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Topological pumping assisted by Bloch oscillations
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Adiabatic quantum pumping in one-dimensional lattices is extended by adding a tilted potential to probe
better topologically nontrivial bands. This extension leads to almost perfectly quantized pumping for an arbitrary
initial state selected in a band of interest, including Bloch states. In this approach, the time variable offers not
only a synthetic dimension as in the case of the Thouless pumping, but it assists also in the uniform sampling
of all momenta due to the Bloch oscillations induced by the tilt. The quantized drift of Bloch oscillations is
determined by a one-dimensional time integral of the Berry curvature, which is effectively an integer multiple
of the topological Chern number in the Thouless pumping. Our study offers a straightforward approach to yield
quantized pumping, and it is useful for probing topological phase transitions.
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Adiabatic quantum pumping via slow and periodic mod-
ulation in certain system parameters has been of tremendous
theoretical and experimental interests. It has been investigated
with a variety of platforms including, for example, electrons
[1–6], photons [7–10], cold atoms [11–18], and nitrogen-
vacancy centers in a diamond [19]. Adiabatic pumping con-
nects the underlying geometrical or topological features of
a system with its transport behavior. In practice it is use-
ful in electric current standards [20], gravimetry [21,22],
generation of entangled states [23–25], and quantum state
transfer [25,26]. Quantum adiabatic pumping yields both non-
quantized transport, such as geometric pumping [12], ratchet
transport [27,28] and edge-state transport [7], and quantized
transport such as Thouless pumping [1,2] and its extension in
Floquet topological phases [29,30]. Of particular relevance to
this work, the nonquantized geometric pumping in a lattice
can be determined by the Berry curvature at a certain mo-
mentum value [12], whereas the quantized Thouless pumping
yields a topological invariant, namely, the Chern number of a
band on a two-dimensional torus formed by the quasimomen-
tum and the time variable as a second synthetic dimension.
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Thouless pumping requires a uniformly filled band (either
coherently or incoherently) because its quantization arises as
a consequence of equal-weight contributions from the Berry
curvatures at all momentum values [1,2]. This feature of
Thouless pumping makes it possible to dynamically manifest
topological band Chern numbers, which are crucial to under-
standing the integer quantum Hall effect and Chern insulators
[31–33]. In a fermionic system, the uniform band occupation
could be automatically achieved if the band lies below the
fermion surface. For bosons, it becomes highly nontrivial to
explore Berry curvatures at all momentum values. In actual
quantum pumping experiments where quantum transport is
measured (e.g., via the imaging of a cloud of cold atoms), one
resorts to some localized initial states to approximate a Wan-
nier state that uniformly fills a band of interest [13,14,16,34].
Furthermore, in probing Floquet topological insulators as
nonequilibrium topological matter [29,30,35–42], it is even
more involving to experimentally implement the uniform oc-
cupation on one particular nonequilibrium quasi-energy band
[19,43].

In this paper, we propose an experimentally friendly adia-
batic pumping scheme to yield quantized pumping, without
the requirement of uniform band occupation. The obtained
pumping in a lattice system is well quantized, regardless of
what initial states on a band of interest are prepared. To our
knowledge, this surprising possibility was not known until
now. The central idea is to exploit a tilted lattice, such that the
time variable not only offers a synthetic second dimension, but
also assists in the sampling of all momentum values uniformly
due to the Bloch oscillations [44,45]. Thus, complementing
previous efforts in using Bloch oscillations to indirectly help
to explore band topology [34,46,47], we show that Bloch
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FIG. 1. Schematic of adiabatic pumping in a time-modulated
superlattice with a tilt. The phase φ(t ) is used to modulate the
nearest-neighboring hopping and the on-site energy, and h̄ωF is the
energy shift associated with the tilt.

oscillations can actually be a powerful tool to probe the topo-
logical Chern number of a band. It is also now clear that band
topology may induce a quantized drift in Bloch oscillations,
an intriguing result not noticed in previous studies of Bloch
oscillations versus band structure [48–56].

Our adiabatic pumping scheme is depicted in Fig. 1, using
a time-modulated superlattice with a weak tilt. Certain system
parameters are slowly modulated at a frequency ω, F is the
energy shift between two neighboring lattice sites due to the
tilt, and ωF = F/h̄ is half of the Bloch oscillation frequency.
For virtually all rational fractions ωF /ω = p/q, where p and q
are coprime integers, we find that the drift of the system over
q modulation cycles is quantized, irrespective of the initial
state prepared on a band. As shown below, such a pumping
is determined by a one-dimensional time integral of the Berry
curvature, which effectively equals to q times of the Chern
number manifested by Thouless pumping. This is possible
due to the effective sampling of all momentum states via
Bloch oscillations. Analogous considerations can be extended
to cases with irrational fractions ωF /ω, where one recovers
a quantized pumping in the long-time average. The Bloch
oscillations themselves carry a new aspect here because they
now can experience a net quantized drift due to the underlying
band topology.

Without loss of generality, consider a rather simple model
adapted from the seminal Rice-Mele model [57]: particles
are moving in a time-modulated superlattice subjected to an
external force, with the following Hamiltonian:

Ĥ (t ) =
∑

j

{{J + δ0 sin[π j + φ(t )]}â†
j â j+1 + H.c.}

+
∑

j

{�0 cos[π j + φ(t )] + h̄ωF j}n̂ j . (1)

Here, â†
j creates a boson at the jth site and n̂ j = â†

j â j is the
density operator. J is the hopping constant. δ0 and �0 are
the amplitudes of modulations in the hopping strength and
the onsite energy, respectively. h̄ωF is due to a tilt, which can
be realized by applying a magnetic field gradient or aligning
the superlattice along the gravity. For convenience, we set
h̄ = 1 by default hereafter. If F is absent, the model reduces

to the Rice-Mele model [57]. The bipartite superlattice can
be created by superimposing a simple standing-wave laser
with a second double-frequency one. The phase modulation
φ(t ) = φ0 + ωt can be realized by tuning the relative phase
between two standing-wave lasers and thus the modulation
period is given by Tm = 2π/ω.

In the absence of a tilt, the Hamiltonian in momentum
space is given by Ĥ (k, t ) = hxσ̂x + hyσ̂y + hzσ̂z,
where the effective magnetic field (hx, hy, hz ) =
{2J cos(k), 2δ0 sin[φ(t )] sin(k),�0 cos[φ(t )]}. By diagonaliz-
ing the Hamiltonian, Ĥ (k, t )|u0(k, t )〉 = ε0(k, t )|u0(k, t )〉, we
analytically obtain the instantaneous eigenvalues ε0

±(k, t ) =
±

√
h2

x + h2
y + h2

z and the corresponding eigenstates |u0
±(k, t )〉

(see Appendix A). In the presence of a tilt, we can obtain
analogous solutions by making a unitary transformation a†

j =
e−iωF jt b†

j . The Hamiltonian then becomes Ĥrot (t ) = Ĥ1 + Ĥ2

with Ĥ1 = ∑
j {{J + δ0 sin[π j + φ(t )]}eiωF t b̂†

j b̂ j+1 + H.c.}
and Ĥ2 = ∑

j {�0 cos[π j + φ(t )]}n̂ j . That is, the tilt is
equivalent to adding a time-dependent phase factor to the
hopping term. This also means that we changed the boundary
condition of the original lattice under periodic boundary
condition. However, so long as the dynamic is far away
from the boundary, this change of boundary condition has
no physical effects. As such, all the instantaneous bands and
eigenstates can be found by replacing k by k − ωFt , with
the modified eigenstates |u±(k, t )〉 = |u0

±(k − ωFt, t )〉 and
modified dispersion relation ε±(k, t ) = ε0

±(k − ωFt, t ).
According to the theorem of adiabatic transport, the group

velocity for momentum k in the nth band is determined by two
terms, the energy dispersion and the Berry curvature [6],

vg(k, t ) = ∂εn(k, t )

h̄∂k
+ Fn(k, t ), (2)

where the Berry curvature is given by

Fn(k, t ) = −2Im

⎡
⎣∑

n′ �=n

〈un|∂kĤ |un′ 〉〈un′ |∂t Ĥ |un〉
(εn − εn′ )2

⎤
⎦, (3)

with n = ±. Note that if F0
±(k, t ) denote the analogous

Berry curvature of the gapped Rice-Mele model (F = 0),
then F±(k, t ) = F0

±(k − ωFt, t ). For later use, the topological
Chern number manifested in Thouless pumping is given by

Cn = 1

2π

∫ 2π/d

0

∫ Tm

0
F0

n (k, t ) dkdt, (4)

where d is the size of each unit cell. Because energy bands
are periodic in k, the first term of group velocity vg(k, t ) os-
cillates with time. In a static system, the second term vanishes
such that the Zak phase plays no role in Bloch oscillations
[46]. However, due to the periodic modulation via φ(t ) and
the adiabatic following of the instantaneous eigenstates, the
anomalous velocity due to Berry curvature becomes crucial
here. To that end one first explicitly obtains the associated
Berry curvature at time t for the two bands, i.e.,

F±(k, t ) = 2Jδ0ω�0
1 − cos2 [φ(t )] cos2 (k − ωFt )

[ε0±(k − ωFt, t )]3
. (5)
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Consider then a Bloch state as the initial state under our
pumping scheme. To simplify the matters, let us assume
ωF /ω = p/q as mentioned above, resulting in an overall
period Ttot = qTm (Tm is the modulation period in φ). The
amount of pumping at time τ is simply given by the following
semiclassical expression [6]:

�X (τ ) =
∫ τ

0
vg(k, t )dt . (6)

This expression can be also viewed as the time integral of the
quantum flux determined by the group velocity vg. Because
the instantaneous energy eigenvalues are periodic functions
of time and momentum, in an overall period Ttot the integral
of the dispersion velocity is exactly zero. Thus only the
anomalous velocity due to the Berry curvature can contribute
to pumping. One can find the drift over the duration of Ttot

measured by the size of a unit cell d ,

Cn,red ≡ �X (qTm)

d
= 1

d

∫ qTm

0
Fn(k, t ) dt . (7)

Our key observation is that Cn,red is almost perfectly quan-
tized as a one-dimensional time integral of the Berry curvature
Fn(k, t ) = F 0

n (k − ωFt, t ). Due to the Bloch oscillations at a
constant frequency ωF , all momentum values are uniformly
scanned or sampled in this time integral. Anticipating an
effectively “ergodic” behavior in such momentum sampling,
this integral is hence expected to be independent of the starting
value of φ, or equivalently, independent of the initial value of
k. This physical intuition is perhaps natural for large integers
q and p because highly dissimilar frequencies of ω and ωF

enhance the uniformity of the sampling. Nevertheless, as
our results below show, this k-independence of the quantum
pumping is practically true even when the two frequencies are
on low-order resonances. This being the case, we have

Cn,red ≈ 1

2π

∫ 2π/d

0

∫ qTm

0
F0

n (k − ωFt, t ) dkdt

= q

2π

∫ 2π/d

0

∫ Tm

0
F0

n (k, t ) dkdt = qCn. (8)

Thus, Cn,red is effectively quantized because it is always very
close to q times of the topological Chern number in Thouless
pumping. More discussions on the near-perfect quantization
of Cn,red is presented in Appendix B. Clearly then, com-
pared to the Chern number expression Eq. (4) (an integral
over a two-dimensional area), Cn,red defined here as a one-
dimensional integral can be regarded as, effectively, a reduced
expression for the Chern number Cn (apart from the factor q).

If Cn is nonzero, there must be a Dirac monopole at
the band-crossing point hx = hy = hz = 0. The Berry curva-
ture represents a fictitious magnetic field due to the Dirac
monopole and Cn can be viewed as the magnetic flux of
the Dirac monopole (up to a 4π factor) in the (hx, hy, hz)
parameter space. For a uniformly filled band, the adiabatic
pumping in φ(t ) and the uniform band occupation ensure
that an entire surface enclosing the Dirac monopole is fully
covered [see Fig. 2(a)]. In our scheme with a tilt and a
Bloch state as the initial state, the sampled (hx, hy, hz ) and the
associated Berry curvatures rotate around the Dirac monopole
due to time evolution itself in a common time period of qTm

FIG. 2. (a) Berry curvature of the lower band whose magnitudes
are represented by color is indicated on the plot of (hx, hy, hz )
mapped from (k, t ), with (k, t ) is made to cover the whole Brillouin
zone. (b) Same as in (a), but now only (hx, hy, hz ) and Berry curva-
tures at (k − ωF t, t ) are plotted together. (c) The drift of an initial
Bloch state over q modulation cycles versus k for ωF /ω = 10/3
(the red solid line) and ωF = 0 (the blue dashed-dot line). Other
parameters are chosen as J = −1, �0 = 2, and φ0 = 0.

[see Fig. 2(b)]. Somewhat analogous to Ampere’s law where
a current yields a winding magnetic field, here a rotating field
induces pumping and hence a current.

To confirm our insights above, Fig. 2(c) depicts the drift
over Ttot = qTm as a function of k, the initial value of a Bloch
state, for J = −1, �0 = 2, φ0 = 0, and δ0 = 0.8. The solid
line in Fig. 2(c) is for ωF /ω = 10/3, where the deviation of
Cn,red from quantization is not detectable. That is, the ratio
of �X (qTm) to qd is indeed extremely close to unity, hence
Cn,red is extremely close to q, for any value of k, consistent
with Cn = 1. This is in sharp contrast to the case with F =
0 [dashed line in Fig. 2(c)], where the geometrical pumping
is not quantized and strongly depends on k. In Appendix B,
we also investigated many other cases with different rational
ratios of ωF /ω. Even for very-low-order resonances (e.g., q =
2), the deviation of the pumping from quantization is about
one percent only, a precision that is more than sufficient for
Cn,red to serve as an effective topological invariant to detect
topological phase transitions.

It is also interesting to discuss the cases with irrational
ωF /ω. The system’s group velocity vg is then quasiperiodic
in time. In essence that represents cases with q approach-
ing infinity. Hence the pumping is not expected to be well
quantized for a duration NTm with a small N . Nevertheless,
the averaging pumping over a sufficiently long time, i.e.,
�X (NTm )

Nd |N→∞ is still quantized because of two reasons. First,
the Berry curvature part of vg can now sample all momentum
values in a more ergodic fashion. Second, the time integral of
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FIG. 3. Quantized drifting Bloch oscillations for an initial Gaus-
sian wavepacket in two overall periods. (a) Density evolution in
real space. (b) Displacement as a function of time. The blue solid
line and red dashed line are obtained from quantum dynamics
calculations and the semiclassical expression Eq. (6), respectively.
The parameters are chosen as J = −1, �0 = 2, δ0 = 0.8, ω = 0.03,
φ0 = 0, ωF /ω = 4/3, d = 2, σ = 15, j0 = 101, and k0 = 0.

the quasiperiodic dispersion velocity over a sufficiently long
time vanishes. More details can be found in Appendix C1.

Given that even an arbitrary Bloch state yields essen-
tially quantized pumping, it becomes obvious that quantized
pumping survives for any initial wavepacket prepared on a
band of interest. To demonstrate this we consider an initial
Gaussian wavepacket localized at momentum k0 = 0 of the
lower energy band. The initial wave function at the jth site is
hence given by

ψ j (0) = N e− ( j− j0 )2

4σ2 u−, j (k0, 0)eik0 j . (9)

Here N is a normalization factor, σ is the initial wavepacket
width, u−, j (k0, 0) represents the instantaneous lower-band
spinor eigenstate in the sublattice degree of freedom at time
zero. As the bias between the two sublattices increases, this
state dominantly occupies the odd lattice sites. Such a type
of wavepacket can be prepared by applying an additional
harmonic trap [12]. We then examine the density distribution
profile |ψ j (t )|2 of the time-evolving wavepacket ψ j (t ) and the
mean displacement

�X (t ) = X (t ) − X (0), (10)

where X (t ) = ∑
j j|ψ j (t )|2.

Figures 3(a) and 3(b) show the time-evolution of the wave-
function profile in real space and the drift of the wavepacket
center as a function of time. The instantaneous state can be
obtained by iteratively performing the calculations, |ψ (t +
dt )〉 = exp [−iĤ (t )dt/h̄]|ψ (t )〉, with the parameters J = −1,
�0 = 2, δ0 = 0.8, φ0 = 0, ω = 0.03, ωF /ω = 4/3, σ = 15,
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FIG. 4. Comparison among topological pumping with a tilt
(ωF /ω = 10/3), geometric pumping with the same initial state
but without a tilt, and Thouless pumping with a Wannier state.
(a) Drift �X versus time t . (b) Change in the width of time-evolving
wavepackets, �W versus time t . The initial Gaussian wavepacket is
parameterized by σ = 15, j0 = 101, and k0 = 0. The initial state for
Thouless pumping is a Wannier state. Other common parameters are
chosen as �0 = 2, J = −1, δ0 = 0.8, ω = 0.05, and φ0 = 0.

j0 = 101. The frequencies ω and ωF are chosen to be small to
ensure adiabatic following, otherwise the quantized pumping
breaks down due to the nonadiabatic effects (see Appendix
C2 for more details). It is seen that the spatial density profile
exhibits cosine-like oscillations with additional modulation,
which manifest the Bloch oscillations in a time-modulated
system. More importantly, a quantized drift of such oscilla-
tions is seen at multiples of 3Tm, as displayed by the blue
solid line in Fig. 3(b). The red dashed line obtained by the
semiclassical expression in Eq. (6) perfectly agrees with the
one directly obtained by wavepacket dynamics calculations.
Though not shown here, we also checked that in the mo-
mentum space, the average momentum of the time-evolving
state indeed linearly sweeps the Brillouin zone according to
k = k0 − ωFt ; see Appendix C3.

It is necessary to compare three pumping schemes in a
modulated lattice: (i) topological pumping with a tilt, with the
initial state being a wavepacket; (ii) the geometric pumping
with the same initial state but without a tilt [12]; and (iii)
Thouless pumping where the initial state is a Wannier state
[13,14]. In Fig. 4, we show �X (t ) and the change in the
wavepacket width

�W (t ) = W (t ) − W (0), (11)

where the wavepacket width is defined as W (t ) =√∑
j[ j − X (t )]2|ψ j (t )|2. In geometric pumping, the

transport is not quantized and the wavepacket has insignificant
spreading. In Thouless pumping, although the transport is
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quantized, the wavepacket exhibits serious spreading even
at an early time during a pumping cycle. In our topological
pumping with a tilt, not only is the transport quantized,
but also the wavepacket maintains its spatial localization
or coherence over a long time; see Appendix C4, a feature
of considerable interest for quantum state transfer [26]. For
completeness, in Appendix D we also show the pumping
dynamics of Wannier states in a titled field. To summarize,
topological pumping with a tilt has advantageous aspects
from both geometrical pumping and Thouless pumping.

In summary, we put forward a simple scheme of adiabatic
pumping by introducing a small tilt to a lattice on top of other
time modulation to system parameters. Quantized pumping
can now be readily realized in experiments because it works
for an arbitrary initial state prepared on a band of interest (see
Appendix E for more details). As such, there is no longer
a need to engineer uniform band occupation as in Thouless
pumping. It should be stressed that the resultant pumping
is not mathematically quantized, but in practice it is well
quantized with remarkable precision, hence highly useful for
probing topological phase transitions. It would be interesting
to extend our results to disordered or many-body systems.
Indeed, probing topological invariants without uniform band
filling can be important in topological systems without con-
ventional band structures, such as in disordered topological
insulators and interacting topological insulators [58,59]. Our
scheme may be also extended to probe topological invariants
in high-dimensional systems.

Note added: In the review process, we became aware
that the topology of stroboscopic Poincaré orbits can lead to
unidirectional transport accompanied by Bloch oscillations in
a driven inhomogeneous lattice gas [60].
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APPENDIX A: HAMILTONIAN IN MOMENTUM SPACE

In the case of a single particle, to obtain the Hamiltonian
in momentum space, we make a Fourier transformation

b̂†
2 j = 1√

L

∑
k

eik2 j b̂†
k,e,

b̂†
2 j−1 = 1√

L

∑
k

eik(2 j−1)b̂†
k,o. (A1)

Here, k is the quasimomentum, and e (o) respectively repre-
sents an even (odd) site. L is the total number of unit cells.
When the tilt is absent, h̄ωF = 0, substituting Eq. (A1) into
Hamiltonian (1) in the main text, we can obtain Hamiltonian
in the quasimomentum space, H (t ) = ∑

k H (k, t ) with

Ĥ (k, t ) = {2J cos(k) + 2iδ0 sin[φ(t )] sin(k)}b̂†
k,ob̂k,e

+ H.c. + �0 cos[φ(t )](b̂†
k,eb̂k,e − b†

k,ob̂k,o). (A2)

In terms of Pauli matrices describing the sublat-
tice degree of freedom, the Hamiltonian becomes
Ĥ (k, t ) = hxσ̂x + hyσ̂y + hzσ̂z, where (hx, hy, hz ) =
{2J cos(k), 2δ0 sin[φ(t )] sin(k),�0 cos[φ(t )]} are the three
components of an effective magnetic field. One then
obtains the eigenvalues and eigenstates by diagonalizing
the Hamiltonian, Ĥ (k, t )|u0(k, t )〉 = ε0(k, t )|u0(k, t )〉. The
superscript 0 denotes zero tilt. The eigenvalues are given by

ε0
± = ±

√
h2

x + h2
y + h2

z

= ±
√

4J2 cos2(k) + 4δ0
2 sin2[φ(t )] sin2(k) + �0

2 cos2[φ(t )],

and the eigenstates without normalization are given by

|u0
±〉 =

(
2J cos(k)−2δ0i sin[φ(t )] sin(k)

ε0±−�0 cos[φ(t )]

1

)
. (A3)

In the presence of a tilt, by making a unitary transformation
a†

j = e−iωF jt b†
j , the Hamiltonian (1) is transformed to

Ĥrot (t ) =
∑

j

{{J + δ0 sin[π j + φ(t )]}eiωF t b̂†
j b̂ j+1 + H.c.}

+ {�0 cos[π j + φ(t )]}n̂ j . (A4)

Similarly, the Hamiltonian in the momentum space is given
by

Ĥ (k, t ) = 2{J cos[K (k, t )] + iδ0 sin[φ(t )] sin[K (k, t )]}b̂†
k,ob̂k,e

+ H.c. + �0 cos[φ(t )](b̂†
k,eb̂k,e − b†

k,ob̂k,o), (A5)

where K (k, t ) = k − ωFt . Comparing Eq. (A5) to Eq. (A2),
all the instantaneous energy bands and eigenstates can be
found by replacing k by k − ωFt , with the modified eigen-
states |u±(k, t )〉 = |u0

±(k − ωFt, t )〉 and modified dispersion
relation ε±(k, t ) = ε0

±(k − ωFt, t ).
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APPENDIX B: RELATION BETWEEN Cn,red AND Cn

Here we first show that the reduced Chern number Cn,red

defined in the main text as a one-dimensional time integral
is independent of the initial momentum value of a Bloch

state and equal to q times of the conventional Chern number,
namely, Cn,red = qCn, if ωF /ω = p/q → ∞. Consider first
the Berry curvatures

F±(k, t ) = ±2Jδ0ω�0{1 − cos2 [φ(t )] cos2 [K (k, t )]}
{4J2 cos2[K (k, t )] + 4δ0

2 sin2[φ(t )] sin2[K (k, t )] + �0
2 cos2[φ(t )]}3/2

= F0
±(k − ωFt, t ), (B1)

where F0
n (k, t ) denotes the Berry curvature in the absence of a tilt. When k is shifted to k + �k, and t is shifted to t + �k/ωF ,

the Berry curvature is given by

F±(k + �k, t + �k/ωF ) = ±2Jδ0ω�0
{
1 − cos2

[
φ(t ) + ω

ωF
�k

]
cos2 [K (k, t )]

}
{
4J2 cos2[K (k, t )] + 4δ0

2 sin2
[
φ(t ) + ω

ωF
�k

]
sin2[K (k, t )] + �0

2 cos2
[
φ(t ) + ω

ωF
�k

]}3/2

∼= ±2Jδ0ω�0{1 − cos2 [φ(t )] cos2 [K (k, t )]}
{4J2 cos2[K (k, t )] + 4δ0

2 sin2[φ(t )] sin2[K (k, t )] + �0
2 cos2[φ(t )]}3/2

= F±(k, t ). (B2)

The approximately equal sign here can be replaced by an
exactly equal sign if ωF /ω → ∞. Actually, even when ωF is
comparable to ω, this relation still holds with high precision,
an important feature that will become clearer later. Next we
note the following rewriting of one-dimensional time inte-
grals:

∫ qTm

0
F±(k + �k, t + �k/ωF )dt

=
∫ qTm+�k/ωF

�k/ωF

F±(k + �k, t )dt

=
∫ qTm

0
F±(k + �k, t )dt, (B3)

where the last equal sign is due to the fact that the Berry
curvature is a periodic function of time with period qTm.
Comparing this with Eq. (B2), one immediately has

Cn,red = 1

d

∫ qTm

0
F±(k, t )dt

= 1

d

∫ qTm

0
F±(k + �k, t )dt . (B4)

That is, Cn,eff as the time integral of F±(k, t ) is practically
independent of k, i.e.,

Cn,red(k + �k) = Cn,red(k), (B5)

for any �k. Now if we consider an averaging over k, we
immediately have

Cn,red ≈ 1

2π

∫ qTm

0

∫ π/d

−π/d
F0

n (k − ωFt, t )dtdk

= q

2π

∫ Tm

0

∫ π/d

−π/d
F0

n (k, t )dtdk = qCn. (B6)

The second equal sign is because the Chern number Cn as a
two-dimensional integral are the same in each pumping cycle
if there is no external force.

In numerical calculations, we discrete the parameter space
into mesh grids, and then apply the Stokes theorem to trans-
form the surface integral to a line integral of each grid
[61]. According to the theory of dynamic winding number,
the line integrals encircling singularity points are the major
contributions to the Chern number [62]. The Chern numbers
for the two bands are the same as those in the original Rice-
Mele model, even if we account for the tilt we introduce.
This is because the external force only linearly shifts the
momentum and reshapes the grids from square to rhombus
without affecting the winding number of singularity points;
see the schematic diagram in Fig. 5.

We calculate the standard variance of �X (qTm)/(qd ) over
all momentum states as a function of p = qωF /ω when q
ranges from 1 to 7. The result is shown in Fig. 6 with
parameters J = −1, �0 = 2, φ0 = 0, and δ0 = 0.8. The mean

(b)(a)

k

t

( )K t k ( )K t k Ft

FIG. 5. Schematic diagram for numerical calculations of Chern
number (a) in the absence of a tilt and (b) in the presence of a tilt.
The red and black dots are the locations of singularity points at the
north and south poles.
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10 20 30 40 50

0

0.005

0.01

FIG. 6. Variance of �X (qTm )/(qd ) as a function of p = qωF /ω.
The parameters are chosen as J = −1, �0 = 2, and δ0 = 0.8.

displacement per modulation period is exactly 1 unit cell. It
is clear that the deviation of �X (qTm)/(qd ) from 1 expo-
nentially decays as the ratio between the external force and
driving frequency increases. Taking q = 7 as an example, the
deviation between �X (7Tm)/(7d ) from unity already reaches
machine precision/error for p = 11, i.e., ωF /ω = 11/7. This
superfast decay of �X (NTm)/(Nd ) with N also persists even
when N is not equal to multiples of q. These numerical results
show that the actual condition for the quantization of Cn,red as
an effective topological invariant is much looser than that in
the above analysis.

APPENDIX C: TOPOLOGICAL PUMPING OF GAUSSIAN
WAVEPACKETS

1. Irrational case

For the cases where p and q are not commensurate, the
eigenvalues are quasiperiodic functions of time and hence
the velocity due to the dispersion of bands becomes also
quasiperiodic. This means that the displacement is generally
not quantized because the velocity due to the dispersion of
bands cannot self-cancel over a short time. However, the mean
displacement in the long time average

�X (NTm)

Nd

∣∣∣∣
N→∞

→ 1 (C1)

because the integral of velocity due to the dispersion of bands
over long time vanishes and only quantized displacement
due to anomalous velocity leaves. For example, we consider
p/q = (

√
5 + 1)/2 and calculate the mean position shift as

a function of time via Eq. (6) in the main text; see Fig. 7.
The inset shows the corresponding time evolution of density
distribution in a relatively short time. Other parameters are
chosen as J = −1, �0 = 2, δ0 = 0.8, ω = 0.01, φ0 = 0, d =
2, σ = 15, j0 = 120, and k0 = 0. We can observe quasiperi-
odic Bloch oscillations accompanied by a linear displacement
guided by the red dashed line in Fig. 7. After averaging
the velocity in infinite time, the red dashed line is given
by �X (NTm)/d = N . The displacement due to anomalous
velocity linearly increases with the N multiple of pumping
cycle. Because the oscillations have finite width, W (which
can be suppressed by strong external force), The fluctuation

FIG. 7. Displacement for an initial Gaussian-like state in an irra-
tional case of ωF /ω = (

√
5 + 1)/2. The dashed red line is obtained

by averaging the velocity in long time. Inset: Time evolution of
density distribution in real space. Other parameters are chosen as J =
−1, �0 = 2, δ0 = 0.8, ω = 0.01, φ0 = 0, d = 2, σ = 15, j0 = 120,
and k0 = 0.

in displacement W/�X ≈ W/(2N ) will eventually vanish as
the total time under consideration approaches infinity.

2. Rational case: Breakdown of quantized pumping under
strong tilting

We know that the larger ratio ωF /ω makes the effective
topological invariant Cn,red closer to the ideal Chern number.
However, in practice Landau-Zener transitions between differ-
ent bands become so serious for larger ωF that the adiabatic
condition is no longer satisfied in real time evolution. We
show how the quantized pumping in the lowest band breaks
down as ωF increases, see Fig. 8(a). The parameters are
chosen as J = −1, �0 = 2, δ0 = 0.8, ω = 0.03, φ0 = 0, d =
2, σ = 15, j0 = 120, and k0 = 0. ωF /ω = p/3 is changed
with discrete p (excluding the multiples of 3). When ωF

0 0.5 1 1.3

-0.5

0

0.5

1

0 1 2 3

0

0.5

1

0 1 2 3

0

0.5

1

FIG. 8. (a) Displacement in an overall period as a function of ωF .
The parameters are chosen as J = −1, �0 = 2, δ0 = 0.8, ω = 0.03,
ωF /ω = p/3, φ0 = 0, d = 2, σ = 15, j0 = 120, and k0 = 0. (b, c)
Occupations in the lower band (blue dashed-dot line) and higher band
(red solid line) for ωF = 0.13 and ωF = 1.3, respectively. The other
parameters are the same as those in (a).
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FIG. 9. Time evolution of density distribution in momentum
space. The parameters are chosen as J = −1, �0 = 2, δ0 = 0.8, ω =
0.03, φ0 = 0, ωF /ω = 4/3, d = 2, σ = 15, j0 = 101 and k0 = 0.

is modest, the displacement per pumping cycle is close to
one unit cell according to the semiclassical expression (6).
We show the occupations in the lower and higher bands as
functions of time for modest ωF = 0.13, see Fig. 8(b). The
Gaussian wavepacket always stays in the lower band and
the Landau-Zener transition is negligible. The corresponding
displacement per pumping cycle is almost one unit cell,
indicated by the pointing arrow. However, when ωF becomes
larger (e.g., ωF = 1.3), the wavepacket is rapidly transferred
between the lower and the higher bands and vice versa, see
Fig. 8(c). The arrow points to the corresponding displacement
in Fig. 8(a). Since the adiabatic condition is not satisfied, it
is impossible to predict the nonquantized displacement via
the semiclassical expression (6). What is worse, the transport
direction is also possibly reversed around some larger ωF .

3. Density evolution in momentum space

We are also interested in the density distribution in the
quasimomentum space, which is given by

|ψk|2 = |αo,k|2 + |αe,k|2, (C2)

with

αe,k = 1√
L

L∑
j=1

e−ik2 jψ j,

αo,k = 1√
L

L∑
j=1

e−ik(2 j−1)ψ j,

(C3)

where L = 150 is the total number of unit cells. Figure 9
shows the time evolution of density distribution |ψk|2 in the
momentum space. In the whole time duration shown, the
momentum distribution of the system maintains the same. The
momentum is actually linearly swept down according to K =
k0 − ωFt and jumps to 0.5π when it reaches the boundary
of the Brillouin zone at −0.5π , which is consistent with the
result in Appendix A.

4. Time evolution of Guassian wavepackets

Even when the external force is integer multiples of the
driving frequency (ωF = nω), a Gaussian wavepacket still

1.5 5 10 15
0

2

4

100 200
0

0.04

100 200
0

0.2

0.4

initial final

initial final

FIG. 10. Difference in spatial width between final and initial
states as a function of the initial width. Insets: Comparison between
initial (t = 0) and final (50Tm) states. The initial widths are chosen as
σ = 1.5 and σ = 15 for the left and right insets, respectively. Other
parameters are chosen as J = −1, �0 = 2, δ0 = 0.8, ω = 0.03, φ0 =
0, ωF = 4ω, d = 2, j0 = 101, and k0 = 0.

undergoes quantized drifting Bloch oscillations due to the
nontrivial Berry curvature. This physics is certainly different
from the early-observed possibility of resonance-induced ex-
pansion [63]. In Fig. 10, we show the difference in wavepacket
width between the final and initial states for ωF /ω = 4.

A wider Guassian wavepacket in real space corresponds to
a narrower Guassian wavepacket in momentum space, which
is hence closer to a Bloch state of a single quasimomentum
value. We compare the density distribution of the initial and
final states in the insets of Fig. 10. For wide wavepackets, as
they are more similar to a Bloch state, their density profiles
are almost kept unchanged in their time evolution. For nar-
row wavepackets, as they involve several momentum states
and different momentum states accumulate different phases
[15,17], their shapes are slightly changed.

APPENDIX D: TOPOLOGICAL PUMPING
OF WANNIER STATES

1. General theory

We consider the time-evolution of an initial Wannier state
in the lower-energy band. In contrast to the Gaussian-like state
localized at certain momentum, the initial Wannier state is an
equal superposition of all the Bloch states in the lower-energy
band with different momenta,

|w−(R, 0)〉 = 1√
L

∑
k

e−ikR|u−(k, 0)〉, (D1)

where R denotes the location of the Wannier state. When
the system is adiabatically and periodically modulated, the
displacement for the Wannier state in one pumping cycle is
simply the average of the displacement for the Bloch states
with different momenta

�X (Tm) = d

2π

∫ π/d

−π/d

∫ Tm

0
vg(k, t )dtdk, (D2)

where d as the period of the superlattice is equal to 2 in our
case. The term due to the dispersion of the energy band is
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FIG. 11. Topological pumping of an initial Wannier states. (a), (c), and (e) Time evolution of density distribution for ωF /ω =
1/2, 4, (

√
5 + 1)/2, respectively. (b), (d), and (f) Displacement as a function of time for ωF /ω = 1/2, 4, (

√
5 + 1)/2, respectively. (g)

The semiclassical displacement in one pumping cycle as a function of momentum for different ωF /ω. The other parameters are chosen as
�0 = 20, J = −1, δ0 = 0.8, ω = 0.02, φ0 = 0.

exactly zero, i.e.,

d

2π

∫ π/d

−π/d

∫ Tm

0

∂ε(k, t )

h̄∂k
dtdk = 0, (D3)

regardless of the external force. It means that the mean
position shift in one pumping cycle is only related to the
Chern number defined in the parameter space (−π/2 � k �
π/2, 0 � t � Tm),

Cn = 1

2π

∫ π/2

−π/2
dk

∫ Tm

0
dtFn(k, t ). (D4)

Consequently, the displacement in one pumping cycle is given
by

�X (Tm) = Cnd, (D5)

which is essentially the polarization theory [2].

2. Dynamics of Wannier states for different ωF/ω

It is known that the Bloch oscillations behave as breathing
modes for an initial state localized at a single site [48]. Such
an initial state is approximately a Wannier state if the energy
bands are flat. The initial state is a single atom at an odd site
(i.e., the 101th site), which is approximately a Wannier state
of the lower-energy band. In Fig. 11, we show the evolution
of density distribution |ψ j (t )|2, the displacement �X (t ) via
quantum state evolution and the displacement as a function
of momentum which is obtained via semiclassical expression
[Eq. (6) in the main text]. In the numerical calculation, we
choose �0 = 20 to make the energy bands flat. The other pa-
rameters are chosen as J = −1, δ0 = 0.8, ω = 0.02, φ0 = 0,
ωF = ω/2 for Figs. 11(a) and 11(b), ωF /ω = 4 for Figs. 11(c)

and 11(d), and ωF /ω = (
√

5 + 1)/2 for Figs. 11(e) and 11(f).
In the case of ωF = ω/2, it is clear that the wavepacket ex-
pands and shrinks periodically; see Fig. 11(a). At the nodes of
multiples of modulation period, the wavepacket is relocalized
at a single site, but its mean position is shifted by a unit cell
per pumping cycle. In the absence of a tilt, the wavepacket
is dispersive due to the curved energy band [8]. Here, the
dispersion at the nodes is suppressed because the group
velocities of the momentum states have small fluctuations
and hence their displacement, see the blue dashed-dot line
in Fig. 11(g). Compared to the oscillation width of the time-
evolving wavepackets, the quantized displacement is small but
it is clearly found in the displacement; see Fig. 11(b). Note
that ωF = ω/2 is chosen for the coincidence between the pe-
riod of Bloch oscillations and the period of the pumping cycle.
In this case, the period of Bloch oscillations is determined by
the time T = π/ωF = 2π/ω to sweep the first Brillouin zone.
In addition, the dispersion of the wavepacket still exists in the
long time evolution due to the dispersion of the energy band
and Berry curvature.

In the case of ωF /ω = 4, instead of the breathing modes,
the wavepacket becomes diffusive like a bullet mode while
the mean position shift per period remains quantized; see
Figs. 11(c) and 11(d). The diffusion becomes faster than
the previous case because the mean position shift has larger
fluctuation as the momentum changes; see the red solid line in
Fig. 11(g).

For completeness, we also consider the dynamics in the
irrational case where ωF /ω = (

√
5 + 1)/2; see Figs. 11(e)

and (f). Compared to the irrational case in Appendix C, the
time evolution of the density distribution has no well-defined
period and behaves as quasiperiodic breathing modes. As
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FIG. 12. Dynamics of a Gaussian wavepacket governed by the
original Hamiltonian. (a) Probability distribution and (b) displace-
ment as functions of time in an overall period. Numerical cal-
culations are performed with Vs = 2Er , Vl = Er , h̄ω = 0.002Er ,
F/(h̄ω) = 10/3, φ0 = π/2, x0/a = 112, and γ = 10−5Er .

the strength of the tilt increases, the width of the breathing
mode becomes smaller. Nevertheless, the displacement is
quantized per each pumping cycle. The fluctuation of the
mean position shift with momentum is presented as the black
solid line in Fig. 11(g). In all the above cases, although the
details of the dynamics are quite different for different ratios
between the Bloch oscillation frequency and the modulation
frequency, the quantized displacement in one pumping cycle
maintains the same, which is consistent with the theory in
Appendix D.

APPENDIX E: EXPERIMENTAL FEASIBILITY

In a time-modulated superlattice subjected to an external
force, the motion of ultracold atoms (e.g., rubidium atoms) is
governed by a continuous Hamiltonian

Ĥ0 = − h̄2

2m

∂2

∂x2
− Vscos2

(π

a
x
)

− Vlcos2

(
π

2a
x − φ

2

)
+ F

a
x.

Here m is the mass of the atom. Vs and Vl are the strengths of
optical lattices with lattice spacing a and 2a, respectively. a
is half of the wavelength for the short lattice, and the spacing
of a unit cell is d = 2a. φ(t ) = ωt + φ0 is the linear-shifting
phase between the short and long lattices. Under tight-binding
approximation, we can obtain the Hamiltonian (1) in the main
text. We make a dimensionless transformation, x′ = x/a and
t ′ = Ert/h̄, and express the Hamiltonian in the unit of Er =
π2 h̄2

2ma2 ,

Ĥ ′
0 = − 1

π2

∂2

∂x′2 − Vs

2Er
cos(2πx′)

− Vl

2Er
cos

(
πx′ − h̄ω

Er
t ′ − φ0

)
+ F

Er
x′. (E1)

The initial state is prepared as the ground state in a su-
perlattice subjected to an additional harmonic trap instead of
a tilted field, Vtrap = 1

2
γ

a2 (x − x0)2 with the strength γ and
center position x0, i.e., V ′

trap = 1
2

γ

Er
(x′ − x′

0)2 in the unit of Er .
In the numerical calculations, the ground state is obtained by
the method of imaginary time evolution. Once the initial state
has been prepared, we turn off the harmonic trap and turn on
the tilted field and leave the Gaussian wavepacket to evolve
under the Schrödinger equation, i ∂

∂t ′ |ψ (t ′)〉 = Ĥ ′
0|ψ (t ′)〉, by a

spectral method [64]. The parameters are chosen as Vs = 2Er ,
Vl = Er , h̄ω = 0.002Er , F/(h̄ω) = 10/3, φ0 = π/2, x0/a =
112, and γ = 10−5Er . In Fig. 12, we show the probability
distribution and the mean position shift as functions of time.
The displacement in an overall period is 0.9995 times qd ,
almost a quantized value as predicted in the main text. Due
to the topological nature of this experimental proposal, one
does not need to fine-tune the strengths of the short and
long lattices and the initial phase difference between the
short and long lattices. The modulated frequency can also
be precisely controlled to satisfy its rational relation with the
tilted field. We believe that our new pumping scheme can be
readily realized with the state-of-art techniques of cold atomic
systems.
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