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Emergent conformal symmetry in nonunitary random dynamics of free fermions
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We present random quantum circuit models for nonunitary quantum dynamics of free fermions in one spatial
dimension. Numerical simulations reveal that the dynamics tends toward steady states with logarithmic violations
of the entanglement area law and power law correlation functions. Moreover, starting with a short-range
entangled many-body state, the dynamical evolution of entanglement and correlations quantitatively agrees with
the predictions of two-dimensional conformal field theory with a spacelike time direction. We argue that this
behavior is generic in nonunitary free quantum dynamics with time-dependent randomness, and we show that
the emergent conformal dynamics of two-point functions arises out of a simple “nonlinear master equation.”
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I. INTRODUCTION

Recent years have seen a surge of interest in many-
body quantum dynamics generated by random unitary cir-
cuits [1–19]. These models are simplified cartoons for the
unitary quantum dynamics of many-body systems, and allow
for numerical or even analytic descriptions of the physics of
thermalization and dissipation, operator growth and many-
body chaos, entanglement spreading, and diffusion. As the
dynamics of these systems is unitary and highly chaotic, the
endpoint of the dynamical evolution is typically a thermalized
state with volume law entanglement, and remains as feature-
less as possible given the symmetries of the model.

The story qualitatively changes if the quantum dynamics
is not unitary, where the emergent steady states need not
be thermal and featureless, and can exhibit interesting and
unexpected structures. An example of this dynamics is a
random unitary circuit subject to random projective measure-
ments [20–23]. In this system, there is a phase transition: the
entanglement entropy remains volume law at slow measure-
ment rate, and enters an area law phase at fast measurement
rate [21–35]. At the critical point, analytical and numeri-
cal results provide strong evidence for emergent conformal
symmetry [21,29,36]. Note that to observe this transition,
we need to follow the quantum trajectory of the many-body
wave function rather than the evolution of the density matrix
described by the Kraus map [37] or its Markovian version, the
Lindblad equation [38].

Motivated by these studies, in this paper we introduce a
model of random nonunitary dynamics for free fermions. Our
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model consists of discrete time evolution, with alternating
application of unitary gates (nearest-neighbor hopping gates),
nonunitary gates (evolving with on-site potential in imagi-
nary time), and wave function renormalization. This model
is different than a free fermion model subjected to projective
measurement [20,23], in which any nonzero measurement
rate drives the system to a trivial quantum Zeno phase with
area law entanglement. In our model, based on extensive
numerical simulations, we argue that so long as the model
has time-dependent randomness, there is emergent spacetime
conformal symmetry [39] in the disorder-averaged (variance
of) two-point functions, and in von Neumann entanglement
entropy as well as the mutual information, regardless of the
strength of the nonunitary gates. More precisely, we conjec-
ture that after T � 1 steps of the dynamics, the quantum state
|ψ (T )〉 evolves to

|ψ (T )〉 ≈ e−T HCFT |ψ0〉
‖e−T HCFT |ψ0〉‖ , (1)

where HCFT represents a CFT Hamiltonian in 1 + 1 dimen-
sions, whose precise form we do not know. Reminiscent
of self-organized critical systems [40,41], there is no finely
tuned parameter at criticality; these critical phenomena are
remarkably robust to various perturbations and modifications
of the model. Due to the simplicity of free fermion dynamics,
we hope that this model will be a useful starting point for
a broader understanding emergent scale and even conformal
invariance in nonunitary dynamics.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and what we are going to compute.
In Sec. III, we numerically study the properties of the steady
states which arise when the number of time steps T � L,
where L is the system size. In Sec. IV, we explore the time
evolution starting from a short range entangled state, and
understand the crossover from T < L to T > L. In Sec. V, we
provide an interpretation of this emergent critical dynamics,
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FIG. 1. The schematics for the nonunitary random dynamics of
free fermions.

and argue for its robustness, by deriving a “nonlinear mas-
ter equation” for the two-point correlation functions in a
continuous-time model with Brownian nonunitary dynamics.
In Sec. VI, we summarize our results and discuss several
interesting directions for future work.

II. THE MODEL AND THE METHOD

In this section, we consider nonunitary random dynamics
with the time evolution operator (shown in Fig. 1),

U =
T∏

t=1

Uβ (t )Uτ (t ), (2)

which consists of both unitary and imaginary time evolutions.
Here Uτ (t ) = exp[−2iτH1(t )] denotes unitary evolution for
time τ for a one-dimensional fermionic chain with random
nearest neighbor hopping. In the simulations we discuss be-
low, the Hamiltonian H1(t ) is a tight binding model, defined
as

H1(t ) =
∑

x

κx,t c
†
xcx+1 + H.c. (3)

The second part of each period Uβ (t ) = exp[−2βH2(t )] de-
notes imaginary time evolution for an “imaginary time unit”
β, where the Hamiltonian H2(t ) is a simple random onsite
potential:

H2(t ) =
∑

x

λx,t c
†
xcx. (4)

Both H1 and H2 are random in both space and time. The
parameters κx,t and λx,t are independent random variables
with a distribution Pκ (κx,t ) and Pλ(λx,t ). Specifically, we take
a simple two-component distribution,

Pκ (κx,t ) = p1δ(κx,t − 1) + (1 − p1)δ(κx,t + 1), (5)

Pλ(λx,t ) = p2δ(λx,t − 1) + (1 − p2)δ(λx,t ), (6)

with p1, p2 ∈ [0, 1].
We are interested in the wave function dynamics,

|ψ (T )〉 = U (T )√
Z

|ψ0〉, (7)

where Z = 〈ψ0|U †(T )U (T )|ψ0〉. The initial pure state |ψ0〉 is
chosen to be a short-ranged entangled state:

|ψ0〉 = | · · · 01010101 · · · 〉. (8)

Under time evolution with H1 and H2 chosen as above, |ψ (T )〉
remains a fermionic Gaussian state [42]; therefore, the entire
state is fully encoded in the two point correlation matrix C(T ),
with

Cxy(T ) ≡ 〈ψ (T )|c†
xcy|ψ (T )〉. (9)

Numerical algorithms to compute the evolution of C(T ) are
explained in Appendix A. We also observe from Eq. (9) that
C is a projection operator satisfying

TrC = TrC2 = N, (10)

where N is the number of particles and is conserved under
nonunitary time evolution. Equation (10) is an important
identity which we will use later. Given C(T ), we can further
compute the entanglement entropy for a subsystem. This
is because |ψ (T )〉 is a Gaussian state and satisfies Wick’s

FIG. 2. The quantum dynamics at β = 0 with open boundary condition where L is the system size. Panel (a) is the data collapse of squared
correlation function between T ∈ [20, 100]. Here C(r) ≡ CL/2−x,L/2+x+1 with r = 2x + 1. All the data collapse into a single curve. Panel (b) is
the growth of Rényi entanglement entropy for half of the system vs.

√
T .
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FIG. 3. The numerical results of the steady state for various β at p1 = p2 = 0.5 with L = 400 and periodic boundary condition. For the
first three plots, the filling factor is fixed at 1/2. (a) Squared correlation function on the log-log scale. The slope of the curves is 2 and is the
same as the dashed line which scales as 1/[sin(πr/L)]2. (b) von Neumann entanglement entropy SvN vs. log[sin(πLA/L)] on the linear scale.
The β of the curve is the same as that in panel (a). The coefficient 2c1(β ) vs. 1/β is shown in the inset. (c) The mutual information I1 as
a function of the cross ratio η on the log-log scale. The same data is plotted in the inset on the linear scale. The intervals A = [x1, x2] and
B = [x3, x4]. The locations of xi are chosen randomly on the circle with the constraint |xi − x j | > 3. (d) SvN vs. log[sin(πLA/L)] at different
filling factor ν = N/L.

theorem [43]. For von Neumann entanglement entropy in
particular, we have

SvN = −Tr
[
CA logCA + (1 − CA) log(1 − CA)

]
, (11)

where CA is the correlation matrix defined in the subsystem A.
We can further compute the generalized Rényi entropy,

Sn = 1

1 − n
Tr log

[
Cn

A + (1 − CA)n
]
, (12)

where n is the Rényi index. In the limit n → 1, Eq. (12)
reduces to Eq. (11).

Before we analyze the nonunitary dynamics, we briefly
discuss the simplest case with β = 0. This corresponds to the
unitary time evolution. For the random dynamics described
by Eq. (3), we expect to observe diffusive dynamics [44]. We
numerically confirm this result and present it in Fig. 2. In
Fig. 2(a), we show that Cx,x+r spreads out diffusively, i.e.,

|Cx,x+r |2 ∼ e−r2/T

√
T

, (13)

and the averaged Rényi entropies also exhibit diffusive scal-
ing, Sn ∼ √

T , regardless of the Rényi index n [see Fig. 2(b)].

Sn will saturate to volume law after sufficient time evolu-
tion. Throughout the paper, Sn and |Cx,x+r |2 are numerically
obtained through ensemble averaging over different circuit
realization (as specified by {κx,t } and {λx,t }). Therefore, we
may drop the overline frequently in the rest of the paper.

III. STEADY STATE

First we characterize the steady state in the limit T → ∞
for a one-dimensional system with L sites and periodic bound-
ary conditions. We fix τ = 1, and vary both β (the imaginary
time unit) and ν = N/L (the filling fraction). Since this is a
random system, the averaged two point correlation function

Cx,x+r = 〈c†
xcx+r〉 = 0. However, as shown in Fig. 3(a), the

averaged squared correlation function |〈c†
xcx+r〉|2 (i.e., the

second moment) is nonzero [29]. Numerics shows that for
r � 1,

|〈c†
xcx+r〉|2 ∼ 1

r2
. (14)

This power-law scaling behavior indicates that this wave
function is critical at finite β. Furthermore, we find that the
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averaged von Neumann entanglement entropy of a set A of LA

adjacent sites scales as log[sin(πLA/L)] with periodic bound-
ary condition [see Fig. 3(b)]. We further calculate the Rényi
entanglement entropy and find results that are consistent with

Sn = c1

(
1 + 1

n

)
log

[
L

π
sin

(
πLA

L

)]
. (15)

This dependence on Rényi index is the same as the results
of the ground state for a 1 + 1-dimensional conformal field
theory (CFT) computed from the Cardy-Calabrese formal-
ism [45,46] (see Sec. IV and Appendix D for detailed discus-
sions). The coefficient c1 depends on β; numerically we find
that when p1 = p2 = 0.5,

c1(β ) ∝ 1

β
; (16)

see the inset of Fig. 3(b).
In addition, we compute the mutual information In(A, B) =

Sn(A) + Sn(B) − Sn(A ∪ B) between two disjoint intervals
A = [x1, x2] and B = [x3, x4], whose system sizes and loca-
tions can be varied. We present the results in Fig. 3(c) and
we find that all the data points collapse to a single curve as a
function of the cross ratio η, which is defined as

η ≡ x12x34

x13x24
, with xi j = sin

(π

L
|xi − x j |

)
. (17)

Furthermore, I (A, B) ∝ η when η → 0. This limit can be
taken by fixing LA = x12 and LB = x34, while taking the
distance between A and B (|x13|) to be large; in this case,
η ∼ |x13|−2. Therefore, this result indicates that the mutual
information between two small intervals scales as 1/r2 when
their separation r is large. This power-law scaling is the same
as that for the squared correlation function, consistent with the

information-theoretic bound on |〈c†
xcx+r〉|2 [47].

The above critical scaling behavior also works at other fill-
ing factor [see Fig. 3(d)] and other values of p1 and p2. These
additional numerical results can be found in Appendix B,
and confirm that the emergent conformal symmetry is not
finely tuned. We also consider the dimerized Hamiltonian for
the unitary part in Eq. (3) with even and odd bonds having
different bond strength and we still observe the same critical
behavior.

IV. DYNAMICS

To better understand the physics of this model, we now
explore the evolution of |ψ (T )〉 both when T � L and T �
L. When T � L, as shown in Fig. 4(a), we find that when
T � r, there exists a constant a such that

|〈c†
xcx+r〉|2 ∼ e−ar/T

T 2
. (18)

Due to the imaginary time evolution Uβ (t ), the dynamics
is no longer strictly local. At early times, the correlation
between two points decays exponentially in space with a
correlation length proportional to time T . This result holds in
the thermodynamic limit, for an arbitrarily large value of r/T .

We emphasize that this is not simply a mild breakdown of
locality in the spirit of the Lieb-Robinson theorem [48] (which
only guarantees an approximate light cone for continuous

unitary dynamics). The discrete time unitary dynamics has
an exact light cone [3] which is destroyed specifically by
the nonunitary dynamics. Further discussion can be found in
Appendix C.

In Eq. (18), the r/T scaling suggests that the emergent
criticality found previously has dynamical exponent z = 1:
namely, time and space scale together, as expected for a CFT.
As time evolves, we may write

|〈c†
xcx+r〉|2 = F

( r

T

) 1

T 2
. (19)

For large x, F (x) ∼ exp(−ax); for small x, F (x) ∼ x−2.
Therefore, at late times, we recover Eq. (14). Based on these
numerical results, we conjecture that this nonunitary dy-
namics has emergent two-dimensional conformal symmetry:
namely, the state is obtained through CFT Hamilontian under
purely imaginary time evolution, as in Eq. (1).

Following this assumption, it is easy to understand
Eq. (18). From the form of Eq. (1), T plays the role of
an effective inverse temperature; in a CFT this also serves
as the correlation length. This exponential decay behavior
becomes algebraic when T � r, since on these length scales
the physics is captured by the algebraic scaling of the ground
state.

Next, we explore the growth of entanglement. Again we
consider a domain A consisting of LA adjacent sites, and
compute its entanglement entropy with the remaining sites as
a function of time. When T � LA, we find behavior consistent
with

Sn = c1

2

(
1 + 1

n

)
log T . (20)

The 1/2 prefactor is caused by open boundary condi-
tions [45,49].1 This result is consistent with the prediction
from CFT [45,46], in which the calculation of the entangle-
ment entropy is mapped to evaluate the correlation function
for twist fields on a semi-infinite strip; see Appendix D.

Our model has a rectangular geometry (T time steps and
L lattice sites), and in the numerical simulation, L and T are
finite. In a CFT, we expect that

Sn = −c1

2

(
1 + 1

n

)
log ξ, (21)

where ξ depends on L, T/L and LA/L; the explicit formula is
given in Appendix D.

In Fig. 4(c), we plot SvN at different times as a function of
ξ and we find that all the data points collapse into a single
straight curve, which provides strong numerics evidence that
our conjecture in Eq. (1) is correct. In addition, we further
compute the mutual information dynamics for two intervals
sitting next to the corner and we find that it is a function of
cross ratio [see Fig. 4(d)], which is defined as

η ≡ |w1 − w1||w2 − w2|
|w1 − w2||w2 − w1| , (22)

1Here we switch from periodic boundary condition in the previous
section to open boundary condition in this section.
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FIG. 4. (a) The data collapse of the squared correlation function at time T ∈ [20, 60] on the semi-log scale. Here C(r) ≡ CL/2−x,L/2+x+1

with r = 2x + 1. In the inset, we plot the same quantity on the log-log scale with T ∈ [50, 100]. The dashed line scales as (T/2x + 1)2. (b) The
dynamics of Sn for half of system on the semi-log scale. In the inset, we show the coefficient in front of log T vs. 1 + 1/n, where we take
n ∈ [0.2, 100]. (c) The data collapse of entanglement dynamics for subsystem A on the semi-log scale. ξ depends on L, LA, and T . All the data
points of the same β at different time collapse into a single straight curve. For both curves, the time T ∈ [20, 100]. For β = 0.8, we choose
the parameter a = 2.4 (the detail can be found in Eq. (D17) in Appendix D), while for β = 1.6, we take a = 4.8. (d) The data collapse of the
mutual information dynamics between A and B for the time T ∈ [20, 100]. The other parameters are the same as in panel (c). For all the four
plots, we consider open boundary condition with p1 = p2 = 0.5.

with w1 and w2 as functions of the parameters LA, LB, L, T
(The details of w1 and w2 can be found in Appendix D). No-
tice that when η is close to 0, we have IvN ∼ η. The power-law
exponent is the same as that for the steady state with periodic
boundary condition. In terms of Cardy-Calabrese formalism,
which is used to compute the entanglement properties in CFT,
the mutual information is related with the four point corre-
lation function of the twist field [45,46,50,51]. Therefore, in
our circuit model, the power-law exponent 1 in the small η

expansion can be interpreted as the lowest scaling dimension
of the allowed operators in the operator product expansion
(OPE) of the twist field [51].

V. CONTINUOUS-TIME MODEL

In this section, we provide an alternative understanding
of this critical behavior. Notice that this nonunitary random
free fermion dynamics is Markovian and has the conservation
law TrC2 = N . This motivates us to write down a master
equation to describe the spreading of the correlation function
and its final steady state. To derive this master equation, we
consider a continuous-time model of nonunitary dynamics

with Brownian noise, which we believe characterizes the same
physics in the above discrete circuits. As before, we consider
free fermions on a one-dimensional lattice of L sites. The
instantaneous Hamiltonian is given by

dH (t ) =
∑

j

[c†
j+1c jdWj (t ) + c†

j c j+1dW j (t ) − i c†
j c jdW ′

j (t )],

(23)

with dWj , dW j , and dW ′
j representing three different Brown-

ian motions.
As we have discussed in Eq. (10), the matrix of two-point

functions C completely characterizes a state of free fermions.
It is a projection matrix, which satisfies TrC2 = N . For an
initial product state, only the diagonal elements are nonzero.
As time evolves, the off-diagonal elements also becomes
nonzero, while maintaining the same trace constraint. This
motivates us to define a distribution function fn which cap-
tures the spreading of “weight” in the C matrix:

fn ≡
{∑

a
|Ca,a|2

N , when n = 0∑
a

|Ca,a+n|2+|Ca,a−n|2
N , when n > 0

, (24)
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A. Nonlinear master equation

Our goal is to derive an (approximate) equation governing
the dynamics of fn(t ). This technical computation is given in
Appendix E. The result is

∂t f1 = μ + θ ( f2 − 2 f1) − 2 f1

∞∑
m=1

fm +
∞∑

m=1

fm fm+1, (25a)

∂t fn = θ ( fn+1 + fn−1 − 2 fn) − 2 fn

∞∑
m=1

fm

+
∞∑

m=1

fm fm+n + 1

2

n−1∑
m=1

fm fn−m, (n > 1). (25b)

Here μ and θ are positive constants. θ is large when the am-
plitude of the unitary nearest-neighbor hopping is much larger
than the amplitude of the nonunitary on-site term; this limit is
analogous to the β → 0 limit in the discrete time circuit. We
have set the “strength” of the nonunitary terms to 1 in our ef-
fective master equation, and have rescaled time. The degree of
freedom f0 is unique in that its average value must be nonzero,
since Eq. (10) holds at all times. For this reason we ignore
it in our approximate master equation; justification for this is
provided in Appendix E. This derivation is not mathematically
exact, but as we will show below, this set of equations exhibits
the same emergent conformal symmetry that we saw before,
and we believe that these master equations capture the key
physics of the Brownian model Eq. (23), and more generally
of our nonunitary random free fermion dynamics.

Remarkably, time-independent solutions to Eq. (25) are
known analytically [52], and take the form fn ∝ n−2 (at large
n). However, at finite time t and for our initial condition
fn(t ) = 0, an exact solution is not known. We propose a
self-consistent solution to the system Eq. (25) of the form

fn(t ) ≈ t−αF (ϕ), (n � 1), (26)

where

ϕ = n

t
. (27)

Notice the resemblance between this ansatz and the scaling
form in Eq. (19). This solution will be valid on times t � 1,
and on this time scale fm are approximately time-independent
for m ∼ 1. Upon plugging this ansatz in to Eq. (25), we obtain
the following heuristic equation:

−αF (ϕ)

tϕ+1
− ϕF ′(ϕ)

tα+1
≈ ϕF ′′(ϕ)

tα+2
+

∫ ϕ/2

1/t
dζ

F (ζ )

t2α−1
[F (ϕ + ζ )

+ F (ϕ − ζ ) − 2F (ϕ)]. (28)

The integration limits are not exact, but do capture the dom-
inant terms in the equation. The first observation is that at
large t , the θ term is always subleading; hence we may ignore
this contribution. Physically, this means that the unitary dy-
namics is actually irrelevant for maintaining the shape of the
distribution at late times! Next, observe that when α < 2, the
convolution term dominates at large t ; by dominant balance
there must be something equally large to balance this term,
and so α � 2. However, if α > 2, then the convolution term is
irrelevant; were this the case, then we could exactly solve the

diffusion equation ∂t f ≈ ζ∂2
n f and our scaling ansatz Eq. (26)

would be wrong. We conclude that α = 2 if the nonunitary
dynamics plays any nontrivial role.

Next, we analyze F (ϕ) when ϕ � 1, where Eq. (28) reads

−2F − ϕF ′ =
∫ ϕ/2

1/t
dζF (ζ )[F (ϕ+ζ ) + F (ϕ−ζ )−2F (ϕ)].

(29)

Suppose the right-hand side could be ignored; if it could, then

F (ϕ) ∼ ϕ−2 (ϕ � 1). (30)

If the right-hand side is not vanishing, then F (ϕ) must de-
crease faster than in Eq. (30). Suppose that F (ζ ) ∼ ζ−γ−2

with γ � 0, as ζ → 0. If γ � 1, then the convolution is dom-
inated by ϕ ∼ 1/t , and the equation is not time-dependent; so
we may take γ < 1, in which case we crudely estimate that∫ ϕ/2

1/t
dζF (ζ )(F (ϕ+ζ )+F (ϕ−ζ )−2F (ϕ)) ∼ ϕ1−γ F ′′(ϕ).

(31)

As ϕ → 0, this term is always subleading; we conclude that
Eq. (30) holds.

When ϕ � 1, it is difficult to explicitly solve Eq. (28)
because the convolution term is not even approximately local.
However, our argument in Eq. (31) still gives insight: if F (ϕ)
was a power law at large ϕ, then we would be able to estimate
the convolution term as quasi-local, and we would obtain a
small correction to the equation of motion. We would then
find F (ϕ) ≈ ϕ−2 at all ϕ, and a time-independent fn(t )! That
is one schematic solution to the equations of motion, but not
the one we are after—it is already in steady state! The other
possibility is that

F (ϕ) ≈ e−ϕ. (32)

In this case, the convolution in Eq. (29) balances the derivative
contribution, and the −2F term in Eq. (29) is subleading. This
solution does exhibit nontrivial dynamics, and describes the
dynamical evolution of the distribution to its steady state.

To summarize, we have given a heuristic argument that the
nonunitary free fermion Brownian dynamics is well-captured
by the nonlinear master equation [Eq. (25)], which in turn
exhibits the scaling solution

fn(t ) ∼
{

n−2 n � t

t−2 exp(−n/t ) n � t
. (33)

This precisely agrees with the predictions of CFT and of
Eq. (1), as discussed above.

Let us quickly note that slightly similar equations have ap-
peared in the literature before under the name of “aggregation
dynamics” [53]. In the simplest of these equations, the infinite
sums in Eq. (25) are absent, and this qualitatively changes
the dynamics. The precise form of the nonlinear convolution
terms in Eq. (25) is crucial to see emergent criticality.

B. Numerical simulations

We now confirm Eq. (33) in explicit simulations of
Eq. (25). Since the diffusion term is not important for the late
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FIG. 5. The numerical results for the master equation in Eq. (25) with L = 1000 and θ = 0. (a) Data collapse of t2 fn(t ) vs. t/n on the
semilog scale with T ∈ [40, 200]. (b) Data collapse of t2 fn(t ) vs. t/n on the log-log scale with T ∈ [100, 400]. The dashed line scales as
(t/n)2. (c) The sum of fn�1(t ) vs. time, which quickly approaches a constant, as demanded by the exact microscopic equations of motion.

time dynamics, we set θ = 0. Our results are shown in Fig. 5,
where we take μ = 1 and the initial condition fn�1 = 0. The
data collapse in Figs. 5(a) and 5(b) indicate that t2 fn(t ) is
a function of n/t , consistent with the ansatz proposed in
Eq. (26). Furthermore, t2 fn(t ) scales as exp(−n/t ) when n �
t and crossovers to (t/n)2 when n � t , the same as in Eq. (33),
and also in our discrete time model.

Notice that as shown in Fig. 5(c),
∑

fn�1 also quickly
saturates to a constant. This demonstrates that while the early
time dynamics of our master equation is not exact, the late
time physics is quantitatively consistent with the microscopic
constraint Eq. (10).

VI. DISCUSSION

In this paper, we construct a one-dimensional nonuni-
tary free fermion circuit model with nontrivial steady state.
Through extensive numerical calculation, we demonstrate that
this model has emergent criticality and has two-dimensional
conformal symmetry. The critical behavior observed in our
circuit model is very robust and is insensitive to the param-
eters of the model. To understand this universal dynamics,
we provide an interpretation in terms of the fast spread-
ing of C matrix in real space, which can be estimated by
a classical nonlinear master equation which also exhibits
emergent conformal invariance. We expect other nonunitary
quantum dynamical systems could also exhibit this “quantum
self-organized criticality,” which arises without fine-tuning
any parameters. We note in passing that “quantum critical
phases” that appear in generic regions of phase space (without
fine tuning) naturally arise in finite density holographic mat-
ter [54–56]; however, these quantum critical phases are not
stabilized by nonunitary or through dynamics.

The coefficient in front of log LA entanglement entropy, in-
terpreted as the effective central charge, is sensitive to various
system parameters, which suggests that this CFT is not unitary
or rational. Nonunitary CFTs have arisen previously in many
studies of random systems [57–61]. Since analytically solving
such random systems is quite challenging, our model provides
a new and simple example that could be a starting point to
explore nonunitary CFTs in two dimensions.

The mutual information bewteen two disjoint intervals is
a function of cross ratio and can provide more information
about the structure of the CFT beyond the effective central

charge [45,46,50,51]. Previous research in the rational CFT
shows in the small η expansion, the mutual information
encodes rich information of the scaling dimensions of the
operator contents and the operator product expansion (OPE)
coefficients [51]. We expect such general principle also works
in this nonunitary CFT. Notice in our model, I (η) ∼ η in the
η → 0 limit, indicating that in the OPE of the twist field, the
lowest scaling dimension of the allowed operator is 1. It would
be interesting to have a better understanding of this scaling
dimension and examine how universal this result is in the
future.

We expect that our model can break down in the pres-
ence of interactions between fermions. Previous studies of
random quantum dynamics with weak measurements found a
phase transition between volume-law and area-law entangled
phases [29,30]. While our model is not simply a proxy for
weak measurements, it is possible that emergent criticality
survives until a critical nonzero interaction strength. It is inter-
esting to understand better the nature of this phase transition
at finite interaction strength; we leave this problem for future
study.

Last but not the least, we briefly discuss the realization
in experiments. The nonunitary circuit presented in this pa-
per can be thought of modeling some kind of stochastic
non-Hermitian Hamiltonian dynamics, which can be real-
ized in an open quantum system under continuous measure-
ments. Thus formulated, a possible experimental realization
of the nonunitary circuit faces the same challenges posed for
unitary-measurement circuits [21–35]: in order to measure
any entanglement measures of the final state of circuit evo-
lution, one needs to prepare several/many copies of the same
wavefunction, which requires post-selection on full-counting
trajectories from an ensemble of exponentially many trajec-
tories; therefore, the circuit needs to be run exponentially
many times. It might be possible to reduce such overheads
in nonunitary circuit models.
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APPENDIX A: TIME EVOLUTION OF C MATRIX

In this Appendix, we discuss two methods to compute the
time evolution of correlation function C matrix. Both methods
give the same results. In our paper, we use the first method
to numerically compute C matrix. However, the equation of
motion derived in the second method will be used to derive
the master equation in Appendix E.

1. Method 1

For a Hermitian Hamiltonian H = ∑
i j Hi jc

†
i c j , if we take

an initial product state

|ψ0〉 =
N∏

k=1

c†
k |0〉, (A1)

under unitary time evolution U = exp(−iHt ), then we have

|ψ1〉 =
N∏

k=1

c†
k (t )|0〉, (A2)

where the Heisenberg operator c†
k (t ) ≡ U †c†

kU = ∑
j U †

jkc†
j .

The unitary evolution of these c†
i (t ) with 1 � i � N can be

characterized by a W matrix, which is the first N columns
of U matrix and has dimension L × N . The C matrix can be
evaluated as follows:

Ci j = (WW †)T
i j . (A3)

Similarly, for the wave function under imaginary time
evolution V = exp(−Hβ ), we can also define a W matrix to
characterize the wave function. We first choose the first N
columns of V matrix and use them to construct an orthonormal
basis from it, which forms W matrix. We then use Eq. (A3) to
compute C matrix. The physics behind this algorithm is very
simple: Under imaginary time evolution,

|ψ2〉 ∼
N∏

k=1

c†
k (β )|0〉, (A4)

where c†
k (β ) = V c†

kV −1 = ∑
j Vjkc†

j . However, since V is not

a unitary matrix, {c†
i (β ), c j (β )} �= 0 when i �= j. We can

construct a new canonical basis f †
k from c†

k (β ) which satisfies
the anticommutation relations. In this basis, the wave function
can be simply written as

|ψ2〉 =
N∏

k=1

f †
k |0〉. (A5)

2. Method 2

In the second method, we directly compute the equation of
motion for C matrix. Under unitary time evolution,

Ci j (t ) ≡ 〈ψ1|c†
i c j |ψ1〉 = 〈ψ0|U †c†

i c jU |ψ0〉. (A6)

By taking derivative of Ci j (t ),we have

dCi j

dt
=

∑
kl

iHkl [〈c†
kclc

†
i c j〉 − 〈c†

i c jc
†
kcl〉]

=
∑

k

iHkiCk j −
∑

l

iCilHjl . (A7)

The second equation is obtained by using Wick theorem.
Therefore, we have

dC

dt
= i[HT ,C] −→ C(t ) = eiHT tC(0)e−iHT t . (A8)

Under imaginary time evolution, we have

Ci j = 〈ψ0|V c†
i c jV |ψ0〉

〈ψ0|VV |ψ0〉 . (A9)

This leads to

dCi j

dβ
=

∑
kl

Hkl [−〈c†
kclc

†
i c j〉 − 〈c†

i c jc
†
kcl〉 + 2〈c†

i c j〉〈c†
kcl〉]

= −
∑

kl

Hkl [Ck j (δli − Cil ) + Cil (δ jk − Ck j )]. (A10)

Therefore, we have

dC

dβ
= −{HT ,C} + 2CHT C. (A11)

The nonlinear term CHT C is very important and is responsible
for the interesting dynamics observed in our circuit model.

APPENDIX B: NUMERICAL RESULTS FOR VARIANTS
OF OUR MODEL

We consider the model described in Eq. (2) and take other
values for p1 and p2. As shown in Figs. 6 and 7, the steady
state shows the same scaling behavior while the coefficient c1

in front of log LA scaling is model dependent. In particular, in
Fig. 6, we take p1 = 0 so that the randomness in the unitary
evolution is turned off. These results strongly indicate that
this critical behavior is robust and is not sensitive to these
parameters in the model.

We further perform the data collapse for the dynamics
of entanglement entropy and mutual information and present
the results in Figs. 8 and 9. All the data points at different
times collapse into a single curves. For mutual information,
we observe that IvN ∼ η when η is small and this is also true
for other Rényi indices.

APPENDIX C: ABSENCE OF LIGHT CONE

Here we give a simple cartoon picture (see Fig. 10) to
explain how the nonunitary gates can break the linear light
cone of quantum information dynamics.

Consider a fermionic system with four sites, initially pre-
pared in the state,

|ψ0〉 = |0101〉. (C1)

Define the unitary gate

U = |01〉〈01| + |01〉〈10| − |10〉〈01| + |10〉〈10|√
2

+ |00〉〈00| + |11〉〈11|, (C2)

which entangles two sites if exactly one is empty. Let Ui j

denote this unitary gate acting on sites i and j. Consider first
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FIG. 6. The numerical results of the steady state for various β at p1 = 0 and p2 = 0.5 with L = 400 at 1/2 filling. Here we take periodic
boundary condition. (a) Squared correlation function on the log-log scale. The slope of the curves is 2 and is the same as the dashed line
which scales as 1/[sin(πr/L)]2. (b) von Neumann entanglement entropy SvN vs. log[sin(πLA/L)] on the linear scale. The curves have the same
labeling as in panel (a). The coefficient 2c1(β ) vs. 1/β is shown in the inset. (c) Data collapse for the mutual information I1 as a function of
the cross ratio η on the log-log scale. The locations of xi are chosen randomly on the circle with the constraint |xi − x j | > 3.

evolving the system with unitary dynamics:

|ψ1〉 = U23U34U12|ψ0〉

= |0101〉 − |0011〉 + |1010〉 + |1100〉√
8

− 1

2
|0110〉 − 1

2
|1001〉. (C3)

Observe that the mixed state of fermions 1 and 4 is maximally
mixed; hence the mutual information Iψ1 (1, 4) = 0.

Now let us apply a nonunitary gate:

|ψ2〉 = e−βn2 |ψ1〉√
〈ψ1|e−2βn2 |ψ1〉

∝ e−β |0101〉 − |0011〉 + |1010〉 + e−β |1100〉√
8

− e−β

2
|0110〉 − 1

2
|1001〉. (C4)

Observe that the factor e−β weights different terms unequally.
The mixed state of sites 1 and 4 is no longer maximally mixed
(nor that of site 1 alone). When β is small, we find the mutual

information,

Iψ2 (1, 4) = β2

16
+ · · · , (C5)

which is not vanishing, even though there is no chain of gates
(running forward in time) which link site 1 to site 4. The
reason that this mutual information has arisen is the prefactors
of the coefficients in |ψ1〉 are finely tuned to ensure mu-
tual information vanishes. The nonunitary gate disrupts these
tuned cancellations and thus generically spreads information
instantaneously.

These two-qubit and one-qubit gates can be used to con-
struct a many-body free fermion random circuit model. We
numerically compute this model and find the same critical
behaviors with emergent conformal symmetry.

APPENDIX D: CARDY-CALABRESE FORMALISM

According to Cardy-Calabrese formalism [45,46], the en-
tanglement entropy of the wave function

|ψ (T )〉 = e−T HCFT

√
Z

|ψ0〉 (D1)

FIG. 7. The numerical results of the steady state for various β at p1 = p2 = 0.3 with L = 400 at 1/2 filling. Here we take periodic boundary
condition. (a) Squared correlation function on the log-log scale. The slope of the curves is 2 and is the same as the dashed line which scales as
1/[sin(πr/L)]2. (b) von Neumann entanglement entropy SvN vs. log[sin(πLA/L)] on the linear scale. The curves have the same labeling as in
panel (a). The coefficient 2c1(β ) vs. 1/β is shown in the inset. (c) Data collapse for the mutual information I1 as a function of the cross ratio η

on the log-log scale. The locations of xi are chosen randomly on the circle with the constraint |xi − x j | > 3.
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FIG. 8. The data collapse for the dynamics of entanglement entropy in (a) and mutual information in (b) in the regime T ∈ [20, 100]. Here
we consider open boundary condition with p1 = 0 and p2 = 0.5.

for a 1 + 1-dimensional CFT can be mapped to the correlation
function for twist fields, i.e.,

Trρn
A = 〈Tn(z1, z̄1) . . . Tn(zm, z̄m)〉, (D2)

where ρA is the reduced density matrix for subsystem and Tn

is the twist field operator with conformal dimension �n =
�n = c

24 (n − 1
n ). The number of the twist field is determined

by the geometry of the system and subsystem. These twist
fields behave as the primary fields under conformal mapping
and satisfy

〈Tn(z1, z̄1) . . . Tn(zm, z̄m)〉

=
∣∣∣∣∂w

∂z

∣∣∣∣
2�n

z1

. . .

∣∣∣∣∂w

∂z

∣∣∣∣
2�n

zm

〈Tn(w1, w̄1) . . . Tn(wm, w̄m)〉.
(D3)

Below we consider several simple geometries we are inter-
ested in this paper.

1. Infinite plane

Here we compute the steady-state entanglement entropy
for a single interval of an infinite long system. This corre-
sponds to a simple infinite plane geometry with L, T → ∞.

According to Eq. (D2), we have

Trρn
A = 〈Tn(z1, z̄1) . . . Tn(zm, z̄m)〉C =

(
1

LA

)4�n

, (D4)

where 〈·〉 is defined on the infinite plane and LA is the distance
between two twist fields, which corresponds to the length of
the subsystem. The Renyi entropy is equal to

Sn ≡ 1

1 − n
log Trρn

A = c

6

(
1 + 1

n

)
log LA. (D5)

2. Infinite cylinder

Here we compute the steady-state entanglement entropy
for a single interval of one-dimensional system with periodic
boundary condition. This geometry corresponds to an infinite
cylinder with the length T = ∞ and circumference L. As
shown in Fig. 11(a), the correlation function defined on the
infinite cylinder can be computed by mapping it to a complex
plane. By using Eq. (D3), we have

Trρn
A = 〈Tn(z1, z1)Tn(z2, z2)〉 =

(
2π

L

)4�n 1(
2 sin πLA

L

)4�n
,

(D6)

FIG. 9. The data collapse for the dynamics of entanglement entropy in (a) and mutual information in (b) in the regime T ∈ [20, 100]. Here
we consider open boundary condition with p1 = p2 = 0.3.
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FIG. 10. The schematics for the nonunitary fermionic dynam-
ics with four sites. The blue blocks Ui j are two-qubit unitary
gates defined in Eq. (C2). The orange block denotes a nonuni-
tary single qubit gate exp(−βn). This gate can induce nonzero
correlation/entanglement between the first and fourth qubits.

where 〈·〉 is defined on the infinite cylinder. Thus, we have

Sn = c

6

(
1 + 1

n

)
log

[
L

π
sin

(
πLA

L

)]
. (D7)

We further compute mutual information between two intervals
A and B for the steady state with periodic boundary condition.
This is related with a four point correlation function,

Trρn
A∪B

Trρn
ATrρn

B

= 〈Tn(z1, z1)Tn(z2, z2)Tn(z3, z3)Tn(z4, z4)〉
〈Tn(z1, z1)Tn(z2, z2)〉〈Tn(z3, z3)Tn(z4, z4)〉

= 〈Tn(w1,w1)Tn(w2,w2)Tn(w3,w3)Tn(w4,w4)〉
〈Tn(w1,w1)Tn(w2,w2)〉〈Tn(w3,w3)Tn(w4,w4)〉

= F (η). (D8)

Therefore, the mutual information is a function of cross ratio
η, which is defined as

η ≡ z12z34

z13z24
, (D9)

with zi j = sin(π |zi − z j |/L).

3. Infinite strip

Here we compute the steady-state entanglement entropy
for a single interval of one-dimensional system with open
boundary. As shown in Fig. 11(b), this requires us to com-
pute the single-point correlation function 〈Tn(z1, z1)〉 defined
on an infinite strip, which can be evaluated by mapping it
to 〈Tn(w1,w1)〉UHP defined on the upper half plane (UHP).
Notice that

〈Tn(w1,w1)〉UHP = 〈Tn(w1)Tn(w1)〉C, (D10)

where 〈·〉 on the right-hand side is defined on the complex
plane and Tn(w1) is the image of Tn(w1). We have

Trρn
A =

(π

L

)2�n
(

2 sin
πLA

L

)−2�n

, (D11)

which leads to

Sn = c

12

(
1 + 1

n

)
log

[
2L

π
sin

(
πLA

L

)]
. (D12)

4. Semi-infinite strip

Here we compute the entanglement dynamics for a single
interval of an infinite long system with open boundary. As
shown in Fig. 11(c), this corresponds to evaluate the single-
point correlation function defined on the semi-infinite strip,

FIG. 11. (a) The conformal mapping from infinite cylinder (T = ∞) to a complex plane. In the left plot, the up and lower edges of the
rectangle are glued together so that it is equivalent to a cylinder geometry. The left and right sides denote the short-range entangled initial
state |ψ0〉. The two twist fields are located at z1 and z2 with z1 − z2 = iLA. After conformal mapping, z1 and z2 are mapped to w1 and w2

living on the unit circle around origin. (b) The conformal mapping from infinite strip (L = ∞) to the upper half plane (UHP). Here z1 = iLA.
(c) The conformal mapping from semi-infinite strip (L = ∞) to the upper half plane (UHP). Here z1 = iLA. (d) The conformal mapping from
a rectangle to UHP. Here z1 = iLA. (e) The detail of the conformal mapping from a “canonical” rectangle to UHP. The four corners of the
canonical rectangle are mapped to four points on the real axis. (f) The procedure to evaluate the mutual information, where z1 = iLA and
z2 = i(L − LB ).
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which reads

Trρn
A =

( π

4T

)2�n

tanh−2�n

(
πLA

2T

)
. (D13)

In the limit T � LA, we have

Sn = c

12

(
1 + 1

n

)
log LA; (D14)

In the limit LA � T , we have

Sn = c

12

(
1 + 1

n

)
log T . (D15)

5. Rectangle geometry

Finally we consider the entanglement dynamics for a
single interval of finite system with open boundary. As
shown in Fig. 11(d), this corresponds to evaluate the
single-point correlation function defined on the rectan-
gle. The conformal mapping from a rectangle to UHP
is described by the Jacobi elliptic function sn(z|m). As
shown in Fig. 11(e), under this mapping, the four corners
[−K (m) + iK (1 − m),−K (m), K (m), K (m) + iK (1 − m)] of
the rectangle map to the four points on the real axis. K (m) is
the complete elliptic integrable of the first kind,

K (m) ≡
∫ 1

0

dt√
(1 − t2)(1 − mt2)

. (D16)

The aspect ratio of the rectangle is 2K (m)/K (1 − m).
In our numerical simulation, the rectangle has length 2T

and height L. The aspect ratio is defined as

τ = a
2T

L
= 2Y

L
, (D17)

where we introduce a parameter a which is model dependent
and rescales the time direction. Given a cross ratio τ , we
numerically find the corresponding m. We then map this L ×
2Y rectangle to UHP with the following conformal mapping:

w(z) = sn(λz|m), (D18)

where λ = L/K (1 − m).
Therefore, we have

Trρn
A = |λcn(λz1|m)dn(λz1|m)|2�n

|2sn(λz1|m)|2�n
(D19)

and

Sn = − c

12

(
1 + 1

n

)
log ξ, (D20)

where

ξ =
[
λcn(λz1|m)dn(λz1|m)

|2sn(λz1|m)|
]
, (D21)

with sn(z|m), cn(z|m), and dn(z|m) are Jacobi elliptic
functions.

We can use similar method to compute the mutual infor-
mation dynamics. As shown in Fig. 11(f), we have

Trρn
A∪B

Trρn
ATrρn

B

= 〈Tn(z1, z1)Tn(z2, z2)〉Rec

〈Tn(z1, z1)〉Rec〈Tn(z2, z2)〉Rec

= 〈Tn(w1,w1)Tn(w2,w2)〉UHP

〈Tn(w1,w1)〉UHP〈Tn(w2,w2)〉UHP

= 〈Tn(w1)Tn(w1)Tn(w2)Tn(w2)〉C
〈Tn(w1)Tn(w1)〉C〈Tn(w2)Tn(w2)〉C

= F (η), (D22)

where the cross ratio η is defined as

η ≡ |w1 − w1||w2 − w2|
|w1 − w2||w2 − w1| , (D23)

with w1 = sn(iλLA|m) and w2 = sn(iλ(L − LB)|m).

APPENDIX E: MASTER EQUATION FOR
CONTINUOUS-TIME MODEL

1. Unitary Brownian dynamics

We first consider the pure unitary evolution and take the
Brownian evolution with

|ψ (t + dt )〉 = e−idH |ψ (t )〉, (E1)

where dH is a one-dimensional random free fermion Hamil-
tonian, i.e.,

dH =
∑

j

(c†
j+1c jdWj + c†

j c j+1dW j ). (E2)

Wj (t ) is Brownian motion with

dWidW j = Aδi, jdt . (E3)

We compute the evolution of the d|Ca,b|2/dt , which according
to Itô calculus, should take the following form:

d|Ca,b|2 = dCb,adCa,b + d2Cb,aCa,b + Cb,ad2Ca,b

2
. (E4)

As we have shown in Eq. (A8), the first derivative dC satisfies

dC = i[dH,C]. (E5)

Therefore, we have

|dCa,b|2
Adt

= (|Cb+1,a|2 + |Cb−1,a|2 + |Cb,a+1|2 + |Cb,a−1|2)

− 2δa,b+1Cb+1,b+1Cb,b − 2δa,b−1Cb−1,b−1Cb,b.

(E6)

The second derivative d2C is

d2C = −[dH, [dH,C]], (E7)

which leads to

d2Cb,aCa,b + Cb,ad2Ca,b

2dt

= −4A|Ca,b|2 + 2A(Ca+1,a+1Ca,a + Ca−1,a−1Ca,a)δa,b.

(E8)
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Therefore, we have

d|Ca,b|2
Adt

= (|Cb+1,a|2 + |Cb−1,a|2 + |Cb,a+1|2 + |Cb,a−1|2)

− 2δa,b+1Cb+1,b+1Cb,b − 2δa,b−1Cb−1,b−1Cb,b

− 4|Ca,b|2 + 2(Ca+1,a+1Ca,a + Ca−1,a−1Ca,a)δa,b.

(E9)

It is easy to confirm that

∑
a,b

d|Ca,b|2
dt

= 0, (E10)

consistent with the constraint

TrC2 =
∑
a,b

|Ca,b|2 = N. (E11)

2. Imaginary Brownian dynamics

We consider the imaginary Brownian dynamics with

|ψ (t + dt )〉 ∼ e−dH |ψ (t )〉, (E12)

where the Hamiltonian increment

dH =
∑

j

c†
j c jdWj, (E13)

with dW satisfying

dWidWj = Bδi, jdt . (E14)

To compute the equation of motion for C matrix, we need to
compute dC and d2C. As we have shown in Eq. (A11), the
first derivative satisfies

dC = −{dH,C} + 2CdHC. (E15)

Therefore, we have

|dCa,b|2
Bdt

= 2|Ca,b|2 + 2δa,b|Cb,a|2

+ 4
∑

m

|Cb,m|2|Cm,a|2 − 4|Ca,b|2(Ca,a + Cb,b).

(E16)

The second derivative has

d2C = − dH[−{dH,C} + 2CdHC]

− [−{dH,C} + 2CdHC]dH

+ 2[−{dH,C} + 2CdHC]dHC

+ 2CdH[−{dH,C} + 2CdHC], (E17)

with its matrix element

d2Cb,a

Bdt
= 2Cb,a + 2Cb,aδa,b − 4Cb,a(Cb,b + Ca,a)

− 4
∑

m

Cb,mCm,a + 8
∑

m

Cb,mCm,mCm,a. (E18)

Therefore, we have

d2Cb,aCa,b + Cb,ad2Ca,b

2Bdt

= 2|Cb,a|2 + 2|Cb,a|2δa,b − 4|Cb,a|2(Cb,b + Ca,a)

− 2
∑

m

Cb,mCm,aCa,b − 2
∑

m

Ca,mCm,bCb,a

+ 4
∑

m

Cb,mCm,aCm,mCa,b + 4
∑

m

Ca,mCm,bCm,mCb,a.

(E19)

In total, we obtain

d|Ca,b|2
Bdt

= 4|Ca,b|2 + 4|Cb,a|2δa,b

− 8|Cb,a|2(Cb,b + Ca,a) + 4
∑

m

|Cb,m|2|Cm,a|2

− 2
∑

m

[Cb,mCm,aCa,b + Ca,mCm,bCb,a]

+ 4
∑

m

[Cb,mCm,aCm,mCa,b + Ca,mCm,bCm,mCb,a].

(E20)

Notice that∑
a,b

dCb,adCa,b

Bdt
= 2

∑
a,b

|Ca,b|2 − 2
∑

a

|Ca,a|2 (E21)

and∑
a,b

dCb,aCa,b + Cb,adCa,b

2Bdt
= −2

∑
a,b

|Ca,b|2 + 2
∑

a

|Ca,a|2.

(E22)

Therefore, we confirm

∑
a,b

d|Ca,b|2
dt

= 0. (E23)

3. The unitary+imaginary Brownian dynamics

We consider the mixed dynamics with

|ψ (t + dt )〉 ∼ e−idH |ψ (t )〉, (E24)

where the Hamiltonian increment is

dH =
∑

j

(
c†

j+1c jdW 1
j + c†

j c j+1dW
1
j − ic†

j c jdW 2
j

)
. (E25)

The equation of motion for |Ca,b|2 is the combination of
Eqs. (E9) and (E20). We expect that by solving this equation,
we would obtain the same dynamics for the correlation func-
tion investigated in the main text. However, this equation is
very complicated and it is hard to extract physics directly from
it. We now derive an (approximate) master equation for fn, as
defined in Eq. (24).

For the initial state with only diagonal element Ca,a �= 0,
we have f0 = 1 and fn>0 = 0. To study the dynamics of fn,
we start from Eqs. (E9) and (E20) and rewrite them in terms
of fn. For Eq. (E9), it mainly contributes a term

fn−1 + fn+1 − 2 fn, (E26)

which is responsible for the diffusive spreading of fn if the
dynamics is purely unitary. In Eq. (E20), we throw away terms
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Cb,mCm,aCa,b and Cb,mCm,aCm,mCa,b when m �= a or b. We
make this approximation because under random dynamics,
Ca,b = 0 if a �= b and their products are also zero. The term∑

m |Cb,m|2|Cm,a|2 is very important and will contribute two
quadratic terms:

∞∑
m=1

fm fm+n + 1

2

n−1∑
m=1

fm fn−m. (E27)

The term |Ca,b|2Ca,a will contribute

fn

∞∑
m=1

fm, (E28)

this is because Ca,a = ∑
b |Ca,b|2. Including all these above

terms, we can write down the nonlinear master equation for

fn, which satisfies

df1

dt
= μ + θ ( f2 − 2 f1) − 2 f1

∞∑
m=1

fm +
∞∑

m=1

fm fm+1,

(E29a)

dfn

dt
= θ ( fn+1 + fn−1 − 2 fn) − 2 fn

∞∑
m=1

fm

+
∞∑

m=1

fm fm+n + 1

2

n−1∑
m=1

fm fn−m, (n > 1), (E29b)

where μ and θ are positive constants. μ ∼ δa,b+1(Cb,b −
Cb+1,b+1)2 + δa,b−1(Cb,b − Cb−1,b−1)2 is the source term and
is coming from the fluctuations of diagonal elements of C
matrix. In the above master equation, we do not consider the
dynamics for f0. This is because there is an extra constraint∑

a Ca,a = N and therefore f0 cannot be simply described by
the master equation.
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