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Theoretical assessment of transitions across thermionic, field, and space-charge-limited emission
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As electron emission devices continue to push technological limits of device size, electric field, and tempera-
ture, characterization of device limitations due to thermionic (TE), field (FE), and space-charge-limited emission
(SCLE) becomes increasingly important for device reliability and performance. While various theoretical studies
have examined the transitions between any two of these mechanisms using asymptotic nexus theory and more
detailed multiphysics solutions, a full assessment across all three regimes simultaneously using a single theory
remains incomplete. Using a single-particle theory and the thermofield representation of current density, we
derive equations that recover the asymptotic solutions for the Richardson-Laue-Dushman, Fowler-Nordheim, and
Child-Langmuir laws for TE, FE, and SCLE, respectively. Various transitions are observed from this full solution,
including TE to FE to SCLE, the Miram curve transitioning TE to SCLE, and the discovery of a field-enhanced
Miram curve. Equating two of these asymptotic solutions yields a second-order nexus; a third-order nexus arises
when all three asymptotic solutions match, yielding conditions for transitions from TE or FE to SCLE. We
add Ohm’s law and SCLE at pressure, modeled by the Mott-Gurney law, to nexus theory, generating diode
parameter phase plots showing the areas of influence for all five mechanisms. This provides additional insight
into mechanistic transitions to elucidate experimental results and guide system design under more extreme design
requirements.
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I. INTRODUCTION

Electron emission plays a critical role in diode physics,
electron sources, and high power microwaves [1,2]. The pri-
mary electron emission mechanisms include thermal-, field-
, photo-, secondary-, and ferroelectric emission [1]. While
most electron emission studies focus on vacuum [1–4] more
recent studies have examined electron emission mechanisms
for their contribution to gas breakdown for microscale gaps
at pressures up to atmospheric [5,6]. These studies unify field
emission (FE), often modeled by the Fowler-Nordheim (FN)
equation [7], with Townsend avalanche [8–12], recovering
the well-known Paschen’s law [13] at sufficiently large gaps
and ionization [11,12]. Matched asymptotic analyses have
derived closed-form solutions assessing the transition from
FE to Townsend avalanche and Paschen’s law under various
pressures, gap distances, and electrode conditions [9–12],
analytically showing that breakdown voltage in the FE-driven
regime decreases linearly with decreasing gap distance as
a function of FE parameters [12,14,15]. Other studies have
explored the impact of thermionic emission (TE) and ther-
mofield emission on microscale gas breakdown [16–19]. Even
at atmospheric pressure, reducing gap distances to submi-
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croscale results in the transition from FE to space-charge-
limited emission (SCLE) either by the Child-Langmuir (CL)
law, which defines SCLE in a vacuum, or by the Mott-Gurney
(MG) law, which defines SCLE with collisions [20]. SCLE
plays a critical role in nanoscale electron emission devices
[21]. Thus, characterizing electron emission at vacuum and
nonvacuum pressures is critical for device reliability for ap-
plications ranging from vacuum electronics [1] to microelec-
tromechanical systems (MEMS) and nanoelectromechanical
systems (NEMS) [22,23].

Numerous studies have examined the transitions between
various electron emission mechanisms, such as FE to SCLE
[3,4,21,24,25], FE to TE [21,26–31], TE to photoemission
[31], and TE to SCLE [32,33]. More recent studies have
examined the unification of multiple mechanisms with the
ultimate objective of unifying the theory for electron emission
across a wide range of physical parameters, such as models
unifying FE, TE, and photoemission [30,34,35]; FN, CL, and
MG [20]; and FN, CL, MG, and Ohm’s law (OL) with the
addition of a series resistor [36]. Including more mechanisms
increases complexity: thus, recent studies have introduced
the framework of nexus theory, which equates the relevant
asymptotic emission laws to characterize transition regions
between mechanisms within an order of magnitude [20,36].
Understanding these mechanisms and the transitions between
them is important for many key technologies, including pho-
tovoltaic cells, semiconductors, thermionic energy converters,
and arc cathodes [29,31,37–39].

In this study, we focus on a fully analytic assessment of
the transitions between TE, FE, and vacuum SCLE in a one-
dimensional, planar diode. Individually, TE is modeled by the
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Richardson-Laue-Dushman (RLD) equation [40]; FE by the
FN equation [7]; and vacuum SCLE by the CL equation [1].
Experiments show enhanced emission during the transition
between TE and FE above the predictions of either theory
alone [41]. The link between TE and FE depends upon many
material parameters such as surface treatments, impurities,
work function, and field enhancement [42–47]. Even the
precise shape of the potential barrier or work function has
a significant effect [28,48–51]. The General-Thermal-Field
(GTF) model [30,34,35], leverages the Murphy-Good approx-
imations of key elliptic integrals [52,53] to formulate a TE-
FE model with excellent analytic behavior in the transition
region. SCLE is modeled from first principles by the Poisson
equation and can be solved in a variety of ways, including
direct integration, transit time and capacitor models, and
variational calculus [1,54]. To demonstrate the simplicity and
flexibility of nexus theory, we fully incorporate our previous
nexus work, which included OL and MG [20,36] with the FN-
RLD-CL nexuses. To summarize the objective of this paper,
we study transitions among fundamental electron emission
physics (FE, TE, SCLE) through the lens of models ranging
from semiempirical (FN, RLD, GTF, MG) to fully analytic
(CL, OL). An exact solution from first principles and GTF will
be shown to recover the FN, RLD, and CL equations, while
asymptotic nexus theory will be used to predict the relevant
physics over a given physical parameter space by equating
any/all of the models.

Section II outlines the derivation of the exact solution
from single-particle theory, the asymptotes for the various
mechanisms under appropriate limits, and nexus theory, which
arises from equating two or more asymptotes. Section III
applies this theory to various conditions to demonstrate the
requirements for achieving different order nexuses and show
the relationship between full and nexus theories. We provide
concluding remarks in Sec. IV.

II. THEORY

Analogous to prior theoretical studies examining the tran-
sition from FE to SCLE for a planar diode [3,20], we consider

the motion of a single electron emitted from the cathode at
x = 0, where x represents position across the gap, with the
anode at x = D biased to an electrostatic potential φ(D) = V .
Poisson’s equation in one-dimensional, Cartesian coordinates
is

d2φ

dx2
= ρ

ε0
, (1)

where ρ is electron charge density, and ε0 is vacuum permit-
tivity. The energy balance for a single electron emitted from
the cathode with initial velocity vi is

1
2 mv2 = eφ + 1

2 mv2
i , (2)

where m, e, and v are electron mass, charge, and velocity,
respectively. We assume the initial velocity to be the average
of Maxwell-Boltzmann distribution, (1/2)mv2

i = (1/2)kBT ,
where kB is the Boltzmann constant, and T is the cathode
temperature. This assumption holds whenever space charge
is present or the electric field is large [24], conditions which
are fulfilled for all of the transitions considered in this study.
The continuity equation is

J = ρv, (3)

where J is the electron current density. Unlike prior SCLE
to FE studies, we close the model by defining J using the
general-thermal-field (GTF) model, which includes temper-
ature and surface field effects [35], rather than FN [3,20,36].
Including GTF and initial velocity differs from previous stud-
ies, which only included field and space charge [3,4,24,25],
incorporated pressure [20], or added an external resistor in
series with the gap [36,55]. For any F ≡ e|E | and T , the
general-thermal-field (GTF) equation models J as

JGTF(F, T ) = ARLDT 2N (n, s), (4)

where ARLD = (emk2
B)/(2π2h̄3), h̄ is the reduced Planck con-

stant, n ≡ βT /βF , βT = 1/(kBT ), and βF , s, and N (n, s) are
complicated functions of F and T (see the Appendix) [35].

To generalize the theory, we transform to dimensionless
variables by defining

J = J0J̄; E = E0Ē ; x = x0x̄; t = t0t̄ ; T = T0T̄ ; φ = φ0φ̄; F = F0F̄ ; v = v0v̄; R = R0R̄;

μ = μ0μ̄; T0 = �

kB
; J0 = AFNE2

0 ; E0 = BFN; x0 = eE0t2
0

m
; φ0 ≡ E0x0; t0 = ε0E0

J0
; (5)

F0 ≡ eE0; v0 ≡ x0

t0
; μ0 = eε0

mAFNBFN
; R0 = φ0

J0S
,

where � is the work function, AFN and BFN are asymptotic
FN coefficients given by AFN = e3/(16π2h̄�) and BFN =
(4

√
2m�3)/(3h̄e) [6,12], and S is the emission area. Table I

reports physical constants and FN coefficients for tungsten
(� ≈ 4.5 eV). We perform these theoretical calculations ne-
glecting electron mobility μ and external series resistance R;
adding these terms to (1)–(3) would add terms within the force
law and circuit equation, respectively, as discussed previously
[20,36].

Combining (1)–(3) with (5) and transforming to the time
domain as before [3,20,36], we obtain

d2v̄

dt̄2
= J̄. (6)

Integrating (6) twice with boundary conditions v̄(0) = v̄i and
v̄′(0) = Ē yields

v̄(t̄ ) = 1
2 J̄t̄2 + Ē t̄ + v̄i. (7)
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TABLE I. Typical values of physical parameters.

Symbol Quantity Value

AFN Fowler-Nordheim coefficient (at 4.5 eV) 3.44 × 10−7 A V−2

BFN Fowler-Nordheim coefficient (at 4.5 eV) 6.55 × 1010 V m−1

e Electron charge 1.6 × 10−19 C
m Electron mass 9.11 × 10−31 kg
kB Boltzmann’s constant 1.38 × 10−23 J K−1

ε0 Permittivity of vacuum 8.854 × 10−12 F m−1

h̄ Reduced Planck’s constant 1.05 × 10−34 J s

Integrating (7) with the boundary condition x̄(0) = 0 gives

x̄(t̄ ) = 1
6 J̄t̄3 + 1

2 Ē t̄2 + v̄it̄ . (8)

Defining the dimensionless transit time τ̄ such that x̄(τ̄ ) ≡ D̄
where D̄ is the dimensionless gap distance, (2) shows that
v̄(τ̄ ) = (2V̄ + v̄2

i )1/2 where V̄ ≡ φ̄(D̄) − φ̄(0) is the dimen-
sionless gap bias voltage. Solving (7) at t̄ = τ̄ yields

τ̄ = Ē

J̄
ξ, (9)

where ξ = −1 + [1 + (2J̄/Ē2)((2V̄ + v̄2
i )1/2 − v̄i )]0.5. Sub-

stituting (9) into (8) at t̄ = τ̄ yields

6D̄ = Ē

J̄
ξ

[
Ē2

J̄
ξ (ξ + 3) + 6v̄i

]
. (10)

Equation (10) gives V̄ parametrically as V̄ = V̄ (Ē , T̄ ). The
useful dimensionless relationship F̄ = Ē recasts (4) as

J̄GTF
(
Ē , T̄

) = T̄ 2N (n, s), (11)

which gives the J̄−V̄ curve parametrically in terms of Ē and
T̄ . While this full solution is cumbersome, it can be simplified
at appropriate limits to yield FN, RLD, and CL.

For J̄ � 1, substituting the binomial expansion of ξ into
(10) shows that Ē ≡ V̄ /D̄ for the lowest order term in J̄ ,
which corresponds to the condition of no space charge. For
both vacuum [3] and collisional [20] cases, this means that
J̄ asymptotically follows either the FN or RLD law in this
limit. Using the limits of J̄GTF [34], Ē � T̄ yields the FN limit
where J̄ = J̄ (V̄ ) and T̄ � Ē yields RLD with J̄ = J̄ (T̄ ) [35].
Using (5), these two asymptotic emission equations are

J̄FN = Ē2e−1/Ē = (V̄ /D̄)2e−D̄/V̄ , (12)

J̄RLD = 9
4 T̄ 2e−1/T̄ , (13)

where the factor of 9/4 in (13) arises due to the scaling factors
defined in (5).

Considering the space-charge limit of J̄ � 1 yields a gen-
eral CL (GCL) equation J̄GCL. Expanding (10) in powers of
1/J̄ gives

J̄GCL ≈
(

2

9D̄2

)(√
2V̄ + v̄2

i −
√

v̄2
i

)(√
2V̄ + v̄2

i + 2
√

v̄2
i

)2

= J̄CL

⎛
⎝

√
1 + v̄2

i

2V̄
−

√
v̄2

i

2V̄

⎞
⎠

⎛
⎝

√
1 + v̄2

i

2V̄
+ 2

√
v̄2

i

2V̄

⎞
⎠

2

= J̄CL

⎡
⎣(

1 + v̄2
i

2V̄

)3/2

−
(

v̄2
i

2V̄

)3/2

+ 3

√
v̄2

i

2V̄

⎤
⎦ ≈ J̄CL

⎛
⎝1 + 3

√
v̄2

i

2V̄

⎞
⎠, (14)

where J̄CL ≡ (4
√

2V̄ 3/2)/(9D̄2) is the CL equation [1] with
v̄i = 0, or T̄ = 0. The final expression in (14) is obtained
by keeping the lowest-order term of [v̄2

i /(2V̄ )]1/2 in the
space-charge limit of V̄ → ∞; since this assumption is
not always valid, we will use the penultimate expression
in (14) when referring to GCL. For comparison, another
study derived a form of the generalized CL equation
as JGCL = JCL[(mv2

0/(2eV ))1/2 + (1 + mv2
0/(2eV ))1/2]3.

Applying the definition from (5) gives J̄GCL =
J̄CL[(v̄2

i /(2V̄ ))1/2 + (1 + v̄2
i /(2V̄ ))1/2]3, which also reduces

to J̄GCL ≈ J̄CL(1 + 3(v̄2
i /(2V̄ ))1/2) for large V̄ [56]. For zero

temperature, v̄i = 0 and (14) reduces exactly to J̄CL.
While the asymptotes defined in (12)–(14) adequately

model J̄ in their respective regimes, the full solution (10) is
necessary near transition regions. Analogous to the transitions

between CL and FN in vacuum [3] and CL, MG, and FN
with collisions [20], the intersections of (12)–(14) show the
general conditions for the transition between RLD, FN, and
CL. Equating (12) and (13) shows that the FN to RLD
transition occurs at Ē ≈ T̄ for T̄ � 1 and Ē ≈ 3T̄ /2 for
T̄ � 1. To demonstrate the physical relevance of these values,
consider tungsten (� ≈ 4.5 eV) at its melting temperature,
T = 3695 K, or T̄ = 0.071. Tungsten has the highest melting
point of any metal and a relatively high work function, thus
we can safely assume T̄ � 1 for all metallic diodes and use
the Ē ≈ T̄ approximation for most physically relevant devices
without loss of generality. For the FN to CL transitions, we
first assume Ē = V̄ /D̄ in (12) based on the limit derived above
for the case of no space charge. To assess the second term
in the radical of (14) for the CL limit, consider a different
high physical temperature limit of T ≈ 4000 K, � ≈ 4 eV.
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This gives v̄2
i /(2V̄ ) = 1 for V̄ = 1.86 × 10−3 or V = 0.17 V.

Thus, for higher voltages corresponding to the CL limit,
v̄2

i /(2V̄ ) � 1, which means we can ignore this term in (14)
and use CL to obtain D̄ ≈ V̄ ln[(9

√
V̄ )/(4

√
2)]. The FN to CL

transition cannot be usefully simplified beyond equating (13)
and (14); however, we can derive a third-order nexus when
all three asymptotes match such that the FN-CL and FN-RLD
lead directly to RLD-CL transitions. The RLD-FN-CL nexus
(the ordering of terms is irrelevant) occurs when

1

T̄N
= 1

ĒN
= D̄N

V̄N
= ln

[
(9

√
V̄ N )

(4
√

2)

]
, (15)

where the subscript N denotes that the parameter describes
a nexus point. An important property of (15) is that fixing
any one of T̄N , D̄N , or V̄N at the nexus fully defines the other
two (and Ē in the non-SCLE limit); therefore (15) indicates
when the full solution of (10) must be used to account for
the interplay between emission mechanisms rather than the
simpler models above. The full third-order nexus in (15)
becomes second order (FN-RLD, FN-CL, or RLD-CL) by
varying one of the parameters. This process must be used with
care since these degraded nexuses retain the assumptions used
to derive (15), such as ĒN ≈ T̄N and using CL instead of GCL
from (14).

Nexus theory offers a powerful tool for design and simula-
tion, especially in understanding whether a subset of parame-
ters will be isolated from transition physics or not, motivating
the use of asymptotic or much more complicated multiphysics
solutions, respectively. The main benefit of nexus theory over
full analytic-numerical models is that new theories can be
added easily. For instance, we can add MG and OL asymptotic
behavior from our previous work in nexus theory [20,36] to
(15), as

J̄MG = 9μ̄V̄ 2

8D̄3
, (16)

J̄OL = V̄

R̄
, (17)

where R is the resistance of an external series resistor, S is
the cathode emission surface area, and μ is electron mobility,
inversely proportional to pressure [20,36]. Full solutions in-
corporating this physics may be derived by incorporating the
new physics in (1)–(4) analogous to the earlier work that just
included FE [20,36].

The parameter space may be divided into five distinct
physical regions, separated by transition curves (second-order
nexuses) equating any permutation of (12)–(14), (16), and
(17). Matching three or more asymptotes yields a third-order
or higher nexus. Equations (16) and (17) permit generalization
of (15) to a fifth order of nexus as

1

T̄N
= 1

ĒN
= D̄N

V̄N
= ln

[
(9

√
V̄ N )

(4
√

2)

]
= 81μ̄N

32
√

2V̄N

= exp

(
− D̄N

2V̄N

)√
R̄N

V̄N
. (18)

One may use (18) to assess the proximity of a device’s
physical parameters to nexuses without resorting to using
cumbersome exact solutions; if far from any transitions, sim-
ple (asymptotic) models may be used.

III. RESULTS

Figures 1(a)–1(c) show the transitions between mech-
anisms as J̄ = J̄ (V̄ ) for fixed D̄ = 0.55 and three fixed
T̄ , including T̄N = 1.98 for the FN-RLD-CL nexus, while
Figs. 1(e) and 1(f) show the percentage match between the full
solution and each asymptotic model, FN, RLD, and CL/GCL.
The kinks in the FN and RLD contributions arise due to the
transition of the piecewise continuous GTF model between
several representations of the barrier potential [27,35]. To
show a range of possible J̄−V̄ morphologies that may be
relevant under different conditions, Fig. 1 spans many more
orders of magnitude than possible for a single experiment.
Since experiments have considered all these transitions piece-
meal (FN-CL, FN-RLD, RLD-CL), different sections of Fig. 1
(or similar plots) will be relevant to experimentalists under
appropriate conditions.

We also selected temperatures to clearly demonstrate
possible morphologies. Taking tungsten again as an example,
only the T̄ = 0.03T̄N = 0.06 < 0.071 curve shown in
Figs. 1(a) and 1(d) is at a physically realizable temperature
for this particular gap distance. Indeed, (15) shows that
T̄N = 0.071 would require D̄ > 1011; for tungsten, (5) gives
x0 = 1.8 × 10−9 m, making D � 180 m. However, surface
treatments can lower the work function of tungsten as low
as 1 eV [57], which reduces the dimensionless melting
temperature to T̄m = 0.3184, which only requires D̄ ≈ 103;
since x0 also depends upon work function, we obtain x0 =
8.5 × 10−10 m, which gives D ≈ 850 nm. For a temperature
as low as 1500 K (T̄ = 0.129), the nexus gap distance is
only D̄ = 1.62 × 107, or 1.37 cm. This feasibility makes
these types of materials prime candidates for studying how
current varies with voltage when all three mechanisms are
relevant.

For the lowest temperature, shown in Figs. 1(a) and 1(d)—
physically realizable for simple metallic tungsten diodes—we
observe clear transitions from RLD to FN to CL, with CL
and GCL coincident since V̄ � T̄ . Two second-order nexuses
occur at T̄ = Ē ≡ V̄ /D̄ and D̄ = V̄ ln(9

√
V̄ /(4

√
2) ), or V̄ =

0.033 and 1.09, respectively. Figure 1(d) demonstrates the
importance of these nexuses. Only at very high V̄ does
the full solution match within 20% of any asymptote for
any significant range of V̄ . An extended section where J̃ ≈
J̃RLD occurs for the intermediate temperature T = 0.15TN

due to the higher V̄ (∼0.165) for the RLD-FN nexus.
This sort of analysis would allow a researcher to confi-
dently use the simple RLD model for V̄ < 0.005, or 0.03
V for the low work-function tungsten example. Figures 1(b)
and 1(e) show that increasing T̄ causes J̄ to follow RLD
for a much longer range of V̄ before transitioning to FN
and GCL.

Curiously, for the nexus case in Figs. 1(c) and 1(f), we
see what looks like a GCL region below the nexus and CL
above. Figure 1 was generated parametrically varying Ē . As
Ē → 0, V̄ → 0.15, which accounts for the seemingly missing
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FIG. 1. Dimensionless current density J̄ as a function of dimensionless gap voltage V̄ at fixed dimensionless gap distance D̄ = 0.55 for
various nondimensional temperatures (a) T = 0.03T̄N , (b) 0.15T̄N , and (c) T̄N , where T̄N = 1.98 is the nexus between Fowler-Nordheim (FN)
Richardson-Laue-Dushnman (RLD), and Child-Langmuir (CL) from (15). The dotted boxes in (a) and (b) correspond to the parameter space of
(c) for comparison. The asymptotic field emission (black line, FN), thermal emission (green dashes, RLD), and space-charge-limited emission
(blue dot-dashed line, CL, and blue dotted line, generalized CL or GCL) limits are calculated from (12)–(14), and compared to the exact
solution (10), (11) (red boxes). The exact solution follows the highest J̄ from emission laws (RLD or FN) until reaching the space-charge
emission limit (CL or GCL) at high V̄ . Panels (d)–(f) divide the full solution by each asymptote for (a)–(c), respectively, for the relevant
transition ranges of V̄ . These subfigures only show clear deviations of the full solution, hence the smaller range of V̄ in (c) and (f) than the
remaining panels.

RLD region in the high-temperature plots—the temperature
was so high that the baseline thermal current, combined with
the initial velocity term, only allows for high V̄ solutions to
(9) and (10). Figure 1(c) shows that the nexus occurs when the
asymptotes for FN, RLD, and CL all match. We hypothesize
that the reason for the GCL → Nexus → CL morphology
is that RLD leads to space charge at lower V̄ , but once
Ē increases enough, the initial velocity effect is subsumed
by the large amount of acceleration. Then, since V̄ � T̄
above the nexus, CL once again becomes the appropriate
SCLE model since at high V̄ GCL matches asymptotically
with CL.

The matching of the asymptotes with the full solution
differs dramatically from our previous results with a FN-MG-
CL nexus, which had only 40% agreement at the nexus [20].
We hypothesize that the full solution undershot the previous

FN-MG-CL nexus so much since the single FE model, FN,
was more strongly depressed by two SCLE mechanisms (CL
and MG equations), which limit emission [20]. MG also
includes a friction term in the energy balance [20], whereas
(4) exhibits no loss. The RLD-FN-CL nexus reported here
considers two emission mechanisms, FE and TE (FN and
RLD models, respectively), which are better able to compen-
sate for a single SCLE limiting mechanism modeled by CL.
Transitions exert a significant influence over several orders
of magnitude of V̄ and J̄ . Although experiments operate
over a much smaller parameter space, understanding the full
range of possible physics indicates the conditions that require
a more refined model, even relatively far from transition
physics.

When voltage is fixed, the tendency of the full solution to
transition from TE to SCLE at various V̄ depending upon T̄
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FIG. 2. Field enhanced Miram curve at constant dimensionless gap distance D̄ = 0.55, showing the ratio between the full solution from
(10), (11) and the generalized Child-Langmuir (GCL) law (14) as a function of dimensionless temperature T̄ . The standard Miram curve
gradually transitions to unity at high T̄ , but a field contribution at high dimensionless voltage V̄ gives a baseline current contribution and
softens the knee where the behavior transitions to space charge. (a) Traditional Miram curve. (b) Slight field enhancement at low temperatures.
(c) The nexus V̄ causes significant field emission and a soft knee at transition to GCL. (d) Near-space-charge levels of field contribution leading
to a higher temperature transition to space-charge-limited emission.

is well understood as a normalized rolloff or Miram curve
[32,33]. Figure 2 shows various Miram curves at several
fixed V̄ and D̄ = 0.55 to match with Fig. 1. All parts of
Fig. 2 were calculated by simultaneously solving (9) and
(10) with the GTF, FN, and RLD models from (11)–(13).
In the FN and RLD regions, Ē was varied until the correct
fixed V̄ was found; however, once the solution transitioned
fully to space charge at higher T̄ , there was no solution and
the ratio was assumed to be unity, hence the sharp kink at
the end of the knee. Other GCL equations exist which have
lower current, so experimentalists are advised to generate
field-enhanced Miram curves with the GCL model that best
fits their assumptions [56].

Figure 2(a) resembles a standard Miram curve; however,
Figs. 2(b)–2(d) show that this behavior can be modified by
FE providing a baseline current density, resulting in a field
enhanced Miram curve with a softer knee. These new field en-
hanced Miram curves transition first from FN to RLD, before
going to GCL at different temperatures based upon voltage
[32,33]. While the lowest voltage, Fig. 2(a), has a sharp knee,
the higher voltages where FN is an important contributor have
more rounded knees, especially Figs. 2(c) and 2(d). This is a
desirable quality in a Miram curve, since experimental data
exhibit soft knees that have proven difficult to model from
first principles [32,33]. Moreover, these Miram curves go to
the GCL limit, which is higher than the standard CL limit.
Figure 2(c) is at V̄ = V̄N ; we can see the range of influence
the nexus has upon the Miram curve by comparing RLD to
GTF—not only does the nexus involve the FN baseline contri-
bution, but the knee itself is shifted to a slightly higher temper-

ature, not evident at the lower voltage in Fig. 2(b). Moreover,
the onset of space charge is more gradual. Figure 2(d) is above
the nexus voltage and shows deviates even further from tradi-
tional Miram curves. In fact, at sufficiently high voltage, FE
would already be at the CL limit and increasing temperature
would add enough initial velocity to require a GCL model
instead.

Figures 1 and 2 show that nexuses can predict when
parameters will have an enormous impact on solutions to
emission problems, even multiple orders of magnitude away
from the nexus. Knowing the conditions for all nexuses
informs researchers when a single simple theory will give
accurate results or, if a more complete theory is needed, which
physics must be included. To this end, we construct several
phase plots over parameters of interest to experiment and
device design. Since nexus theory is simple to expand, we
incorporate mobility to represent collisions and an external
resistance to represent the overall system circuit—solving
appropriate combinations of asymptotes from (18) simultane-
ously gives the permutations for nexuses of second to fifth
order.

Figures 3–6 show phase plots for various combinations of
axes using the zero temperature CL limit of (14) for clarity.
Since five physical parameters—pressure (inverse mobility),
temperature, resistance, voltage, and gap distance—describe
the complete diode parameter space, two-dimensional (2D)
plots require fixing three of the parameters. To construct these
plots, we first plotted every second-order nexus line, assigning
the regions based on the appropriate limits of large and small
values of each axis. For instance, when V̄ is an axis, OL
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FIG. 3. Phase plot showing the conditions for various emis-
sion regimes, Ohm’s law (OL), Child-Langmuir (CL), Mott-Gurney
(MG), Fowler-Nordheim (FN), and Richardson-Laue-Dushman
(RLD) as a function of dimensionless voltage V̄ and dimensionless
gap distance D̄ at fixed dimensionless electron mobility μ̄ = 7 ×
103, dimensionless external series resistance R̄ = 108, and dimen-
sionless temperature T̄ = 10−3. Each black line represents a second-
order nexus curve between two regimes; the intersections between
the MG-CL and FN-CL lines is a third-order nexus, FN-MG-CL.

occurs at very high V̄ [36]; likewise, RLD occupies high T̄
and MG low μ̄ (high pressure) [20]. As regions are assigned,
spurious sections of the second-order nexus lines need to be
trimmed. Since a point where multiple asymptotes intersect
is a third- or higher-order nexus point, the lines terminate at
that higher-order nexus point. Figure 5 gives an example of
the phenomenon; the curve separating RLD from the other
four regions is piecewise continuous, consisting of the
second-order nexus curves between RLD and FN, MG, CL,
and OL as V̄ and T̄ increase. Additionally, Fig. 5 has the OL

FIG. 4. Phase plot showing the conditions for various emis-
sion regimes, Ohm’s law (OL), Child-Langmuir (CL), Mott-Gurney
(MG), Fowler-Nordheim (FN), and Richardson-Laue-Dushman
(RLD) as a function of dimensionless voltage V̄ and dimension-
less gap distance D̄ at fixed dimensionless electron mobility μ̄ =
7 × 103, dimensionless external series resistance R̄ = 4 × 1011, and
dimensionless temperature T̄ = 0.12. Each black line represents a
second-order nexus curve between two regimes; the fixed parameters
were chosen such that all lines intersect, leading to a fifth-order
nexus.

10-4 10-2 100
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1010

FIG. 5. Phase plot showing the conditions for various emis-
sion regimes, Ohm’s law (OL), Child-Langmuir (CL), Mott-Gurney
(MG), Fowler-Nordheim (FN), and Richardson-Laue-Dushman
(RLD) as a function of dimensionless voltage V̄ and dimensionless
temperature T̄ at fixed dimensionless electron mobility μ̄ = 7 × 102,
dimensionless external series resistance R̄ = 1010, and dimensionless
gap distance D̄ = 107. Each black line represents a second-order
nexus curve between two regimes; several third-order nexuses exist
where three asymptotic solutions intersect.

to MG or FN nexus curves absent, because the FN to MG
and MG to CL transitions occur at lower voltages than their
respective transitions to OL and are superseded.

For these phase plots, the axis limits and fixed parameters
were selected to display as many regions and transitions as
possible—one may use (5) to translate the dimensionless
parameters into physical units for specific devices of interest.
Since the complete parameter space is five dimensional, these
2D plots provide a starting point and ideas for possible in-
terpretations of nexus theory. As an additional note, mobility
can be difficult to ascertain because although it primarily

10-2 100 102 104 106
100

105

1010
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1020

FIG. 6. Phase plot showing the conditions for various emis-
sion regimes, Ohm’s law (OL), Child-Langmuir (CL), Mott-Gurney
(MG), Fowler-Nordheim (FN), and Richardson-Laue-Dushman
(RLD) as a function of dimensionless voltage V̄ and dimensionless
electron mobility μ̄ at fixed dimensionless gap distance D̄ = 107,
dimensionless external series resistance R̄ = 106, and dimensionless
temperature T̄ = 10−3. Each black line represents a second-order
nexus curve between two regimes; two third-order nexuses are shown
where these curves intersect.
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depends upon pressure, the electric field also contributes—in
our previous papers [20,36], we assumed E = V/D.

Figure 3 explores the V̄ −D̄ parameter space with μ̄ = 700,
T̄ = 10−3, and R̄ = 108; for an emission area of 1 μm × 1 μm
and a tungsten diode with surface treatment to lower the work
function to 1 eV as in [57], (5) gives the physical values of
these parameters as 103 cm2/(V s), 11.6 K, and 8.1 M�. In-
terpreting mobility is more challenging and different for every
gas; for nitrogen, Ref. [58] gives a model μ

√
EP = 3.3 × 106

with cgs units for μ and E and pressure P in Torr. Using
E = 104 V/cm (reasonable, since this example translates the
starting point for the V axis at 5.8 V and the D axis at 85 μm)
yields 1089 Torr. This example demonstrates the process for
translating phase plots for physical experiments to understand
relevance. Obviously, other experiments may use different
materials and focus on a different phase space than presented
here. A third-order nexus occurs at the FN-MG-CL intersec-
tion. Additional nexuses are present at lower D̄ (OL-CL-FN)
and at much higher D̄ (FN-MG-RLD) than shown; clearly, the
limits of parameter space have a huge influence upon which
transitions and nexuses manifest. Indeed, as long as each
region has a viable parameter space—for instance, drastically
increasing R̄ would suppress CL and MG—there will exist
higher–order nexuses at the intersections of all adjacent
regions. We chose the higher range of D̄ to display the MG
regime.

Constructing an analogous phase plot to design the voltage
range for a particular gap distance such as in Fig. 1 would
require ignoring the OL and MG regions (R̄ → 0 and μ̄ →
∞) and focusing on D̄ from 10−1 to 105. Since each individual
physical diode has different scaling constants in (5) and
unique fixed parameters, we stress that these phase plots are
intended to show the range of possible behaviors. The process
above may be followed to create phase plots to suit individual
experimental conditions. The conditions for these nexuses and
regimes of relevance may be manipulated by changing one
of the parameters, such as changing R̄ to move the OL-CL
boundary.

Figure 4 increases the order of the nexus point in the
V̄ −D̄ space by changing R̄ and T̄ to 4 × 1011 and 0.12,
respectively, to collapse all three third-order nexuses into a
single, fifth-order nexus point. For context, with the same
emission area and material used for Fig. 3, (5) gives these
parameters as R = 32 G� and T = 1400 K. By further cus-
tomization, parameter space morphologies may be tailored to
include or exclude mechanisms from physically occurring, or
to leverage transition physics for emission enhancement, such
as measuring a field enhanced Miram curve device. Note that
the FN region has nearly disappeared in Fig. 4. From Figs. 1
and 2, the parameters must be at least an order of magnitude
from a transition for an asymptotic model to be reasonably
accurate (cf. Fig. 1). Practically speaking, pure FE will not
occur for the conditions in Fig. 4, although enhancement due
to FE will still be present, so the physics must still be included
in any full solution near to the dwindling FN region. Reducing
R̄ would revive the FN region, while degrading the fifth-order
nexus point to fourth order.

Since this study incorporates temperature into electron
emission compared to our previous work [20,36], the V̄ −T̄
parameter space is particularly relevant. Figure 5 shows that

varying V̄ and T̄ instead of D̄ at fixed μ̄ = 700, D̄ = 107, and
R̄ = 1010 leads to three third-order nexuses within the chosen
V̄ −T̄ space: FN-MG-RLD, MG-CL-RLD, and CL-OL-RLD.
Using the example diode established in Fig. 3, these dimen-
sionless parameters would be translated into the physical
values μ = 103 cm2/(V s) (1089 Torr), D = 8.5 mm, and R =
810 M�. The fixed parameters were chosen to enlarge each
region on the phase plot; however, one could easily eliminate
the MG or CL regions by modifying μ̄ and/or R̄—each project
and device can benefit from a custom nexus phase plot if
multiphysics are suspected. Relegating the influence of RLD
to higher temperatures than shown in Fig. 5 requires changing
D̄, the primary limiting parameter, as inferred from (18).

The V̄ −μ̄ parameter space is also important: μ̄ varies
inversely with pressure. Considering V̄ and μ̄ in Fig. 6 at
constant T̄ = 10−3, D̄ = 107, and R̄ = 106 shows third-order
nexuses for FN-MG-CL and MG-CL-OL. Again, for our
example diode, these are T = 11.6 K, D = 8.5 mm, and R =
81 k�. This temperature would be useful for a researcher in-
terested in cryogenics—for instance, cryogenic field-emission
scanning electron microscopy (cryo-FESEM), which deals
with temperatures as low as 123 K [59] or 88 K [60]. With a
higher work-function material (say, tungsten at � = 4.5 eV),
T̄ = 10−3 becomes T = 52.2 K, meaning a researcher would
only need to slightly adjust other parameters to make Fig. 6
relevant for cryo-FESEM. Interestingly, for the particular T̄
considered, RLD only intersects with FN in this parameter
space; a higher T̄ would easily eliminate FN and make
the RLD-MG and RLD-CL transitions important instead.
Most individual experiments consider a much smaller sub-
set of phase space; however, plotting a much larger space
demonstrates transitions that may otherwise be neglected. For
instance, in Fig. 6 a researcher examining V̄ > 107 and μ̄ >

104 would not encounter the FN regime, but Figs. 1 and
2 demonstrate that the FN to CL nexus may influence the
solution even two orders of magnitude away in V̄ .

It is instructive to consider the critical temperature below
which emission transitions solely between FN and CL. In
the GTF model, emission begins to transition between ther-
mal and field at Tmin ≡ (h̄eE )/(kB2

√
2m�t (y)) and becomes

purely thermal at Tmax = (h̄eE )/(kBπ
√

m�y) [35]. For a
copper electrode with � = 4.5 eV, D = 100 nm, and V =
1 V, ignoring space charge E = 108V/m, Tmin = 53.3 K, and
Tmax = 165.6 K. Thus, most applications require accounting
for thermionic emission to fully capture emission behavior
(although the cryogenic cases mentioned above would fall
within this range). At room temperature, T = 300 K, the tran-
sition from RLD to FN occurs from 2.21 × 108 V/m < E <

5.68 × 108 V/m. For E above this range, emission becomes
purely FE, although such high E risks damaging the cathode.
These examples demonstrate the usefulness of the full theory
and asymptotic solutions to an experimentalist over a wide
range of T and E.

IV. CONCLUSION

We have derived an emission model including the physics
(and respective models) of FE (FN), TE (RLD), and vacuum
SCLE with (GCL) and without (CL) initial injection velocity
and characterized device conditions requiring the exact so-

033137-8



THEORETICAL ASSESSMENT OF TRANSITIONS ACROSS … PHYSICAL REVIEW RESEARCH 2, 033137 (2020)

lution and those where appropriate asymptotic solutions are
sufficient. Moreover, while certain theories examine the tran-
sition between FE and TE [21,26–31], others FE and SCLE
[3,4,21,24,25], and others TE and SCLE [32,33], we present
here a single theory capable of capturing all these transitions.

The exact solution exhibits several morphologies depend-
ing upon system parameters D̄ and T̄ . Transitions could
include all the physics (RLD to FN to CL) or neglect certain
mechanisms. For low T̄ , only FN and CL occur; at high
T̄ , GCL transformed directly into CL. Varying T̄ gives a
modified, field enhanced Miram curve based on this combined
physics and shows that J̄ from the full solution begins with
a baseline FN contribution, transitions to J̄GCL sooner, and
results in a softened knee, a desirable quality in a Miram
curve [32,33]. The Miram curve typically considers just TE
and SCLE; including the GTF emission model incorporates
FE into the theory, too. Figure 5 shows that FE can contribute
as much as TE at lower T̄ , quantified in Figs. 1(d)–1(f).

We also demonstrated that the asymptotic nature of nexus
theory easily allows the addition (or removal) of mechanisms
while retaining predictive power. Once a nexus is of third
order (called a triple point) and defined by three physical
parameters, such as V̄ , D̄, and T̄ , higher-order nexuses may
be found by simply equating a new asymptotic theory to the
existing nexus, motivating the possible need to incorporate
more physics within the exact solution if physical diode
parameters are near the nexus. For instance, a triple point
was found for V̄ , D̄, and dimensionless electron mobility μ̄,
representing FE and SCLE at both vacuum and pressure [20].
Combining that nexus with (15) by specifying T̄N = V̄N/D̄N

gives a fourth-order nexus where FE, TE, and SCLE for vac-
uum and general pressure agree asymptotically. Introducing
resistance to this fourth-order nexus gives a fifth-order nexus
that includes Ohm’s law, as shown in Fig. 4. Higher-order
nexuses could include surface roughness [61], geometric pa-
rameters such as curvature [62], AC voltage modulation [63],
and magnetic fields [64]. These nexuses will be followed
by rigorous derivations of exact solutions, such as those
devised for the transitions between microscale and macroscale
emission (PL) [9–12]. Future experiments may examine the
transitions between these mechanisms under various design
conditions and the feasibility of achieving the theoretically
predicted field enhanced Miram curve.
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APPENDIX

These supplemental equations for clarification of (4) from
the general-thermal-field model use the same definitions

found throughout this paper, except where noted [27,30,35]:

y =
√

4QF

�
, (A1)

v(y) = 1 − y2

3
[3 − ln(y)], t (y) = 1 + y2

9
[1 − ln(y)],

(A2)

φ = (1 − y)�, (A3)

Tmin = h̄F

2kBt (y)
√

2m�
, (A4)

Tmax = h̄F

πkB
√

m�y
. (A5)

For T < Tmin,

βF = 2t (y)

h̄F

√
2m�, s = 4v(y)

√
2m�3

3h̄F
. (A6)

For T > Tmax,

βF = π
√

m�y

h̄F
, s = π

√
m�y

h̄F
φ. (A7)

In the intermediate case, n = 1, thus βF = βT , and

s = βT

(
Em + θ (Em)

βF (Em)
− μ∗

)
, (A8)

where μ∗ is the Fermi energy and Em is solved from

βT = βF (Em), (A9)

where

βF (E ) ≈ 1

φ
[Bqz + CFN(1 − z)

+ 3(2BFN − Bq − CFN)z(1 − z)], (A10)

and

θ (μ + zφ) = BFN − CFNz + z2[(CFN − Cq)(2 − z)

− (BFN − Bq)(3 − 2z)], (A11)

with

BFN = 4v(y)
√

2m�3

3h̄F
, CFN = 2t (y)

h̄F

√
2m�,

Bq = Cq = π
√

2m

h̄
φ

(
Q

F 3

)1/4

. (A12)

Finally,

N (n, s) = n
∫ ∞

−∞

ln[1 + en(k−s)]

1 + ek
dk. (A13)
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