
PHYSICAL REVIEW RESEARCH 2, 033114 (2020)

Quantum limits for precisely estimating the orientation and wobble of dipole emitters
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Precisely measuring molecular orientation is key to understanding how molecules organize and interact in soft
matter, but the maximum theoretical limit of measurement precision has yet to be quantified. We use quantum
estimation theory and Fisher information (QFI) to derive a fundamental bound on the precision of estimating the
orientations of rotationally fixed molecules. While direct imaging of the microscope pupil achieves the quantum
bound, it is not compatible with wide-field imaging, so we propose an interferometric imaging system that
also achieves QFI-limited measurement precision. Extending our analysis to rotationally diffusing molecules,
we derive conditions that enable a subset of second-order dipole orientation moments to be measured with
quantum-limited precision. Interestingly, we find that no existing techniques can measure all second moments
simultaneously with QFI-limited precision; there exists a fundamental trade-off between precisely measuring the
mean orientation of a molecule versus its wobble. This theoretical analysis provides crucial insight for optimizing
the design of orientation-sensitive imaging systems.
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I. INTRODUCTION

Since the first observation of single molecules [1], scien-
tists and engineers have worked tirelessly to quantify precisely
their positions [2–4] and orientations [5–9] to probe dynamic
processes within soft matter at the nanoscale. Two funda-
mental challenges confront these experiments: the optical
diffraction limit, i.e., the finite numerical aperture of the imag-
ing system, and Poisson shot noise associated with photon
counting. In recent decades, microscopists have developed
numerous technologies [10–14] to measure the orientations of
single-molecule (SM) dipole moments. Classical estimation
theory, i.e., Fisher information (FI) and the associated Cramér-
Rao bound (CRB) [15], allows us to calculate conveniently
the best possible precision of unbiased measurements of a
few parameters. However, calculating the CRB requires us to
assume a comprehensive set of priors about the object and the
imaging system, such as the number of sources, their positions
and orientations, their emission spectra and anisotropies, an
exact model of the imaging system and its detector, etc. The
performances of several orientation-sensing methods have
been compared using CRB [16,17], but the fundamental limit
of measurement sensitivity remains unexplored.

Recently, quantum estimation theory has ignited a series
of studies that explore the fundamental limits of estimating
the 2D [18] and 3D [19] positions of isolated optical point
sources, as well as the limits of resolving two or more sources
that are separated by distances smaller than the Abbé diffrac-
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tion limit [20–25]. Since quantum noise manifests itself as
shot noise in incoherent optical imaging systems, the quantum
Cramér-Rao bound (QCRB) sets a fundamental limit on the
best possible variance of measuring any parameter of interest.
Further, this approach provides insight into how one may
design an instrument to saturate the quantum bound, thereby
achieving a truly optimal imaging system [19,20]. However,
to our knowledge, no studies exist to quantify the limits of
measuring the orientation and rotational “wobble” of dipole
emitters, which has numerous applications in biology and
materials science [7,26–29].

Here, we apply quantum estimation theory to derive the
best possible precision of estimating the orientations of ro-
tationally fixed fluorescent molecules, regardless of instru-
ment or technique. We compare multiple existing methods
to this bound and present an interferometric microscope de-
sign that achieves quantum-limited precision. Extending our
analysis to rotationally diffusing molecules, we derive bounds
on estimating the temporal average of second-order orienta-
tional moments and show sufficient conditions for reaching
quantum-limited measurement precision. Interestingly, while
the position and orientation of a nonmoving and nonrotating
dipole can be measured simultaneously with quantum-limited
precision, we find that it is impossible to achieve QCRB-
limited precision when estimating both the average orientation
and wobble of a molecule.

II. IMAGING MODEL AND QUANTUM FISHER
INFORMATION

We model a fluorescent molecule as an oscillating
electric dipole [30] with an orientation unit vector μ =
[μx, μy, μz]† = [sin θ cos φ, sin θ sin φ, cos θ ]†. For any un-
biased estimator, the covariance matrix V of estimating the
molecular orientation μ is bounded by the classical and quan-
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tum CRB [15,23,31]

V μ � J −1 � K−1, (1)

where J and K represent the classical and quantum Fisher
information matrices (FI and QFI), respectively, and � de-
notes a generalized inequality such that (V μ − J −1) and
(J −1 − K−1) are positive semidefinite. Here, we consider
the orientational parameters [μx, μy] in Cartesian coordinates.
Other representations of μ can be analyzed similarly.

If the photons detected at position [u, v] follow a Poisson
distribution with expected value I (u, v; μ), the entries of the
classical Fisher information matrix J are given by

Ji j =
∫∫

[∂I (u, v; μ)/∂μi][∂I (u, v; μ)/∂μ j]

I (u, v; μ)
du dv. (2)

Note that I (u, v; μ) is a property of the imaging system; i.e.,
any modulation of the collected emission light generally alters
the classical FI matrix.

A fundamental bound on estimation precision is given by
the quantum FI matrix, which is only affected by how photons
are collected by the imaging system, i.e., its objective lens(es).
For a density operator ρ representing the collected electric
field, the entries of the quantum FI matrix K are given by
[31–33]

Ki j = 1
2 Re{Trρ(LiL j + L jLi )}, (3)

where Li is termed the symmetric logarithmic derivative
(SLD) given implicitly by

∂ρ

∂μi
= 1

2
(Liρ + ρLi ). (4)

Using a vectorial diffraction model [12,34–38], we express
the wave functions of a photon emitted by a rotationally fixed
molecule at the back focal plane (BFP) of the imaging system
[Fig. 6(a)] as

ψx(u, v; μ) = [g1(u, v), g2(u, v), g3(u, v)]·μ, (5a)

ψy(u, v; μ) = [g2(v, u), g1(v, u), g3(v, u)]·μ, (5b)

ψz(u, v; μ) = 0, (5c)

where (ψx, ψy, ψz ) denote linearly polarized fields along
(x, y, z). The basis fields at the BFP of the imaging system
(g1, g2, g3) may be interpreted as the classical electric field
patterns produced by dipoles aligned with the (x, y, z) Carte-
sian axes and projected by the microscope objective into the
BFP [Appendix A and Eq. (A1)].

To proceed in writing down the photon density operator
ρ collected by an objective lens, we define a scalar wave
function

ψ (u, v) = ψx(u, v) + ψy(u′, v′) (6)

such that x- and y-polarized photons are detected separately
and simultaneously; i.e., [u′, v′] = [u − u0, v − v0] represents

a translation
√

u2
0 + v2

0 > r0 of ψy (e.g., by a pair of mirrors)
such that ψx and ψy are spatially resolvable. Here, the dimen-
sionless scalar r0 = NA/n represents the radius of the pupil
of the imaging system (normalized by the focal length of the
collection objective) as a function of the numerical aperture
(NA) and the refractive index of the imaging medium n, which

is assumed to be matched to that of the sample. Similarly, we
define [Fig. 6(b)]

gx(u, v) = g1(u, v) + g2(v′, u′), (7a)

gy(u, v) = g2(u, v) + g1(v′, u′), (7b)

gz(u, v) = g3(u, v) + g3(v′, u′), (7c)

such that the wave function can be written as

ψ (u, v) = gx(u, v)μx + gy(u, v)μy + gz(u, v)μz. (8)

Therefore, if we neglect multiphoton events [20], the zero-
and one-photon states can be represented by

ρ = (1 − εz )|vac〉〈vac| + |ψ〉〈ψ |, (9)

where |vac〉 denotes the vacuum state, where no photon is
captured by the objective lens. Stemming from the finite NA
of the imaging system, the probability of detecting a photon
emitted by the dipole is given by εz = 〈ψ | ψ〉 = 1 − (1 −
c)μ2

z , where

|ψ〉 =
∫∫

ψ (u, v)|u, v〉 du dv (10)

and |u, v〉 denotes the position eigenket such that 〈u, v |
u′, v′〉 = δ(u − u′)δ(v − v′). The scalar c can be viewed as the
probability of collecting a photon from a z-oriented molecule,
normalized to that from an x- or y-oriented dipole, given by
(Appendix A)

c = 〈gz | gz〉 =
−2r4

0 + 6r2
0 − 12

√
1 − r2

0 + 12

r4
0 − 9r2

0 + 24
∈ (0, 1).

(11)
Throughout this paper, we use n = 1.515 and NA = 1.4, i.e.,
r0 = 0.924 and c = 0.65, if not otherwise specified.

In Appendix A, we derive the QCRB for estimating the
first-order orientational moments, yielding

K−1 = μ2
z

Fp
νpν

†
p + 1

Fa
νaν

†
a, (12)

where eigenvectors νp = [μx, μy]†/
√

1 − μ2
z and νa =

[μy,−μx]†/
√

1 − μ2
z represent orientational unit vectors

along the polar and azimuthal directions, and

Fp = 4(1 + c − εz ) = 4c
(
1 − μ2

z + μ2
z

/
c
)
, (13a)

Fa = 4 (13b)

represent the QFI components along the polar and azimuthal
directions, respectively. We may reparameterize this quantum
limit in terms of the best possible precision of measuring a
dipole’s orientation in polar coordinates [θ, φ], given by

σθ,QCRB = 1

2
√

c sin2 θ + cos2 θ
, (14a)

σφ,QCRB = 1

2 sin θ
. (14b)

Here, we use σQCRB to denote the best possible measure-
ment standard deviation for any imaging system, as deter-
mined by the QFI, while we use σ to denote the best possible
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measurement standard deviation for a particular imaging
system, as determined by classical FI.

The QFI along the polar direction Fp implicitly quantifies
the change of the wave function ψ with respect to the polar
orientation of the source dipole and increases as μz increases
[Eq. (13a)]. Given the toroidal emission pattern of a dipole,
changes in polar orientation are easier to detect when sensing
the null in the distribution (i.e., large μz) in contrast to viewing
the dipole from the side (i.e., large θ ). In the limiting case
of r0 = c = 1, the 4π collection aperture captures the entire
radiated field, and the limit of polar orientation precision
σθ,QCRB becomes 0.5 rad for all possible orientations.

Interestingly similar to estimating the 3D position of a
dipole emitter [19], the QFI for measuring azimuthal orien-
tation is uniform across all possible orientations [Eq. (13b)],
i.e., the best possible uncertainty (as a longitudinal arc length
on the orientation unit sphere) does not vary with NA or orien-
tation μ. However, the circumference of the circles of latitude
decrease with decreasing polar angle θ , thereby causing the
limit of azimuthal orientation precision σφ,QCRB to degrade as
1/(2 sin θ ).

We compare the classical CRB of multiple orientation mea-
surement techniques to the quantum bound. Remarkably, di-
rect BFP imaging (with x- and y-polarization separation) [35]
has the best precision among the methods we compared, and
since its variance ellipses overlap with the quantum bound,
it achieves QCRB-limited measurement precision [Fig. 1(a)].
The widely used x/y-polarized standard PSF (xyPol) [39]
has relatively poor precision compared to other techniques,
as quantified by using standardized generalized variance
[det(J )]−1/2 (SGV), defined as the positive pth root of the
determinant of a p × p covariance matrix [40]. SGV scales
linearly with the area of the covariance ellipse for estimating
[μx, μy], and the SGV of the xyPol technique is approximately
three times larger on average than the quantum bound for
out-of-plane molecules [Fig. 1(b)] and two times larger for
in-plane molecules [Fig. 1(d)]. Its precision in measuring x-
and y-oriented molecules is severely hampered due to its
symmetry and resulting measurement degeneracy. The tri-spot
(TS) PSF, a PSF engineered specifically to measure molecular
orientation [8], has better overall precision compared to the
x/y-polarized standard PSF, and its performance degrades
only slightly for x- and y-oriented molecules. However, its
precision does not reach the quantum limit.

Note that both the x/y-polarized standard and TS PSFs
break the azimuthal symmetry associated with conventional
imaging systems, leading to φ-dependent performance. In-
spired to retain this symmetry, we also characterize the ra-
dially and azimuthally polarized version of the standard PSF
(raPol) [41]. This PSF is implemented by placing a vortex
(half-)wave plate (VWP), S-wave plate, or y-phi metasurface
mask [42] at the BFP. These elements convert radially and
azimuthally polarized light into linearly polarized light with
orthogonal polarizations; these polarizations may be separated
downstream by using a polarization beam splitter (PBS). This
technique has uniform precision for measuring molecular
orientation across all azimuthal angles φ due to its symmetry.
Its measurement precision is better than that of the TS PSF for
most orientations [Figs. 1(b) and 1(c)] and only slightly worse
for in-plane molecules [Fig. 1(d)].

FIG. 1. Classical CRB of several techniques (Appendix B) com-
pared to the quantum CRB of estimating first-order orientational
moments of fixed dipole emitters. (a) CRB covariance ellipses for
measuring [μx, μy] using 25 detected photons. To compute the
covariance for N photons detected, scale the dimensions of the
ellipses by 5/

√
N . [(b)–(d)] CRB standardized generalized variance

(SGV in steradians) σ 2
CRB = [μ2

z det(J )]−1/2 of estimating [μx, μy],
normalized to quantify orientation precision as a solid angle on
the surface of a unit sphere. SGV is computed for a dipole with
orientation (b) θ = 20◦, (c) θ = 50◦, and (d) θ = 80◦ and one
photon detected. For N photons detected, SGV may be computed
by scaling the radial axis by 1/N . The gray regions are bounded
from above by QCRB [Eqs. (12) and (14)]. Blue, direct BFP imaging
(BFP); orange, standard PSF with x- and y-polarization separation
(xyPol); green, standard PSF with radial- and azimuthal-polarization
separation (raPol); and purple, tri-spot PSF with x- and y-polarized
detection (TS).

III. REACHING THE QUANTUM LIMIT OF ORIENTATION
MEASUREMENT PRECISION

Although direct BFP imaging achieves quantum-limited
precision, it can only measure the orientation of one molecule
at a time, thereby limiting its practical usage. In contrast,
the aforementioned wide-field imaging techniques can resolve
the orientations of multiple molecules simultaneously, but
their precisions do not reach the QCRB (Appendix B). Here,
we analyze the classical FI of an imaging system [Eq. (2)]
to deduce the conditions necessary for achieving the best
possible precision equal to the QCRB.

The expected intensity distribution in the image plane is
given by I = |U (ψ )|2, where U is a unitary operator, i.e.,
∀ (ψ1, ψ2) 〈U (ψ1) | U (ψ2)〉 = 〈ψ1 | ψ2〉, that depends on the
configuration of the imaging system. This linear operator
U typically involves a scaled Fourier transform (xyPol), a
Fourier transform after phase modulation (TS), or a Fourier
transform after modulation by a polarization tensor (raPol).
We consider an operator U (·) projecting the wave function
ψ (u, v) to the image plane such that the resulting field is
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FIG. 2. Dual opposing-objective interferometric imaging (du-
alObj) for achieving QCRB-limited precision. Two vortex (half-)
wave plates (VWP) are placed at the BFPs to convert radially
polarized to x-polarized light (blue) and azimuthally polarized to
y-polarized light (red). Blue arrows depict the fast axis direction of
the VWP. One of the radially polarized channels is flipped using
an x-oriented Dove prism (DP) and then propagates to the beam
splitter (BS).

either real or imaginary at any position [u, v], i.e., the non-
negative intensity is given by I = [U (ψ )]2 or I = −[U (ψ )]2.
Therefore, Eq. (2) can be simplified to become

Ji j =
∫∫

4

[
∂U (ψ )

∂μi

][
∂U (ψ )

∂μ j

]
du dv. (15)

Further, since the basis fields remain mutually orthogonal
after a unitary operation U , i.e.,

∫∫
[U (gi )][U (g j )] du dv =

0 ∀ i 
= j, we find that the classical FI becomes equal to the
QFI (Appendix B).

Therefore, an imaging system achieves the QFI limit for
measuring dipole orientations if its images contain nonover-
lapping (i.e., noninterfering) real and imaginary fields. Fur-
ther, in Appendix B, we find that the classical FI of a
measurement saturates the quantum bound if and only if the
phase of the detected electric field does not contain orientation
information, i.e., |U (ψ )|∂arg{U (ψ )}/∂μi = 0. BFP imaging,
where U is the identity operator, satisfies this condition, and
its precision reaches the quantum limit. In contrast, the field
at the image plane is simply related to the field at the BFP
by a Fourier transform; therefore, to satisfy the condition, a
system may separate real and imaginary electric fields at the
image plane, which is equivalent to separating even and odd
field distributions at the BFP due to the parity of the Fourier
transform. Alternatively, measuring the full complex field, i.e.,
both its amplitude and phase, could in principle reach the
quantum limit of measurement precision.

Leveraging this insight, we propose an interferometric
imaging system (dualObj, Fig. 2) to measure the orientations
of multiple molecules simultaneously with precision reaching
the QCRB. This system uses two opposing objectives to col-
lect the field emanated by a dipole, in a manner similar to 4Pi
microscopy and iPALM [43–46]. To model the fields captured
by each lens, we define orientation coordinates (μx, μy) such

FIG. 3. Estimation precision and optical fields produced by the
dual objective interferometric imaging system. (a) CRB covariance
ellipses for measuring [μx, μy] using 25 detected photons and inter-
ferometric detection (magenta) compared to the quantum bound. To
compute the covariance for N photons detected, scale the dimensions
of the ellipses by 5/

√
N . (b) Basis electric fields U (gx ), U (gy ), and

U (gz ) at detectors (i)–(iv) in Fig. 2. [(c), (d)] Normalized ampli-
tude and phase of the optical fields of molecules with orientations
−μx = μy = μz and μx = μy = μz captured at detectors (i)–(iv) and
intermediate image planes (v) and (vi) in Fig. 2 (c) without and
(d) with VWPs. Scale bar: 1 μm. Color bars: normalized amplitude
and phase in rad.

that the two captured fields have identical amplitude distri-
butions in the BFP; i.e., due to dipole symmetry, orientation
coordinates (μx, μy) are not the same as position coordinates
(x, y) as depicted in Fig. 2. VWPs are placed at the BFPs
to transform radially and azimuthally polarized light into x-
and y-polarized light, respectively. Cameras (i) and (ii) detect
identical images of the y (azimuthally) polarized fields. The
x (radially) polarized fields, one of which is flipped by a
dove prism (DP) (Fig. 2), are guided to a beam splitter (BS).
The resulting interference pattern is captured by cameras (iii)
and (iv).

The precision of this interferometric imaging system satu-
rates the QCRB [Fig. 3(a)], since (1) the basis fields U (gx ),
U (gy), and U (gz ) captured across cameras (i)–(iv) are mu-
tually orthogonal [Fig. 3(b)], and (2) the real [Figs. 3(b)(i),
3(b)(ii), and 3(b)(iv)] and imaginary [Fig. 3(b)(iii)] compo-
nents of the field are spatially separated. QCRB-limited pre-
cision can also be achieved by using a single objective and a
50:50 beam splitter, as shown in Fig. 7, but this system cannot
measure positions and orientations of molecules simultane-
ously (Appendix C). Note that although the photon detection
rate is doubled in experiments using dual-objective detection,
the two schemes exhibit identical orientational precision per
photon detected.

To demonstrate the features of this optical design, we
consider the optical fields of molecules with orientations μ =
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[−1, 1, 1]/
√

3 and μ = [1, 1, 1]/
√

3, propagated by the pro-
posed imaging system to the various image planes [Figs. 3(c)
and 3(d)]. Corresponding images with Poisson shot noise are
shown in Figs. 7(b) and 7(c). Without including the VWP, the
fields at cameras (i) and (ii) and intermediate image planes
[IIPs, (v) and (vi)] represent the response of an x/y-polarized
imaging system [Figs. 3(c)(i), 3(c)(ii), 3(c)(v), and 3(c)(vi)].
Both the amplitudes and phases of the fields contain orienta-
tion information, but the phase patterns are lost when using
photon-counting cameras. Therefore, the performance of the
xyPol imaging system is worse than the quantum bound. After
guiding the y-polarized fields to the interferometric detection
path, the phase shift induced by the BS separates the real
and imaginary fields, i.e., the phase patterns of the fields
detected are binary [Figs. 3(c)(iii) and 3(c)(iv)] and do not
contain orientation information. Images of these two dipoles
are now easier to distinguish from one another, as exemplified
by rotation in the elongated PSFs [red lines in Fig. 3(c)(iii)
versus Figs. 3(c)(v) and 3(c)(vi)].

While interferometric detection can also be implemented
in the x-polarized channel [Figs. 3(c)(i) and 3(c)(ii)] to boost
precision, we notice that a VWP combined with a PBS
separates radially and azimuthally polarized light, and all
basis electric fields in the azimuthal channel are odd at the
BFP, i.e., the basis fields are completely imaginary in the
image plane [Figs. 3(d)(i) and 3(d)(ii)]. Therefore, using a
VWP eliminates the need for interferometric detection in the
azimuthal channel, yielding a simpler imaging system. In
the radially polarized channel [Figs. 3(d)(v) and 3(d)(vi)],
we implement interferometric detection to improve image
contrast [Figs. 3(d)(iii) and 3(d)(iv)], thereby enabling QCRB-
limited orientation measurement precision [Fig. 3(a)]. Further,
this imaging system also saturates the QCRB for measuring
the 3D position of SMs [19], making it optimal for both 3D
orientation and 3D position measurements. While complex to
implement and align, the required polarization elements can
be added directly to existing dual-objective imaging systems
[45,46].

IV. FUNDAMENTAL LIMITS OF MEASURING
ORIENTATION AND WOBBLE SIMULTANEOUSLY

While a single photon emitted by a dipole has a wave
function ψ that is consistent with a single orientation μ, cam-
era images usually contain multiple photons, thereby inher-
ently enabling measurements of rotational dynamics during a
camera’s integration time [8,14,27,47]. Note that a collection
of photons emitted by a partially fixed or freely rotating
molecule is equivalent to that emitted by some collection of
fixed dipoles with a corresponding orientation distribution.
Therefore, the photon state for a wobbling molecule may be
expressed as a mixed state density matrix

ρ = 1

T

∫ T

0
ρ[μ(t )] dt

= (1 − c)Mzz|vac〉〈vac| +
∑

i, j∈{x,y,z}
|gi〉〈g j |Mi j, (16)

where Mi j = (1/T )
∫ T

0 μiμ j dt is the temporal average of the
second moments of molecular orientation over acquisition

time T . The corresponding classical image formation model
is given by Eqs. (E1) and (E2). The QFI may be expressed
as a function of the orientational second moments and can be
computed numerically as shown in Appendix D.

For simplicity, we parametrize a dipole’s rotational mo-
tions by using an average orientation [μ̄x, μ̄y, μ̄z] with rota-
tional constraint γ [8,9,14], i.e.,

Mii = γ μ̄2
i + 1 − γ

3
, i ∈ {x, y, z}, (17a)

Mi j = γ μ̄iμ̄ j, i, j ∈ {x, y, z}, i 
= j, (17b)

where γ = 0 represents a freely rotating molecule and γ = 1
indicates a rotationally fixed molecule. We may derive an ana-
lytical expression of QFI for estimating a subset of the second
moments [Mxx, Myy, Mzz, Mxy] (Appendix D) by examining
special cases where the dipole’s average orientation is parallel
to the Cartesian axes. The QFI matrices for a dipole with an
average orientation along the x axis [Kx, i.e., μ̄x = 1, Mxy =
Mxz = Myz = 0, Figs. 4(a) and 4(b)] and that for a dipole with
an average orientation parallel to the optical axis μz [Kz, i.e.,
μ̄z = 1, Mxy = Mxz = Myz = 0, Fig. 4(c)] are given by

Kx = diag
(
Kx

xx,Kx
yy,Kx

zz,Kx
xy

)
= diag

(
3

1 + 2γ
,

3

1 − γ
,

3c

1 − γ
,

12

2 + γ

)
, (18a)

Kz = diag

(
3

1 − γ
,

3

1 − γ
,

3c

1 + 2γ
,

6

1 − γ

)
. (18b)

One sufficient condition to saturate the QFI for estimating
a subset of parameters is for the measurement to project
onto the eigenstates of the corresponding SLDs [33]. For
example, when a low NA objective lens is used, the x/y-
polarized standard PSF separates nearly perfectly the basis
images corresponding to Mxx and Myy and has no sensitivity to
Mzz. Therefore, the x/y-polarized standard PSF projects onto
the eigenstates of Lxx and Lyy and its precision approaches
the QCRB limit for measuring Mxx and Myy for small NA
[Fig. 4(a)]. However, this technique lacks sensitivity for mea-
suring the cross moment Mxy [Fig. 4(b)] since the correspond-
ing FI entry is close to zero [Fig. 9(b)]. Intuitively, Mxy may
be measured simply by rotating the polarizing beam splitter
by 45◦ around the optical axis to capture linearly polarized
light along ±45◦. This approach achieves the QFI limit for
measuring Mxy, but consequently contains no information
regarding the squared moments Mxx and Myy [Figs. 4(a), 4(b)
9(a), and 9(b)].

To quantify measurement performance corresponding to
out-of-plane second moments, we focus on the CRB σzz,
since all polarized versions of the standard PSF have poor
sensitivity for measuring cross moments Mxz and Myz. Not
surprisingly, the precision of measuring Mzz dramatically
improves when using an objective lens of NA greater than 1
[Fig. 4(c)(i)]. Here, we notice the usefulness of dual-objective
interferometric detection (dualObj); since the photons corre-
sponding to Mzz are separated from other second moments
[Fig. 3(b)], i.e., the system projects onto the eigenstate of LMzz ,
dualObj achieves QCRB-limited precision [Fig. 4(c)]. With-
out interferometric detection (raPol), radially and azimuthally
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FIG. 4. Classical CRB of several techniques (Appendix E) com-
pared to the quantum CRB of estimating second-order orientational
moments of dipole emitters. (a) CRB SGV of estimating Mxx and Myy

for molecules wobbling around the μx axis, [(b), (c)] best-possible
precision

√
CRB of estimating (b) Mxy for molecules wobbling

around the μx axis and (c) Mzz for molecules wobbling around the
μz axis as functions of (i) numerical aperture NA (for γ = 0) and (ii)
rotational constraint γ [NA = 0.1 in (a) and (b) and NA = 1.4 in (c)].
The gray regions are bounded from above by (a) QCRB or [(b), (c)]√

QCRB [Eq. (18)]. Orange, standard PSF with x- and y-polarized
detection (xyPol); cyan, standard PSF with linearly polarized de-
tection at ±45◦ in the xy plane (45◦Pol); green, standard PSF with
radially and azimuthally polarized detection (raPol); and magenta,
dual-objective interferometric detection with VWPs (dualObj). All
curves assume one photon is detected from the dipole emitter. For
N photons detected, scale the vertical axis values by (a) 1/N and
[(b), (c)] 1/

√
N . The estimation precision of 45◦Pol in panel (a) and

xyPol in panel (b) are orders of magnitude larger than those of the
other techniques and are not shown.

polarized detection achieves worse precision than dualObj but
improves upon basic linear polarization separation (xyPol or
45◦Pol).

Close examination of Figs. 4(a) and 4(b) shows that
no existing orientation imaging methods, even those that
achieve QCRB-limited precision for estimating first moments,
can achieve QFI-limited precision for measuring all orienta-
tional second moments simultaneously. To gain insight into
this phenomenon, we use classical FI to analyze the SGV
(σ i

xx,yy,xy)2 of measuring all in-plane moments simultaneously
(Appendix E), yielding

(
σ i

xx,yy,xy

)2 = [
det
(
J i

xx,yy,xy

)]−1/3

�
(
Ki

xxKi
yyKi

xy/4
)−1/3 = [

det
(
Ki

xx,yy,xy

)
/4
]−1/3

, (19)

FIG. 5. CRB standardized generalized variance (SGV in steradi-
ans) of estimating in-plane moments Mxx , Myy, and Mxy simultane-
ously for molecules wobbling around the (a) μx axis and (b) μz axis
using (i) NA = 0.1 and (ii) NA = 1.4 objective lenses. The dark gray
regions are bounded from above by the quantum bound [Eq. (18)];
light gray regions are bounded from above by the classical bound
[Eq. (19)]. Orange, standard PSF with x- and y-polarized detection
(xyPol); cyan, standard PSF with linearly polarized detection at ±45◦

in the xy plane (45◦Pol); green, standard PSF with radially and
azimuthally polarized detection (raPol); and magenta, dual-objective
interferometric detection with VWPs (dualObj). All curves assume
one photon is detected from the dipole emitter. For N photons de-
tected, scale the vertical axis values by 1/N . The estimation precision
of 45◦Pol and xyPol in (i) are orders of magnitude larger than those
of the other techniques and are not shown.

where the superscript i ∈ {x, y, z} denotes the SGV σ 2, FI J ,
or QFI K of a dipole with an average orientation along one of
the Cartesian axes.

Equation (19) reveals that there exists a trade-off between
sensitivity for measuring squared moments, which mainly
indicate the average orientation of a molecule, versus cross
moments, which correspond to wobble [Eq. (17)], for all
imaging systems. Radially and azimuthally polarized standard
PSFs, both with (dualObj) and without (raPol) interferometric
detection, exhibit nearly identical precision for measuring
squared moments versys cross moments [Figs. 9(a) and 9(b)]
and perform closely to the bound given by Eq. (19) for both
low [Fig. 5(i)] and high NA [Fig. 5(ii)]. In contrast, the
linearly polarized standard PSFs, xyPol and raPol, exhibit
suboptimal SGVs σ 2

xx,yy,xy for measuring all in-plane second
moments simultaneously for low NA as expected [Fig. 5(i)],
and these SGVs improve as NA increases [Fig. 5(ii)]. This
improvement comes at the cost of worsening measurement
precision for specific moments [(Mxx, Myy) for xyPol and
Mxy for 45◦Pol, Figs. 4(a)(i) and 4(b)(i)]. Interestingly, no
method can achieve QCRB-limited measurement precision for
all second-order orientational moments simultaneously since
the bound given by Eq. (19) is greater than the quantum bound
[Eq. (18)]. This trade-off also occurs for molecules wobbling
around other average orientations (Fig. 8).

V. DISCUSSION AND CONCLUSION

Using quantum estimation theory, we derive a fundamental
bound for estimating the orientation of rotationally fixed
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molecules that applies to all measurement techniques. The key
result is that the bound is radially symmetric; the precision
along the polar direction depends on the numerical aperture
of the imaging system and the polar orientation μz of the
molecule, while the precision along the azimuthal direction
is bounded by a constant 0.5 rad. Our approach can be ex-
tended to include appropriately modeled background photons
(Appendix F). Estimation performance can vary dramatically
depending on how the background photons interact with
the signal photons and the parameters to be estimated, and
exploring these effects for typical single-molecule imaging
conditions remains the object of future study. By comparing
the precision of existing methods to the bound, we show
that direct imaging of the BFP saturates the quantum bound,
while all existing image-plane-based techniques have worse
precision. Upon further investigation of the classical FI, we
show that a method can saturate the quantum bound if and
only if the field in the image plane contains only trivial
phase information. Inspired by this necessary and sufficient
condition, we propose an imaging system with interferomet-
ric detection at the image plane that saturates the quantum
bound.

We further examined the quantum bound for estimating the
average orientation and wobble of a nonfixed molecule. Since
the orientation and wobble measurement is composed of a
number of individual molecular orientations mixed together,
our analysis shows that the optimality of a measurement
depends on the specific molecular orientation trajectory to be
observed. Although no measurement is physically realizable
that achieves QCRB-limited precision for all second moments
and all possible molecular orientations simultaneously, we
show several methods that achieve quantum-limited precision
for certain subsets of second moments. Generally speaking,
spatially separating basis fields improves the precision of mea-
suring the average orientation of an SM, while mixing (i.e.,
increasing the spatial overlap of the) basis fields improves
the precision of measuring their wobble. The trade-off is
demonstrated using classical FI (Appendix E). An imaging
system that separates radially and azimuthally polarized light
using a VWP and a PBS is capable of distributing information
evenly between measuring the average orientation and wobble
(raPol and dualObj in Fig. 4), and these methods achieve
optimal measurement precision for in-plane moments in terms
of CRB SGV (Fig. 5). Although we model the orientation
of SMs using orientational second-order moments, similar re-
sults can also be derived for other orientation parametrizations
such as generalized Stokes vectors and spherical harmonics
(Appendix D).

Interestingly, we note that certain entries of the QFI matrix
may be infinite, e.g., Kx

yy,yy = Kx
zz,zz = ∞ for fixed molecules

oriented along the x axis [Eq. (18a)] and Kz
xx,xx = Kz

yy,yy =
Kz

xy,xy = ∞ for fixed molecules oriented along the z axis
[Eq. (18b)]. Such cases arise when ρ∂ρ/∂Mi j vanishes as a
molecule becomes more fixed (γ → 1). One such example
is using the x/y-polarized standard PSF to estimate Myy for
an x-oriented fixed molecule; the classical FI J x

yy,yy is also
infinite in this case. That is, there exists some position(s)
(u, v) in image space such that I (u, v; μ = [1, 0, 0]†) = 0
and ∂I (u, v)/∂Myy > 0; i.e., we expect certain region(s) of
the image to be dark for x-oriented dipoles but bright for

y-oriented dipoles. Therefore,

J x
yy,yy =

∫∫
[∂I (u, v)/∂Myy]2

I (u, v)
du dv = ∞. (20)

This situation is the orientation analog of MINFLUX
nanoscopy [48], where infinitely good orientation measure-
ment precision per photon may be obtained by receiving
zero signal [49]; in this case, zero photons detected in the
y-polarized channel implies Myy = 0.

It is remarkable that quantum estimation theory provides
fundamental bounds on measurement performance that are
both instrument independent and achievable by readily built
imaging systems, such as the dual-objective system with
vortex wave plates and interferometric detection proposed
here. Further, these bounds give tremendous insight to mi-
croscopists, who can now compare existing methods for
measuring dipole orientation to the bound and design new
microscopes that optimally utilize each detected photon for
maximum measurement precision. In particular, our analy-
sis reveals that no single instrument can achieve the best
possible QCRB limit for measuring all orientational second
moments simultaneously due to the trade-off between mea-
suring mean orientation versus molecular wobble [Eq. (19)].
Therefore, the notion of designing a single, fixed instrument
that performs optimally may simply be intractable, and in-
stead, scientists and engineers should focus on designing
“smart” imaging systems that adapt to the specific dipole
orientations within the sample and orientational second mo-
ments of interest, thus achieving optimal, QFI-limited mea-
surement precision. Such designs remain the object of future
studies.

ACKNOWLEDGMENTS

We acknowledge the helpful discussions with Tianben
Ding, Tingting Wu, Hesam Mazidi, and Jin Lu. This work was
supported by the National Science Foundation under Grant
No. ECCS-1653777 and by the National Institute of General
Medical Sciences under Grant No. R35GM124858.

APPENDIX A: QUANTUM FISHER INFORMATION OF
ESTIMATING FIRST-ORDER ORIENTATIONAL

DIPOLE MOMENTS

Here, we derive the quantum Fisher information (QFI) of
estimating the first-order orientational moments of a fixed
dipole emitter. We consider the classical wave function given
in Eqs. (7) and (8). The basis fields, as measured in the BFP,
of each dipole moment are given by [12,38]

g1(u, v) = A Circ

(
r

r0

)
u2

√
1 − r2 + v2

r2(1 − r2)1/4
, (A1a)

g2(u, v) = A Circ

(
r

r0

)
uv(

√
1 − r2 − 1)

r2(1 − r2)1/4
, (A1b)

g3(u, v) = −A Circ

(
r

r0

)
u

(1 − r2)1/4
, (A1c)
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FIG. 6. Overview of a simplified two-lens imaging system.
(a) An objective lens (OL) captures light emitted by a single-
molecule (SM) emitter positioned at its focal plane. A tube lens
(TL) is used to focus light to the image plane (IP). (b) Basis electric
fields (i) gx , (ii) gy, and (iii) gz at the back focal plane (BFP) of the
imaging system normalized to the maximum amplitude of gx . Red,
x-polarized field; blue, y-polarized field.

where r = √
u2 + v2, and Circ(r) is an indicator function

representing a circular aperture that equals 1 for r � 1 and
0 otherwise. The scalar A represents a normalization factor
such that

∫∫
(g2

1 + g2
2) du dv = 1 and

∫∫
g2

3 du dv = c/2 [Eq.
(11)], given by

A−2 = π

3

[
4 + (

r2
0 − 4

)√
1 − r2

0

]
. (A2)

Therefore, the photon state corresponding to wave function ψ

is given by ρ = (1 − εz )|vac〉〈vac| + |ψ〉〈ψ |, where

|ψ〉 = |gx〉μx + |gy〉μy + |gz〉μz (A3)

and (gx, gy, gz ) defined in Eq. (7) (Fig. 6).
We first derive the symmetric logarithmic derivatives

(SLDs) for measuring these parameters. The SLDs are
given implicitly by Eq. (4), where ∂ρ/∂μk = |ψ〉〈∂ψ/∂μk| +
|∂ψ/∂μk〉〈ψ |. The partial derivatives of state vector |ψ〉 are
given by ∣∣∣∣ ∂ψ

∂μx

〉
= |gx〉 − |gz〉μx

μz
, (A4a)∣∣∣∣ ∂ψ

∂μy

〉
= |gy〉 − |gz〉μy

μz
, (A4b)

where we have applied the constraint μ2
x + μ2

y + μ2
z = 1.

Further, we may perform eigendecomposition on the density
matrix ρ such that

ρ =
∑

i

Di|ei〉〈ei|, (A5)

with {Di} and {|ei〉} being its eigenvalues and eigenstates,
respectively. The SLDs are therefore given explicitly by [20]

Lk =
∑

Di+Dj 
=0

2

Di + Dj
〈ei|∂ρ/∂μk|e j〉|ei〉〈e j |. (A6)

Eigenstates |ei〉 contribute to the sum only if ∂ρ/∂μk|ei〉 
= 0.
We find three eigenstates that contribute to the sum such that

{|e1〉, |e2〉, |e3〉} span {|ψ〉, |∂ψ/∂μx〉, |∂ψ/∂μy〉}:

|e1〉 = 1√
εz

|ψ〉, (A7a)

|e2〉 = 1√
1 − μ2

z

(μy|gx〉 − μx|gy〉), (A7b)

|e3〉 =
√

c

εz
(
1 − μ2

z

) [μxμz|gx〉 + μyμz|gy〉

+ (
μ2

z − 1
)
c−1|gz〉

]
, (A7c)

with corresponding eigenvalues D1 = εz and D2 = D3 = 0.
The SLDs are computed by substituting these eigenstates [Eq.
(A7)] and eigenvalues into Eq. (A6). The elements of the QFI
can be computed according to Eq. (3), yielding the QFI matrix

K = 4

μ2
z

[
cμ2

x + μ2
z cμxμy

cμxμy cμ2
y + μ2

z

]
. (A8)

Note that this derivation depends solely on the orthogo-
nality between the basis fields |gx〉, |gy〉, and |gz〉. Therefore,
Eq. (A8) may also be used if the sample’s refractive index
differs from that of the imaging medium; in this case, the
constant c is no longer given by Eq. (11) and would need to
be adjusted accordingly.

APPENDIX B: CLASSICAL FISHER INFORMATION OF
ESTIMATING FIRST-ORDER ORIENTATIONAL

DIPOLE MOMENTS

We evaluate the classical FI given by Eq. (2). For sim-
plicity, we write the field at the camera plane as �(u, v) =
U (ψ ) = A� (u, v) exp[ jα� (u, v)] where {A�, α�} ∈ R2 and
U (·) is a unitary operator, such as a Fourier transform. We
consider the diagonal entries of the classical FI given by
[Eq. (2)]

Jii =
∫∫ [(

�

�∗

)1/2
∂�∗

∂μi
+
(

�∗

�

)1/2
∂�

∂μi

]2

du dv

= 4
∫∫

Re

{(
�

�∗

)1/2
∂�∗

∂μi

}2

du dv

= 4
∫∫ [

∂A� (u, v)

∂μi

]2

du dv. (B1)

Thus, because the intensity |�(u, v)|2 is detected by a
camera, orientation information is only useful if it is en-
coded within the field amplitude A� (u, v); i.e., FI increases
as ∂A� (u, v)/∂μi increases. Any information that may be
present within phase variations that arise from changes in
orientation, given by ∂α� (u, v)/∂μi, are simply lost and do
not improve Fisher information.

Both the field and its partial derivatives can be viewed as
superpositions of image-plane basis fields

Gi = U (gi ), (B2)

analogous to the fields at the BFP [Eq. (A1)], given by

� = Gxμx + Gyμy + Gzμz, (B3a)
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∂�

∂μx
= Gx − Gz

μx

μz
, (B3b)

∂�

∂μy
= Gy − Gz

μy

μz
. (B3c)

Interestingly, we find that

Jii � 4
∫∫ ∣∣∣∣∂�(u, v)

∂μi

∣∣∣∣
2

du dv

= 4
∫∫ ∣∣∣∣Gi − Gz

μi

μz

∣∣∣∣
2

du dv

= 4
∫∫ (

|Gi|2 + μ2
i

μ2
z

|Gz|2
)

du dv

= Kii (B4)

with equality if and only if

Im

[
�(u, v)

�∗(u, v)

]1/2
∂�∗(u, v)

∂μi

= Im
∂A� (u, v)

∂μi
− jA� (u, v)

∂α� (u, v)

∂μi

= −A� (u, v)
∂α� (u, v)

∂μi
= 0. (B5)

Thus, the classical FI may equal the quantum bound if and
only if the phase of the image-plane field, α� (u, v), is constant
as the dipole changes orientation. That is, if one can design
an imaging system such that all changes in orientation corre-
spond solely to changes in the image-plane field amplitude
A� (u, v), such an imaging system may achieve quantum-
limited orientation measurement precision.

APPENDIX C: SINGLE-OBJECTIVE INTERFEROMETRIC
IMAGING SYSTEM THAT REACHES THE QUANTUM

LIMIT OF MEASUREMENT PRECISION

Here, we show a single-objective interferometric imaging
system that achieves QCRB-limited precision for estimating
first-order orientational dipole moments (Fig. 7), analogous to
the dual-objective system discussed in the main text (Fig. 2).
This system similarly uses a vortex wave plate (VWP) to cir-
cumvent the need for interferometric detection of azimuthally
polarized emission light. However, this system passes radi-
ally polarized light through two 50:50 beam splitters in a
Mach-Zehnder configuration. Each arm further uses a dove
prism (DP) to flip the field for proper detection of orientation
information.

Although this imaging system is simpler to implement than
a dual-objective system, the use of only one objective lens
prevents cameras (iii) and (iv) from measuring the position
(x, y) and orientation (μx, μy) simultaneously (Fig. 7). For
single-objective detection, the y-polarized field at the BFP for
a molecule located at position (x, y) is given by

ψ ′
y(u, v; x, y,μ) = ψy(u, v; μ) exp[ jk(ux + vy)], (C1)

FIG. 7. (a) A single-objective interferometric imaging system
that reaches the quantum limit of measurement precision. A vortex
wave plate (VWP) is placed at the BFP to convert radially and
azimuthally polarized light to x- (blue) and y-polarized (red) light,
respectively, which is then separated by a polarizing beam splitter
(PBS). Camera (i) detects an azimuthally polarized image identical
to those captured by cameras (i) and (ii) in Fig. 2. The radial channel
is split and recombined by a pair of 50:50 beamsplitters (BS) in
a Mach-Zehnder configuration; light in each arm is flipped using
orthogonally oriented dove prisms (DPs). Cameras (ii) and (iii) detect
images identical in shape but half as bright as those captured by
cameras (iii) and (iv) in the dual-objective system in Fig. 2. [(b), (c)]
Images of molecules with orientations −μx = μy = μz and μx =
μy = μz captured at detectors (i)–(iii) and intermediate image planes
(iv) and (v) both (b) without and (c) with VWPs. Images depict a
total of 2000 photons detected. Scale bar: 1 μm. Color bar: photons
per 58.5 × 58.5 nm2 pixel.

whereas for the dual-objective system, the electric fields col-
lected by objectives 1 and 2 are given by

ψ ′
y,1(u1, v1; x, y,μ) = ψy(u1, v1; μ) exp[ jk(u1x + v1y)],

(C2a)

ψ ′
y,2(u2, v2; x, y,μ) = ψy(u2, v2; μ) exp[ jk(−u2x − v2y)].

(C2b)

As stated in the main text (Sec. III), orientation mea-
surements in the image plane achieve maximum precision
when even and odd fields at the BFP are separated, e.g.,
when ψy(u, v) + ψy(−u,−v) and ψy(u, v) − ψy(−u,−v) are
resolved simultaneously. In the dual-objective setup in Fig. 2,
the fields captured by cameras (iii) and (iv) are given by
ψ ′

y,1(u, v) + ψ ′
y,2(−u,−v) and ψ ′

y,1(u, v) − ψ ′
y,2(−u,−v), re-

spectively. Thereby, the orientation measurement is opti-
mized, and position information exp[ jk(ux + vy)] is pre-
served.

However, for single-objective detection, we can only op-
timize the orientation measurement for a single (x, y) posi-
tion, e.g., for (x, y) = (0, 0) by interfering ψ ′

y(u, v; 0, 0,μ)
with ψ ′

y(−u,−v; 0, 0,μ) using DPs as depicted in Fig. 7.
Therefore, position information exp[ jk(ux + vy)] is lost, but
an image may be formed point by point by scanning the
illumination or sample over time.
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APPENDIX D: QUANTUM FISHER INFORMATION OF
ESTIMATING SECOND-ORDER ORIENTATIONAL

DIPOLE MOMENTS

For a nonfixed, i.e., rotationally diffusing, molecule, the
photon density matrix is given by

ρ = |gx〉〈gx|Mxx + |gy〉〈gy|Myy + (|gx〉〈gy| + |gy〉〈gx|)
× Mxy + (|gx〉〈gz| + |gz〉〈gx|)Mxz

+ (|gy〉〈gz| + |gz〉〈gy|)Myz + [|gz〉〈gz|
+ (1 − c)|vac〉〈vac|]Mzz, (D1)

where |gi〉 are the basis fields measured in the BFP [Eq.
(A1)] and Mi j = (1/T )

∫ T
0 μiμ j dt = 〈μiμ j〉 is the temporal

average of the second moments of molecular orientation over
acquisition time T . The partial derivatives of the density
matrix with respect to the orientational second-order moments
are written as

∂ρ

∂Mii
= |gi〉〈gi|, i ∈ {x, y, z}, (D2a)

∂ρ

∂Mi j
= |gi〉〈g j | + |g j〉〈gi|, i, j ∈ {x, y, z}, i 
= j. (D2b)

Note that while we parametrize the molecule’s orientation
and rotational diffusion using six second-order orientational
moments Mi j , generalized Stokes parameters Si [14,50] and
spherical harmonics [51] may be used instead via a change of
variables. For example, the generalized Stokes parameters Si

may be computed in terms of the second moments as follows:

S1 = 2S0(Mxx − Myy), (D3a)

[S2, S4, S6] = 2S0[Mxy, Mxz, Myz], (D3b)

S3 = S5 = S7 = 0, (D3c)

S8 =
√

3S0(Mxx + Myy − Mzz )/2, (D3d)

where brightness scaling factor S0 = 1 for one photon de-
tected. A linear transformation can be applied to project our
results into this space.

The SLDs and QFI can be computed numerically for any
orientation [Mxx, Myy, Mzz, Mxy, Mxz, Myz]; due to the com-
plexity of the eigendecomposition of ρ, it is difficult to
find a simple analytical expression. However, for a molecule
symmetrically wobbling around the μz axis with rotational
constraint γ , we may write the density matrix as

ρ = 1 − γ

3
(|gx〉〈gx| + |gy〉〈gy|)

+ 1 + 2γ

3
[|gz〉〈gz| + (1 − c)|vac〉〈vac|]. (D4)

The SLDs corresponding to the second-order moments be-
come

Lii = 3

1 + 2γ
|gi〉〈gi|, i ∈ {x, y}, (D5a)

Lzz = 3

c(1 + 2γ )
|gz〉〈gz|, (D5b)

Lxy = 3

1 − γ
(|gx〉〈gy| + |gy〉〈gx|), (D5c)

Liz = 6

1 + c + (2c − 1)γ
(|gi〉〈gz| + |gz〉〈gi|).

(D5d)

The QFI can be computed according to Eq. (3), yielding
Eq. (18b) and

Kz
xz,xz = Kz

yz,yz = 12c

1 + c + (2c − 1)γ
. (D6)

A similar procedure can be applied to compute the QFI of
x-oriented molecules, yielding Eq. (18a) and

Kx
xz,xz = 12c

1 + c + (2 − c)γ
, (D7a)

Kx
yz,yz = 12c

(1 + c)(1 − γ )
. (D7b)

Note that a measurement that projects onto the SLDs cor-
responding to the squared moments [Eqs. (D5a) and (D5b)],
which is sufficient to achieve QCRB-limited precision for
measuring those moments, requires |gx〉, |gy〉, and |gz〉 to be
resolved separately on a camera. In contrast, a measurement
that projects onto the SLDs corresponding to the cross mo-
ments [Eqs. (D5c) and (D5d)] requires |gx〉, |gy〉, and |gz〉 to
overlap with one another on the camera.

Interestingly, although σxx,QCRB, σyy,QCRB, and σxy,QCRB

vary with the mean azimuthal orientation φ̄ [Fig. 8(b)], the
SGV σ 2

xx,yy,QCRB representing the area of the covariance ellipse
for estimating [Mxx, Myy] is constant and uniform for all φ̄

[Fig. 8(a)].

APPENDIX E: CLASSICAL FISHER INFORMATION OF
ESTIMATING SECOND-ORDER ORIENTATIONAL

DIPOLE MOMENTS

We expand the classical image formation model I (u, v) =
��∗ in terms of the second moments of molecular orientation
as

I (u, v) = s[Bxx(u, v)Mxx + Byy(u, v)Myy

+ Bzz(u, v)Mzz + Bxy(u, v)Mxy

+ Bxz(u, v)Mxz + Byz(u, v)Myz], (E1)

where Bi j (u, v) are the intensity basis images given by

Bii = GiG
∗
i , i ∈ {x, y, z}, (E2a)

Bi j = GiG
∗
j + G∗

i G j, i, j ∈ {x, y, z}, i 
= j, (E2b)

where Gi are the basis fields in the image plane [Eq. (B2)],
and s = 1 is a brightness scaling factor corresponding to one
photon detected.

To investigate the trade-off in measuring squared versus
cross moments, we analyze the in-plane second-order mo-
ments (Mxx, Myy, Mxy) and assume that Bxz = Byz = Bzz = 0
for simplicity. Since the total intensity of an image must be
non-negative everywhere, the inequality

I = BxxMxx + ByyMyy + BxyMxy � 0 (E3)
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FIG. 8. Classical CRB of several techniques (Appendix E) com-
pared to the quantum CRB of estimating second-order orientational
moments of a nearly fixed (γ = 0.8) dipole emitter with average
polar orientation (i) θ̄ = 20◦ and (ii) θ̄ = 80◦ using one detected
photon. (a) CRB SGV for estimating in-plane squared moments Mxx

and Myy using a low 0.1 NA objective. (b) Best-possible precision√
CRB of estimating the in-plane cross moment Mxy using a low 0.1

NA objective. (c) Best possible precision
√

CRB of estimating the
out-of-plane squared moment Mzz using a high 1.4 NA objective. The
gray regions are bounded from above by the numerically computed
(a) QCRB or [(b), (c)]

√
QCRB. Orange, standard PSF with x-

and y-polarized detection (xyPol); cyan, standard PSF with linearly
polarized detection at ±45◦ in the xy plane (45◦Pol); green, standard
PSF with radially and azimuthally polarized detection (raPol); and
magenta, dual-objective interferometric detection with VWPs (du-
alObj). All curves assume one photon is detected from the dipole
emitter. The estimation precision of 45◦Pol in panel (a) and xyPol
in panel (b) are orders of magnitude larger than those of the other
techniques and are not shown.

must be satisifed for all (Mxx, Myy, Mxy) such that M2
xy =

〈μxμy〉2 � 〈μ2
x〉〈μ2

y〉 = MxxMyy. From the definition of the
intensity basis images [Eq. (E2)], we have

B2
xy = (GxG∗

y + G∗
xGy)2

= 2GxG∗
xGyG∗

y + (GxG∗
y )2 + (G∗

xGy)2

= 2GxG∗
xGyG∗

y + 2Re
{
(GxG∗

y )2
}

� 2GxG∗
xGyG∗

y + 2|GxG∗
y |2

= 4GxG∗
xGyG∗

y = 4BxxByy, (E4)

with equality if and only if GxG∗
y is real; i.e., Gx and Gy have

the same phase. Note that this inequality holds for all imaging
systems, i.e., any possible Gi.

The classical FI matrix of estimating in-plane orientational
second moments, ignoring the third, fifth, and sixth rows and
columns of the full FI matrix J , may be written as

J xx,yy,xy =
⎡
⎣Jxx,xx Jxx,yy Jxx,xy

Jyy,xx Jyy,yy Jyy,xy

Jxy,xx Jxy,yy Jxy,xy

⎤
⎦

=
⎡
⎣J11 J12 J14

J21 J22 J24

J41 J42 J44

⎤
⎦. (E5)

We use the square root of the inverse of the determinant
of the 2 × 2 FI submatrix J xx,yy to quantify the CRB SGV
of estimating the squared second moments [Fig. 4(a)], and
we invert the diagonal entry J44 to compute the CRB cor-
responding to Mxy [Fig. 4(b)]. When using the aforemen-
tioned polarized standard PSFs (xyPol and raPol, with and
without interferometric detection) to measure molecules with
mean orientations μ̄x = 1 or μ̄z = 1, there is zero correlation
between estimating in-plane squared moments (Mxx, Myy)
and the cross moment (Mxy), i.e., J14 = J24 = 0; thus the
diagonal entry J44 can be directly evaluated for quantifying
classical FI.

Next, we compute the classical FI of measuring the in-
plane second moments of a molecule wobbling around the
μx axis, i.e., Mxx = (1 + 2γ )/3, Myy = Mzz = (1 − γ )/3, and
Mxy = 0, as

J11 =
∫∫

3B2
xx

(1 + 2γ )Bxx + (1 − γ )Byy
du dv

�
∫∫

3Bxx

1 + 2γ
du dv = 3

1 + 2γ
= Kxx,xx, (E6a)

J22 =
∫∫ 3B2

yy

(1 + 2γ )Bxx + (1 − γ )Byy
du dv

�
∫∫

3Byy

1 − γ
du dv = 3

1 − γ
= Kyy,yy, (E6b)

J12 =
∫∫

3BxxByy

(1 + 2γ )Bxx + (1 − γ )Byy
du dv, (E6c)

J44 =
∫∫ 3B2

xy

(1 + 2γ )Bxx + (1 − γ )Byy
du dv,

�
∫∫

12BxxByy

(1 + 2γ )Bxx + (1 − γ )Byy
du dv = 4J12. (E6d)

We now develop a relation between the covariance J12 and
the diagonal elements J11 and J22 given by Eqs. (E6a) to
(E6c), yielding

1 + 2γ

1 − γ
(Kxx,xx − J11) = 1 − γ

1 + 2γ
(Kyy,yy − J22) = J12,

(E7)
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where we have utilized the fact that the total energies in
Bxx and Byy are each normalized to one. The equalities
in Eqs. (E6a) and (E6b) are only satisfied when BxxByy =
0 ∀ [u, v]; i.e., the classical FI saturates the QFI when Bxx

and Byy are spatially separated on the camera. However, if
this condition holds, then Bxy = 0 [Eq. (E4)], i.e., I does not
depend on Mxy, and I does not contain any information for
measuring Mxy.

In the main text, we discussed a trade-off between achiev-
ing good precision in estimating squared second moments,
e.g., Mxx, versus achieving good precision in estimating cross
moments, e.g., Mxy, for molecules wobbling around the in-
plane axes or the optical axis. Here, we compute numerically
the precision of measuring second moments for molecules
with arbitrary average orientations (θ̄ , φ̄) and small rotational
diffusion (γ = 0.8), which is equivalent to rotating uniformly
within a cone of half-angle 30.7◦, using various methods
(Fig. 8). The estimation precisions for mostly fixed molecules
are similar to those for freely rotating molecules (Fig. 4).
The x/y-polarized standard PSF with a low NA objective lens
has a precision achieving the quantum bound for measuring
Mxx and Myy for some orientations, but has no sensitivity
for measuring Mxy. The 45◦-polarized standard PSF has the
opposite performance; it achieves the QCRB for measuring
Mxy, but has no sensitivity for measuring Mxx and Myy. The
radially and azimuthally polarized standard PSF has better
Mzz precision compared to the in-plane polarized PSFs. We
surmise that these methods do not simultaneously achieve
QCRB-limited precision for all orientations because they do
not project onto the corresponding SLDs for the orientational
second moments.

We next consider the CRB SGV (σ x
xx,yy,xy)2 for estimating

Mxx, Myy, and Mxy simultaneously, given by(
σ x

xx,yy,xy

)2 = [det(J xx,yy,xy)]−1/3

= [
det(J xx,yy)J44 − J11J 2

24

− J22J 2
14 + 2J12J14J24

]−1/3
. (E8)

We derive a bound for the off-diagonal FI elements as

J11J 2
24 + J22J 2

14 − 2J12J14J24

� 2
√
J11J22|J14J24| − 2|J12J14J24|

= 2
(√

J11J22 − |J12|
)|J14J24| � 0, (E9)

assuming that the FI submatix for estimating Mxx and Myy

is positive definite, i.e., J11J22 − J12 > 0, since the SGV
becomes infinite if any determinant of any of the FI sub-
matrices is 0. Equality holds if and only if J14 = J24 = 0;
i.e., measurements of Mxx and Myy are uncorrelated with Mxy.
Therefore, the SGV is bounded as(

σ x
xx,yy,xy

)2 = [det(J xx,yy,xy)]−1/3

� [det(J xx,yy)J44]−1/3

�
[
4
(
J11J22 − J 2

12

)
J12

]−1/3

� [(1 − γ )(2 + γ )(2γ + 1)]1/3

3

= 4
1
3
(
σ x

xx,yy,xy,QCRB

)2
, (E10)

FIG. 9. Classical FI of several techniques (Appendix E) vs quan-
tum FI of estimating second-order orientational moments of dipole
emitters. (a) Inverse of generalized variance for estimating Mxx and
Myy, classical FIs for estimating (b) Mxy for molecules wobbling
around the μx axis, and (c) Mzz for molecules wobbling around the
μz axis as functions of (i) numerical aperture NA (for γ = 0) and
(ii) rotational constraint γ [for (a),(b) NA = 0.1 and (c) NA = 1.4].
The gray regions are bounded from below by the QFI [Eq. (18)].
Orange, standard PSF with x- and y-polarized detection (xyPol);
cyan, standard PSF with linearly polarized detection at ±45◦ in
the xy plane (45◦Pol); green, standard PSF with radially and az-
imuthally polarized detection (raPol); and magenta, dual-objective
interferometric detection with VWPs (dualObj). All curves assume
one photon is detected from the dipole emitter.

where the minimum SGV in the final inequality is found
by setting ∂ (σ x

xx,yy,xy)2/∂J11 = 0. Similarly, for z-oriented
molecules, the SGV is bounded by

(
σ z

xx,yy,xy

)2 � 2
1
3

1 − γ

3
= 4

1
3
(
σ z

xx,yy,xy,QCRB

)2
. (E11)

We therefore observe that the classical CRB for measur-
ing in-plane second moments is bounded; the precision in
measuring Mxx, Myy, and Mxy cannot simultaneously reach
the best possible QCRB. These trade-offs are exemplified by
comparing the xyPol and 45◦Pol techniques in Figs. 4(a) and
4(b), Figs. 8(a) and 8(b), and Figs. 9(a) and 9(b). Interestingly,
although both of these methods saturate the QCRB for subsets
of Mxx, Myy, and Mxy, their SGV for measuring all in-plane
moments is poor. In contrast, raPol and dual-objective tech-
niques cannot saturate the QCRB for any one in-plane second
moment, but their SGV for all in-plane moments is very close
to the bound given by Eqs. (E10) and (E11) [Figs. 4(a), 4(b),
5, 9(a), and 9(b)]. This analysis can be extended to z-related
squared and cross moments, resulting in a similar trade-off.
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APPENDIX F: IMPACT OF BACKGROUND PHOTONS ON
THE ESTIMATION PRECISION OF FIRST-ORDER

ORIENTATIONAL DIPOLE MOMENTS

In this section, we briefly discuss the effect of background
on the estimation precision. The estimation precision in the
presence of background highly depends on the nature of the
background photons, especially their spatial distributions. We
write a density matrix ρ, accounting for signal and back-
ground emitters, as

ρ = s[(1 − εz )|vac〉〈vac| + |ψ〉〈ψ |] + b⊥ρ⊥

+ b

3
(|gx〉〈gx| + |gy〉〈gy| + c−1|gz〉〈gz|), (F1)

where s represents the fraction of photons from the dipole
of interest, b⊥ represents the fraction of photons from back-
ground sources that are orthogonal to the basis fields |gi〉
with density matrix ρ⊥, and b represents the background
photons that project uniformly onto the basis fields |gi〉. Here,
we assume background sources b⊥ do not contaminate the
orientation measurement, while background sources b will
affect the measurement. The summed contributions of signal
and background photons must be normalized, i.e., s + b⊥ +
b = 1.

Similar to the backgroundless case [Eq. (12)], the QFI is
also azimuthally symmetric, given by

K = s

(
Fp

μ2
z

νpν
†
p + Faνaν

†
a

)
, (F2)

FIG. 10. Quantum FI of estimating first-order orientational mo-
ments of fixed dipole emitters as a function of signal-to-background
ratio (SBR). (a) QFI of estimating polar orientation. (b) QFI of esti-
mating azimuthal orientation. Black, red, and white lines represent a
QFI reduction of 50%, 75%, and 96%, i.e., a best possible standard
deviation in the presence of background equal to

√
2, two, and five

times that without background, respectively.

where

Fp = 4

εz

{
(εz − c)(1 − εz )

[1 + b/(3sεz )]2
+ c

[1 + 2b/(3sεz )]2

}
, (F3a)

Fa = 4

(
1 + 2b

3sεz

)−2

, (F3b)

and the probability of a photon emitted by the dipole that
escapes detection is given by 1 − εz = (1 − c)μ2

z . Compared
to the backgroundless case and averaging over all possible
orientations, the best possible precision decreases by a fac-
tor of 2 for a signal-to-background ratio (SBR) s/b = 0.75
(Fig. 10); i.e., three background photons are detected for every
four signal photons. Note that we have assumed that these
background photons project uniformly across |gx〉, |gy〉, and
|gz〉 in Eq. (F1). The QCRB will change depending upon how
photons from the background emitters project onto the basis
fields of the imaging system.
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