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We introduce new classes of hydrodynamic theories inspired by the recently discovered fracton phases
of quantum matter. Fracton phases are characterized by elementary excitations (fractons) with restricted
mobility. The hydrodynamic theories we introduce describe thermalization in systems with fractonlike mobility
constraints, including fluids where charge and dipole moment are both locally conserved, and fluids where
charge is conserved along every line or plane of a lattice. Each of these fluids is subdiffusive and constitutes
a new universality class of hydrodynamic behavior. There are infinitely many such classes, each with distinct
subdiffusive exponents, all of which are captured by our formalism. Our framework naturally explains recent
results on dynamics with constrained quantum circuits, as well as recent experiments with ultracold atoms in
tilted optical lattices. We identify crisp experimental signatures of these novel hydrodynamics and explain how
they may be realized in near term ultracold atom experiments.
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I. INTRODUCTION

Hydrodynamics describes a universal effective theory for
many-body dynamics and thermalization, whether or not the
microscopic dynamics is classical or quantum. Indeed, hydro-
dynamic behavior for fluids whose microscopic character is
intrinsically quantum mechanical has experimentally been ob-
served in superfluid liquid helium [1], quark-gluon plasma [2],
cold atomic gases [3], and electron [4–11] and phonon [12]
liquids in solid-state devices.

This paper develops the novel hydrodynamics of an en-
tirely new kind of quantum matter, in which the elementary
excitations are fractons—particles which exhibit constrained
dynamics, being either unable to move in isolation, or able
to move only in certain directions. First discovered in exactly
solvable lattice models [13–15], fracton phases are now at the
frontier of multiple areas of theoretical physics. In quantum
field theory, the existence of these phases challenges the
canonical paradigm that low energy effective theories describe
phases of matter. In quantum information, the immobility
of fractons may lead to robust quantum memory. And in
condensed matter physics, fracton phases are changing our un-
derstanding of what properties can be exhibited by a phase of
matter. Inspired by these surprising and challenging questions,
an enormous effort has been made in recent years to study
and classify the novel quantum phases of matter containing
fractons [16–43]; see also the review articles [44,45]. Never-
theless, because these phases largely lie outside conventional
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frameworks, many basic questions remain open. For example,
what are the transport coefficients of finite temperature fracton
matter? How do these models relax to thermal equilibrium, if
at all?

While local mobility constraints can lead to very long
relaxation times for equilibration [46] and can even produce
localization in certain subspaces [47–49], typical initial states
in most fracton systems can reach local equilibrium. The late
time relaxation to equilibrium should admit a hydrodynamic
description. The qualitative nature of the hydrodynamics will
depend on the type of local conservation laws present in
the system, and will generally look completely distinct from
usual hydrodynamics, such as the Navier-Stokes equations,
or Fick’s diffusion law. Importantly, while the behavior of
fractonic phases is highly sensitive to details of the regulariza-
tion, their hydrodynamic description is sensitive only to sym-
metries. As such, multiple fracton phases fall into the same
hydrodynamic universality class. We also provide examples
where microscopic models that do not have fracton excitations
nevertheless fall into the same hydrodynamic universality
classes as fluids of fractons.

For example, in certain fracton models, the restricted mo-
bility of excitations can formally be understood as a conse-
quence of the fact that the many-body dynamics conserves
not only the total charge density of fractons, but also the total
dipole moment (or higher multipole moment) associated with
this charge [50–52]. Systems with such conservation laws
naturally couple to symmetric tensor gauge theories [53–55],
just like theories of classical or quantum elasticity [56–67].
Other fracton models are understood by duality to systems
with subsystem symmetries [68]. Whether invoking multipole
conservation laws or subsystem symmetry, fracton hydrody-
namics is properly understood as a set of unusual conservation
laws involving the higher rank current operators which are
sourced by the higher rank gauge fields. The consistency of
hydrodynamics in the presence of these background gauge
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fields imposes nontrivial constraints and can lead to slow,
subdiffusive thermalization.

II. DIPOLE CONSERVATION

We begin with the simplest nontrivial example of a fracton
fluid: a chaotic local many-body system in d spatial dimen-
sions where each individual term in the Hamiltonian con-
serves every component of dipole moment: for any constants
a and bi, if ρ(x, t ) denotes the density of a locally conserved
U(1) charge:

d

dt

∫
dd x (a + bix

i )ρ(x, t ) = 0. (1)

For simplicity, we assume this is the only conservation law in
the system; this minimal example is sufficient to capture our
key results. Such systems can be realized in chaotic Floquet
circuits on a lattice [48], with gate range sufficiently large to
ensure thermalization of typical states. Alternatively, we may
consider energy-conserving dynamics in a theory with charge
conjugation symmetry at zero density, where ρ decouples
from the energy fluctuations within linear response. We focus
on the long wavelength, long time limit of such systems,
which is described by a continuum effective theory: hydro-
dynamics. For simplicity we also assume microscopic time
reversal symmetry and rotational invariance, and emergent
homogeneity in space and time. Since ρ(x, t ) is the only
locally conserved quantity, our hydrodynamic theory will be
a single equation of motion for ρ. The hydrodynamic modes
are long wavelength fluctuations in ρ, on length scales much
larger than the microscopic lattice scale, and as a consequence
the local dipole density is not a hydrodynamic degree of
freedom. After all, a local “bound” dipole pair can be created
or destroyed by the motion in space of a single charge. The
absence of a dipole density as an emergent hydrodynamic
degree of freedom is analogous to the absence of angular
momentum density as a hydrodynamic mode in a conventional
rotationally invariant fluid [69].

In general, ρ will not represent an electrical charge; it could
correspond to the number of atoms, or the number of spins
pointing up, or could be some emergent quantity in a strongly
correlated system. Nevertheless, analogies with electromag-
netism are useful [27,50] and will lead to the correct analytical
framework for hydrodynamics.

Following Landau’s canonical framework, it is tempt-
ing to write down ∂tρ = −∂iJi, and look for functions
Ji(ρ, ∂ jρ, ∂ j∂kρ, . . .) for which (1) is obeyed, and which
contain the fewest spatial derivatives. This method leads to
the ordinary Fick’s law: Ji ≈ −D∂iρ, since ∂tρ = D∇2ρ, and
upon integrating by parts two times in (1) we indeed obtain
zero. In fact, the canonical diffusion equation in the infinite
plane conserves both net charge and net dipole moment: this
can be seen by noting that the diffusion equation is linear, and
its Gaussian kernel conserves total charge and dipole.

However, this argument is wrong. There are two hints
why. Firstly, for generic boundary conditions, the ordinary
diffusion equation does not conserve dipole moment in a
closed but finite box. Secondly, the Einstein relation suggests
that a finite diffusion constant D implies a finite conductivity:
a uniform electric field would excite a charge current. Yet

microscopically, the force on a dipole p is F = (p · ∇ )E,
and this vanishes in a uniform field. Since a charge is not
by itself mobile, and the mobile excitation (the dipole) feels
no force from a constant electric field, we conclude that the
conductivity—as well as the diffusion constant—must vanish.

A correct derivation of hydrodynamics, which will resolve
these two puzzles, requires a more careful approach. Charge
conservation relies on a global U(1) symmetry. The low
energy degree of freedom is the phase φ associated with global
U(1) transformations. Local changes in U(1) phase φ source
the charge density ρ, along with the associated current. In a
model with this symmetry, the effective Lagrangian reads

L = c1(∂tφ)2 − c2(∂i∂ jφ)2 − c3(∇2φ)2 + · · · . (2)

(1) implies that L must be invariant under φ → φ + a + bixi,
which is why (2) only contains higher derivative terms in
space. Similar actions arose in the study of plaquette mod-
els [70,71]. We now couple this theory to external sources,
i.e., background gauge fields, following [52]: writing ∂tφ →
∂tφ − At , ∂i∂ jφ → ∂i∂ jφ − Ai j . The gauge field is not a 1-
form, but a mixed rank object (At , Ai j ).

It is helpful to flip the picture around. (At , Ai j ) are back-
ground gauge fields which couple to (ρ, Ji j ), where ρ is
the conserved charge density and Ji j = Jji is a symmetric
rank-2 tensor. As usual, correlation functions of ρ and Ji j are
generated by

Z[A] =
〈
exp

[
i
∫

dd+1x(Atρ + Ai jJ
i j )

]〉
. (3)

The local U(1) conservation law implies

Z[At , Ai j] = Z[At + ∂t�, Ai j − ∂i∂ j�], (4)

where � is a classical background gauge transformation.
Taking a functional derivative δZ/δ� = 0, we obtain the Ward
identity for charge conservation:

∂tρ + ∂i∂ jJi j = 0. (5)

The conserved current for this theory is not a vector, but the
tensor Ji j , which counts the flux of dipoles in direction xi

through the x j plane. The “conventional charge current” that
counts the flux of charged objects through a surface is given
by

Ji = ∂ jJi j . (6)

However, Ji j , not Ji, is fundamental.
It remains to relate Ji j to ρ. The hydrodynamic paradigm

states that one should write Ji j as a Taylor expansion in spatial
derivatives of ρ (ρ, ∂iρ, ∂i∂ jρ, etc.) and that the dominant
terms have the fewest derivatives. The simplest possibility ap-
pears to be Ji j = f (ρ)δi j , which leads us right back to Fick’s
law of diffusion. At this point, our formal detour immediately
pays off: since the current operators are Ji j and not Ji, f (ρ) is
the expectation value of an operator in thermal equilibrium;
therefore, under time reversal f (ρ) → f (ρ). However, ac-
cording to (5), f (ρ) → − f (ρ) under time reversal. These two
conditions enforce f (ρ) = 0, and therefore we must include
spatial derivatives in Ji j : at leading order, we find

Ji j = −B1(Ei j − ∂i∂ jμ) − B2δi j (Ekk − ∂k∂kμ), (7)
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where μ ≈ ρ/χ for small fluctuations (here χ is a thermody-
namic coefficient), and Ei j = −∂t Ai j + ∂i∂ jAt is the higher-
rank electric field which couples to the fluid. Combining (5)
and (7) we see that the decay of the local density is clearly
subdiffusive: modes at wave number k decay at rate Bk4/χ ,
where B = B1 + B2.

We may carefully justify (7) using the abstract formalism
of Ref. [72]; see also Refs. [73,74]. Yet we also know (7) must
be correct because the current Ji j must not locally distinguish
“electric sources” Ei j from electrochemical potential gradi-
ents ∂i∂ jμ. Moreover, if we include local stochastic Gaussian
noise in (7), the fluctuation-dissipation theorem is only obeyed
if Ji j is given by (7) at leading order in derivatives: see
Appendix A for details. Lastly, we may relate Ei j to the
“physical” electric field: [26]

2Ei j = ∂iE j + ∂ jEi, (8)

and so as expected, a dipole flux arises only in electric field
gradients.

III. HIGHER MULTIPOLE CONSERVATION

It is straightforward to generalize the above discussion to
higher multipole moments. For simplicity, let us consider a
theory where

d

dt

∫
dd x (a + aix

i + · · · + ai1···in xi1 · · · xin )ρ = 0, (9)

namely, all multipoles up to order n are conserved. The back-
ground gauge field becomes (At , Ai1···in+1 ), the charge con-
servation equation reads ∂tρ + ∂i1 · · · ∂in+1 Ji1···in+1 = 0, and (7)
generalizes to Ji1···in+1 = (−1)nB′(Ei1···in+1 − ∂i1 · · · ∂in+1μ) +
· · · up to other tensor structures. In the absence of source
fields and noise,

∂tρ + B′(−∇2)n+1ρ = 0; (10)

density modulations at wavelength λ relax in time τ ∼
λ2+2n/B′.

We show in Appendix A that these effective theories
of multipole-conserving hydrodynamics are universal fixed
points under renormalization group flow. All nonlinear cor-
rections and nonlinearities in noise beyond the linear response
theory we have described are irrelevant.

IV. TRANSPORT

Generalizing (6) and (8), a theory with the first n multipoles
conserved naturally couples to n derivatives of the electric
field: the n-pole flux Ji1···in+1 ∼ ∂(i1 · · · ∂in Ein+1 ). The analog of
the Ohmic resistivity is the prefactor B′ of this proportionality.
Suppose, however, that we wish to measure the flux of charge
(namely the “conventional” current) that flows in response
to an electric potential difference. For simplicity, consider
an (effectively) one dimensional system. Since the current
J = B′(−∂2

x )nE ∝ ∂2n+1
x V where V is the electric potential, a

constant current flows when V ∝ x2n+1. A simple calculation
then implies that Ohm’s law holds, but the electrical resistance
R of a long wire of length L and cross-sectional area A

becomes

R = L2n+1

(2n + 1)!B′A
. (11)

The unusual length dependence of R is a striking prediction of
subdiffusion.

V. SUBSYSTEM SYMMETRIES

We now turn to a different example. Consider a theory
where the charge density is conserved on every row and
column of a two-dimensional square lattice. In the continuum
limit,

d

dt

∫
y=a

dxρ = d

dt

∫
x=b

dyρ = 0. (12)

Here, there is a single current operator Jxy; the background
gauge field is (At , Axy); gauge invariance demands that
Z[At , Axy] = Z[At + ∂t�, Axy + ∂x∂y�], which leads to the
Ward identity and continuity equation

∂tρ + ∂x∂yJxy = 0. (13)

The hydrodynamic theory compatible with gauge invariance
and the fluctuation-dissipation theorem corresponds to the
choice Jxy = −B(Exy − ∂x∂yμ), which leads to the subdiffu-
sive equation

∂tρ = −C∂2
x ∂2

y ρ. (14)

In an ordinary fluid, reducing the lattice point group sym-
metry simply includes more complicated tensor structures in
the hydrodynamic equations, while leaving their general form
unchanged [75,76]. Yet in models with subsystem symmetry,
the microscopic lattice plays a critical role in how subdiffusive
the dynamics can be. For example, consider a triangular
lattice: in the continuum charge must be conserved along any
line of the form x = a,

√
3y ± x = b±. Here there is a single

component to the conserved current, which we denote J	, and
the Ward identity for charge conservation becomes

∂tρ + 1

4

(
3∂2

x − ∂2
y

)
∂yJ	 = 0. (15)

The derivation is provided in Appendix B. Consistency
with the fluctuation-dissipation theorem demands that J	 =
−C(3∂2

x − ∂2
y )∂yρ, which leads to the very peculiar subdiffu-

sive decay rate for charge at wave number k: 
 ∝ k2
y (3k2

x −
k2

y )2. As before, these subdiffusive theories are robust, and all
nonlinear corrections to the equations of motion are formally
irrelevant.

One reason why the Ward identities are sensitive to the
choice of lattice is that in conventional hydrodynamics, to
lowest order in gradients, diffusion on square or triangular
lattices is rotation invariant, simply because there is not any
second-rank tensor that is invariant under the point group
symmetry of the lattice. In fracton hydrodynamics, the extra
conservation laws kill the lowest order terms in the derivative
expansion, which now starts with higher derivative terms,
proportional to nontrivial higher rank tensors that are invariant
under the point group. With subsystem symmetries, the lattice
also changes which global charges are conserved, leading to
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fourth-order subdiffusion for the square lattice versus sixth-
order for the triangular lattice.

The higher dimensional analogues of fracton fluids with
subsystem symmetry are straightforward. In three dimensions,
we may consider a theory where charge is conserved on every
line of a cubic lattice. The resulting theory (in the absence of
sources) is

∂tρ = C∂2
x ∂2

y ∂2
z ρ. (16)

If charge is only conserved on every plane, assuming cubic
symmetry, the equation becomes

∂tρ = −C′(∂2
x ∂2

y + ∂2
x ∂2

z + ∂2
y ∂2

z

)
ρ, (17)

which has two fewer derivatives. We note that dynamics on
square and cubic lattices with charge conservation along lines
or planes was studied in Ref. [77], where results consistent
with (14), (16), and (17) were seen. We have explained
these results from a universal hydrodynamic perspective that
is independent of microscopic details, and have also pro-
vided a new prediction (15) for subdiffusion on triangular
lattices.

VI. EXPERIMENTAL IMPLICATIONS

Our results have direct implications for experiments on
constrained quantum dynamics. As an example, a recent
experiment [78] studied thermalization in a cold atomic gas
in a tilted optical lattice, where they found that for sufficiently
strong tilt, atomic number density modulations of wavelength
λ relaxed on timescale τ ∝ λ4. At first glance, this experiment
seems unconnected to our discussion, since the tilt is not
strong enough to enforce dipole conservation on the lattice
scale, since the experiment has energy conservation (which
our discussion has henceforth neglected), and finally because
the experiment has no microscopic fracton excitations. In-
deed, within Ref. [78] the data were explained in terms of a
subtle interplay of two diffusive modes (number and energy).
Nevertheless, the relaxation of the long wavelength number
density modulations is described by the same hydrodynamic
universality class as a fluid of fractons with local dipole
conservation. Because the experiment conserves energy, in
the presence of a nonzero tilt there is an emergent dipole
conservation law on hydrodynamic length scales: assuming
microscopic energy scale U and external force F , a clump
of atoms cannot simply diffuse a distance L if U 
 FL.
Once the tilt is applied to the lattice, the diffusive modes
of atom number and energy morph on long length scales
into one subdiffusive hydrodynamic mode and one “quasi-
hydrodynamic” [79] mode which decays at a finite rate. An
explicit derivation of (5) and (7) in this model are provided in
Appendix C. The genuine hydrodynamic limit of this theory is
identical to that of a fluid of fractons with dipole conservation,
since hydrodynamics is an effective theory and depends only
on (emergent) symmetries. Therefore our framework naturally
explains the observed subdiffusive relaxation τ ∝ λ4 on scales
λ � U/F .

A natural extension of this work is to study the dynamics
of an atomic gas trapped in an optical lattice which is in
turn placed in a strong harmonic trap. For very strong trap
strengths, the harmonic potential will lead to an emergent fluid

with local quadrupole conservation [48]: see Appendix C.
We predict that charge density modulations in this trapped
optical lattice will relax even more slowly: τ ∝ λ6. This
result may be naturally tested in near term ultracold atom
experiments.

VII. MAGNETIC FIELDS

Another application of our formalism is to charged two-
dimensional fluids in a background magnetic field of strength
B. For simplicity, we assume the Galilean invariance (though
the calculation can be generalized). It is known [80] that the
sound mode and diffusion mode for transverse momentum
morph into cyclotron modes dominated by the momentum
density (which is no longer conserved due to the magnetic
field) and a subdiffusive mode describing charge relaxation,
obeying τ ∝ λ4. We can immediately understand this subd-
iffusion as arising from an emergent dipole conservation. In
the presence of a background magnetic field, the conserved
canonical momenta are Pfluid,x + BYd and Pfluid,y − BXd where
Xd ,Yd denote the total dipole moment of the fluid and Pfluid

denotes the physical momentum density. As in the tilted
optical lattice, on large wavelengths, the dipole moments
dominate the conservation of canonical momentum, and
there is a single hydrodynamic subdiffusive mode associated
with the relaxation of charge. A complementary discussion
about fractonlike dynamics in a similar system is found in
Ref. [81].

VIII. LONG-RANGE INTERACTIONS

Atomic quantum simulators ranging from polar
molecules [82] to Rydberg atoms [83] or trapped ion
crystals [84] consist of degrees of freedom which exhibit
long-range interactions: clusters of particles, where no
two particles are separated by a distance greater than
r, have interaction energies E (r) ∝ r−α . Below what α

does hydrodynamics qualitatively break down [85]? In the
presence of n-pole subdiffusion, a density fluctuation will
travel a distance r ∼ t1/(2+2n) in time t . Using Fermi’s golden
rule, we estimate that in the same time t , the typical distance
that the charge might jump using a long-ranged interaction is
given by t ∼ r2α−d (the factor of r2α comes from squaring the
matrix elements in the transition rate estimate; the factor of
r−d comes from integrating over all possible sites to jump to).
The jumps due to long-range interactions spread the charge as
fast (or faster) than subdiffusion when α � n + 1 + d

2 . When
α > n + 1 + d

2 , long-ranged interactions do not destroy
subdiffusion.

Our argument further implies that any exponentially sup-
pressed long-ranged virtual processes permitted in the tilted
lattice experiment of Ref. [78] do not break the subdiffu-
sive dynamics, even in the thermodynamic limit. A more
interesting proposal is to repeat the experiment using de-
grees of freedom with microscopic dipole-dipole interac-
tions (α = 3). While the untilted lattice exhibits diffusive
charge dynamics in three (and below) dimensions, a tilted
system with approximate dipole conservation will not be
as subdiffusive as a system with local interactions in three
dimensions.
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IX. OUTLOOK

The past decade has seen a resurgence of study into the hy-
drodynamics of quantum fluids, which are usually described
by the Navier-Stokes equations or mild modifications thereof.
Our study of fracton fluids has revealed infinitely many
hitherto undiscovered universality classes of hydrodynamic
behavior with clear experimental signatures in both static and
dynamical transport that are qualitatively distinct from con-
ventional Navier-Stokes hydrodynamics. Since hydrodynamic
equations are ultimately classical, it may also be possible
to mimic these effects using engineered active matter [86].
We look forward to the future theoretical and experimental
efforts to uncover, classify and realize microscopically the
many universality classes of fracton hydrodynamics.

Note added. Recently, other groups reported similar pre-
dictions for subdiffusion in fluids with conserved multipole
moments [87–89]. L. Radzihovsky (unpublished) has derived
subdiffusion with conserved dipole moment using fracton-
elasticity duality.
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APPENDIX A: EFFECTIVE FIELD THEORY OF
HYDRODYNAMICS WITH MULTIPOLE CONSERVATION

1. Review of diffusion

First we review the effective theory of hydrodynamics
developed in Ref. [72], in the linear response regime, and
for the simple case of a single conserved U(1) charge. Af-
ter thoroughly summarizing the earlier procedure, it will
be immediate to extend the work to phases of matter with
fracton excitations. Hence, we begin by studying a theory that
only conserves the “0-pole” charge. Consider the generating
functional of hydrodynamic correlation functions

Z[At , Ai] =
〈
exp

[
i
∫

dd+1x(At (x1)ρ(x1) + Ai(x1)Ji(x1))

− (At (x2)ρ(x2) + Ai(x2)Ji(x2))

]〉
, (A1)

where Ji here denotes the ordinary charge current, x1 denotes
a spacetime point on the forward time contour, and x2 denotes
a point on the backwards time contour. We have defined this
action on a Schwinger-Keldysh contour because our ultimate
goal is to derive a dissipative effective theory: hydrodynamics.
A contour that runs both forward and backward in time is
required to obtain the correct operator orderings to study
hydrodynamic correlation functions.

Due to long wavelength hydrodynamic fluctuations which
have been integrated out, Z[At , Ai] is highly nonlocal. The
authors of Ref. [72] argue that one must “integrate in” the
hydrodynamic fluctuations. The hydrodynamic degree of free-
dom in the effective action corresponds to a local U(1) phase
rotation φ in each fluid element:

At → At + ∂tφ, Ai → Ai + ∂iφ. (A2)

So we postulate that

Z[At , Ai] =
∫

Dφ eiI[Bt ,Bi], (A3)

where

Bt = At + ∂tφ, Bi = Ai + ∂iφ. (A4)

It is useful to think of two fields living on a single time
contour, instead of one field living on a two-sided contour.
So we define

Bμ+(x) = Bμ(x1) + Bμ(x2)

2
, Bμ−(x) = Bμ(x1) − Bμ(x2).

(A5)
The B− field corresponds to the stochastic noise field, while
the B+ field corresponds to the hydrodynamic mode, in a way
that we will clarify shortly.

We now wish to build up I using the principles of effective
field theory. For the purposes of this paper, we restrict our-
selves to quadratic actions. There are a number of symmetries
that we must impose, which we list here (see Ref. [72] for the
justification of these facts).

(1) Space-time symmetries. I must be independent of
spacetime position x and all spatial indices must be con-
tracted. We assume the action is local.

(2) Reflection symmetry. I[B+, B−] = −I[B+,−B−]∗:
switching the order of the contours means that iI is complex
conjugated.

(3) Unitarity. I[B− = 0] = 0. All terms in I must have at
least one − field.

(4) Fluid phase relabeling. The initial choice of fluid phase
at each point may be freely chosen at the initial time t = 0, so
I must be invariant under φ+ → φ+ + λ(xi).

(5) Kubo-Martin-Schwinger (KMS) symmetry. In a system
at finite temperature T , suppose that our quadratic action is of
the form

I =
∫

dd+1xdd+1x′
(

i

2
Gαβ (x, x′)Bα−(x)Bβ−(x′)

+ Kαβ (x, x′)Bα−(x)Bβ+(x′)
)

, (A6)

where α and β correspond to different field indices (for exam-
ple, we might take Bα to be either Bt and Bi). Above we let x
include both the d spatial coordinates and the time coordinate
t . Schematically,

Gαβ (x, x′) ∼ 〈{Oα (x), Oβ (x′)}〉,
Kαβ (x, x′) ∼ (t ′ − t )i〈[Oα (x), Oβ (x′)]〉. (A7)

where Oα represents the hydrodynamic operator which cou-
ples to Bα in (A1)—see Ref. [72] for details. Note that (A7),
together with unitarity, time reversal symmetry, and emergent
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space translation symmetry, also implies that

Kαβ (x, x′) = Kαβ (x − x′) = Kβα (x′ − x). (A8)

By translation invariance, we may Fourier transform G and K .
The Fourier transforms obey

Gαβ (k) = Gβα (−k) = −i
T

ω
(Kαβ (k) − Kαβ (k)∗) (A9)

for ω 
 T (the hydrodynamic limit). Note that only the last
step, (A9), actually relies on energy conservation. Hence,
many of the results we derive below are also relevant for
theories without energy conservation, but with an emergent
or averaged time translation invariance and time reversal
symmetry.

For convenience, we will assume KMS symmetry for the
moment, as this is the context in which the effective theories
above are best understood. However, we will also argue at
the end that our qualitative conclusions are not sensitive to
this result. We may now write down the dominant terms in I
compatible with the five symmetries above. If a, b, and c are
real constants, then

I =
∫

dd+1x

[
i

2

(
aB2

t− + 2bT B2
i−

) + cBt−Bt+

− bBi−∂t Bi+ + · · ·
]
, (A10)

where · · · contains higher derivative contributions. c > 0 is
required by thermodynamic consistency, and this choice of
sign is further consistent with φ having a positive-signed
“kinetic” term in a Lagrangian. a > 0 and b > 0 are both
required by the fact that the path integral weight eiI cannot
diverge. We also emphasize that we cannot include a term of
the form (∂iBi−)Bt+ in I , since (A9) would lead to another
term (∂iBi+)Bt− which is forbidden by the phase relabeling
symmetry.

To find the classical hydrodynamic equations in the ab-
sence of noise, we now evaluate

δI

δφ−

∣∣∣∣
B−=0

= 0 = −c∂t Bt+ + b∂i∂t Bi+. (A11)

At long last, we identify the chemical potential μ, charge
density ρ, external electric field Ei, and diffusion constant D
as

μ = Bt+, ρ = cμ, Ei = ∂iAt − ∂t Ai, D = b

c
.

(A12)

The last equality above is the standard Einstein relation.
Combining (A11) and (A12) we find Fick’s law of diffusion,

∂tρ = b∂i(∂iμ − Ei ) = D∇2ρ − b∂iEi. (A13)

2. Effective theories for subdiffusion

Having carefully derived the hydrodynamic equations with
0-pole conservation, we now turn to the case of n-pole conser-
vation. We assume the same symmetries as before, including
rotational invariance for simplicity (this is straightforward to
relax).

We emphasized in the main text that we must no longer
think about our hydrodynamic theory as coupling to external
sources At and Ai (the ordinary U(1) gauge field)—rather, we
must couple to (At , Ai1···in+1 ). Hence, we must build the action
out of

Bt = At + ∂tφ, Bi1···in+1 = Ai1···in+1 + ∂i1 · · · ∂in+1φ.

(A14)
All of the possible spatial index structures in Ai1···in+1 have
enough derivatives to kill all possible polynomial shifts in
φ of order n. This encodes the multipole algebra [52] in
our hydrodynamic effective action. After all, another way to
interpret the mixed rank gauge field is that it is the minimal
object which is guaranteed to vanish under all of the shift
symmetries of the theory (corresponding to adjusting any or
all of the conserved quantities, which in this case are the
multipole moments).

The simplest action that we can write down is analogous
to (A10):

I =
∫

dd+1x

[
i

2
aB2

t− + cBt−Bt+ − bi1···in+1 j1··· jn+1 Bi1···in+1−

× (∂t B j1··· jn+1+ − iT Bj1··· jn+1−) + · · ·
]
, (A15)

where again thermodynamic consistency and bounded noise
spectrum imply that a, b, c > 0. Here,

bi1···in+1 j1··· jn+1 = b j1··· jn+1i1···in+1 = b(i1···in+1 ) j1··· jn+1 (A16)

is a tensor structure built up out of Kronecker delta sym-
bols: e.g. when n = 1, bi jkl = b1δi jδkl + b2(δikδ jl + δilδ jk ).
In general, (A16) allows �1 + n+1

2 � distinct possible terms
in the b tensor. There are two points worth emphasizing
here. For simplicity, take n = 1 (dipole conservation), though
both issues generalize. (1) Consider temporarily the case
of dipole conservation (n = 1). The reason we cannot write
down Bii−Bt+ is that consistency with (A7) and (A8) would
demand a term Bii+Bt− which is not consistent with phase
relabeling symmetry. We must have a ∂t in every term with
Bi j+. (2) While we can indeed write down terms of the
form Bt+∂t Bii− + Bt−∂t Bii+, and these do strictly speaking
have fewer derivatives, since the terms in the equations
of motion with the fewest time derivatives will be of the
form (∂tμ + ∂4

x μ) = 0 (schematically), every time derivative
counts for four spatial derivatives; hence, Bt−∂t Bii+ will lead
to a subleading correction to hydrodynamics when compared
to Bi j−∂t Bi j+.

We compute the equations of motion analogously to be-
fore. Defining

μ = Bt+, ρ = cμ,

Ei1···in+1 = (−1)1+n∂i1 · · · ∂in+1 At − ∂t Ai1···in+1 , (A17)

and varying I with respect to φ−, we obtain

∂tρ = bi1···in+1 j1··· jn+1∂i1 · · · ∂in+1 (∂ j1 · · · ∂ jn+1μ − Ej1··· jn+1 ).

(A18)

3. Scaling dimensions

Using the effective action (A15), it is straightforward to
determine the various operator dimensions of the effective
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theory and to confirm that all deformations are irrelevant. As
we have already seen, the linearized stochastic subdiffusive
equations are controlled by the c and b terms in (A15). Letting
[O] denote the scaling dimension of operator O, and fixing
[x] = −1 by definition, we find the following set of equations
from the c term and the b terms respectively:

d − [t] = −2[t] + [φ+] + [φ−], (A19a)

d − [t] = −[t] + 2(n + 1) + [φ+] + [φ−], (A19b)

d − [t] = 2(n + 1) + 2[φ−], (A19c)

which can be straightforwardly solved to give

[t] = −2(n + 1), (A20a)

[φ−] = d

2
, (A20b)

[φ+] = d

2
− 2(n + 1). (A20c)

In other words, in our subdiffusive fixed point, the pa-
rameters b and c must be “dimensionless” coupling constants
under renormalization group flow to longer length scales. We
emphasize again that in hydrodynamics, this flow does not
correspond to reducing the temperature, which plays the role
of an “ultraviolet” scale.

A priori, it appears that φ+ can be relevant. However, the
shift symmetry in the effective action mandates that I can only
depend on μ = ∂tφ+, which has dimension

[μ] = [∂tφ+] = [φ+] − [t] = d

2
. (A21)

Hence in all physical spatial dimensions d = 1, 2, 3, . . ., all
further terms that show up in (A15) beyond b and c are irrele-
vant corrections (including the a term). This demonstrates that
our subdiffusive theories are universal and completely stable
fixed points.

4. Beyond KMS

Finally, let us return to the matter of KMS symmetry. If we
wish to study emergent hydrodynamics in any system without
energy conservation, it is not appropriate to enforce such a
symmetry. Let us ask what changes need to be made. In the
enumerated list of the first subsection, only point 5 needs to be
relaxed. Assuming that I must still be built out of Stückleberg
fields, then the most general action we can write down is

I =
∫

dd+1x

[
i

2
aB2

t− + cBt−Bt+ − bi1···in+1 j1··· jn+1 Bi1···in+1−

×∂t B j1··· jn+1+ + i f B2
i1···in+1− + · · ·

]
(A22)

where the only change relative to (A15) is that the coefficient
f is no longer constrained by a thermal fluctuation dissipation
theorem. The condition that allows us to forbid terms such
as Bii−Bt+ in the dipole conserving theory is (A7), which is
not lost in the absence of energy conservation. In addition,
the effective operator dimensions and equations of motion
are unchanged, and thus our conclusions remain relevant for
systems without energy conservation.

APPENDIX B: EFFECTIVE FIELD THEORY OF
HYDRODYNAMICS WITH SUBSYSTEM SYMMETRY

1. 2d square lattice

We will use this as an illustrative example, while the other
scenarios discussed in the main text will be fairly straightfor-
ward extensions. The starting point is to begin by thinking
about the phase field φ. The infinite family of conservation
laws (12) is summarized by demanding that the action be
invariant under

φ− → φ− + λ(x) + ζ (y) (B1)

for arbitrary functions λ and ζ . What gauge field A would
be compatible with these symmetries? Clearly we cannot
choose Axxxxx, for example, since Axxxxx → Axxxxx + ∂5

x φ is
not invariant under φ = x5, which is a global symmetry of the
problem. Every “spatial component” of A must have at least
one x and one y index, so that the two separate shifts in (B1)
are canceled. There is a unique simplest tensor structure,
Axy, which contains the fewest number of derivatives and is
invariant. This explains the gauge field (At , Axy) described in
the main text.

Using the above framework, the effective action I must be
built out of the gauge fields

Bt = At + ∂tφ, Bxy = Axy + ∂x∂yφ. (B2)

At leading order, the action is

I =
∫

dd+1x

[
i

2

(
aB2

t− + 2bT B2
xy−

) + cBt−Bt+

− bBxy−∂t Bxy+ + · · ·
]
. (B3)

Note that terms of the form Bxy−∂t Bt+ are forbidden because
they are not invariant under the point group symmetry of the
square lattice, which includes (x, y) → (−x, y). It is straight-
forward to obtain the fourth order subdiffusion equation of the
main text from this effective action.

2. 2d triangular lattice

Let us orient the (x, y) coordinate system such that the
edges of the triangular lattice are oriented in the following di-
rections: ŷ, ±

√
3

2 x̂ + 1
2 ŷ. Now the symmetries of our effective

action must include

φ− → φ− + λ(x) + ζ

(√
3y + x

2

)
+ η

(√
3y − x

2

)
(B4)

for arbitrary functions λ, ζ , and η. A λ shift corresponds to
changing the charge density on every line oriented in the y
direction, which is allowed since each is separately conserved;
the ζ and η shifts correspond to adjustments in the total charge
on the other two “directions” of the lattice, which also are
individually conserved.

From the form of (B4) it is clear that φ can only appear
in the action in the form ∂tφ or ∂y(

√
3∂x − y)(

√
3∂x + y)φ:

respectively these there spatial derivatives annihilate the λ,
ζ and η terms, while the time derivative annihilates all. Just
as on the square lattice, at least one component orthogonal
to each of the lattice directions is mandatory for all spatial
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components of A; we conclude that the effective action will
be built out of

Bt = At + ∂tφ, B	 = A	 + ∂y(
√

3∂x − ∂y)(
√

3∂x + ∂y)φ,

(B5)

where we have resorted to the label 	 for the spatial indices
of B or A (note that these are single component rank-3 spatial
tensors, which transform under the one-dimensional “spin 3”
representation of the dihedral group D12, which represents the
point group of the lattice). The effective action is

I =
∫

dd+1x

[
i

2

(
aB2

t− + 2bT B2
	−

) + cBt−Bt+

− bB	−∂t B	+ + · · ·
]
. (B6)

As on the square lattice, the point group symmetry includes
parity which demands that two 	 indices must always come
together. Varying I with respect to φ− and neglecting noise
leads to (15).

3. 3d cubic lattice: charge conserved on lines

This is a straightforward extension of the 2d square lattice
model. We demand

φ− → φ− + λ(x, y) + ζ (y, z) + η(z, x) (B7)

for arbitrary functions λ, ζ , and η. The gauge field has one
unique spatial component Axyz, and we build the action out of

Bt = At + ∂tφ, Bxyz = Axyz + ∂x∂y∂zφ. (B8)

The effective action which leads to (16) is

I =
∫

dd+1x

[
i

2

(
aB2

t− + 2bT B2
xyz−

) + cBt−Bt+

− bBxyz−∂t Bxyz+ + · · ·
]
. (B9)

4. 3d cubic lattice: charge conserved on planes

Now we demand that

φ− → φ− + λ(x) + ζ (y) + η(z) (B10)

for arbitrary functions λ, ζ , and η. The gauge field has
three different two-index components: Axy, Ayz, Azx, since any
function of two distinct coordinates is not included in the shift
symmetry above. Hence, we build the action out of

Bt = At + ∂tφ, Bxy = Axy + ∂x∂yφ,

Byz = Ayz + ∂y∂zφ, Bzx = Azx + ∂z∂xφ. (B11)

The effective action which is invariant under the point group
of the lattice, which includes inversion as well as rotating
among the x, y, and z directions, leads to (17)

I =
∫

dd+1x

[
i

2

(
aB2

t− + 2bT
(
B2

xy− + B2
yz− + B2

zx−
))

+ cBt−Bt+ − b(Bxy−∂t Bxy+ + Byz−∂t Byz+

+ Bzx−∂t Bzx+) + · · ·
]
. (B12)

APPENDIX C: EMERGENT MULTIPOLE-CONSERVING
HYDRODYNAMICS IN A POLYNOMIAL POTENTIAL

In this Appendix, we consider one dimensional fluids,
and describe how subdiffusive relaxation generically arises
in fluids with charge and energy conservation, but contained
inside higher order polynomial potentials:

Vpot (x) = K

n
xn. (C1)

1. Linear potentials

We begin with a pedagogically simplified version of the
model presented in Ref. [78] to show the emergence of our
dipole-conserving hydrodynamic subdiffusion in their model.
This corresponds to choosing n = 1 and K = −F . Let ρ

denote the atomic number density, and e − Fxρ denote the
total energy density: note that e will not count the “tilt energy”
Fxρ. The equations for ρ and e may be written as [78]

∂tρ + ∂xJρ = 0, ∂t e + ∂xJe = FJρ. (C2)

Here, Jρ and Je denote number and energy flux respectively.
We assume that the thermal energy flux and the atomic
number flux may be approximated as

Je ≈ −Me∂xe + · · · , Jρ ≈ −Mρ (sρ∂xρ + seFe) + · · · .

(C3)
Here, Me and Mρ are dissipative coefficients, while sρ and
se are thermodynamic coefficients. We have neglected some
cross-terms in (C3), but their inclusion does not change the
qualitative physics; see [78] for the general case.

Combining (C2) with (C3) we find that

∂t e + F 2Mρsee = · · · , (C4)

which shows that the thermal energy density e is not con-
served in the presence of a tilt. Hence, the slowest degrees of
freedom in the system will exhibit ultraslow number diffusion
with

FJρ = ∂xJe + · · · . (C5)

The · · · above will contain higher derivative corrections and
may be ignored in the hydrodynamic limit. Upon defining the
dipole current

Jdipole = Je

F
, (C6)

which can be understood as a consequence of macroscopic
dipole flux necessarily arising through the relaxation of the tilt
energy, we obtain the hydrodynamic equation of motion (5)
for a fluid with an emergent local dipole conservation:

∂tρ + ∂2
x Jdipole = 0. (C7)

To check that Jdipole ∝ ∂2
x ρ, we recall (C3). If Jρ is a total

derivative, then seFe = −sρ∂xρ + · · · , where · · · again rep-
resents higher derivative corrections. Therefore

Jdipole ≈ Mesρ

F 2
∂2

x ρ, (C8)

consistent with both our generic framework and the result of
Ref. [78].
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Combining (C7) and (C8), we obtain that one quasinormal
mode in this model hence obeys has the following relation:

ω = −i
Mesρ

F 2
k4 + · · · . (C9)

The second quasinormal mode in this theory is not a genuine
hydrodynamic mode, in that its lifetime remains finite as the
wavelength λ of fluctuations diverges. In this other mode, Jρ

does not vanish at leading order, and the energy conservation
equation can be approximated by

∂t e = −MρF (sρ∂xρ + seFe). (C10)

We conclude that the second quasinormal mode obeys

ω = −iF 2Mρse + · · · . (C11)

In the language of Ref. [79], this second mode is called
“quasihydrodynamic”—it has a parametrically slow decay
rate in the limit F → 0; however, because ω(k = 0) �= 0,
it is not a genuine hydrodynamic mode. The true hydrody-
namic limit of the quasihydrodynamic model of Ref. [78] is,
therefore, the same hydrodynamics as models with locally
conserved dipole moment.

2. Higher-order potentials

We now generalize the above discussion to n > 1. Equa-
tions (C2) and (C3) immediately generalize upon making the
force x-dependent:

F (x) = −kxn−1. (C12)

The remainder of the argument follows through. Since the
thermal energy e is not conserved, the slowest dynamics will

only involve ρ. Combining (C2), (C3), and (C5), we find

∂tρ ≈ −∂x
Me

F (x)
∂2

x

sρ

F (x)
∂xρ. (C13)

Now the force is no longer homogeneous, and so plane wave
solutions do not exist. Nevertheless, we may still look for
normal modes of the form

ρ(x, t ) = ρ0

( x

λ

)
e−
t , (C14)

for relaxation rate 
, unknown function ρ0, and arbitrary
wavelength λ. Indeed, we observe that


 = 1

λ2n+2

Mesρ

K2
, (C15)

and that upon making these substitutions into (C13), we find

ρ0(z) = ∂z
1

zn−1
∂2

z

1

zn−1
∂zρ0(z), (C16)

which means that normal modes exist for all wavelengths λ.
We find that ρ0 is given by

ρ(z) = C1zn/2J−n/(n+1)

(
2z(n+1)/2

n + 1

)

+C2zn/2Jn/(n+1)

(
2z(n+1)/2

n + 1

)
, (C17)

where C1 and C2 are arbitrary constants and Jα denotes the
Bessel function of order α. These solutions are well-behaved
as a function of x and replace the ordinary plane wave solu-
tions that we find in the case n = 1. Although we no longer
find ordinary plane wave solutions, the relationship between
relaxation rate 
 and wavelength λ does not change.
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