with mutual π statis-
tics between any two different ones. 11, e, and m are bosons
and f is a fermion. They satisfy the following fusion relations:

e ⊗ e = 11, m ⊗ m = 11, f ⊗ f = 11, e ⊗ m = f . (25)

Let us construct the boundary effective theory for the m
condensed boundary of Z2 topological order. Such a bound-
ary contains a gapped excitation that corresponds to the e
type particle. One might expect a second boundary excita-
tion corresponding to the f -type particle. However, since m
is condensed on the boundary, the e-type particle and the
f -type particle are actual equivalent on the boundary. The
simplest boundary effective lattice Hamiltonian that describes

the gapped e-type particles has the form (on a ring)

H = −B
∑

i

Xi, B > 0. (26)

Here a spin Xi = 1 corresponds to an empty site and a spin
Xi = −1 corresponds to a site occupied with an e-type particle
(with 2B as its energy gap). However, the boundary Hilbert
space does not have a direct product decomposition ⊗iVi, due
to the constraint ∏

i

Xi = 1, (27)

since the number of the e-type particles on the boundary must
be even (assume the bulk has no topological excitations). This
is a reflection of a noninvertible gravitational anomaly. A more
general boundary effective theory may have the form

H Is
P = −B

L∑
i=1

Xi − J
L∑

i=1

ZiZi+1, (28)

where ZL+1 ≡ Z1 and ZiZi+1 creates a pair of the e-type
particles, or moves an e-type particle from one site to another.

In the above, we have shown that a boundary of 2 +
1D Z2 topological order can be described by Eq. (28). The
low-energy sector of the model Eq. (21) also describes the
boundary of the 2 + 1D Z2 gauge theory with Z2 charge e
and Z2 vortex m, where e and m particles have low energies
on the boundary. An e particle on the boundary corresponds
to Xi = −1 and a m particle corresponds to Z̃i+ 1

2
= −1 in

Eq. (21). The Z2 × Z̃2 symmetry is the mod-2 conservation of
e and m particles. This explains the Z2 × Z̃2 symmetry in the
symmetric sector of the Ising model. Note that, on the bound-
ary, we may have a e or m condensation. The condensations
may spontaneously break the Z2 × Z̃2 symmetry in the ground
state. However, the model itself (given by the Hamiltonian and
the sub-Hilbert space) always has Z2 × Z̃2 symmetry.

It is more precise to refer to the Z2 × Z̃2 symmetry as
Z2 ∨ Z̃2 categorical symmetry. This is because the Z2 and
Z̃2 symmetries are not independent. The Z2 charge (the e
particle) and the Z̃2 charge (the m particle) have a π mutual
statistics, when viewed as particles in one higher dimension.
This gives rise to Eq. (20). The term Z2 ∨ Z̃2 categorical
symmetry includes such nontrivial mutual statistics between
the Z2 and Z̃2 symmetry.

The mutual π statistics between e and m in the 2 + 1D
bulk is encoded at the boundary by requiring the Z2 domain
wall to carry Z̃2 charge and the Z̃2 domain wall to carry Z2

charge. This nontrivial mutual statistics has a highly nontrivial
effect: in a gapped ground state, one and only one of Z2 and
Z̃2 symmetries must be spontaneously broken [40]. Thus, a
symmetric state that does not break the Z2 ∨ Z̃2 categorical
symmetry must be gapless. This is a consequence of a 1 + 1D
noninvertible gravitational anomaly [31] characterized by 2 +
1D Z2 topological order (i.e., Z2 gauge theory).

To summarize, in the above, we considered the boundary
of 2 + 1D Z2 topological order. We argued that a boundary
(gapped or gapless), as a system (with the symmetric sub-
Hilbert space), always has a Z2 ∨ Z̃2 categorical symmetry.
In contrast, a gapped boundary, as a state, has a partially
spontaneous broken categorical symmetry, while one of the
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FIG. 2. The reduced lattice, where spin- 1
2 degrees of freedom

live on the links.

gapless boundaries, as a state, has the full categorical symme-
try. Next, let us discuss patch symmetry transformations for
the boundary of 2 + 1D Z2 topological order, that describe the
Z2 ∨ Z̃2 categorical symmetry.

We start with the bulk Hamiltonian for the Z2 topological
order on a square lattice, where spin- 1

2 degrees of freedom live
on the links:

Hbulk = −U
∑

s

∏
s⊂∂l

Xl − U
∑

p

∏
l⊂∂ p

Zl , (29)

where s labels the sites, l labels the links, and p labels the
plaquettes.

∑
s sums over all the sites in the bulk (i.e., off

the boundary), and
∑

p sums over all the plaquettes. On
the boundary, we can have any local Hamiltonian Hbdy. The
boundary Hamiltonian remains finite as we take the U → ∞
limit. Hbulk in the U → ∞ limit is a fixed-point Hamiltonian,
and we can simplify it via tensor network renormalization
[45–48]. In the end, the model Eq. (29) can be reduced to the
one on the lattice in Fig. 2(a) [49]. And the Hamiltonian is still
given by Eq. (29), which describes the dynamics of boundary
degrees of freedom.

Now we will show that the wheel model with the Hamil-
tonian in Eq. (29) on a lattice [Fig. 2(a)] (plus extra boundary
terms) and the sub-Hilbert space with no bulk excitations is
the same as the minimally coupled model with the Hamilto-
nian in the symmetric sub-Hilbert space satisfying

∏
i Xi = 1.

We consider the Z2 topological order on the wheel, the
fixed-point lattice of a disk. There are in total 2N links, N on
the boundary and N inside. That is in total 22N states to start
with. We consider the subspace that has no bulk excitations.
That means the star and plaquette term satisfy

N∏
j=1

Xj = 1, ZiZ̃i+ 1
2
Zi+1 = 1, (30)

for i = 1, . . . , N . These reduce the Hilbert space we con-
sider to be of dimension 2N−1. Now we consider the bound-
ary Hamiltonian. Any term in it should first commute with
Eq. (30). Second, it describes the dynamics of e and m
excitations on the boundary. In particular, we have

Hbdy = −B
∑

i

X̃i− 1
2
XiX̃i+ 1

2
− J

∑
i

Z̃i, (31)

where the first term create pairs of m particles, and the second
term create pairs of e particles. We may as well write the

no bulk flux excitation as a dynamical constraint, and the
boundary Hamiltonian is

Hbdy = − B
∑

i

X̃i− 1
2
XiX̃i+ 1

2
− J

∑
i

Z̃i

+ U
∑

i

(
1 − ZiZ̃i+ 1

2
Zi+1

)
. (32)

And this is the same as Eq. (21).
The upshot is that the Z2 minimally coupled model with a

global Z2 constraint is equivalent to a boundary Hamiltonian
of Z2 topological order when the bulk has no topological
excitations. The ground-state subspace projection from the
bulk to the boundary Hamiltonian is the same as the gauge
and global constraint to the 1+1D minimally coupled model.4

Furthermore, one could see that the patch symmetry trans-
formation UZ2 (i, j) [see Eq. (23)] is the same as the string
operator that creates a pair of e-type excitations at string
ends [see Fig. 2(b)], and the patch symmetry transformation
UZ̃2

(i, j) [see Eq. (23)] is the same as the string operator
that creates a pair of m-type excitations at string ends [see
Fig. 2(b)]. The excitations are only on the boundary of the
wheel. This explains the nontrivial mutual statistics between
Z2 and Z̃2 patch symmetries, since the two string operators in
Fig. 2(b) intersect at one point.

To summarize, a theory with a noninvertible gravitational
anomaly has emergent symmetries (i.e., the categorical sym-
metry), which come from the conservation of topological
excitations in one-higher-dimension bulk. Thus the categor-
ical symmetry is fully characterized by the bulk topological
order. Part of the categorical symmetry must be broken in
any gapped phase, and the symmetric phase must be gapless.
There is a gapless phase that respects the full categorical
symmetry.

E. How categorical symmetry determines the gapless state

Equation (28) is a m-condensed boundary of 2 + 1D Z2

topological order. Its partition function has four components.
For such a m-condensed boundary (with |J| < B), the four-
component partition function is given by (after shifting the
ground-state energy density to zero) [31]⎛⎜⎝Z1

Ze

Zm

Z f

⎞⎟⎠ =

⎛⎜⎝1
0
1
0

⎞⎟⎠. (33)

Here

Z1 = TrUZ2 =1e−βH Is
P = 1, (34)

4In fact, take the J = 0 limit of either the model Eq. (21) or the
wheel model restricted to the boundary Eq. (32). The ground state is
a SPT protected by Z2 × Z̃2. However, under the Z2 ∨ Z2 symmetry
specified by the patch operators Eq. (23), the ground state is at the
same time a m condensed state. This is because the patch operator
UZ2 takes a constant value in the ground state. This is the string
operator creating a pair of m, as illustrated in Fig. 2. Thus, the phase
spontaneously breaks Z2 ∨ Z̃2 symmetry.
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in the large β, L limit and in the UZ2 = ∏
i Zi = 1 sector. Also

Ze = TrUZ2 =−1e−βH Is
P = 0, (35)

in the large β, L limit and in the UZ2 = ∏
i Zi = −1 sector.

Similarly

Zm = TrUZ2 =1e−βH Is
A = 1,

Z f = TrUZ2 =−1e−βH Is
A = 0, (36)

where H Is
A is the model Eq. (28) with an “antiperiodic bound-

ary condition”:

H Is
A = −B

L∑
i=1

Xi − J
L−1∑
i=1

ZiZi+1 + JZLZ1, (37)

i.e., the e-type particle moving around the ring sees a π flux.
The above partition functions describe a Z2-symmetric

gapped state. Ze = 0 implies the excitation carrying Z2 charge
to have a finite energy gap. Zm = 1 implies that the Z2 sym-
metry is not spontaneously broken, since the Z2 symmetry
twist has no effect on the ground state. Also Zm = 1 means
that the excitation carrying Z2 flux has no energy gap. It also
means that the patch symmetry operator UZ2 (i, j) (creating a
pair of Z2 flux excitations) has a nonzero average, i.e., the Z̃2

symmetry is spontaneously broken.
When J > B, we obtain the second gapped boundary:⎛⎜⎝Z1(τ, τ̄ )

Ze(τ, τ̄ )
Zm(τ, τ̄ )
Z f (τ, τ̄ )

⎞⎟⎠ =

⎛⎜⎝1
1
0
0

⎞⎟⎠. (38)

This corresponds to the Z2 symmetry-breaking phase of the
Ising model, which is also Z̃2 symmetric. We see that, indeed,
the critical point of the Ising transition, plus its two neighbor-
ing gapped states, can be described by a gapless edge, and its
neighbors, of 2 + 1D Z2 topological order.

When J = B, the boundary effective theory is gapless.
From H Is

P and H Is
A , we can obtain the gapless partition func-

tions [31,50–52]:

⎛⎜⎝Z1(τ, τ̄ )
Ze(τ, τ̄ )
Zm(τ, τ̄ )
Z f (τ, τ̄ )

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝

∣∣χ Is
1 1(τ )

∣∣2 + ∣∣χ Is
1
2

(τ )
∣∣2∣∣χ Is

1
16

(τ )
∣∣2∣∣χ Is

1
16

(τ )
∣∣2

χ Is
1 1(τ )χ̄ Is

1
2

(τ ) + χ Is
1
2

(τ )χ̄ Is
11(τ )

⎞⎟⎟⎟⎟⎟⎠, (39)

where χ Is
i (τ ) are characters of Ising CFT, This corresponds to

the critical point at the Z2 symmetry-breaking transition.
Since Zm has the Z2 symmetry twist, Zm 
= 0 implies that

the Z2 symmetry is not spontaneously broken. Also Ze has the
Z̃2 symmetry twist. Thus Ze 
= 0 implies that the Z̃2 symmetry
is not spontaneously broken. This is why we say the gapless
critical point has full Z2 ∨ Z̃2 categorical symmetry.

To see how the patch symmetry transformations for the
Z2 ∨ Z̃2 categorical symmetry act in the symmetric gapless
point, we note that the patch symmetry operators have the
following form at the symmetric gapless point:

UZ2 (i, j) = X̃i− 1
2
X̃ j+ 1

2
∼ μ(i)μ( j),

UZ̃2
(i, j) = ZiZ j ∼ σ (i)σ ( j). (40)

Here σ and μ are two primary fields with scaling dimensions
( 1

16 , 1
16 ) and ( 1

16 , 1
16 ) of nonchiral Ising CFT. The operator

product expansion with the fermion primary field ψ in the
Ising CFT is given by [4]

ψσ ∼ μ, ψ̄μ ∼ σ, σμ ∼ ψ + ψ̄. (41)

The monodromy between μ and σ is −1. This reflects that
UZ2 (i, j) and UZ̃2

(i′, j′) have mutually π statistics.
Therefore, the averages of the patch symmetry operators

(i.e., the Z2 and Z̃2 order parameters) have the form〈
UZ2 (x, y)

〉 = 〈μ(x)μ(y)〉 ∼ |x − y|−1/4,〈
UZ̃2

(x, y)
〉 = 〈σ (x)σ (y)〉 ∼ |x − y|−1/4. (42)

They vanish when |x − y| → ∞. Thus the Ising critical point
has the full Z2 ∨ Z̃2 categorical symmetry.

That in the modular invariant partition function in the
Ising CFT there is only one excitation with scaling dimension
( 1

16 , 1
16 ) is consistent with the fact that in this low-energy

theory only either UZ2 (x, y) or UZ̃2
(x, y) is the correlator of

the local excitation, while the other is the patch symmetry
operator acting on the local excitation.

The above partition functions are essentially determined by
the Z2 ∨ Z̃2 categorical symmetry. Remember that the Z2 ∨ Z̃2

categorical symmetry is characterized by 2 + 1D Z2 topologi-
cal order, which in turn is characterized by the following S, T
matrices:

T Z2∨Z̃2 =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎠, SZ2∨Z̃2 =

⎛⎜⎜⎜⎝
1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2
1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

⎞⎟⎟⎟⎠. (43)

Through S, T matrices, the categorical symmetry can deter-
mine the partition functions for low-energy fixed points via
the following relation [31]:

Zi(τ + 1) = U Z2∨Z̃2
i j Z j (τ ), Zi(−1/τ ) = SZ2∨Z̃2

i j Z j (τ ). (44)

For the gapped states in a system with Z2 ∨ Z̃2 categorical
symmetry, the partition functions Zi are τ independent pos-
itive integers with Z1 = 1. We find that Eqs. (33) and (38)
are the only two gapped solutions of Eq. (44). This confirms
the result in Ref. [40]: gapped states must partially break
categorical symmetry spontaneously.

Equation (39) is a gapless solution of Eq. (44) that has
the full Z2 ∨ Z̃2 categorical symmetry. Equation (44) also has
other solutions with the full Z2 ∨ Z̃2 categorical symmetry,
such as⎛⎜⎝Z1

Ze

Zm

Z f

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝

∣∣χ5,4
0

∣∣2 + ∣∣χ5,4
1

10

∣∣2 + ∣∣χ5,4
3
5

∣∣2 + ∣∣χ5,4
3
2

∣∣2∣∣χ5,4
7
16

∣∣2 + ∣∣χ5,4
3

80

∣∣2∣∣χ5,4
7
16

∣∣2 + ∣∣χ5,4
3

80

∣∣2

χ5,4
0 χ̄5,4

3
2

+ χ5,4
1

10

χ̄5,4
3
5

+ χ5,4
3
5

χ̄5,4
1

10

+ χ5,4
3
2

χ̄5,4
0

⎞⎟⎟⎟⎟⎟⎠,

(45)

where χ
5,4
h (τ ) are characters of the (5,4) minimal model CFT

(with central charge c = 7
10 ).

We see that categorical symmetry can largely determine
the gapless states where the categorical symmetry is not
spontaneously broken, but not uniquely. However, the gapless
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TABLE I. The pointlike excitations and their fusion rules in 2+1D S3 topological order. Here b and c correspond to pure S3 flux excitations,
a1 and a2 correspond to pure S3 charge excitations, 1 corresponds to the trivial excitation, while b1, b2, and c1 are charge-flux composites. d, s
are the quantum dimension and the topological spin of an excitation.

d, s 1,0 1,0 2,0 2,0 2, 1
3 2, − 1

3 3,0 3, 1
2

⊗ 1 a1 a2 b b1 b2 c c1

1 1 a1 a2 b b1 b2 c c1

a1 a1 1 a2 b b1 b2 c1 c
a2 a2 a2 1 ⊕ a1 ⊕ a2 b1 ⊕ b2 b ⊕ b2 b ⊕ b1 c ⊕ c1 c ⊕ c1

b b b b1 ⊕ b2 1 ⊕ a1 ⊕ b b2 ⊕ a2 b1 ⊕ a2 c ⊕ c1 c ⊕ c1

b1 b1 b1 b ⊕ b2 b2 ⊕ a2 1 ⊕ a1 ⊕ b1 b ⊕ a2 c ⊕ c1 c ⊕ c1

b2 b2 b2 b ⊕ b1 b1 ⊕ a2 b ⊕ a2 1 ⊕ a1 ⊕ b2 c ⊕ c1 c ⊕ c1

c c c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2

c1 c1 c c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2

states with larger heat capacity may have additional emer-
gent categorical symmetry. Therefore, we consider minimal
gapless states (i.e., with minimal central charge c) with the
full categorical symmetry. For Z2 ∨ Z̃2 categorical symme-
try, there is only one minimal gapless state Eq. (39). For
categorical symmetry characterized by 2 + 1D S3 = Z3 � Z2

gauge theory there is also only one minimal gapless state (see
Table I) [31]:

Z11 = ∣∣χ6,5
0

∣∣2 + ∣∣χ6,5
3

∣∣2 +
∣∣∣χ6,5

2
5

∣∣∣2
+

∣∣∣χ6,5
7
5

∣∣∣2
,

Za1 = χ6,5
0 χ̄6,5

3 + χ6,5
3 χ̄6,5

0 + χ6,5
2
5

χ̄6,5
7
5

+ χ6,5
7
5

χ̄6,5
2
5

,

Za2 =
∣∣∣χ6,5

2
3

∣∣∣2
+

∣∣∣χ6,5
1
15

∣∣∣2
,

Zb =
∣∣∣χ6,5

2
3

∣∣∣2
+

∣∣∣χ6,5
1
15

∣∣∣2
,

Zb1 = χ6,5
0 χ̄6,5

2
3

+ χ6,5
3 χ̄6,5

2
3

+ χ6,5
2
5

χ̄6,5
1

15

+ χ6,5
7
5

χ̄6,5
1

15

,

Zb2 = χ6,5
2
3

χ̄6,5
0 + χ6,5

2
3

χ̄6,5
3 + χ6,5

1
15

χ̄6,5
2
5

+ χ6,5
1
15

χ̄6,5
7
5

,

Zc =
∣∣∣χ6,5

1
8

∣∣∣2
+

∣∣∣χ6,5
13
8

∣∣∣2
+

∣∣∣χ6,5
1

40

∣∣∣2
+

∣∣∣χ6,5
21
40

∣∣∣2
,

Zc1 = χ6,5
1
8

χ̄6,5
13
8

+ χ6,5
13
8

χ̄6,5
1
8

+ χ6,5
1

40

χ̄6,5
21
40

+ χ6,5
21
40

χ̄6,5
1

40

, (46)

where χ
6,5
h (τ ) are characters of the (6,5) minimal model (with

central charge c = 4
5 ).

The above examples strongly suggest that categorical sym-
metry characterized by 2 + 1D Z2 topological order allows
us to determine one or a few minimal gapless states via
Eq. (44). This points to a direction that gapless states are
largely (possibly even uniquely) determined by categorical
symmetries, i.e., by topological order in one higher dimension.

III. Z2 SYMMETRY AND Z(1)
2 1-SYMMETRY

IN THE 2 + 1D ISING MODEL

In two dimensions, it is well known that the critical point
for the Z2 symmetry-breaking transition has the Z2 symmetry.
In this section, we show that the critical point also has a one
symmetry.

Let us consider the following two models: the Z2 Ising
model and Z2 gauge model on the square lattice. We will

demonstrate that the Z2 Ising model restricted to the Z2 even
(chargeless) sector is exactly dual to the lattice Z2-link model
in the limit where the Z2 vortex has an infinity gap.

The Z2 Ising model is given by

H = −J
∑

l

Zi1(l )Zi2(l ) − B
∑

i

Xi, (47)

where
∑

l sums over all links,
∑

i sums over all vertices, and
i1(l ) and i2(l ) are two vertices connected by the link l . The
lattice Z2 gauge model is given by

H̃ = −J
∑

l

Z̃l − B
∑

i

∏
l⊃i

X̃l + U
∑

s

(
1 −

∏
l∈s

Z̃l

)
, (48)

where
∑

i sums over all sites,
∑

s sums over all squares,
∏

l⊃i
is a product over all the four links that contain vertex i, and∏

l∈s is a product over all the four links on the boundary of
square s. We consider the limit U → +∞.

The two models can be mapped into each other via the map
that preserves the operator algebra:

Xi →
∏
l⊃i

X̃l , Zi1(l )Zi2(l ) → Z̃l . (49)

We will refer to such a map as the “duality” map, or “gauging”
in a looser sense, from a pure matter theory to a pure gauge
theory.

The Ising model H has a global Z2 symmetry generated by

UZ2 =
∏

i

Xi. (50)

After duality, it is mapped into an identity operator 1. The
lattice Z2 gauge model has a Z (1)

2 1-symmetry generated by
the Wilson-line operators along any closed path C:

UZ (1)
2

(C) =
∏
l∈C

Z̃l . (51)

It corresponds to an identity operator in the Ising model under
the duality map.

Next we compare the low-energy sub-Hilbert space of the
two models. Assume the space to be a torus with N = L × L
vertices. The Hilbert space of the Ising model has a dimen-
sion 2N . The subspace of Z2-symmetric states, V symm

Ising , has a
dimension 2N−1. The Hilbert space of the Z2 gauge model
has a dimension 22N . In the U → +∞ limit, the low-energy
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subspace has a dimension 2N × 2, The extra factor 2 is due
to the operator identity

∏
s

∏
l∈s Z̃l = 1. In the low-energy

sub-Hilbert space, we have
∏

l∈s Z̃l = 1 and

UZ (1)
2

(C) = UZ (1)
2

(C′), (52)

if C can be deformed into C′. Now we consider the subspace,
V symm

gauge , of the low-energy Hilbert space where UZ (1)
2

(S1
x ) =

UZ (1)
2

(S1
y ) = 1, where S1

x and S1
y are the two noncontractible

loops wrapping around the system in x and y directions.
V symm

gauge has a dimension 2N−1. H in V symm
Ising and H̃ in V symm

gauge are
equivalent via a unitary transformation. In this sense, the Ising
model Eq. (47) is exactly dual to the Z2 gauge model Eq. (48).

Now let us consider the ground states. Let us assume
J, B > 0. It is interesting to note that, for B � J , the trivial
phase of the Ising model is mapped to the topologically
ordered phase (the Z (1)

2 symmetry-breaking phase) of the Z2

gauge model, while for B � J the Z2 symmetry-breaking
phase of the Ising model is mapped to the trivial phase
(the symmetric phase of the Z (1)

2 one symmetry) of the Z2

gauge model. At the gapless critical point of the 2 + 1D Z2

symmetry-breaking transition (also the Z (1)
2 one symmetry-

breaking transition), we have the Z2 ∨ Z (1)
2 symmetry which is

not spontaneously broken. Therefore, we show the appearance
of 1-symmetry of the ground state at the 2 + 1D Z2 symmetry-
breaking transition.

Now we discuss the charges of the categorical symmetry
Z2 ∨ Z (1)

2 . We will find that in the sub-Hilbert space we can
only create charges the total of which is neutral, as measured
by the global symmetry operators, while the charge in a finite
region is not neutral and can be measured by patch operators.
We may call this kind of charge excitations neutral charges.

A single charge of Z2 symmetry is a e particle on a site
[Zi = −1 in the Ising model Eq. (47)]. The conserved charge
of Z2 symmetry, however, is two e particles, living on two
sites, or rather S0. The charge of the Z̃ (1)

2 symmetry is an open
Z2 vortex string, living on D1. The conserved charge of the
Z̃2

(1)
symmetry is a closed contractible Z2 vortex loop living

on S1; let us call it a s string. In the sub-Hilbert space, we can
only create conserved charges, excitation on S0 and S1. The
operator for a pair of e particles at site i and site j is ZiZ j .
In the Z2 gauge theory, the operator is dual to UZ (1)

2
(Ci j ) =∏

l∈Ci j
Z̃l , where Ci j is any path from i site to j site. It is also

the patch (or part) of the generators of the Z2 1 symmetry.
A s string is created by

UZ2 [(S1)∨] =
∏

l∈(S1 )∨
X̃l , (53)

where (S1)∨ is a contractible loop on the dual lattice. It
corresponds to create Z̃l = −1 along the loop in the Z2 gauge
model Eq. (48). In the Ising model, the s string operator is
dualed from the patch operator of the Z2 global symmetry,

UZ2 (C∨) =
∏
i∈D2

Xi, (54)

where D2 is the disk the boundary of which is C∨. This charge,
when measured by Z (1)

2 symmetry generator Eq. (51), is
neutral. Yet, when measured by part of the generator UZ2 (Ci j ),

it has charge −1 when there are C∨ circles around a single end
point of Ci j , either i or j.

That is to say, the two kinds of patch operators satisfy the
following relation:

UZ (1)
2

(Ci j )UZ2 (C∨) = −UZ2 (C∨)UZ (1)
2

(Ci j ), (55)

when only one e particle on either i or j site is circled by the
loop excitation along C∨. This reveals the mutual π statistics
between the e and s excitation.

In summary, in the sub-Hilbert space, there are states with
both conserved e charges and a conserved s string, either the
Ising model description or the Z2 gauge theory description.
They are created by patch operators. And one kind of patch
operator can measure the existence of the other. In other
words, the charge of Z2 and that of Z (1)

2 have mutual statistics.
The Z2 ∨ Z (1)

2 symmetry (or more precisely, the Z2 ∨ Z (1)
2

categorical symmetry) is the conservation of e particles and
s strings, together with the mutual statistics.

The above theory with sub-Hilbert space also describes the
boundary of the 3 + 1D Z2 gauge theory with Z2 charge e
and Z2-vortex string s, where e particles and s strings have
low energies only at the boundary. In 3 + 1D Z2 topological
gauge theory, the e excitations (living on S0, composed of
two points) and s string [living on (S1)∨] are created by the
following operators defined on the open string C on the lattice
and a contractible membrane (D2)∨ on the dual lattice:

UZ2 (C) =
∏
l∈C

Z̃l , (56)

UZ (2)
2

[(D2)∨] =
∏

l∈(D2 )∨
X̃l . (57)

The s vortex loop on the boundary of UZ (2)
2

brought to the

boundary of the 3D spatial lattice is the neutral Z (1)
2 charge

in the 2d Ising model Eq. (47) or Z2-link model Eq. (48) with
a sub-Hilbert space, respectively. It is neutral in the sense that
the membrane Eq. (57) creating it commutes with any UZ2 (S1)
on a closed string S1.

Furthermore, the 3 + 1D bulk has a highly nontrivial effect
on the boundary: in a gapped ground state of the 2 + 1D
model (47), one and only one of the Z2 and Z (1)

2 symmetries
must be spontaneously broken. Pictorially speaking, this is
because the two topological excitations with mutual statistics
cannot condense simultaneously. Thus, a ground state of
model (47) with the full Z2 ∨ Z (1)

2 categorical symmetry must
be gapless. This is a consequence of a 2 + 1D noninvertible
gravitational anomaly [31] and the Z2 ∨ Z (1)

2 categorical sym-
metry characterized by 3 + 1D Z2 topological order (i.e., Z2

gauge theory).

IV. MODEL WITH ANOMALOUS SYMMETRY AS THE
BOUNDARY OF TOPOLOGICAL ORDER

IN ONE HIGHER DIMENSION

Through the examples above, we have shown that a model
with a finite symmetry G, when restricted in the symmetric
sector, can be viewed as the boundary of G-gauge theory in
one higher dimension. The conservation (the fusion rules)
of the pointlike gauge charge and codimension-2 gauge flux
give rise to the symmetry and algebraic higher symmetry
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(the combination of which becomes the so-called categorical
symmetry) of the G-symmetric model. The categorical sym-
metry is not spontaneously broken at the critical point of the
symmetry-breaking transition (see Sec. V for more details).

We know that a G-gauge theory can be twisted and be-
comes Dijkgraaf-Witten theory [53]. We will show that the
boundary of such twisted G-gauge theory has an anomalous
G symmetry. This implies that a system with anomalous G
symmetry [54,55] also has an algebraic higher symmetry.
The combination of the two symmetries corresponds to the
categorical symmetry described by the twisted G-gauge the-
ory in one higher dimension. Such a system has a gapless
state, where the categorical symmetry is not spontaneously
broken. Also, a state with the unbroken categorical symmetry
must be gapless. And the gapped states of the system must
spontaneously break the anomalous G symmetry.

A. Boundary of the double-semion model

In this section, we will study the boundary of the double-
semion (DS) model (i.e., the twisted Z2 gauge theory in the
2 + 1D case) to illustrate the above result.

A 2 + 1D DS topological order has four types of excita-
tions 11, s, s∗, and b. Here s, s∗, and f are topological excita-
tions; s and s∗ are semions with statistics ±i; and b is a boson.
They satisfy the following fusion relation:

s ⊗ s = 11, s∗ ⊗ s∗ = 11, b ⊗ b = 11, s ⊗ s∗ = b. (58)

s and s have a mutual π statistics and s and s∗ have a mutual
boson statistics. As a result, s and b have a mutual π statistics.

We consider a gapped boundary from condensing b ex-
citations. Since b ⊗ b = 11 and b particles have mod-2 con-
servation, we assume the b condensation gives rise to two
degenerate ground states, one with Zi = 1 and the other with
Zi = −1. The domain wall between Zi = 1 and −1 regions
corresponds a s particle.

We would like to point out that, on the boundary, although
the s-type particle and e-type particle (in the Z2 gauge theory
discussed before) have the same fusion rule s ⊗ s = 11 and
e ⊗ e = 11, their fusion F tensors are different [56,57]. In
particular, fusings of three s-type particles into one s-type
particle in two different ways differ by a phase −1:

[sss → 1111s → 11s11] = (−)[sss → s1111 → 11s11]. (59)

In contrast, fusings of three e-type particles (described by
Xi = −1) into one e-type particle in two different ways have
the same phase:

[eee → 1111e → 11e11] = [eee → e1111 → 11e11]. (60)

For the boundary of Z2 topological order, the above two
processes of fusing e particles are induced, respectively, by
a pair-annihilation operator X +

i X +
i+1 and a hopping operator

X +
i X −

i+1 + X −
i X +

i+1, where

X ± = 1
2 (Y ± iZ ). (61)

Indeed, we have

(X +
i−1X −

i + X −
i−1X +

i )(X +
i X +

i+1)|eee〉
= (X +

i X −
i+1 + X −

i X +
i+1)(X +

i−1X +
i )|eee〉. (62)

The pair-annihilation operator Z+
i Z+

i+1 and hopping operator
Z+

i Z−
i+1 + Z−

i Z+
i+1 are allowed local operations, and we can

use them to construct effective boundary Hamiltonian

H Is
P = −

L∑
i=1

J1(Z+
i Z−

i+1 + Z−
i Z+

i+1) + J2(Z+
i Z+

i+1 + H.c.)

− B
L∑

i=1

Zi, (63)

which describes the boundary of 2 + 1D Z2 topological order.
For the boundary of DS topological order, the two pro-

cesses for fusing s particles Eq. (59) are also induced by a
pair-annihilation operator and a hopping operator. Here we
choose the hopping operator to be Xi − Zi−1XiZi+1, which
shifts a domain wall from i − 1

2 to i + 1
2 , or i + 1

2 to i − 1
2 .

The pair-annihilation or pair-creation operator is given by
Zi−1(Xi + Zi−1XiZi+1), which creates or annihilates a pair of
domain walls at i + 1

2 and i − 1
2 .

For three s-type particles (the domain walls) at i − 1
2 , i +

1
2 , i + 3

2 , we indeed have

− (Xi+1 − ZiXi+1Zi+2)Zi−1(Xi + Zi−1XiZi+1)|sss〉
= (Xi − Zi−1XiZi+1)Zi(Xi+1 + ZiXi+1Zi+2)|sss〉, (64)

where |sss〉 = |↑i−1↓i↑i+1↓i+2〉.
Now we can construct the boundary effective theory for the

b condensed boundary of DS topological order. We note that
such a boundary contains a gapped excitation that corresponds
to the s-type particle. One might expect a second boundary ex-
citation corresponding to the s∗-type particle. However, since
b is condensed on the boundary, the s-type particle and the
s∗-type particle are actually equivalent on the boundary. The
simplest boundary effective lattice Hamiltonian that describes
the gapped s particles has the form

H = −B
∑

i

ZiZi+1, B > 0, (65)

which has two degenerate ground states and the s particles
correspond to domain walls.

Using the above allowed local operations Xi − Zi−1XiZi+1

and Zi−1(Xi + Zi−1XiZi+1), we can construct a more general
boundary effective theory:

HDS = −B
L∑

i=1

ZiZi+1 − J1

L∑
i=1

(Xi − Zi−1XiZi+1)

+ J2

L∑
i=1

Zi−1(Xi + Zi−1XiZi+1), (66)

where site i and site (i + L) are identified.
We note that the above Hamiltonian is not invariant under

the spin-flip transformation
∏

i Xi. In fact, it is invariant under
a non-on-site transformation [58]:

UZ2 =
∏

i

Xi

∏
i

si,i+1, (67)
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where si j acts on two spins as

si j = |↑↑〉〈↑↑| + |↓↑〉〈↓↑| − |↑↓〉
× 〈↑↓| + |↓↓〉〈↓↓|

= 1
2 (1 − Zi + Zj + ZiZ j ). (68)

The transformation has a simple picture: it flips all the spins
and includes a (−)N↑→↓ phase, where N↑→↓ is the number of
the ↑ → ↓ domain wall. We see that the transformation is a
Z2 transformation (i.e., square to 1). From Appendix C, the Z2

transformation has the following action:

Zi ↔ −Zi,

Xi ↔ −Zi−1XiZi+1. (69)

We find that Eq. (66) is invariant under the Z2 transformation.
From the above discussion, we see that the different fusion

properties lead to different local operators. The boundary
effective theories for Z2 topological order and for the dou-
ble semion topological order are different. In particular, the
boundary effective theory for Z2 topological order has an
on-site Z2 symmetry, while the boundary effective theory for
the double semion topological order has a non-on-site Z2

symmetry. The non-on-site Z2 symmetry UZ2 implies that the
model (66) cannot have a gapped Z2-symmetric ground state
[58].

B. ˜Z2 dual symmetry

We have seen that a 1 + 1D lattice model (66) with an
anomalous Z2 symmetry (non-on-site symmetry [55,58]) can
be viewed as a boundary of twisted 2 + 1D Z2 gauge theory
(i.e., DS topological order). The anomalous Z2 symmetry
comes from the mod-2 conserved b particles. The mod-2
conserved s particles will give rise to another symmetry,
which will be referred to as dual Z̃2 symmetry. In other words,
we claim that the model (66) has both the Z2 symmetry and
the Z̃2 symmetry.

To see the Z̃2 symmetry explicitly, we do a dual transfor-
mation on the model (66):

ZiZi+1 → Z̃i+ 1
2
,

Xi → X̃i− 1
2
X̃i+ 1

2
,

Zi →
∏
j�i

Z̃ j− 1
2
. (70)

We find

Xi − Zi−1XiZi+1 = Xi + Zi−1ZiXiZiZi+1

→ X̃i− 1
2
X̃i+ 1

2
+ Z̃i− 1

2
X̃i− 1

2
X̃i+ 1

2
Z̃i+ 1

2

= X̃i− 1
2
X̃i+ 1

2
+ Ỹi− 1

2
Ỹi+ 1

2
, (71)

Xi + Zi−1XiZi+1 = Xi − Zi−1ZiXiZiZi+1

→ X̃i− 1
2
X̃i+ 1

2
− Z̃i− 1

2
X̃i− 1

2
X̃i+ 1

2
Z̃i+ 1

2

= X̃i− 1
2
X̃i+ 1

2
− Ỹi− 1

2
Ỹi+ 1

2
. (72)

The duality transformation changes the Hamiltonian (66) into

H̃DS = + J2

∑
i

∏
j<i

Z̃ j− 1
2

(
X̃i− 1

2
X̃i+ 1

2
− Ỹi− 1

2
Ỹi+ 1

2

)
− B

∑
i

Z̃i+ 1
2
− J1

∑
i

(
X̃i− 1

2
X̃i+ 1

2
+ Ỹi− 1

2
Ỹi+ 1

2

)
. (73)

We see that the dual Z̃2 symmetry is generated by

UZ̃2
=

∏
i

Z̃i+ 1
2
. (74)

This way, we obtain the explicit expression of the dual Z̃2

symmetry. The on-site Z̃2 symmetry UZ̃2
implies that the

model (66) can have a gapped Z̃2-symmetric ground state,
which corresponds to a Z2 symmetry-breaking state.

In the dual model, Z̃i+ 1
2

= 1 describes a site with no semion

s, while Z̃i+ 1
2

= −1 describes a site occupied with a semion

s. The term X̃i− 1
2
X̃i+ 1

2
+ Ỹi− 1

2
Ỹi+ 1

2
is the hopping term for the

s particle, while the term
∏

j<i Z̃ j− 1
2
(X̃i− 1

2
X̃i+ 1

2
− Ỹi− 1

2
Ỹi+ 1

2
)

creates a pair of s particles.

V. APPEARANCE OF ALGEBRAIC HIGHER SYMMETRY
AT THE SYMMETRY-BREAKING TRANSITION FOR

GENERAL FINITE SYMMETRY

In the previous section, we show the categorical symmetry
in 1 + 1D and 2 + 1D models with local degrees of freedom
taking values in Z2. In this section, we generalize the dis-
cussion to any (n + 1)D lattice models with local degrees
of freedom taking values in any finite group G. As above,
we discuss the lattice model in terms of two descriptions,
generalizing the Ising model and the Z2-link model to the
G-matter model and the G-link model. A major distinction
is that when G is non-Abelian the 0-symmetry in the G-link
model is a global symmetry that is not reduced to speci-
fying boundary conditions. We will show the emergence of
categorical symmetry at and off the critical point of Landau
symmetry-breaking transition in these models.

A. Duality point of view

We consider two lattice models defined on the triangulation
of n-dimensional space. The vertices of the triangulation are
labeled by i, the links are labeled by i j, etc.

In the first model, which we may call the G-matter model,
the physical degrees of freedom live on the vertices and are
labeled by group elements g of a finite group G. The many-
body Hilbert space is spanned in the following local basis:

|{gi}〉, gi ∈ G. (75)

The Hamiltonian is given by

H1 = −J
∑

i j

δ
(
gig

−1
j

) − B
∑

i

∑
h∈G

Lh(i), (76)

where

δ(g) =
{

1, if g = 1
0, otherwise .

(77)
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Also, the operator Lh(i) is given by

Lh(i)|g1, · · · , gi, · · · , gN 〉 = |g1, · · · , hgi, · · · , gN 〉. (78)

The Hamiltonian H1 has an on-site G zero symmetry:

UhH1 = H1Uh, Uh =
∏

i

Lh(i). (79)

We see that, when J � B, H1 is in the symmetry-breaking
phase, and, when J � B, H1 is in the symmetric phase.

Our second bosonic lattice model, which we may call the
G-link model, has degrees of freedom living on the links. On
an oriented link i j pointing from i site to j site, the degrees of
freedom are labeled by gi j ∈ G. The many-body Hilbert space
has the following local basis:

|{gi j}〉, gi j ∈ G. (80)

Here, gi j’s on links with opposite orientations satisfy

gi j = g−1
ji . (81)

The second model is related to the first model. A state
|g1, · · · , gi, · · · , gN 〉 in the first model is mapped to a state
| · · · , gi j, · · · 〉 in the second model where gi j = gig

−1
j .

This connection allows us to design the Hamiltonian of the
second model as

H2 = − J
∑

i j

δ(gi j ) − B
∑

i

∑
h∈G

Qh(i)

− U
∑
i jk

δ
(
gi jg jkg−1

ik

)
, (82)

where the star term Qh(i) acts on all the links that connect to
the vertex i:

Qh(i)| · · · , gi j, gki, g jk, · · · 〉
= | · · · , hgi j, gkih

−1, g jk, · · · 〉, (83)

and the plaquette term acts as a projection to zero-flux
configurations. The second model has an algebraic (n − 1)-
symmetry, denoted as G(n−1) [8],

Wq(S1)H2 = H2Wq(S1), Wq(S1) = Tr
∏

i j∈S1

Rq(gi j ), (84)

for any loop S1 formed by links, where Rq is an irreducible
representation of G. We see that the algebraic (n − 1)-
symmetry G(n−1) is generated by the Wilson loop operators
Wq(S1), for all loops S1 and all irreducible representations
q. We note that the algebraic 0-symmetry G(0) is different
from the usual zero symmetry characterized by a group G,
when G is non-Abelian. But when G is Abelian the algebraic
zero symmetry G(0) happens to be the usual zero symmetry
G. Also, for Abelian G, G(n) is a n-symmetry described by
a higher group. But, for non-Abelian G, G(n) is an algebraic
n-symmetry beyond a higher group.

The Hamiltonian H2 has the algebraic (n − 1)-symmetry,
because the Qh(i) term in the Hamiltonian can be viewed as a
“gauge” transformation and the Wilson loop operator Wq(S1)
is gauge invariant, and hence

Wq(S1)Qh(i) = Qh(i)Wq(S1). (85)

Wq(S1) commutes with other terms in H2 since they are all
diagonal in the |{gi j}〉 basis.

In the limit |B| � J � U , the ground state of H2 is a trivial
product state

|{gi j = 1}〉, (86)

which is symmetric under the algebraic (n − 1)-symmetry
G(n−1). In the other limit |J| � B � U , the ground state
of H2 is a topologically ordered state (described by the
G-gauge theory), breaking the algebraic (n − 1)-symmetry
G(n−1) spontaneously.

What is the global G symmetry operator in the first model
Eq. (79) mapped to? It is mapped to a global zero symmetry
operator:

UhH2 = H2 Uh, Uh =
∏

i

Qh(i) . (87)

In particular, when the model has periodic boundary condi-
tion, this zero symmetry acts as Uh|gi j〉 = |hgi jh−1〉. Thus the
global symmetry is an inner automorphism of G, denoted as
Inn(G). When the centralizer of G is trivial, Inn(G) ∼= G.

Only when G is Abelian, the global symmetry action
in (87) reduces to claiming the boundary conditions or the
twisted sectors of the model. For example, when G = Z2 and
d = 1, it reduces to UZ̃2

in (11).
Furthermore, the symmetry generators of the algebraic

(n − 1)-symmetry G(n−1) and the zero-symmetry Inn(G) com-
mute:

Wq(S1)Uh = UhWq(S1) . (88)

In the limit U → +∞, the low-energy part of H2 can be
mapped to H1 via the following duality and inverse duality
map:

gi j = gig
−1
j , (gi0 )−1gi = (gi0 jg jk · · · gli )

−1, (89)

where i0 is a fixed base point. Note that to map a configuration
gi to a configuration gi j we need to pick a base point i0 and a
value gi0 . Therefore, the above map is a |G|-to-one map. It
maps the following |G| configurations of H1 (label by h ∈ G),
|{hgi}〉, into the same configuration of H2, |{gi j}〉. Thus the
spectrum of H1 formed by G invariant states, |�〉 = Uh|�〉,
is identical to the low-energy spectrum of H2 below U . H1

and H2 have the same G-symmetric low-energy dynamics.
In particular they have the same phase transition and critical
point.

The G symmetry-breaking phase of H1 corresponds to
the trivial phase of H2 [which is the symmetric phase of
the algebraic (n − 1)-symmetry G(n−1)] and the G-symmetric
phase of H1 corresponds to the topologically ordered phase
of H2 [which is the symmetry-breaking phase of the algebraic
(n − 1)-symmetry G(n−1)] [8,15]. Now we see that the critical
point at the symmetry-breaking transition neighbors a phase
with G zero symmetry and a phase with algebraic (n − 1)-
symmetry. Heuristically, the emergent symmetry at the critical
point is the same or larger than the neighboring gapped
phases. Thus the critical point has both the G zero symmetry
and the algebraic (n − 1)-symmetry G(n−1). In other words,
the critical point has a categorical symmetry G ∨ G(n−1) which
is the combination of the G zero symmetry and the algebraic
(n − 1)-symmetry G(n−1).
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B. Patch symmetry operators

Now let us discuss the charges of the categorical symmetry
in the model given by the previous two descriptions. Just as
the case G = Z2 discussed before, we can only create neutral
charges, by patch operators. The 0-symmetry patch operator
creates conserved charges of (n − 1)-symmetry; part of the
conserved charges can be measured by the (n − 1)-symmetry
patch operator, and vice versa.

We start with the simple case that n = 1. For a generic
group, one set of patch operators, from site i1 to site i2, acting
on a state |{gi j}〉, is

Wq,αβ (i1, i2) =
(

i2∏
i=i1

Rq(gi j )

)
αβ

, (90)

where α, β runs from 1 to nR, the dimension of the irreducible
representation Rq of G. The other set of patch operators is

Uh(i1, i2) =
i2∏

i=i1

Qh(i) . (91)

These operators satisfy the following commutation rela-
tions with the ordering i1 < i2 < i3 < i4, and a simplified
notation Wq(i1, i3) = Wq,13, Uh(i2, i4) = Uh,24 [with the sub-
scripts α, β of Wq(l1, l2) suppressed]:

Tr[Wq,13 Uh,24 (Wq,13)†] =χq(h−1)Uh,24,

Tr[(Wq,13)† Uq,24 Wq,13] =χq(h)Uh,24,

Tr[(Wq,24) Uh,13 (Wq,24)†] =χq(h)Uh,13,

Tr[(Wq,24)† Uh,13 Wq,24] =χq(h−1)Uh,13. (92)
where χq(h) is the character of h in the q representation.
The character represents that the 0-symmetry charge and the
algebraic (n − 1)-symmetry charge are mutually nonlocal.

More generally, for any n, the patch operator that creates
the neutral charge for dual (n − 1)-symmetry G(n−1) is defined
on a n-dimensional patch (disk), Dn, and is given by the
product of star terms:5

Uh(Dn) =
∏
i∈Dn

Qh(i). (93)

The G(n−1) neutral charge lives on the boundary of Dn, de-
noted as (Sn−1)∨, living on the dual lattice. Let us call it s. In
particular, when G is Abelian, Uh(Dn) acts trivially inside Dn.
That is, Uh is in fact defined on the boundary of Dn:6

Uh[(Sn−1)∨] =
∏

i j∈(Sn−1 )∨
Th(i j), (94)

Th(i j)|gi j〉 =
{|hgi j〉 i ∈ Dn

|gi jh−1〉 j ∈ Dn . (95)

5In the low-energy sub-Hilbert space symmetric under the Inn(G)
symmetry, Ug = 1. It follows that the patch operator is defined up
to a conjugacy class of a representative h ∈ G, Ug−1Uh(Dn)Ug =
Ughg−1 (Dn).

6Note that in the case G is Abelian we can take Uh[(Sn−1)∨] as the
generator of a 1-symmetry. In the case that G is Abelian

∑
h∈Ca

Uh,
where the sum is over a conjugacy class of a ∈ G, has codimension
2, relative to the spacetime dimension. They are the Gukov-Witten
operators [59].

FIG. 3. A Z (1)
2 neutral charge, an s string on the 2d boundary (red

dashed loop), is created by a Z2 membrane operator Eq. (57) in the
3d bulk (red surface). It is only neutral when on the boundary. If we
translate this membrane to the bulk, there are UZ2 (S1) operators in
the bulk that anticommute the membrane operator, justifying it as the
Z2 vortex topological excitation.

For G = Z2 and d = 2, we recover the s string operator
Eq. (53).

The other patch operator that creates conserved charges for
the zero symmetry G is Wq(Ci j ) defined on any open string
Ci j . The zero symmetry charges are at the end-point i and j
sites of the open string. Let us call them e particles.

These charges can be thought of as the topological exci-
tations in (n + 1)D topological order [5,6,30,60,61]. The e
particle corresponds to the pointlike topological excitations,
and the s corresponds to the other topological excitations on
the closed (Sn−1)∨ surface. For example, when d = 2 and
G = Z2, Uh[(S1)∨] is the closed Z2 vortex string operator.
This conserved charge of Z̃ (1)

2 can be thought of as coming
from the topological string excitation in 3 + 1-dimensional Z2

topological field theory, as discussed in Sec. III and illustrated
in Fig. 3.

C. Example of algebraic 1 symmetry S(1)
3 in 2 + 1D theories

The simplest example where the algebraic symmetry is
beyond a higher symmetry is in the (n + 1)D model (82) with
d = 2 and G = S3. Here, S3 = 〈s, r|s3 = r2 = 1, rsr = s2〉 is
the permutation group on three elements. The topologically
ordered phase of (82) is described by S3 gauge theory. There
are eight types of anyonic excitations in the model. Their
fusion rules are shown in Table I.

The model (82) has an algebraic 1-symmetry, which is
denoted as S(1)

3 . The generators are two Wilson line operators
[see Eq. (84)], labeled by the two nontrivial irreducible repre-
sentations a1 and a2 of S3. The ends of Wilson line operators
create anions a1 and a2 the fusion of which is described in
Table I. The product of Wilson line operators is given by the
fusion of irreducible representations (i.e., the fusion of the
anions a1 and a2):

W a1
(S1)W a1

(S1) = 11,

W a2
(S1)W a2

(S1) = 11 + W a1
(S1) + W a2

(S1),

W a1
(S1)W a2

(S1) = W a2
(S1). (96)

The product of two W a2
(S1)’s reveals that the symmetry is an

algebraic (n − 1)-symmetry beyond higher group. In general,
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FIG. 4. The conservation (the fusion rule) of the Z2 pointlike
charge and Z̃ (1)

2 looplike flux in the 3 + 1D Z2 gauge theory give
rise to the categorical symmetry of the 2 + 1D lattice model H1 (76).
The mod-2 conservation of Z2 charge e gives rise to the Z2 zero
symmetry. The mod-2 conservation of Z (1)

2 flux s gives rise to the
Z (1)

2 one symmetry. e and s have a mutual π statistics between them.

if G is non-Abelian, G(n−1) is an algebraic (n − 1)-symmetry
beyond higher group.

D. Holographic point of view

Let us start with the lattice model H1 (76) with a finite zero
symmetry G. We would like to study the G symmetry within
the restricted symmetric sub-Hilbert space. In the symmetric
sub-Hilbert space, the G symmetry transformation (79) will
be trivial. It appears that we cannot see the G symmetry.
But we can see the G symmetry via pointlike excitations
in a finite region, which carry nontrivial representations of
G. The nontrivial fusion of G representations (in particular,
the fusion channel of nontrivial representations into a trivial
representation) signifies the G 0-symmetry in the symmetric
sub-Hilbert space. Thus, restricting to the symmetric sub-
Hilbert space forces us to view the G symmetry via the fusion
category of the symmetry charges. This is the categorical view
of symmetry [62].

The lattice model H1 (76), when restricted to the symmetric
sub-Hilbert space, has a gravitational anomaly. This is because
the symmetric sub-Hilbert space Vsymm does not have a tensor
product decomposition Vsymm 
= ⊗iVi, in terms of the local
Hilbert space Vi on each site. This suggests that the fusion
category of the symmetry charges is anomalous [30,55], i.e.,
the fusion category can only be realized at a boundary of
a topological order in one higher dimension. Indeed, the
model H1 (76), when restricted to the symmetric sub-Hilbert
space, can be viewed as a boundary of G-gauge theory in
one higher dimension, where a simple example is discussed
in Sec. II D [31]. The gauge charges in the G-gauge theory
also carry representations of G. The nontrivial fusion of G
representations gives rise to the G 0-symmetry both in the
bulk and at the boundary. This is how the finite 0-symmetry
G in the model H1 (76) appears via the G-gauge theory in one
higher dimension.

But the G-gauge theory also has other excitations (such as
the gauge flux–codimension-2 excitations), which also fuse
in a nontrivial way and give rise to additional symmetry to
the lattice model H1 (76). So the complete symmetry of the
lattice model H1 (76) is given by the nontrivial fusion of all the
excitations (see Fig. 4). Such a complete symmetry is called
categorical symmetry of the lattice model H1 (76) (when
restricted to the symmetric sub-Hilbert space). The categorical
symmetry is fully characterized by the G-gauge theory in
one higher dimension. The data in one higher dimension

include gauge charges, gauge fluxes, their fusion rules, and
the mutually nonlocal property. The set of data is realized
on the boundary as the global symmetry charges, the global
algebraic higher symmetry charges, their fusion, as well as
their mutual statistics. This is the holographic understanding
of the categorical symmetry. Compared to our patch-operator
understanding of the categorical symmetry discussed in Secs.
II B and V B, the holographic view reveals the essence of the
categorical symmetry more clearly.

Let us rephase the above holographic point of view using
a categorical language (for details see Ref. [8] and Ap-
pendix A). The braiding and fusion of the particles carrying
G representations are described by the fusion n-category
nRep(G). Every fusion higher category can be mapped into
a braided fusion higher category by a Z1 functor, called the
Z1 center in this paper [see Eq. (102), and, for a physical
description, see, for example, Ref. [8]]. The Z1 center of the
fusion n-category nRep(G) is denoted as Z1[nRep(G)], which
is a braided fusion n-category. In fact, Z1[nRep(G)] describes
the excitations in the G-gauge theory in one higher dimension
[i.e., in (d + 2)-dimensional spacetime] and is denoted as Gd

G.
In other words, Gd

G = Z1[nRep(G)] [8,63].
Therefore, for a system with symmetry described by a

fusion n-category nRep(G) (which is nothing but the G 0-
symmetry), to find its categorical symmetry is to find the Z1

center of nRep(G): Z1[nRep(G)]. Z1[nRep(G)] describes the
excitations in the G-gauge theory in one higher dimension.
This is the holographic point of view of the categorical
symmetry.

We stress that the lattice model H1 (76) (when restricted
to the symmetric sub-Hilbert space) has the full categorical
symmetry, but its ground states may spontaneously break part
of the categorical symmetry. Those different ground states
correspond to different boundaries of the G-gauge theory.
Since a gapped boundary of G-gauge theory always comes
from condensation of gauge charges, or gauge flux, or some
combination of them, a gapped boundary always sponta-
neously breaks some part of the categorical symmetry. There-
fore, the gapped ground states of H1 always spontaneously
break some part of the categorical symmetry. Because the
gauge charge and gauge flux have nontrivial mutual statistics
between them, we cannot condense all gauge charges and
gauge fluxes simultaneously. Therefore, any ground states
of the lattice model H1 (76) cannot break the categorical
symmetry completely.

The G-gauge theory has a gapless boundary if none of the
gauge charges or gauge fluxes is condensed. Such a boundary
does not break the categorical symmetry. Thus the lattice
model H1 (76) has a gapless ground state where the cate-
gorical symmetry is not spontaneously broken. This gapless
state should correspond to the critical point of the Landau
G symmetry-breaking transition. The above discussions also
apply to the dual model H2 (82).

VI. EMERGENCE OF ALGEBRAIC HIGHER SYMMETRY

We have seen that a G 0-symmetry in n-dimensional
space can be fully characterized by a fusion n-category
nRep(G), describing the fusion of the charge objects of the
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G symmetry. In fact, the charge objects described by nRep(G)
are nothing but the excitations on top of a product state with
the G symmetry. To be precise, nRep(G) describes the types
of the excitations, which are the equivalence classes under the
G symmetry preserving deformations (i.e., two excitations are
equivalent if they can deform into each other smoothly with-
out breaking the symmetry). This is why nRep(G) depends
on the symmetry G, despite it describes excitations in a trivial
product state.

Similarly, the algebraic (n − 1)-symmetry G(n−1) in the
lattice model Eq. (82) is fully characterized by a fusion n-
category nVecG, describing the fusion of the charge objects
of the G(n−1)-symmetry. Again, nVecG describes the types
of the excitations on top of a product state with the G(n−1)

symmetry. Now types are the equivalence classes under the
G(n−1)-symmetry preserving deformations.

This result can be generalized. Consider a lattice model
with an algebraic higher symmetry in n-dimensional space,
which has a symmetric product state as its ground state [such
as Eq. (86)]. The type of the excitations on top of the product
state is described by a fusion n-category R, and the algebraic
higher symmetry is fully characterized by R. So we will refer
to an algebraic higher symmetry as R.

We would like to remark that the fusion higher category
R describing excitations on top of a product state is a special
class of fusion higher category, called the local fusion higher
category. Actually, describing types of excitations on top of a
symmetric product state is the defining property of a local fu-
sion higher category. We believe that local fusion n-categories
classify algebraic higher symmetries in n-dimensional space
[8].

Now, let us consider a lattice theory or a field theory
in n-dimensional space, the low-energy excitations of which
happen to be described by a local fusion n-category R. If we
ignore all the high-energy excitations and pretend R are only
excitations, then we can pretend R to be the excitations in a
product state with the algebraic higher symmetry R. In this
way, we say that the theory has an emergent algebraic higher
symmetry R, and we can regard the system to be in a trivial
R-symmetric phase.

Let us elaborate with some examples of emergent algebraic
higher symmetries. The first is the model with a finite zero
symmetry G in n-dimensional space, which we now discuss
using the point of view of the local fusion higher category. If
the ground state of the model is a product state with G sym-
metry, then the excitations will be pointlike and are labeled
by the irreducible representations of G. Those excitations are
described by a local fusion n-category nRep(G). Thus the G
zero symmetry can also be denoted as nRep(G) symmetry. If
the model is in the spontaneous symmetry-breaking phase, the
ground states will be degenerate and are labeled by the ground
elements g ∈ G. The excitations will be (n − 1)-dimensional
domain walls between different degenerate ground states.
Those domain-wall excitations are labeled by pairs (g1, g2) if
the domain wall connects the ground state g1 and the ground
state g2. Under a symmetry transformation g ∈ G, the domain
wall transforms as (g1, g2) → (gg1, gg1). We say (g1, g2) and
(gg1, gg1) are equivalent. The equivalent classes of domain
walls (i.e., symmetrized domain walls) are labeled by a single
group element h = g−1

1 g2. Those excitations are described by

a fusion n-category nVecG. It turns out that nVecG is also a
local fusion n-category [8]. The algebraic higher symmetry
nVecG is nothing but the algebraic (n − 1)-symmetry G(n−1)

generated by Wilson loop operators that we discussed before.
The second example of the 2d lattice model has S3 = Z3 �

Z2 zero symmetry. We have a phase with S3 zero symmetry.
We have another phase that spontaneously breaks the S3

zero symmetry. This phase has an emergent S(1)
3 algebraic

1-symmetry. We also have some other phases that break
different symmetries and thus have different emergent alge-
braic higher symmetries. All those phases and their emergent
algebraic higher symmetries are listed as follows: (1) the
S3-symmetric phase, the pointlike charges of which are

RS3 = 2Rep(S3) = {11, p1, p2}; (97)

(2) the Z2 (charge conjugation) spontaneous symmetry-
breaking phase with Z3 symmetry, the pointlike and stringlike
excitations of which are

RZ3,Z
(1)
2

= {11, p, p̄, s}, (98)

which includes Z3 charges p, p̄ (pointlike) and Z2 domain
wall s (stringlike); (3) the Z3 spontaneous symmetry-breaking
phase with Z2 symmetry,

RZ2,Z
(1)
3

= {11, p, s, s̄}, (99)

which includes Z2 charge p (pointlike) and Z3 domain wall s, s̄
(stringlike); and (4) the S3 spontaneous symmetry-breaking
phase, the stringlike excitations of which are labeled group
elements,

RS(1)
3

= 2VecS3 = {sh|h ∈ G}. (100)

RS3 = 2Rep(S3) and RS(1)
3

= 2VecS3 are local fusion 2-
categories, since they describe excitations on top of symmetric
product states, as explicitly shown in Sec. V. They correspond
to algebraic higher symmetries: the 0-symmetry S3 and the
algebraic 1-symmetry S(1)

3 . Using the results in Ref. [8], we
find that RZ2,Z

(1)
3

and RZ3,Z
(1)
2

are also local fusion 2-categories,
and they also correspond to two algebraic higher symmetries.
The algebraic higher symmetry RZ2,Z

(1)
3

contains a 0 symmetry
Z2 (the conservation of the Z2 charges) and a 1-symmetry
Z (1)

3 (the conservation of the Z3 domain walls). The alge-
braic higher symmetry RZ3,Z

(1)
2

contains a 0-symmetry Z3 (the

conservation of the Z3 charges) and a 1-symmetry Z (1)
2 (the

conservation of the Z2 domain walls).
Those four algebraic higher symmetries form two dual

pairs: (2Rep(S3), 2VecS3 ) and (RZ2,Z
(1)
3

, RZ3,Z
(1)
2

). Moreover,

the Z1 center of all the above R’s is the same Z1(R) = G2
S3

,
the same category that describes the topological data of 3d S3

topological order, which characterizes the S3 ∨ S(1)
3 categori-

cal symmetry.
In fact, all the four phases discussed above have the same

emergent categorical symmetry S3 ∨ S(1)
3 . But in different

phases the categorical symmetry is spontaneously broken in
different ways. It turns out that, to understand the emergent
algebraic higher symmetry, it is better to understand the emer-
gent categorical symmetry first. Then, the emergent algebraic
higher symmetry is just the unbroken part of the emergent
categorical symmetry. In the next section, we use this point
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of view to understand the emergent categorical symmetry and
emergent algebraic higher symmetry in a more general setting.

VII. EMERGENCE OF CATEGORICAL SYMMETRY (AND
ALGEBRAIC HIGHER SYMMETRY)

In this section, we consider a lattice theory or a field theory
in n-dimensional space, the low-energy excitations of which
are described by a fusion n-category C. Some excitations in
C may correspond to charge objects of a certain symmetry,
and other excitations correspond to topological excitations not
associated with symmetry. Here we ignore all the high-energy
excitations and pretend C are the only excitations. Moreover,
we use the categorical point of view of symmetry, i.e., we view
all the charge objects as topological excitations, and ignore
their symmetry origin. This is possible since the symmetry
is fully encoded in the fusion of the charge objects. Now, we
would like to ask the following: what is the emergent algebraic
higher symmetry in a theory with low-energy excitations
C? First we would like to understand what is the emergent
categorical symmetry in a theory with low-energy excitations
C.

Let us consider an example of a 2 + 1D product state with
a Z2 symmetry. The state has pointlike excitations CZ2-sym =
{11, e}, where 11 has Z2 charge zero, and e has Z2 charge
one. Since the Hamiltonian has Z2 symmetry, CZ2-sym = {11, e}
should give rise to the Z2 symmetry. The second example
is the Z2 topological order (described by Z2 gauge theory)
without any symmetry. The topological phase has pointlike
excitations CZ2-top = {11, e, m, f }. Since the Hamiltonian has
no symmetry, CZ2-top = {11, e, m, f } should not give rise to any
symmetry.

When viewed as two fusion 2-categories describing topo-
logical excitations in 2d topological orders, why does CZ2-sym

give rise to symmetry while CZ2-top gives rise to no symmetry?
To see their difference, here we would like to introduce
the notion of a gravitational anomaly. Conventionally, the
gravitational anomaly refers to a noninvariance of the path-
integral measure under the diffeomorphism transformations
of the spacetime manifold. Here, following Refs. [30,55], we
define gravitational anomaly differently, as the obstruction to
regularize the theory by a local lattice bosonic model without
symmetry in the same dimension. We ask whether there exists
a local lattice bosonic model without symmetry in the same di-
mension, the complete excitations of which reproduce the fu-
sion category C. If such a lattice model exists, then the
fusion category C is free of the gravitational anomaly. If the
lattice regularization without symmetry does not exist, then
the fusion category C has a gravitational anomaly. It turns
out that CZ2-top has no gravitational anomaly, while CZ2-sym

has a gravitational anomaly. One may say that CZ2-sym can
be realized as excitations in a lattice model, and should be
anomaly-free. However, the lattice regularization of CZ2-sym

requires a Z2 symmetry. CZ2-sym has no lattice regularization
without symmetry, and thus has a gravitational anomaly.

The above examples reveals a general property: if the
excitations are described by anomaly-free fusion higher cat-
egory C, then there is no emergent symmetry. Here, the emer-
gent symmetries are global symmetries that can be beyond

grouplike.7 If C is anomalous, then there is an emergent
symmetry.8 We see that emergent symmetry essentially implies
a gravitational anomaly. So to understand emergent symmetry
we need to understand gravitational anomaly.

But in the above we just defined what is the “no gravita-
tional anomaly” as the existence of lattice regularization in the
same dimension. We did not define what is the gravitational
anomaly. To define what is the gravitational anomaly, we
rely on the following conjecture, the holographic principle of
topological order [30,64,65]: The excitations in n-dimensional
space described by a fusion n-category C can always be
realized at a boundary of an anomaly-free topological order
(denoted as M) in one higher dimension. Moreover, the topo-
logical order M is uniquely determined by C, and we denote
this map from C and M as M = bulk(C). Using the holographic
principle, we can rephrase the anomaly-free condition for a
fusion higher category C as

bulk(C) = 11, (101)

where 11 denotes the trivial topological order (i.e., a product
state with no symmetry). This is because if C can be realized
by a boundary of a product state in a lattice model in one
higher dimension we can always remove the bulk product state
and conclude that C can be realized by a lattice model in the
same dimension. Thus the holographic principle can tell us
when there exists a gravitational anomaly. Furthermore, the
holographic principle gives a way to regularize the anomalous
theory C on a n + 1-dimensional lattice, and C is realized as
one low-energy phase of a boundary of the lattice model. Thus
the holographic principle tells us what is the gravitational
anomaly: a gravitational anomaly is a topological order in
one higher dimension [30,64,65].

Should we view the bulk topological order M (the gravita-
tional anomaly) as the emergent symmetry? Maybe not. The
emergent symmetry should be related to conservation laws
encoded by fusion rules, or more precisely a fusion higher
category. In fact, from the bulk topological order M in (n +
1)-dimensional space, we can get a fusion (n + 1)-category M
describing its excitations. Since the bulk topological order M
is anomaly free all the codimension-1 excitations are descen-
dent (i.e., formed by codimension-2 and higher excitations).
We can drop the codimension-1 excitations, which turns the
fusion (n + 1)-category M into a braided fusion n-category
M. This turns the map from C to M, where M = bulk(C),
into a map from C to M:

M = Z1(C). (102)

So we should view the braided fusion n-category M as the
emergent symmetry C. Since M describes the excitations
in a topological order in one higher dimension where C is

7By “beyond grouplike,” we allow at least the following two kinds
of generalizations: first the multiplication of symmetry generators is
given by an algebra that is not grouplike; second the charges of the
symmetry can be mutually nonlocal.

8When the emergent symmetry is a global symmetry of a (finite)
group G, the theory is a low-energy theory of either a symmetry
protected phase or a spontaneously symmetry-breaking phase on a
local lattice bosonic model with a global symmetry G.
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realized as a boundary, we see that M is actually the emergent
categorical symmetry.

Now, we can say that the fusion 2 category CZ2-top =
{11, e, m, f } that describes the excitations in the 2 + 1D Z2

topological order has no emergent categorical symmetry since
Z1(CZ2-top) = {11}. Similarly, the fusion 2 category C0 = {11}
that describes the excitations in the 2 + 1D product state
with no symmetry has no emergent categorical symmetry
since Z1(C0) = {11}, since both phases have no categorical
symmetry. We can find a lattice model with no symmetry in
which the above two phases can transform into each other
via phase transitions. As there is no global symmetry to be
concerned, we just turn off the Hamiltonian for Z2 topological
order and turn on another for the product state.

On the other hand, the fusion 2 category CZ2-sym = {11, e}
that describes the excitations in the 2 + 1D Z2-symmetric
product state has an emergent categorical symmetry described
by Z1(CZ2-sym). In fact, Z1(CZ2-sym) is the braided fusion 2 cat-
egory (denoted as G2

Z2
) describing the excitations in a 3 + 1D

Z2 gauge theory. Therefore, CZ2-sym = {11, e} has an emer-
gent categorical symmetry G2

Z2
= Z1(CZ2-sym). In this case, we

cannot connect a phase described by the fusion 2 category
CZ2-sym = {11, e} to a phase described by the fusion 2 category
C0 = {11}.

The above result sounds counterintuitive, since CZ2-sym =
{11, e} can be realized by a Z2-symmetric product state and
C0 = {11} can be realized by a product state with no symmetry.
Two product states should be in the same phase and are con-
nected by phase transitions (actually connected by zero phase
transition). When we say Z2-symmetric product state, we also
specify the deformation class of the Hamiltonians, which are
all required to have the Z2 symmetry. In the phase diagram
of the Z2-symmetric Hamiltonians, there is no phase the ex-
citations of which are given by C0 = {11}, but there is a phase
the excitations of whcih are given by CZ2-sym = {11, e}. This is
what we mean by “a phase described by the fusion 2 category
CZ2-sym = {11, e} is not connected to a phase described by
the fusion 2-category C0 = {11}”. In general, if low-energy
excitation C has nontrivial categorical symmetry Z1(C), then
any gapped phase formed by condensing those low-energy
excitations cannot be a trivial phase with excitation {11}. This
comes from the knowledge that Z1(C) 
= Z1({11}).

We see that the emergent categorical symmetry can con-
strain the possible phases and phase transitions, just like the
usual symmetry does. This represents one of the most impor-
tant applications of categorical symmetry (see Sec. VII A).

Let us discuss more examples of emergent categorical sym-
metry using the 2 + 1D Z2 topological order [66,67]. The Z2

topological order has a trivial excitation 11 and three nontrivial
excitations e, m, and f with mod 2 conservation. e and m are
bosons and f is a fermion, and they fuse as e ⊗ m = f . If
the low-energy excitations are R = {11, e} (and m and f are
assume to have very high energies), then R is a local fusion
2-category R = 2Rep(Z2), which describes an anomaly-free
Z2 0-symmetry. The system also has an emergent categorical
symmetry described by Z1(R) = Z1[2Rep(Z2)] = G2

Z2
, which

is the braided fusion category describing the excitations in 3 +
1D Z2-gauge theory. Such a categorical symmetry contains a
Z2 0-symmetry and a Z (1)

2 1-symmetry and is denoted as Z2 ∨

Z (1)
2 . We may also say that the low-energy physics of {11, e}

is controlled by the emergent categorical symmetry Z2 ∨ Z (1)
2 .

For example, the e excitations may condense and drive the
system to another gapped phase that spontaneously breaks the
Z2 symmetry but has the Z (1)

2 1 symmetry. The excitations in
the new phase are described by {11, s} = 2VecZ2 , where s is a
stringlike excitation with Z2 fusion s ⊗ s = 11. Such a gapped
phase is possible since it has the same categorical symmetry
Z1(2VecZ2 ) = Z1[2Rep(Z2)]. At the transition between the
phases, we have a gapless critical point formed by {11, e}
(or equivalently formed by {11, s}). which has the unbroken
categorical symmetry Z2 ∨ Z (1)

2 . It requires that both the Z2

charges e and Z (1)
2 charges s are not condensed at the critical

point.
If the low-energy excitations are C = {11, f }, [which is a

fusion 2-category denoted as 2Rep(Z f
2 )], then C is not a local

fusion higher category. The emergent categorical symmetry
is described by Z1(C) = Z1[2Rep(Z f

2 )], which is the braided
fusion category describing the excitations in a twisted 3 + 1D
Z f

2 -gauge theory where the Z f
2 charge is a fermion [25]. Such a

categorical symmetry contains a Z f
2 0-symmetry (the fermion

number parity) and a Z̃ (1)
2 1-symmetry, and is denoted as

Z f
2 ∨ Z (1)

2 . The categorical symmetry controls the low-energy
dynamics of {11, f }, which can be simulated by the boundary
of the twisted 3 + 1D Z f

2 -gauge theory. For example, we
cannot have a phase that spontaneously breaks the fermionic
Z f

2 symmetry. Also, the categorical symmetry Z f
2 ∨ Z (1)

2 is
an example that there is no corresponding algebraic higher
symmetry R, i.e., there is no local fusion 2 category R, and
satisfies Z1(R) = Z1[2Rep(Z f

2 )]. Physically, this implies that
there is no 2 + 1D bosonic system, with or without symme-
try, the gapped state of which gives rise to the excitations
described by C = {11, f }.

In summary, for a system with low-energy excitations
described by a fusion category C, when C is a local one,
the system has an emergent algebraic higher symmetry. In
general, the largest emergent symmetry is the categorical sym-
metry given by Z1(C). Phases that have the same categorical
symmetries are connected through phase transitions, since
each of them is a phase spontaneously breaking part of the
same categorical symmetry. Starting from the critical point
that has the full category symmetry, the system can break
different parts of the category symmetry and drive a transition
to those spontaneous symmetry-breaking phases.

A. Categorical symmetry, anomaly, and duality

Let us consider two field theories9 the low-energy excita-
tions of which are described by two fusion higher categories

9Here, by field theory, we mean that the UV regularization is not
specified. In particular, when we say two phases in two field theories
are connected by phase transitions, we mean that there exist UV
regularizations (such as lattice models) for each field theory, and for
such regularized field theories the two phases are connected by phase
transitions. (There may be other different UV regularizations where
the two phases are not connected by phase transitions.)
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C1 and C2, respectively. The two field theories may have differ-
ent algebraic higher symmetries, and C1 and C2 may contain
the charge objects of those algebraic higher symmetries. We
would like to ask the following questions. Can the two theories
be connected through phase transitions? Can we use one
theory to simulate the other theory? Are the two theories dual
to each other? In fact, the above three questions are the same
question, since the following five statements are equivalent.10

(1) The two theories describe phases which are connected
through phase transitions and other phases.

(2) The two theories can simulate each other.
(3) The two theories are dual to each other.
(4) The two theories have the same anomaly.
(5) The two theories have the same categorical symmetry

Z1(C1) = Z1(C2).
References [30,55] pointed out that the anomaly is sim-

ply topological/symmetry protected topological order in one
higher dimension. In light of this view of anomaly, Z1(C1)
and Z1(C2) simply correspond to the anomalies of the two
theories, and Z1(C1) = Z1(C2) is simply the anomaly matching
condition. We would like to remark that Z1(C1) and Z1(C2) are
in general noninvertible anomalies [31].

However, to be more precise, we should replace Z1(C1)
and Z1(C2) in the above by the bulk topological orders of C1

and C2, which are denoted as bulk(C1) and bulk(C2), respec-
tively. The anomaly matching condition is really bulk(C1) =
bulk(C2). Such a condition implies that C1 and C2 can be
viewed as two boundaries of the same bulk topological order.
We know that two theories that are boundary theories of the
same bulk topological order can simulate each other.

We remark that Z1(C1) describes the excitations in the
bulk topological order bulk(C1). Z1(C1) contains a little less
information than the bulk topological order bulk(C1): two
topological orders differing by an invertible topological order
have the same excitations.

We know that symmetry-breaking transitions are induced
by the condensation of charge objects of the symmetry,
while topological phase transitions are induced by condensing
topological excitations. But in our setup the charge objects
and topological excitations are treated on an equal footing,
and thus symmetry-breaking transitions and topological tran-
sitions are treated on an equal footing. So the emergence
of categorical symmetry happens at both symmetry-breaking
transitions and topological transitions, as well as their mix-
tures.

As an application, we may consider a 2 + 1D field theory
with a Z2 zero symmetry and another 2 + 1D field theory with
a Z (1)

2 1-symmetry. Both symmetries give rise to the same
categorical symmetry (i.e., the same bulk topological order),
which is described by the 3 + 1D Z2 gauge theory. As a result,
the two theories have the same gravitational anomaly. Then,
the two theories can be connected by phase transitions, can
simulate each other, and are dual to each other, even if we
do not explicitly break the two symmetries (i.e., under the
constraint of the two symmetries).

10See, for example, Ref. [76], for the recent development of simu-
lating lattice gauge theories in dual variables with defects included.

B. Example: Higgs and confinement transition
in 3 + 1D Z2 gauge theory

Let us discuss the simple example of 3 + 1D Z2 topological
order to illustrate the above general results. In the first case,
we choose the low-energy subcategory Rp to be the one
formed by all the pointlike excitations, i.e., the Z2 charges
[denoted as 3Rep(Z2)]. We assume all other excitations (such
as gauge flux) to have infinite energy. In this case, we can
focus only on excitations described by Rp = 3Rep(Z2), and
our system can be viewed as a system with Z2 zero sym-
metry. Our previous discussions on the G-symmetric system
will apply. In particular, we have an (emergent) categorical
symmetry characterized by Z1(Rp) = G3

Z2
, which is a Z2-gauge

theory in (4+1)D. The categorical symmetry contains Z2

zero symmetry from the fusion of the pointlike Z2 charges
in the (4+1)-dimensional Z2 gauge theory. The categorical
symmetry also contains Z (2)

2 two symmetry from the fusion of
the membranelike Z2 flux in the 4 + 1D Z2-gauge theory. The
condensation of the Z2 charge induces a Higgs transition from
the 3 + 1D Z2 topological order to trivial order. The critical
point of the Higgs transition has the Z2 ∨ Z (2)

2 categorical
symmetry. In fact, such a critical point is the same as the Z2

symmetry-breaking critical point discussed before.
In the second case, we choose the low-energy subcategory

Rs to be the one formed by the pure stringlike excitations,
i.e., the Z2 flux lines. We assume all other excitations (such
as gauge charges) to have infinite energy. After ignoring other
excitations, the only excitations are described by Rs, and our
system can be viewed as a system with Z (1)

2 1-symmetry. Such
a system has a categorical symmetry given by Z1(Rs) = G3

Z (1)
2

,

which is a Z (1)
2 two-gauge theory in (4+1)D [14,17,68–73].

The categorical symmetry contains Z2 1-symmetry from the
fusion of the stringlike Z (1)

2 charges in the 4 + 1D Z (1)
2 two-

gauge theory. The categorical symmetry also contains Z̃ (1)
2

1-symmetry. The charge of Z̃ (1)
2 symmetry is the stringlike Z (1)

2

flux in the 4 + 1D Z (1)
2 two-gauge theory. The condensation

of the stringlike Z (1)
2 charges induces a confinement transition

from the Z2 topological order to trivial order. The critical point
of the confinement transition has the Z (1)

2 ∨ Z̃ (1)
2 categorical

symmetry.
Such a critical point with Z (1)

2 ∨ Z̃ (1)
2 categorical symmetry

can be realized by a model on a cubic lattice with a spin 1/2
living on each link. We label the sites by i and links by i j. The
Hamiltonian of our model is given by

H = −B
∑
〈i j〉

Zi j − J
∑
〈i jkl〉

Xi jXjkXkl Xli

+ U
∑

i

⎛⎝1 −
∏

j next to i

Zi j

⎞⎠, (103)

where
∑

i sums over all sites,
∑

〈i j〉 over all links, and
∑

〈i jkl〉
over all squares of the cubic lattice. We also assume U →
+∞ and B, J > 0.

When B = 0 and J > 0, the above model H has a ground
state with a Z2 topological order. When B > 0 and J = 0,
the model has a trivial product state |{Zi j = 1}〉 as its ground
state and is in the trivial phase (the confined phase). Changing
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from (B = 0, J > 0) to (B > 0, J = 0) induces a confinement
transition.

The model explicitly has a Z (1)
2 1-symmetry generated by

the following membrane operator:

CZ (1)
2

(M̃2) =
∏

〈i j〉∈M̃2

Zi j . (104)

The membrane operator CZ (1)
2

(M̃2) acts on a membrane M̃2 in

the dual cubic lattice, where the membrane M̃2 is formed by
the squares of the dual lattice. Since the squares of the dual
lattice one-to-one correspond to the links in the original cubic
lattice, the membrane M̃2 is formed by the links of the original
lattice.

∏
〈i j〉∈M̃2 is a product over all the links from M̃2. Such

a Z (1)
2 1-symmetry is spontaneously broken in the phase with

Z2 topological order, and is unbroken in the trivial phase (the
confined phase).

To see the Z̃ (1)
2 1-symmetry explicitly, we need to do a

duality transformation to obtain a new model with a spin
1/2 living on each square face 〈i jkl〉 of the cubic lattice. Let
X̃i jkl , Ỹi jkl , and Z̃i jkl be the Pauli operators acting on the spin
1/2 on face 〈i jkl〉. The duality mapping is given by

Xi jXjkXkl Xli → X̃i jkl , Zi j →
∏

k,l next to i, j

Z̃i jkl ,

∏
〈i jkl〉∈c

X̃i jkl = 1 (105)

where
∏

〈i jkl〉∈c is the product over all the six faces of a cube
c. The dual Hamiltonian is given by

H̃ = −B
∑
〈i j〉

∏
k,l next to i, j

Z̃i jkl − J
∑
〈i jkl〉

X̃i jkl

+ Ũ
∑

c

⎛⎝1 −
∏

〈i jkl〉∈c

X̃i jkl

⎞⎠, (106)

where Ũ → ∞.
When B > 0 and J = 0, the above dual model H̃ has a

ground state with a dual Z̃2 topological order [which corre-
sponds to the confined phase with the trivial Z2 topological
order in the original model (103)]. When B = 0 and J > 0,
the model has a trivial product state |{X̃i jkl = 1}〉 as its ground
state and is in the dual trivial phase [which corresponds
to the phase with the Z2 topological order in the original
model (103)]. Changing from (B > 0, J = 0) to (B = 0, J >

0) induces a dual confinement transition, while changing
from (B = 0, J > 0) to (B > 0, J = 0) induces a confinement
transition.

The dual model H̃ explicitly has a Z̃ (1)
2 1-symmetry gener-

ated by the following membrane operator:

CZ̃ (1)
2

(M2) =
∏

〈i jkl〉∈M2

X̃i jkl . (107)

The membrane operator CZ̃ (1)
2

(M2) acts on a membrane M2

which is formed by the squares of the lattice. Such a Z̃ (1)
2

1-symmetry is spontaneously broken in the phase with dual

FIG. 5. The phase diagram of Eq. (108).

Z̃2 topological order (the confined phase with the trivial Z2

topological order), and is unbroken in the dual trivial phase
(the phase with the Z2 topological order). If the confinement
transition from the Z̃2 topological order to the trivial order
is given by a single critical point, then such a gapless critical
state will have the full Z (1)

2 ∨ Z̃ (1)
2 categorical symmetry which

is not spontaneously broken.
It is well known that there are two ways to go from 3 + 1D

Z2 topological order (i.e., Z2 gauge theory) to trivial order,
either via Higgs condensation or via confinement. Reference
[74] studied a model defined by the 3 + 1D path integral for
the following action:

S = K

2

∑
〈i jkl〉

σi jσ jkσklσli + β

2

∑
i j

φ
†
i σi jφ j,

σi j = ±1, φi = ±1. (108)

The model has Z2 topological order when β ∼ 0 and K ∼
+∞. The model has trivial order when β ∼ +∞ or K ∼ 0
(see Fig. 5).

When K = +∞, as we change β from zero to +∞,
the model goes through a second-order Ising transition (i.e.,
Higgs transition) described by a critical point. When β = 0,
as we change K from zero to +∞, the model goes through a
first-order confinement transition [75]. Let us assume that we
can modify the model to make the confinement transition to be
a continuous transition described by a critical point. One may
wonder whether the two critical points for the two transitions
are the same or not.

Our above discussions suggest that the two critical points
are different since they have different categorical symmetries.
One has Z2 ∨ Z (2)

2 categorical symmetry and the other has
Z (1)

2 ∨ Z̃ (1)
2 categorical symmetry, and Z1[3Rep(Z2)] are dif-

ferent from Z1(3VecZ (1)
2

). Thus categorical symmetries deepen
our understanding of the Higgs transition and the confinement
transition, as well as their relationship.
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FIG. 6. (a) A CFT with zero symmetry G is described by a
AdS/CFT dual that contains a G gauge theory in the AdS space
in one higher dimension. (b) The CFT at the transition of spon-
taneously G symmetry-breaking has a categorical symmetry Gn

G =
G ∨ G(n−1) described by excitations in a G-gauge theory in one
higher dimension.

VIII. SUMMARY

In this paper, we show that a quantum system in n-
dimensional space with a zero symmetry G actually has a
larger symmetry, which includes both the zero symmetry G
and an algebraic (n − 1)-symmetry, denoted as G(n−1), the
transformations of which are given by Wilson loop operators.
In fact, the G-symmetric quantum system actually has a larger
categorical symmetry characterized by a braided fusion n-
category Gn

G. We also denote the categorical symmetry Gn
G as

G ∨ G(n−1), since it includes both the zero symmetry G and
the algebraic (n − 1)-symmetry G(n−1).

We find that any gapped state in a system with a categorical
symmetry must partially (and only partially) break the cat-
egorical symmetry spontaneously. However, for the gapless
critical state at the transition of the spontaneous G symmetry
breaking, the categorical symmetry G ∨ G(n−1) is not broken.
In particular, the critical state has both the zero symmetry G
and the algebraic (n − 1)-symmetry G(n−1).

It was proposed that a CFT in n-dimensional space with
zero symmetry G has a AdS/CFT dual that contains a G-
gauge theory in the (n + 1)d AdS space [see Fig. 6(a)]
[32–35]. If the AdS/CFT dual contains only a G-gauge theory
(with the fluctuations of both gauge charges and gauge flux)
and gravity in the (n + 1)d AdS space [see Fig. 6(a)], then
the corresponding CFT in n-dimensional space must be a
particular one with zero symmetry G. But there are many
CFT’s with zero symmetry G. Which is the right one? The
result in this paper [see Fig. 6(b)] suggests that it is the CFT
at the transition of the spontaneous G symmetry breaking that
is dual to a theory that contains only a G-gauge theory and
gravity in the (n + 1)d AdS space. This is because the specific
CFT has the categorical symmetry G ∨ G(n−1), the excitation
of which matches that of the dual theory in the AdS bulk.
In other words, Fig. 6(a) corresponds to the CFT boundary
in Fig. 6(b). This is demonstrated in Fig. 7. The categorical
symmetry of a CFT can help us to select the AdS/CFT dual of
the CFT, which is an important application of the categorical
symmetry.
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APPENDIX A: LIST OF TERMINOLOGIES

Here, we explain some mathematical terminologies used
in this paper, at the level of physical rigorousness. An
ordinary category has objects and morphisms (also called
1-morphisms), and it is also called a 1-category. A 2-category
generalizes this by also including 2-morphisms between the
1-morphisms. Continuing this up to n-morphisms between
(n − 1)-morphisms gives an n-category.

In condensed-matter physics, a n-category can correspond
to a collection of topological orders in nD spacetime. The
topological orders in the collection correspond to the simple
objects in the category. The composite objects correspond
to degenerate states where several different topological or-
ders happen to have the same energy. The gapped domain
walls between different topological orders correspond to one
morphisms between different simple objects. The gapped
domain walls within the same topological order correspond
to one morphisms between the same simple object. The
domain walls (1-morphisms) can also have domain walls
with one lower dimension between them, which correspond
to two morphisms, etc. In general, a m-morphism that con-
nects the trivial (m − 1)-morphism to itself corresponds to
a codimension-m excitation. A m-morphism that connects
a nontrivial (m − 1)-morphism to itself corresponds to a
domain wall on the codimension-(m − 1) excitation. A m-
morphism that connects two (m − 1)-morphisms corresponds
to a domain wall between the two codimension-(m − 1) ex-
citations. A n-morphism corresponds to an “instanton” in
spacetime (i.e., an insertion of a local operator in spacetime).
A (n − 1)-morphism corresponds to a pointlike excitation.

Two topological orders can be stacked to form the third
topological order. Under the stacking operation, topological
orders form a monoid (which is similar to a group, but
without the need for an inverse operation) [30]. If we include
the stacking operation in the n-category, the n-category will
become a fusion n-category. Thus a collection of topological
orders in n-dimensional spacetime is actually described by a
monoidal n-category.

The excitation in a single topological order in nD
spacetime is described by a fusion (n − 1)-category.
Now the objects in the fusion (n − 1)-category corre-
spond to codimension-1 excitations (domain walls). The
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1-morphisms correspond to codimension-2 excitations (do-
main walls on domain walls), etc.

An example of a fusion 1-category is Vec. The objects in
Vec are the vector spaces. The simple objects are the (equiva-
lent classes of) one-dimensional vector spaces and composite
objects are multidimensional vector spaces. There is only
one simple object. We see that composite objects are direct
sums of simple objects. The morphisms (the 1-morphisms)
correspond to the linear operators acting on the vector spaces.
The tensor product of the vector spaces defines the fusion
of the objects. We see that one-dimensional vector space is
the unit of the tensor product, and hence the simple object is
the unit of the fusion. We also call such a fusion unit as the
trivial object. The 1-morphism that connects the simple object
to itself is proportional to the one-by-one identity operator,
and thus is also trivial. So we refer to fusion 1-category Vec
as a trivial category. We also have a trivial higher cate-
gory, which has only one simple nondescendant morphism
(which is not condensation of other excitations [7,8,60,61])
at every level. We denote the trivial higher category as
nVec.

Another example of a fusion n-category is Rep(G). The
(n − 1)-morphisms in Rep(G) are the representations of the
group G which correspond to pointlike excitations in n-
dimensional space. The tensor product of the G representa-
tions defines the fusion of the (n − 1)-morphisms. The simple
(n − 1)-morphisms are the (equivalent classes of) irreducible
representations and composite objects are the reducible rep-
resentations. The reducible representations are direct sums
of irreducible representations, and thus composite morphisms
are direct sums of simple morphisms. The n-morphisms
correspond to the symmetric operators acting on group
representations.

All the 1-morphisms and two morphisms on the triv-
ial object in a fusion n-category form a braided fusion
(n − 1)-category. It can be used to describe codimension-
2 and higher excitations in an anomaly-free topologi-
cal order (after dropping the codimension-1 excitations
which are always descendent for anomaly-free topological
orders).

We also need a notion of a local fusion n-category: A fusion
n-category F is local if we can add morphisms in a consistent
way, such that all the resulting simple morphisms are iso-
morphic to the trivial one. Physically, the process of “adding
morphisms” corresponds to explicit breaking of the (algebraic
higher) symmetry. This is because F only has morphisms that
correspond to symmetric operators. Adding morphisms means
including morphisms that correspond to symmetry-breaking
operators. If after breaking all the symmetry F becomes a
trivial product phase of bosons or fermions, then F is a local
fusion n-category.

APPENDIX B: PROOF OF EQUIVALENCE OF THE 1D
(PROJECTED) Z2 MINIMALLY COUPLED MODEL

AND THE (PROJECTED) ISING MODEL

We are going to prove that the (projected) minimally cou-
pled model Eq. (21), the (projected) Ising model Eq. (10), and
the (projected) dual Ising model Eq. (11) are all equivalent. In

this subsection, we always consider the projected sub-Hilbert
space.

The strategy is to show that in the minimally coupled
model the Hamiltonian is built from the logical operators
within a stabilized subspace. We begin with 2N physi-
cal qubits on 2N sites. We take those states stabilized by
Z2i−1Z2iZ2i+1, for i = 1, . . . , N . This is to constrain ourselves
to states Z2i−1Z2iZ2i+1 = 1.

We first show that the minimally coupled model is equiv-
alent to the Ising model. The proof uses the stabilized code
formalism in quantum information (QI).

For simplicity, we switch the notation in the minimal
coupled model to that in QI, Xi → X2i−1, X̃i+ 1

2
→ X2i, and

similarly for the Pauli Z’s. In this way, the low-energy con-
straints in the limit U → ∞ are mapped to the stabilizers. And
the Hamiltonian becomes

H = −B
∑

i

X2iX2i+1X2i+2 − J
∑

i

Z2i, (B1)

acting on the 2N number of physical qubits. And there are
then in total 2N logical qubits.

First, we show

Xi = X2iX2i+1X2i+2, Zi = Z2i+1 (B2)

are the Pauli-X and Pauli-Z operators on the logical qubits.
(And XN = X2N X1X2,ZN = Z1.) Obviously, they satisfy the
algebra of the Pauli matrices, and each of them commute with
the stabilizers. Since there are N Pauli-Z operators we find
that their eigenvalue labels are in one-to-one correspondence
to the states in the stabilized space. Therefore, these logical
Pauli operators {Xi,Zi|i = 1, . . . , N} form a complete basis
for all operators acting on the logic qubits.

Then we find that ZiZi+1 = Z2i+2 (and ZNZ1 = Z2) are the
same as a pair of Pauli-Z operators on the logical qubits. It
follows from (B2) that ZiZi+1 = Z2i+1Z2i+3(Z2i+1Z2i+2Z2i+3),
where it is a stabilizer that we multiply on in the bracket. The
model11 in terms of logical operators becomes

H = −B
∑

i

Xi − J
∑

i

Zi−1Zi. (B3)

Finally, the global symmetry operator
∏

i X2i+1 in the
minimally coupled model also maps to

∏
i Xi, the global Z2

symmetry operator on the logical qubits. We may, of course,
add this operator initially to the set of stabilizers and the
analysis remains the same but with 2N−1 logical qubits.

There is a caveat in this proof. If different models can be
mapped to the same Hamiltonian on the same set of logical
qubits defined in a stabilized space, they are indeed the same at
the algebraic level. However, we need to further check if they
have the same “locality property.” Even though it is hard to de-
fine the property generically, for the one-dimensional models
we study here, they all have the properties that neighboring
logical Pauli operators come from neighboring local terms
composed of physical Pauli operators.

11This is not a Hamiltonian built of stabilizers, but one built from
logical Pauli operators within the stabilized subspace.
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APPENDIX C: NON-ON-SITE Z2 SYMMETRY
TRANSFORMATIONS

The non-on-site Z2 symmetry transformation U =∏
i Xi

∏
i si− 1

2 ,i+ 1
2

[where si j is given in Eq. (68)] transforms
Xi in the following way:

⎛⎝∏
j

Xj

∏
j

s j, j+1

⎞⎠Xi

⎛⎝∏
j

Xj

∏
j

s j, j+1

⎞⎠
= 1 − Zi−1 + Zi + Zi−1Zi

2

1 − Zi + Zi+1 + ZiZi+1

2
Xi

× 1 − Zi−1 + Zi + Zi−1Zi

2

1 − Zi + Zi+1 + ZiZi+1

2

= 1 − Zi−1 + Zi + Zi−1Zi

2

1 − Zi + Zi+1 + ZiZi+1

2

× 1 − Zi−1 − Zi − Zi−1Zi

2

1 + Zi + Zi+1 − ZiZi+1

2
Xi

=
(

1 − Zi−1 + Zi + Zi−1Zi

2

1 − Zi−1 − Zi − Zi−1Zi

2

)
×

(
1 − Zi + Zi+1 + ZiZi+1

2

1 + Zi + Zi+1 − ZiZi+1

2

)
Xi

= (1 − Zi−1) − (1 + Zi−1)

2

(1 + Zi+1) − (1 − Zi+1)

2
Xi

= −Zi−1XiZi+1. (C1)

In other words,

Xi ↔ −Zi−1XiZi+1. (C2)
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