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Probing the universality of topological defect formation in a quantum annealer:
Kibble-Zurek mechanism and beyond
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The number of topological defects created in a system driven through a quantum phase transition exhibits a
power-law scaling with the driving time. This universal scaling law is the key prediction of the Kibble-Zurek
mechanism (KZM), and testing it using a hardware-based quantum simulator is a coveted goal of quantum
information science. Here we provide such a test using quantum annealing. Specifically, we report on extensive
experimental tests of topological defect formation via the one-dimensional transverse-field Ising model on two
different D-Wave quantum annealing devices. We find that the quantum simulator results can indeed be explained
by the KZM for open-system quantum dynamics with phase-flip errors, with certain quantitative deviations
from the theory likely caused by factors such as random control errors and transient effects. In addition, we
probe physics beyond the KZM by identifying signatures of universality in the distribution and cumulants of
the number of kinks and their decay, and again find agreement with the quantum simulator results. This implies
that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment,
applies beyond its original scope to an open system. We support this result by extensive numerical computations.
To check whether an alternative, classical interpretation of these results is possible, we used the spin-vector
Monte Carlo model, a candidate classical description of the D-Wave device. We find that the degree of agreement
with the experimental data from the D-Wave annealing devices is better for the KZM, a quantum theory, than
for the classical spin-vector Monte Carlo model, thus favoring a quantum description of the device. Our work
provides an experimental test of quantum critical dynamics in an open quantum system, and paves the way to

new directions in quantum simulation experiments.

DOI: 10.1103/PhysRevResearch.2.033369

I. INTRODUCTION

Quantum simulations are emerging to be one of the impor-
tant applications of quantum annealing [1-4], quite different,
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and arguably more natural, than the original intent of using
such devices for optimization, the subject of many recent
studies [5—15]. Prominent examples include the simulation of
the Kosterlitz-Thouless topological phase transition [16,17]
and three-dimensional spin glasses [18] using the D-Wave
quantum annealing devices, that have successfully reproduced
the behavior of various physical quantities and the structure
of the phase diagram, as predicted by classical simulations.
Quantum simulation has also been pursued using other sys-
tems such as trapped ions [19-21].

Here we use D-Wave quantum annealers to perform quan-
tum simulations of the Kibble-Zurek mechanism (KZM)
[22,23], which predicts the kink (or defect [24]) formation
when a system crosses a phase transition point at a finite
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rate. While the theory of the KZM was originally formulated
for classical phase transitions, it has been extended to de-
scribe quantum critical dynamics [25-28]. As the dominant
paradigm to describe the universal dynamics of a quantum
phase transition, it has motivated a wide variety of experi-
mental and theoretical studies [29-32]. Laboratory tests of the
KZM in quantum platforms have been carried out pursuing
different quantum simulation approaches, e.g., using qubits to
emulate free fermion models [33-36] and via a fully digital
approach using Rydberg atoms [37].

Tests of the KZM can also be used to quantitatively assess
the performance of a quantum device. Indeed, the KZM
scaling is sensitive to, e.g., nonlinear driving schemes [38,39],
disorder [40,41], inhomogeneities in the system [42—45] and
decoherence [46—49]. The use of the KZM to assess the per-
formance of a quantum annealer was studied by Gardas et al.
[50], focusing on the one-dimensional case on two previous
generation D-Wave 2X devices, and by Weinberg et al. [51]
on a current generation D-Wave 2000Q (DW2KQ) device,
focusing on the Ising Hamiltonian on the two-dimensional
square lattice.

Here we report on extensive DW2KQ experiments for
the one-dimensional transverse-field Ising model, using two
separate realizations of the device to perform quantum sim-
ulations of the predictions of the KZM for the kink density.
We also test a recent theory for the kink density distribution
developed by one of us [52], thus probing physics beyond
the original KZM prediction of the average number of kinks
[25-28]. Unlike Gardas et al. [50], our work finds a universal
power-law scaling behavior of the average number of kinks.
We choose the one-dimensional problem because departures
from the ideal theoretical setting due to noise and other
reasons would easily destroy ordering in one dimension, and
therefore it is easy to detect the effects of imperfections in one
dimension, implying that the data would clearly reveal open
system effects. It is also an advantage of the one-dimensional
problem that we can avoid the problem of embedding of the
system on the Chimera graph of the D-Wave device [53].
Moreover, previous studies of both antiferromagnetic [54,55]
and ferromagnetic chains [56] using previous generations of
D-Wave devices obtained good agreement with open quantum
systems theory [57].

Our work establishes the power-law scaling behavior of the
average number of kinks, variance and third-order cumulant
with the timescale in which the transition is crossed. In doing
so, we provide a strategy to assess the behavior of quantum an-
nealers, and find it to be well described within the framework
of open system quantum dynamics. Our work thus provides
an experimental test of quantum critical dynamics in an open
quantum system. The universal power law scaling found in
the cumulants of the kink-number distribution shows that
signatures of universality beyond the KZM recently predicted
in isolated quantum critical systems continue to hold in the
presence of coupling to an environment, to which we provide
support by numerical computations.

This paper is organized as follows. Background on the
KZM and its generalization, the problem we study, and the
experimental methods are described in Sec. II. The empiri-
cal results on the kink density are presented and compared
with the generalized KZM theory in Sec. III, and Sec. IV

Energy [GHz]

FIG. 1. The annealing schedules on the DW2KQ quantum an-
nealers at (a) NASA Ames Research Center and (b) Burnaby. For
the actual quantum annealing processes, A(s)/2 and B(s)/2 are used
as in Eq. (1). The energy scale is converted into frequency, i.e., the
vertical axis is E /h, where h is the Planck constant.

similarly presents the kink distribution results. In Sec. V, we
address the question of whether classical models suffice to
explain our empirical results. We do this by modeling the kink
distribution using the classical Boltzmann distribution of the
Ising spin chain, and by comparing the empirical results to the
predictions of the classical spin-vector Monte Carlo model.
We close the paper with a discussion in Sec. VI, including
a comparison with Refs. [50,51], and conclude in Sec. VIIL.
Additional materials are presented in Appendixes.

II. THEORETICAL AND EXPERIMENTAL BACKGROUND

We first describe the problem to be studied, and then
explain the predictions of the KZM, followed by our exper-
imental methods for testing the theoretical predictions.

A. The problem studied

The target system of our investigation is the one-
dimensional transverse-field Ising model defined and parame-
terized by the Hamiltonian,

L

L-1
ol + @ > Joiot,,, (1)
i=1 i=1
where L is the chain length (system size), s = ¢ /t,, with the
time ¢t € [0, t,] and the final time ¢ = ¢, being the annealing
time. The absolute value of the interaction strength is chosen
to be |J| = 1, and as explained below we consider both the
ferromagnetic (J < 0) and antiferromagnetic (J > 0) cases.
We adopt a free boundary condition as indicated by the upper
bound L — 1 in Eq. (1). Effects of the choice of a specific
boundary condition are of the order of 1/L, which is much
smaller than the statistical fluctuations in the data shown
below. The functional forms of the annealing schedules A(s)
and B(s) are shown in Fig. 1.

This one-dimensional model has a second-order quantum
phase transition at A(s) = B(s) for a time-independent sys-
tem, i.e., when s is regarded as a fixed parameter [58]. The
system is in the ferromagnetic phase when A(s) < B(s) and
is paramagnetic for A(s) > B(s). The system is initially in the
paramagnetic phase since A(0) > 0 and B(0) ~ 0 as seen in
Fig. 1. The rate of change of the annealing schedules A(s) and
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B(s) is finite, and the system does not necessarily follow the
instantaneous ground state even when the initial condition is
chosen to be the ground state of the initial Hamiltonian H (0).
Thus, at the end of the annealing schedule, when A(1) =0
and B(1) > 0, the system is generally in an excited state
with a number of kinks (defects) separating ferromagnetic
domains (regions with aligned neighboring spins) when J <
0, or kinks separating antiferromagnetic domains (regions
with anti-aligned neighboring spins) when J > 0.

B. Kibble-Zurek mechanism and its extension

The Kibble-Zurek mechanism [28] describes the process
of kink formation assuming that the ratio of the parameters
A(s) and B(s) changes linearly as a function of time near the
critical point A(s)/B(s) = 1. This assumption of linear time
dependence in the vicinity of the critical point is reasonable
because any analytical function can be expanded to linear
order and we are interested in the system behavior near
the critical point. Nonanalytic driving schedules can also be
accounted for within the KZM framework [38,39,45].

Let us state the main theoretical predictions of the KZM
and its generalization to be tested on the D-Wave device.

(1) The kink density pkink, the number of kinks divided by
the system size, follows the formula

dv

Pkink X taim s (2)
where d is the spatial dimension, v is the critical exponent

for the correlation length, and z is the dynamical critical
exponent. In our case d = v = z = 1, and thus,

Prink OC1a 2. (3)

(2) The gth cumulant «, of the distribution function of
the number of kinks P(n), divided by the average «; = (n),
is independent of the annealing time. In particular, for the
one-dimensional transverse-field Ising model, the second and
third cumulants satisfy

© o V2~0.586,

K1

K'; ]2 8

B4 21 % ~o0134 4
K1 ﬁ \/§ ()

(3) Since the third and higher-order cumulants are small
relative to the first- and second-order ones, the distribution
function can be well approximated by a Gaussian distribution

(n—(n)*

vl ]
—exp| —— .  (5)
22 — ﬁ)(m 22 - ﬁ)(n)

Below we briefly describe how these formulas are derived
based on Refs. [22,28] for item 1, and on Ref. [36] (its
Supplementary Note 2 in particular) as well as on Ref. [52]
for items 2 and 3, to provide pertinent physical background
for our study. Readers interested only in the results can skip
to Sec. IIC.

Second-order continuous phase transitions are character-
ized by the divergence of the correlation length £ and the re-
laxation time t at the critical point. Specifically, as a function
of the difference between the value of the control parameter

P(n) =

A and its critical value A., both quantities £ and t exhibit a
power-law behavior

& =2&olel™",

where ¢ = (A — A.)/A., and &) and 7 are constants. The di-
vergence of the relaxation time introduces a separation of time
scales and allows one to describe the crossing of the phase
transition as a sequence of stages. In the first stage, far from
criticality where || is not very small, the relaxation time is not
large and system follows the instantaneous equilibrium state,
the ground state in the context of quantum phase transition
at zero temperature. The system evolves adiabatically. Then,
in the second stage, as |¢| becomes small, the relaxation time
grows rapidly and the state of the system has no time to relax
to the ground state, and the system becomes effectively frozen.
As the parameter further changes, the system enters the final
third stage, and |¢| again becomes large, thus the dynamics be-
comes adiabatic again. This is the so-called adiabatic-impulse
approximation [28,59].

The key testable prediction of the KZM is that, after
crossing the phase transition in the second stage, the average
length scale in which the order-parameter is uniform is set
by the equilibrium value of the correlation length when the
system unfreezes at the point where the third stage is reached.

To formulate this idea quantitatively, consider a driving
scheme such that the distance to the critical point varies
linearly in time according to ¢ = (¢ —#.)/t, on a timescale
t., where . denotes the instant when the system parameters
cross the critical point. Equating the instantaneous equilib-
rium relaxation time t(f) to f —t,, the time elapsed after
crossing the critical point, yields the freeze-out time scale
f —t. = (zot2")"/1+") | which yields the average correlation
length as & = £(7) = &(t,/70)"/"+%"). A kink may form at the
interface between different domains of size &. Then the kink
density is given by the inverse of the volume £¢ and scales as
a universal powerlaw [22,23]

1 70 %
Pkink = é_d ¢’ (Z) , )

for a system in d spatial dimensions. This is Eq. (2). When
the system size is LY, the average number of kinks is thus
(n) = primkL?.

This picture applies both to classical and quantum phase
transitions. In the quantum case, the relaxation time is iden-
tified with the inverse of the energy gap between the ground
state and the first excited state that closes at the critical point,
and the KZM describes the critical dynamics as well [25-28].

The above physical picture is quite generic and the result
is valid independent of the details of the system Hamiltonian.
If we restrict ourselves to the quantum phase transition of the
one-dimensional transverse-field Ising model, more detailed
information can be extracted on the distribution of kink num-
bers as follows [36,52].

The one-dimensional transverse-field Ising model with a
periodic boundary can be solved (diagonalized) under peri-
odic boundary condition by the Jordan-Wigner transformation
[58], which rewrites the spin operators in terms of spin-
less fermion operators. Kinks appear in pairs under periodic
boundary, and we therefore consider the number of kink pairs,

T =T19le|™, (6)
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which is described by the operator (for the ferromagnetic case)

L

1
N=13 (1=0joiy) =) v ®)

j=1 k>0

where L is the total number of sites and y,j and y; are cre-
ation and annihilation operators of fermions. The distribution
function of kink pairs is defined by

P(n) = Tr(p §(N —n)), ®

where p is the density matrix for the state after annealing.
It helps to use the characteristic function P(6), the Fourier
transform,

1 [~ - ,
P(n) = —/ do P©)e ™. (10)
27 J_
Since kink pairs with different wave numbers are independent,
the characteristic function is decomposed into a product

P@O) =[]0+ (" = Dpsl, (1)
k=0
where
i = (y ye) = eI, (12)

We have used the Landau-Zener formula for the creation of a
kink pair. Equation (11) indicates that the number of kink pairs
follows the Poisson binomial distribution. Then the cumulants
are easily evaluated, the first three of which are

Bi=(m=Y p0 (13a)
k=0
Br =) pu(l = po), (13b)
k>0
By =Y pi(l = p)(1 —2py). (13¢)
k=0

In the long-time scale limit ¢, > 7/ (273J), the first cumu-
lant (the average), reduces to

L T
2 0
k=0

- f Sakermen — L[ B gy
21 0 vi% 2Jtu

This is consistent with Eq. (3) of the KZM. Similarly, the
second and third cumulants are evaluated to yield

1
I?z = (1 — ﬁ)i&], (153)
Ry = <l—i+i)k (15b)
3= \/E ﬁ 1-

The cumulants «, for the number of kinks can be derived
from the above cumulants for the number of kink pairs as k, =
29k,

L h
S 2w\ 201,

K1 = I?l (168.)

Ky = 4K2 = (2 — \/E)K], (16b)
K’; —_— K% _— ‘l —_—— + — K .

These give Eq. (4).

The Gaussian distribution Eq. (5) follows from setting to
zero all cumulants «, with g > 3, a reasonable approximation
as their value is much smaller than «; and «;; see [36,52,60].

C. Experimental methods

We used two different DW2KQ devices, one located at
the NASA Ames Research Center and the other at D-Wave
Systems, Inc. in Burnaby. The latter is a lower-noise version
of the former (for documentation see Ref. [61]). The D-
Wave Chimera graph comprises £ x £ unit cells of sparsely
connected Kj 4 bipartite graphs, for a total of 8¢2 qubits, each
coupled to up to 6 other qubits. We chose four chain lengths:
L =50, 200, 500, and 800. For each size we generated 200
instances of configurations of the one-dimensional chain with
a free boundary by self-avoiding random walks starting from
a randomly selected qubit on the Chimera graph. For each of
these 200 instances, we carried out 1000 annealing cycles at a
given annealing time #,. Thus, we generated 200 000 samples
for each t, and L, and recorded the distribution (histogram)
of the kink density. The annealing time 7, ranges from 1us to
2ms, for a total of 33 values.

We tested three cases of the coupling parameter J: ferro-
magnetic (J = —1), antiferromagnetic (/ = 1), and randomly
chosen gauges. The latter starts from ferromagnetic inter-
actions, then half of the qubits are chosen randomly and
the signs of their interactions are flipped. This prescription
is meant to cancel (unintended, device-specific) local biases
toward a specific direction at each qubit. As shown in Ap-
pendix A, the antiferromagnetic and random-gauge cases give
almost identical results, while the ferromagnetic case tends to
exhibit unstable behavior. We therefore show results for the
antiferromagnetic case in the main text.

III. AVERAGE KINK DENSITY

The average kink density as a function of the annealing
time 7, and for different sizes L is shown in Fig. 2(a) for
the NASA device and Fig. 2(b) for the Burnaby device. We
analyze the data for the time range ¢, < 100 us because the
data beyond 100 pus show different, less stable, behavior.
Likely reasons include the effect of 1/ f noise, which becomes
apparent at long annealing times, and a significant increase
in the persistent current for #, > 100 s [61], which reduces
qubit coherence. See Appendix A for data beyond 100 s and
a more detailed discussion.

The KZM assumes that the number of kinks is at least
1 on average, which means that the inequality pyinx > 1/L
should hold. We therefore also exclude the data for L = 50
from the analysis because the kink density is too low: we
find empirically (see Fig. 2) that pxinx < 1/L = 0.02, which
implies that the KZM does not apply.

A first qualitative observation from Fig. 2 is that the kink
density obeys a power law. It is also clearly seen that the kink
density is lower on the Burnaby device in Fig. 2(b) than on the
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(2)

Pkink

L=5 ——

107 | L =200 E
I L =500 —e— 1
L =800 —=—

10° 10! 10
t, [ps]

(b)

Pkink

10
t, [ns]

FIG. 2. Kink density as a function of annealing time (log-log scale). Error bars indicate the 68% confidence interval. (a) Data from the C16
solver on the DW2KQ at NASA. (b) Data from the D_2000Q_5 solver on the DW2KQ in Burnaby. Data are averaged over 200 000 samples at

each value of 7,.

NASA device in Fig. 2(a) for the same parameter values L and
t,. This is in accordance with the “low-noise” characteristics
of the Burnaby device [61].

Delving deeper into quantitative aspects, we fit the data to
the power law

Piink < 1, a7

and evaluate the exponent «. The result is given in Table 1.

Apart from the case of L = 50, the exponent ¢ is almost
independent of the chain length L. The NASA device has
o ~ 0.20 (L = 800) and the Burnaby device has o = 0.34
(L = 800). These values are far from the KZM prediction
of 0.5 in Eq. (3). Preliminary numerical simulations under
unitary dynamics suggest that the value of o may not be
attributed to the nonlinear functional form of A(s) and B(s).
As the schedules can be effectively linearized, corrections to
KZM behavior resulting from nonlinear passage across the
critical point [38,39] may be ruled out. It is thus reasonable
to suspect that the difference originates from deviations from
unitary dynamics that are not accounted for in the theory.

A natural first step is therefore to incorporate the coupling
of qubits to the environment, for which we use the standard
spin-boson model with the following Hamiltonian [62]:

How = H(s)+ Y _(Ci(a), + ai)of + hoal aii), (18)
ik
where H(s) is the original Hamiltonian of Eq. (1). Indepen-

dent bosons (harmonic oscillators) with frequency w; ; couple
to the z component of the ith Pauli matrix. The coefficient Cy

TABLE I. Results from D-Wave device runs for the exponent ¢
of the power-law scaling describing the decay rate of the kink density
as shown in Fig. 2.

L NASA Burnaby

50 0.347 £ 0.008 0.587 £0.016
200 0.216 £ 0.003 0.363 £ 0.003
500 0.201 £ 0.003 0.320 £ 0.005
800 0.204 £ 0.002 0.335 £ 0.003

is assumed to have an Ohmic spectrum,

J(w) = ‘;—’; Zc,fa(w —w) =2mnw (0 <w.) (19)

1

with the sharp cutoff frequency w. and the coupling constant

The Ohmic spin-boson approach has been successfully
used many times in modeling the dynamics of open system
quantum annealing [63—72]. In particular, Ref. [56] reported
a closely related open quantum systems study of transverse
field Ising spin chains with alternating sectors of strong/weak
ferromagnetic coupling, but this study did not include a com-
parison to KZM theory.

Ground-state (time-independent) properties of the above
model have already been studied by quantum Monte Carlo
simulations [73] and renormalization group methods [74,75].
The conclusion of these papers is that the quantum phase
transition persists under a bosonic environment and the val-
ues of the critical exponents change from v = z = 1 for the
isolated system to v =0.64 and z = 1.99 for the system
coupled to a zero temperature bosonic environment. Note the
sharp contrast with other models of decoherence which do not
alter the bare critical exponents and lead to environmentally
induced heating [46-48].

The modified values of the critical exponents v and z are
independent of the coupling constant n > 0 in Eq. (19). We
assume that the KZM applies to the present open system
case because KZM theory is developed based only on the
divergence of the relaxation time near a critical point, without
recourse to a microscopic Hamiltonian. We therefore apply
the generic Eq. (7) to find the exponent v/(1 4 zv) = 0.28,
about half of the isolated case of 0.5 in Eq. (3). Although this
open-system theoretical value of 0.28 is still different from
the experimental values of 0.20 (NASA) and 0.34 (Burnaby),
the spin-boson model of Eq. (18) significantly reduces the
difference between theory and experiment, in comparison
with the closed-system theoretical value of 0.5 as illustrated
in Fig. 3.

It is therefore reasonable to conclude that the Hamilto-
nian Eq. (18) captures, to a first approximation, the essential
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D(N) T(0) D(B) C T(C)

0 0.20 0.28 0.34 0.48 0.5 @

FIG. 3. The values of the decay exponent « by various methods.
D(N): Data from DW2K at NASA. T(O): Open-system theory. D(B):
Data from DW2K at Burnaby. C: Classical SVMC (Sec. V B). T(C):
Closed-system theory.

features of the behavior of the D-Wave devices near the
critical point of the one-dimensional transverse-field Ising
model embedded on the Chimera graph. To achieve more pre-
cise quantitative agreement between theory and experiment,
we would need to incorporate additional elements that have
not been taken into account so far. Such may include (i)
finite temperature effects not considered in Refs. [73-75]; (ii)
transient phenomena due to the finite annealing time; and (iii)
control errors, i.e., imprecision in the parameter setting in the
devices [15].

The impacts of the first two items (i) and (ii) listed above
were studied by some of us in Refs. [76,77]. Extensive numer-
ical computations using the time-evolving block decimation
(TEBD) method, as well as infinite-TEBD (iTEBD) combined
with the quasi-adiabatic propagator path integral (QUAPI) re-
veal that, as shown in Fig. 4, (a) the kink density approaches a
temperature-dependent constant as 7, becomes very large; (b)
the kink density may behave nonmonotonically as a function
of 7, in the transient time range if the temperature is finite; (c)
the effective exponent « in pyinx X £,~* around a given time ¢,
depends on the coupling strength even when the temperature
is zero.

More precisely, Fig. 4(a) shows the temperature depen-
dence of pyin for a fixed coupling strength 1 obtained by
iTEBD with QUAPI. One can see that the curve of pyink
for finite temperature deviates upwards from that of the zero

(a)

10° T T

Pkink

10°

10°

temperature case with increasing #, and the deviation is more
pronounced for higher temperatures. The results for the tem-
peratures 7 = 1, 2, and 5 [in units of B(1)/2kg] imply that
Pkink behaves nonmonotonically with ¢z, and would approach
the thermal average, [1 — tanh(B(1)/2kgT)]/2, as t, — oo.
Since our data in Fig. 2 do not show an approach to a
constant, we may conclude that temperature effects in the
form considered in Ref. [76] have not come into play in our
data for the present range of annealing time.'

Regarding the observation (c), Fig. 4(b) shows the de-
pendence of the slope o on the coupling strength 1 at zero
temperature. Note the transient effects, which increase in mag-
nitude with 5, and also extend to larger #,. We would expect
the exponent « to approach a constant independent of the
coupling constant for sufficiently large ¢,, if we assume con-
sistency with the equilibrium computations in Refs. [73-75],
which suggest a universal exponent o = (0.28 independent of
n as mentioned above. We suspect that the deviations of our
experimental result 0.20 and 0.34 for the exponent « from
the theoretical equilibrium value of 0.28 are at least in part a
result of transient effects. These effects are difficult to analyze
in a precise way because the effective exponent changes as
a function of the coupling constant 1 and the annealing time
range, and is therefore nonuniversal as seen in Fig. 4(b) and
Fig. 1 of Ref. [76].

Noise amplitude and control errors may qualitatively ex-
plain the difference between the NASA and Burnaby devices.
The latter is a newer, low-noise model, with lower 1/ f noise
amplitude and more accurate control [61]. Better control in the
specification of system parameters, the interaction strength J
between neighboring qubits as well as the local longitudinal
field (which is nominally zero in the present problem), results

ISee Sec. V A for the evaluation of the effective temperature in a
different sense.

(b)

10° T T

Pkink
=

o 0 (closed)
10!
ta [20/B(1)]

FIG. 4. Numerically computed kink density as a function of annealing time (log-log scale), using iTEBD with QUAPI. A linear annealing
schedule, Ay, (s)/2 = 1 — s and By, (s)/2 = s, is employed here, where the unit of energy is given by B(1)/2 with B(1) provided in Fig. 1. The
Ohmic cutoff frequency is w. = 5 [B(1)/2#], the Trotter time slice is At = 0.05 [27i/B(1)], the cutoff memory time is 7. = 10 [2/B(1)], and
the bond dimension is up to 128. (a) Results for various temperatures and a fixed coupling strength n = 0.08. Dashed horizontal lines show
the thermal expectation values at temperatures 7 = 5, 2, and 1 from the top. The unit of temperature is given by B(1)/2ks. (b) Results for zero
temperature and various coupling strengths. The rightmost eight data points for each coupling strength are fitted with the power law, Eq. (17),
and the corresponding exponent « is provided above each data set shown.
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FIG. 5. Cumulants of gth-order «, of the kink distribution. The chain length is L = 800. Error bars indicate the 68% confidence interval.
Power-law scaling of cumulants from the first-order «; to third-order «3 as functions of the annealing time #, on (a) the DW2KQ at NASA and
(b) the DW2KQ in Burnaby. Ratios «,/«; and «3/«; of cumulants on (c) the DW2KQ at NASA and (d) the DW2KQ in Burnaby. The solid
lines are optimized fits to constants, x,/k; =~ 0.61 and «3/k; ~ 0.23 for the NASA case, and k,/x; = 0.63 and «3/k; = 0.25 for the Burnaby

case.

in less randomness in the problem parameters, which should
lead to a more rapid decrease of the kink density as a function
of annealing time on the Burnaby device, meaning a larger
exponent «. Moreover, the less noisy Burnaby device has a
value closer to that of the closed-system value, and so it stands
to reason that the fact that the spin-boson value is intermediate
between the noisier NASA device and the Burnaby device is a
reflection of the fact that the former device is more closely
described as an open system than the latter. The extracted
exponents of 0.34 (Burnaby) and 0.20 (NASA) are consistent
with this picture.

Note that randomness in J from location to location nec-
essarily induces more kinks and eventually leads to a very
slow inverse-logarithmic law, instead of a polynomial decay
[40,41,78].

IV. KINK DISTRIBUTION

We collected statistics of the kink density from 200 000
samples for each 7, at L = 800 as a test of the distribu-
tion function theory developed by one of us as described
in Sec. IIB and Ref. [52]. See also Ref. [36]. One of the
important predictions of these references is that the ratio of the

qth cumulant «, (g > 2) to the first cumulant k1, the average,
is independent of the annealing time 7, [Eq. (4)].

Figure 5 shows the 7, dependence of three cumulants
[panels (a) and (b) for the NASA and Burnaby devices,
respectively] and the ratios k,/k; and k3/k; [panels (c) and
(d) for the NASA and Burnaby devices, respectively]. With
the exception of «3/k; for the NASA device, these ratios
indeed appear to be independent of #,, as predicted. The
experimental values are extracted as k; /k; &~ 0.61 — 0.63 and
k3/k1 ~ 0.23 — 0.25. The theoretical predictions are 0.586
and 0.134, respectively, so the former ratio is closer to the
theoretical prediction than the latter. A possible reason is the
large uncertainty in statistics as reflected in the large error bars
in Figure 5(c) and (d) for x3/k;. Indeed, the lower ends of the
error bars of this ratio lie around 0.1, and the theoretically
predicted value of 0.134 is within the error bars. Apart from
this subtlety, the experimental data are consistent with the
theory presented in Ref. [52] (see also Refs. [36,79]).

Since the third and higher-order cumulants are much
smaller than the second-order cumulant, the distribution is
well approximated by the Gaussian distribution function (5).
Figure 6 shows the distributions at three values of #,. All
three cases are very well approximated by this Gaussian, as
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FIG. 6. Histograms of the number of kinks observed on (a) the
DW2KQ at NASA and (b) the DW2KQ in Burnaby. The chain
length is L = 800. From right to left, the annealing times ¢, are
1, 10, 100 us, respectively. Solid, dashed, and dotted lines are the
Gaussian distributions of Eq. (5).

drawn in solid, dashed, and dotted lines.? Additional data are
presented in Appendix B.

It is remarkable that we find such strong agreement be-
tween the closed-system quantum theory of Ref. [52] and
the experimental results for the kink decay, cumulants, and
distribution, given that the experiment is conducted on devices
whose behavior is described by open-system dynamics as
discussed in the previous section. This suggests that these
features are robust aspects of the kink statistics that lie beyond
the KZM theory. This is the first time that a quantum simulator
predicted a hitherto unknown phenomenon. To confirm the re-
liability of this result, we have conducted extensive numerical
computations using iTEBD with QUAPI. The result is shown

The distribution is close to Gaussian but is not exactly so due to
the small but nonvanishing value of the third cumulant.

Iig/lﬁ

-9 n:()
= =05 T=0
— 2-V2

0.1 e E—
1 10 100

ta 21/ B(1)]

FIG. 7. The cumulant ratio k,/k; as a function of the annealing
time computed by iTEBD with QUAPI. The annealing schedule and
other parameters are the same as in Fig. 4. 5 is the strength of the
spin-boson coupling. The solid horizontal line denotes «,/k; = 2 —
V2, which is the value theoretically predicted for an isolated (closed)
system.

in Fig. 7. It is clearly seen that the ratio x,/k; is constant
as a function of the annealing time and the constant value is
independent of whether or not the system is coupled to the
environment. Although it is difficult to compute cumulants
beyond second order due to the large number of terms that
must be summed, the present result supports the experimental
finding that the theoretical prediction in Ref. [52] holds be-
yond its scope of an isolated system, at least for «;/k;.

V. TESTS OF CLASSICALITY

In this section, we address whether our empirical results
and reasonable agreement with a quantum theory of the KZM
can also be understood using a purely classical approach. We
first consider a Boltzmann distribution of the kink density of
the classical Ising chain, then the classical spin-vector Monte
Carlo model [80], which has been successfully applied to at
least partially describe the outcomes of experiments using
the D-Wave devices in past studies [8,13,56,66,67,71,81],
and also in recent theoretical studies of quantum annealing
[82,83].

A. Boltzmann distribution and effective temperature
of the kink distribution

A question of significant interest, e.g., due to the potential
for quantum-assisted classical machine learning applications
of quantum annealers as Boltzmann machines [84-86], is
whether the kink distribution is thermal and well described
by a Boltzmann distribution. Various previous studies have
found mixed results in terms of trying to fit such thermal
distributions to empirical quantum annealing data, an issue
that is understood in terms of the fact that the distribution
freezes once quantum fluctuations cease at low (but nonzero)
values of the transverse field [69,86—-88]. The associated ef-
fective temperature is a relevant metric for quantifying how
noisy one quantum annealer is relative to another. Given the
result we found in Sec. III, that the Burnaby device generates
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fewer kinks than the NASA device, we expect the former
to exhibit a lower effective temperature. In this section, we
address these issues, and provide an assessment of how well a
trivial classical model matches the empirical kink distribution
we have observed.

Let the empirical distribution be denoted by P(n;1,), where
n is the number of kinks, and let Q(n; 8’) denote the Boltz-
mann distribution for the classical Ising model of a chain of
length L. The latter is easily shown to be

e—BEm
Z 9
where g(n) = (1‘;1) is the degeneracy of n kinks, Z = (ef +

e #)L=1 is the partition function, E(n) = 2n+ 1 — L is the
dimensionless energy, and g’ is

_B(1) 1
T2 kT

We write B’ instead of 8 to indicate that this is a dimensionless
effective inverse temperature reflecting all noise effects, not
the inverse of the real physical temperature. B(1) is the device-
dependent value of the Ising schedule [Eq. (1)] at the end
of the anneal (at s = 1), kg is the Boltzmann constant, and
T is the physical temperature. 7 = 12.1 mK and B(1)/2 =
6.344 GHz for the NASA DW2KQ device; T = 13.5 mK and
B(1)/2 = 5.930 GHz for the DW2KQ in Burnaby.

To estimate B’, we minimize (with respect to B’) the
Kullback-Leibler (KL) divergence and the trace-norm dis-
tance between the experimental distribution and the Boltz-
mann distribution in Eq. (20). The KL divergence Dxy. and the
trace-norm Dy are defined by using the empirical distribution
P(n;t,) and Q(n, B’) as follows:

On; ) = g(n) (20)

B 2y

P(n;t,
D1 (ta) = ;Pm;m In % (22a)
1
Drx(ta) = 5 3 IPOi1a) = Q(ui )] (22b)

To obtain reliable estimates of the effective temperature,
we first minimize the KL divergence to obtain the first ap-
proximation of the effective temperature 1/8’, because the KL
divergence turns out to be robust against data fluctuations. The
B’ thus obtained is then used as the initial value in the effective
temperature estimation based on the trace norm.

Figure 8(a) shows the effective temperatures thus com-
puted for L = 800. It is clear that, as expected, the NASA
device has a larger effective temperature, 23% larger at 1, =
100 us, for example. This confirms the lower-noise aspect of
the Burnaby device. The decrease of the effective temperature
is consistent with more and more kinks being annihilated as
the annealing time is increased (as seen in Fig. 2). Indeed, the
kink density for the Boltzmann distribution is

L—1
1 o 1-1/L
Pkink = Z ;nQ(n,ﬁ )= wy (23)

and given that we know that pyn o< f,7%, we expect 1/8’
to decrease as 7, increases. Moreover, a larger o value then
corresponds to a lower value of 1/8’. As shown in Fig. 8(a),
the effective temperature B’ obtained by equating Eq. (23) to

(a)

0331 B NASA Eq.(22b) —=—
N
05 e =4 Burnaby Eq.(22b) —e—
\\ H‘Ei,
S EUE§\7
& 045 ., .
= véie_\é =i=!'-
04 [~ \’e‘\
NASA Eq.(23) * S ean
0.35 | Burnaby Eq.(23) s
| , L o
10° 10! 02
1, [ps]
(b)
0.25
Py(n3t,)
021 ON(np) —m—
Pg(nit,)
0.15 a

Op(n:f’) ——

P (n)

0.1

0.05

FIG. 8. Effective temperatures and the optimized Boltzmann
distributions on the D-Wave device. The chain length is L = 800.
(a) Effective temperature 1/8’ as a function of the annealing time
t,. Effective temperatures are obtained by equating Eq. (23) to the
D-Wave data or minimizing Eq. (22b) with respect to 8’. (b) The op-
timized Boltzmann distributions at 7, = 10 us and the best fit of the
Boltzmann distribution. Here, Py and Py are observed distributions
in the DW2KQ at NASA and Burnaby, respectively. Oy and Qg are
the Boltzmann distribution optimized for Py and Py, respectively.

the D-Wave data has almost the same value as the effective
temperature obtained by Eq. (22b).

Figure 8(b) compares the empirical data and the Boltz-
mann distribution with the optimized effective temperature at
t, = 10 us for L = 800. Although the optimized Boltzmann
distribution captures the gross shape of the kink distribution,
significant differences are apparent. This is consistent with
the fact that, as already mentioned in Sec. IV, the actual
distribution is close to Gaussian, as predicted by the quantum
KZM theory. Thus, the deviation from the purely classical
Boltzmann distribution of the kink density is to be expected.
It is, however, possible that a closer agreement would be
found with the quantum Boltzmann distribution obtained once
quantum fluctuations freeze (ats < 1), but this distribution too
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FIG. 9. Numerically computed kink density pum as a function of the dimensionless annealing time ¢, from the SVMC model (log-log
scale). The error bars indicate the 68% confidence interval. (a) SVMC simulation results using the NASA DW2KQ annealing schedule at
T = 12.1 mK. (b) SVMC simulation results using the Burnaby DW2KQ annealing schedule at 7 = 13.5 mK. Dashed straight lines are linear
fits to a power-law decay. For L = 50, the fitting range is limited from #, = 5 to #/, = 20. Contrast with the DW2KQ results shown in Fig. 2.

would not be Gaussian [69]. We thus conclude that the kink
distribution does not thermalize in accordance with equilib-
rium theory expectations, but is rather better described by the
KZM and its generalization.

Nevertheless, Fig. 8(b) indicates that the effective tem-
perature obtained from our fitting procedure can serve as a
reasonable proxy for quantifying the relative overall effect of
noise for a comparison between different quantum annealing
devices.

B. Test of a classical description by spin-vector Monte Carlo

A much more stringent model than a simple Boltzmann
distribution is the standard classical model of the D-Wave
devices, the spin-vector Monte Carlo (SVMC) model [80]. In
our SVMC simulations, we replace the operators o} and o/
by the components of a classical unit vector, sin 6; and cos 6,
respectively. The Hamiltonian is therefore written as®

B(sn)
2

A(sn)
2

H =

-1 L
Z cos 6; cos 041 — Z sin6;, 24)
i1 i=1

where s, is a parameter representing time corresponding to
the number of Monte Carlo steps, n. We choose the following
parametrization of s,:

n

- l‘o;N()

Sp (25)
where N, is the number of Monte Carlo steps necessary to
reproduce the kink density observed in the D-Wave device at
1 ps. The dimensionless parameter ¢, corresponds to the total
annealing time, such that the total number of Monte Carlo
steps is n = Nyt,, and s, = 1 at the end of a simulation. In the
present case, Ny is 1000 and 1500 for the NASA and Burnaby
devices, respectively. We use the actual NASA and Burnaby
annealing schedules depicted in Fig. 1 for comparison of the

3The coefficient of the second term is —A(s,)/2, not A(s,)/2,
following the convention of SVMC [80].

DW2KQ data with SVMC results. We first set all local angles
to 6; = w /2 and use a METROPOLIS move with the physical
temperature of each device, T = 12.1 mK for NASA and
T = 13.5 mK for Burnaby, and sequentially update each local
state 6;. After the dynamical evolution from s =0 to s = 1,
we project the final state to +1 if 0 < 6; < /2, and —1 if
/2 < 6; < . We take 1000 samples for each ¢/, for statistical
analysis.

Figure 9 shows the kink density pyinx as a function of
t/ as obtained from the SVMC simulations. The power-law
scaling seen for the D-Wave data in Fig. 2 and predicted from
the KZM theory is observed here as well, but only for short
annealing times.* For longer annealing times, the power law
breaks down and a more rapid decay of the kink-density sets
in, with the crossover point increasing with chain length L.
This is not the case for the DW2KQ results (see Appendix
B). Moreover, the exponents extracted from the power-law
regions, summarized in Table II, deviate substantially from the
DW2KQ exponents summarized in Table 1. See also Fig. 3.
It is also shown in Appendix C that the critical exponent v
assumes the value 1/2 in the SVMC model in contrast to the
corresponding quantum value of v = 1 for an isolated system

“The unit of time in SVMC is arbitrary and we should not directly
compare the data for the same values on the horizontal axes in Figs. 2
and 9.

TABLE II. Results from SVMC model simulations for the expo-
nent « of the power-law scaling describing the decay rate of the kink
density as shown in Fig. 9. Each exponent is obtained from a fit up
to the L-dependent crossover point seen in Fig. 9.

L NASA Burnaby

50 1.891 £0.158 2218 £0.236
200 0.580 £ 0.018 0.618 £ 0.021
500 0.496 £ 0.008 0.506 £ 0.007
800 0.477 £ 0.005 0.482 £ 0.006
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FIG. 10. Numerically computed cumulants of gth-order «, of the kink distribution. The chain length is L = 800. Error bars indicate the 68%
confidence interval. Solid lines are power-law fits of the cumulants from the first-order «, to third-order «3 as functions of the dimensionless
annealing time ¢, with the annealing schedule of (a) the DW2KQ at NASA at 7 = 12.1mK and (b) the DW2KQ in Burnaby at 7 = 13.5mK.
Ratios k,/x; and k3 /k; of cumulants for the annealing schedules of (c) the DW2KQ at NASA and (d) the DW2KQ in Burnaby. Solid lines are
fits to constants for the power-law decay region of the cumulants. Contrast with the DW2KQ results shown in Fig. 5.

and v = 0.66 for a system coupled to a bosonic environment
[73]. This implies that the closeness of the decay exponent o
of the classical SVMC model to the quantum closed-system
value of 0.5 is likely to be accidental.

Another noticeable difference is that the kink density
curves are all quite close, i.e., size-independent, for L > 200
for the DW2KQ results, whereas the corresponding curves
tend to differ for the SVMC simulations, with the kink density
decaying more slowly for larger chain lengths.

A further test is provided by the cumulants, shown for
SVMC in Fig. 10. The contrast with the DW2KQ data shown
in Fig. 5 is clear, with the constancy of the ratio seen there, as
predicted from generalized KZM theory, weaker in Fig. 10.
We furthermore provide fits to the Gaussian distribution
predicted by this theory to the SVMC simulation results in
Fig. 11. Given the smallness of the third-order cumulants,
the Gaussian fits are unsurprisingly quite good, though not as
good as to the DW2KQ data, shown in Fig. 6.

Additional results for SVMC at the higher (and hence
more classical) simulation temperature of 50 mK are provided
in Appendix D. The overall trends are the same as those
seen in Figs. 9-11, but the agreement with the predictions of
generalized KZM theory is in fact closer than for the lower
temperature simulations above. In particular, agreement with

the power-law decay predictions for the first cumulant extend
to larger ¢/, values, as does the constancy of the cumulant ra-
tios. The extracted decay exponent « is listed in Table III. The
exponent o = (.44 is closer to the experimental value 0.20
(NASA)/0.34(Burnaby) than the lower-temperature exponent
a = 0.48 is, but the quantum-theoretical prediction 0.28 by
the KZM is much closer to the experimental result. One
noteworthy qualitative difference is that for sufficiently large
annealing times, the SVMC kink density deviates downward

TABLEIII. Results from SVMC model simulations at 50 mK for
the exponent o of the power-law scaling describing the decay rate
of the kink density as shown in Fig. 16. Each exponent is obtained
from a fit up to the L-dependent crossover point seen in Fig. 16 of
Appendix D.

L NASA Burnaby

50 1.472 £ 0.134 1.209 £ 0.084
200 0.525 £ 0.012 0.528 £ 0.011
500 0.450 £ 0.003 0.455 £ 0.004
800 0.437 £ 0.002 0.441 £ 0.003
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FIG. 11. Histograms of the number of kinks computed using
the SVMC model with the annealing schedule of (a) the DW2KQ
at NASA at T =12.1 mK and (b) the DW2KQ in Burnaby at
T = 13.5 mK. The chain length is L = 800. From right to left, the
annealing times ¢, are 1, 10, 100 us, respectively. Solid, dashed, and
dotted lines are the Gaussian distributions of Eq. (5). Contrast with
the DW2KQ results shown in Fig. 6.

from the power law (fewer kinks), while in the D-Wave case
it deviates upward (more kinks).

Finally, we also analyzed the D-Wave and SVMC data
by computing their trace-norm distance from the Boltzmann
distribution. Here the goal is to test the prediction of the adi-
abatic theorem for open quantum systems, that this distance
decreases following a power law as a function of time 7,
for sufficiently large 7, [89]. Figures 12(a) and 12(b) show
the result for L = 800. We computed the trace-norm distance
according to Eq. (22b), which uses the optimized Boltzmann
distribution Q(n; 8’) in Eq. (20), and the kink distributions of
D-Wave and the SVMC simulations as empirical distributions
P(n). We fixed B’ of Q(n;B’) to that already obtained at
t, = 100 us (D-Wave) or ¢, = 100 (SVMC) because we are
interested in how the trace-norm distance approaches the
Boltzmann distribution at this annealing time, the largest
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FIG. 12. Trace-norm distance between the kink density of the
D-Wave device or SVMC simulations and the Boltzmann distribution
with the same ', chosen such that the distances are minimized at
t, = 100 us. The chain length is L = 800. The solid black lines
are exponentials, D o e 7%, fitted to the SVMC data. The dot-
ted lines are polynomials, D o ¢, 7, fitted to the D-Wave data for
t, € [30, 100] ws using (a) the NASA and (b) Burnaby annealing
schedules.

reliable value available to us (see Appendix A). It is seen
from Fig. 12 that the decrease of the trace-norm distance of
SVMLC fits an exponential (solid line), while the behavior of
the D-Wave is closer to a power law for sufficiently large
t, although the difference is not large. Thus it is reasonable
to conclude that the D-Wave results are in closer agreement
with the adiabatic theorem for open quantum systems than the
classical SVMC simulation results.

Given all the discrepancies we have found, it is reasonable
to conclude that the SVMC model does not explain the
behavior of the DW2KQ devices reported here.

VI. DISCUSSION

We have reported on extensive experiments for the one-
dimensional transverse-field Ising model performed using
the NASA and low-noise Burnaby DW2KQ devices. We
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demonstrated that the kink density decays in a power law
;% with the annealing time f,, in qualitative agreement with
the theoretical prediction of the KZM. In more detail, we
found that the exponent « describing the rate of power-
law decay differs from the KZM prediction derived under
the assumption of an isolated, closed quantum system. The
difference between the theoretical value of @ = 0.5 (which,
coincidentally, is close to the outcome of the classical SVMC
model as well), and the empirical values of @ = 0.20 (NASA)
and o = 0.34 (Burnaby), can be understood to a first ap-
proximation by modeling the coupling of the system to a
bosonic environment with an Ohmic spectral density, which
reduces the theoretical value to o = 0.28. Although it is
difficult to quantitatively explain the remaining discrepancy,
it is reasonable to suppose that it originates in other factors,
which lead to a nonuniversal value of the exponent, such as
parameter control errors, and transient effects due to short
annealing times. Indeed, the larger exponent (a faster decrease
of the kink density) of the Burnaby device than the NASA
device is consistent with the lower-noise characteristics of the
former.

The lower noise aspect of the Burnaby device was further
verified in our study by computing the effective temperature
of the best-fit Boltzmann distribution at the end of the anneal,
which shows that the effective temperature is about 23%
higher on the NASA device. Note that this effective temper-
ature reflects the combined effects of the dilution refrigerator
temperature (which is in fact slightly higher for the Burnaby
device) and a wide range of other noise sources including
coupling to the environment and control errors.

Related work was reported by Gardas et al. [50] on the pre-
vious generation D-Wave 2X devices, at Los Alamos National
Laboratory and in Burnaby. They also found a power-law
decay of the kink density but the value of the exponent « de-
pended strongly on experimental conditions such as the choice
of the device and the sign of interactions (ferromagnetic
or antiferromagnetic). The values reported range from o =
0.24 to 1.31, and they left the explanation for further work
after listing several possible options. In contrast, our work
quite definitively establishes that quantum simulation using
the newer DW2KQ devices is capable of demonstrating and
probing the KZM and its generalization, in particular, using
the lower-noise version in Burnaby with the DW_2000Q_5
solver.

Other closely related work is the recent experiment prob-
ing the two-dimensional transverse-field Ising model on the
square lattice by Weinberg et al. [51], which demonstrated
nonmonotonicity in the kink density as a function of the
annealing time #,. In the short annealing time regime, the kink
density decreases as a function of #,, as in our case. The value
of the exponent they found in this shorter time range, o =
0.74, is close to the theoretical value for an isolated system
in two dimensions, & = 0.77. In contrast, for long annealing
times, the kink density increases as #, increases. This kind
of behavior is often referred to as anti-Kibble-Zurek scaling
and can result from environmentally induced heating [48,49].
Weinberg et al. also attribute this latter behavior to the effects
of noise, including thermal fluctuations. Indeed, numerical
calculations for the one-dimensional system shown in Fig. 4

and presented in Ref. [51] as well as in Refs. [46,76] show that
the kink density can be nonmonotonic if the temperature is
finite. A possible reason that our experiment did not find such
nonmonotonicity in the range #, < 100 us is that this anneal-
ing time is too short for the temperature effects to appear in the
one-dimensional problem. Our data in the range of very long
annealing times up to 2000 us show nonmonotonicity in some
cases and possibly reflect thermal and other deviations from
the ideal quantum simulation, as discussed in Appendix A.
We excluded this time range from our analysis since the data
appears unstable with large uncertainties. In the short-time
region of the two-dimensional experiment of Ref. [51] where
the KZM is likely to apply, the system seems to be much
less susceptible to noise and the exponent « is close to the
theoretical value of an ideal, isolated system as mentioned
above. These observations suggest that how noise affects the
system behavior strongly depends on the problem type as well
as on the annealing time range.

We further investigated the distribution of the kink den-
sity at the end of the anneal, which encodes signatures of
universality beyond the original predictions of KZM theory.
We found agreement with the theoretical prediction that the
ratio of the second and higher-order cumulants «, (g > 2) to
the first-order cumulant «; is independent of the annealing
time ¢, [52]. We also found very good agreement with the
prediction of a Gaussian distribution of the kink density. This
agreement with a quantum theory constructed for a closed,
isolated system suggests that these are robust features that
remain largely intact even in the presence of coupling to an
environment. Extensive numerical computations using iTEBD
with QUAPI support this conclusion. In the classical KZM, it
is indeed the case that the constancy of cumulant ratios is a
robust feature [79], but a generalization of this classical theory
to the quantum case is nontrivial.

Given the history of challenges via classical models to
experiments involving the D-Wave devices [80,90,91], and
their rebuttals [65-68,71,92-94], we tested whether classical
models alternatively explain the experimental data as well.
We first tried a simple fit to a Boltzmann distribution but did
not find satisfactory agreement. We also tried the standard
classical limit of the D-Wave device, the spin-vector Monte
Carlo model [80] and found that the quantum theory of
the generalized KZM provides better qualitative as well as
quantitative agreement.

The two DW2KQ devices we tested therefore serve to
a good approximation as quantum simulators of the one-
dimensional transverse-field Ising model under the influence
of a dephasing Ohmic bosonic environment. These bosons
do not represent thermal effects because we have observed
neither an approach of the kink density to a constant, nor
a nonmonotonic behavior of the kink density as a function
of annealing time (over the annealing time range where we
have confidence in the reliability of the data). Instead, the
bosons possibly correspond to dynamical fluctuations of the
normal current flowing through Josephson junctions [95]. It is
a difficult but interesting future direction of work to identify
the nature of these fluctuations and to try to find a way to
reduce them for better agreement with the closed quantum
system limit.
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VII. CONCLUSION

In the wake of a phase transition, topological defects
form. The Kibble-Zurek mechanism predicts that the den-
sity of defects scales as a universal power-law with the
time scale used to cross the transition. We have shown
that this prediction can be tested on quantum annealers by
using them for analog quantum simulation, i.e., as a test-
bed for nonequilibrium statistical mechanics. Specifically, our
work has tested the Kibble-Zurek mechanism in the one-
dimensional transverse-field Ising model. Our analysis of the
quantum annealer data shows that the behavior of the devices
is consistent with the implementation of this model coupled
to a bosonic environment. Our work thus provides experi-
mental evidence of universal Kibble-Zurek scaling in an open
quantum system.

By probing the full counting statistics of topological de-
fects (kinks), we furthermore established signatures of uni-
versality beyond the original prediction of the Kibble-Zurek
scaling, which is focused on the average kink number. In
particular, we found that the power-law scaling with the
annealing time of the average kink number is shared by its
variance and the third cumulant. Our experimental and nu-
merical results thus indicate that the universal scaling recently
predicted for the cumulants of the kink number distribution in
an isolated quantum critical system also holds under open-
system quantum dynamics,
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APPENDIX A: DEPENDENCE OF THE KINK DENSITY ON
THE INTERACTION TYPE AND ANNEALING TIME

Figure 13 shows the kink density obtained for three types
of interactions up to 7, = 2000 us on the NASA DW2KQ
device. Figure 13(a) displays the case of ferromagnetic in-
teractions (J = —1), (b) antiferromagnetic (J = 1), and (c)
random gauge. In the latter case we first set all the interactions
to be ferromagnetic, randomly choose L/2 qubits, and change
the sign of their interactions with their two nearest neighbors.
In one dimension with free boundaries, these three cases are
theoretically equivalent and the kink density should behave
identically.

Figures 13(a)-13(c) clearly indicate that the differences
are small for the short-time regime ¢, < 100 us. Beyond this
regime, marked deviations emerge in the ferromagnetic case,
whereas the antiferromagnetic and random gauge data remain
close even up to the longest annealing time #, = 2000 ws. This
difference may imply the presence of a systematic bias toward
ferromagnetic states in the D-Wave devices, which becomes
prominent at larger annealing times. Antiferromagnetic and
random-gauge interactions may be interpreted to have caused
cancellations of such a bias. For these reasons, we choose to
use the data from antiferromagnetic interactions in the main
text.

Additional data displayed in Fig. 14 show that the kink
density obeys a power-law decay very accurately up to 7, =
100 s on both the NASA and the Burnaby DW2KQ devices
with antiferromagnetic interactions and chain length L = 800.
Beyond 7, = 100 us, deviations from a power law become
apparent. This data set, along with Fig. 13, motivated us to use
the empirical data only for z, < 100 us, in order to eliminate
artifacts other than the coupling to bosonic environment.

APPENDIX B: KINK DISTRIBUTION FOR DIFFERENT
CHAIN LENGTHS

Figure 15 supplements Fig. 6 by showing histograms of the
kink density for different chain lengths on the two different
devices, (a) NASA and (b) Burnaby, at 7, = 10us. Dashed
lines are the Gaussian distribution of Eq. (5). The data are
well described by this distribution in all cases.
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FIG. 13. Kink density as a function of the annealing time with different interactions on the DW2KQ at NASA. The error bars indicate the
68% confidence interval. (a) Ferromagnetic interactions (/ = —1). (b) Antiferromagnetic interactions (J/ = 1). (¢) Random gauge, where we
randomly select L/2 sites i and flip the sign of interactions between qubits i — 1, i and i, i + 1.
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FIG. 14. Kink density for L = 800 as a function of the annealing time from ¢, = 1 usto, = 2000 s on (a) the NASA DW2KQ device and
(b) the Burnaby DW2KQ device. In both cases, we used antiferromagnetic interactions. The error bars indicate the 68% confidence interval.

The dashed lines are power-law fits to the data up to 100 us.

APPENDIX C: CRITICAL EXPONENT v FOR THE
SVMC MODEL

We show in this Appendix that the critical exponent v
is 1/2 for the one-dimensional ferromagnetic SVMC model.
The Hamiltonian is

L L
H=-J) singsinf;,, —T Y cost;.  (Cl)
j=1 j=1

We have exchanged sin@; and cos6; from the conventional
notation of Eq. (24) for later convenience. A periodic bound-
ary is assumed.

Since we are interested in how the system behaves as we
decrease I' from a very large value (where the system is in the

paramagnetic phase with §; ~ 0V j) toward a transition point,
it is reasonable to expand the Hamiltonian to quadratic order

as

H = —JZQJ-@]'.H + g 20.2’
J J

(C2)

where we have ignored a constant term. Let us check if the
paramagnetic state is stable by Fourier transformation,
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FIG. 15. Kink distribution at #, = 10 s for different chain lengths L = 50, 200, 500, 800 (left to right) from the DW2KQ devices at

(a) NASA and (b) Burnaby. The dashed lines are the theoretical prediction of Eq. (5).
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FIG. 16. Same as Fig. 9 but for T = 50 mK: numerically computed kink density pxi, as a function of the dimensionless annealing time
1/ from the SVMC model (log-log scale). The error bars indicate the 68% confidence interval. (a) SVMC simulation results using the NASA
DW2KQ annealing schedule. (b) SVMC simulation results using the Burnaby DW2KQ annealing schedule. Dashed straight lines are linear
fits to a power-law decay. For L = 50, the fitting range is limited from #, = 5 to ¢, = 20.
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FIG. 17. Same as Fig. 10 but for T = 50 mK: numerically computed cumulants of gth-order «, of the kink distribution. The chain length is
L = 800. Error bars indicate the 68% confidence interval. Solid lines are power-law fits of the cumulants from the first-order «, to third-order x3
as functions of the dimensionless annealing time ¢, with the annealing schedule of (a) the DW2KQ at NASA and (b) the DW2KQ in Burnaby.
Ratios k,/x; and k3 /k; of cumulants for the annealing schedules of (c) the DW2KQ at NASA and (d) the DW2KQ in Burnaby. Solid lines are
fits to constants for the power-law decay region of the cumulants.

033369-16



PROBING THE UNIVERSALITY OF TOPOLOGICAL ...

PHYSICAL REVIEW RESEARCH 2, 033369 (2020)

(2)

0.5
v, =1
7, =10
¢, =100

P(n)

15 20 25 30

(b)

¢ =1
¢ =10
¢ =100

P(n)

| (M- L
15 20 25 30

n

FIG. 18. Same as Fig. 11 but for 7 = 50 mK: histograms of
the number of kinks computed using the SVMC model with the
annealing schedule of (a) the DW2KQ at NASA and (b) the DW2KQ
in Burnaby. The chain length is L = 800. From right to left, the
annealing times ¢, are 1, 10, 100 us, respectively. Solid, dashed,
and dotted lines are the Gaussian distributions of Eq. (5).

as

=l 3 Al A 1(1‘ 2 —Q”k) (C4)
— — s = — — COS .
) - k 1Pk k I I

It is observed that ¢ = 0 ~ V k is the stable state (ground
state) configuration for I' > 2J, and a second-order phase
transition exists at I', = 2J.

The correlation is given by
| L
G(r) = (sinfysin6,) ~ ;wzem

1 ;
= 73 2 ¢TI, (C3)
k

where the angular brackets (---) stand for the statistical-
mechanical average with respect to the Hamiltonian (C4). We
have averaged over [ using translation symmetry. Since the
Hamiltonian (C4) represents independent Gaussian fields, we
easily find

5 1 kgTL
(el = —/— = . (C6)
BAy ' —2JcosQmk/L)
Thus the correlation function (C5) becomes
kgT , 1
G(r) = 22 Y " pi2mkr/L . (@
L P I' —2J cos(2mk/L)
The behavior as r >> 1 is evaluated as
kgT [ . 1
Gry==2—| "—— _dyxe %, (C8)
27 Jo [ —2J +Jy?
where
[ J
= . C9
§ r—-2J ©9)

Thus the exponent is v = 1/2. Notice that the temperature is
kept small but finite. If 7 = 0 exactly, no fluctuations exist
classically and the spin configuration is fixed to #; = 0 in the
paramagnetic phase.

APPENDIX D: SVMC RESULTS AT T = 50 mK

In the main text, we provided our SVMC results at the
dilution refrigerator temperatures of the NASA and Burnaby
DW2KQ devices. Here we provide additional SVMC results
computed at a higher simulation temperature of 50 mK in
Figs. 16-18. The « values corresponding to Fig. 16 are
reported in Table III. These values are somewhat closer to
the DW2KQ values than those for the dilution refrigerator
temperatures, and we also note that the qualitative behavior
of the kink density curves seen in Fig. 16 is more like the
DW2KQ results seen in Fig. 2, in that the curves for the two
largest L values now nearly overlap. In these respects, the
warmer SVMC model is a closer match to the DW2KQ data
than at the dilution refrigerator temperatures.
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