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With the aim to loosen the entanglement requirements of quantum illumination, we study the performance
of a family of Gaussian states at the transmitter, combined with an optimal and joint quantum measurement at
the receiver. We find that maximal entanglement is not strictly necessary to achieve quantum advantage over
the classical benchmark of a coherent-state transmitter, in both settings of symmetric and asymmetric hypothesis
testing. While performing this quantum-classical comparison, we also investigate a suitable regime of parameters
for potential short-range radar (or scanner) applications.
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I. INTRODUCTION

Hypothesis testing (HT) [1] and quantum hypothesis test-
ing (QHT) [2] play crucial roles in information [3] and quan-
tum information theory [4]. HT has fundamental links to both
communication and estimation theory, ultimately underlying
the task of radar detection [5] which has been extended to
the quantum realm by the protocol of quantum illumination
(QI) [6,7] and, more precisely, by the model of microwave
quantum illumination [8] (see Ref. [9] for a recent review
on these topics). The simplest scenario of both HT and QHT
is that of a binary decision, so that they are reduced to the
statistical discrimination between just two hypotheses (null,
H0, and alternative, H1).

At its most basic level a quantum radar is a task of
binary QHT. The two alternate hypotheses are encoded in two
quantum channels in through which a signal mode is sent.
Depending on the presence or not of a target, the initial state of
signal mode undergoes different transformations which result
in two different quantum states at the output. Final detection
is then reduced to distinguishing between these two possible
quantum states. The ability to do this accurately, with a low
probability of error, directly relates to an ability to determine
the correct result. This fundamental mechanism can then be
easily augmented with geometrical ranging arguments which
account for the quantification of the round-trip time from the
target, i.e., its distance.

While QI radars may potentially achieve the best perfor-
mances [10], they require the generation of a large number of
entangled states which may be a demanding task, especially
if we consider the microwave regime. At the same time, the
definition itself of quantum radar may be generalized beyond

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

QI to any model that exploits a quantum part or device to
beat the performance of a corresponding classical radar in
the same conditions of energy, range, etc. Driven by these
ideas, we progressively relax the entanglement requirements
of QI, and we study the corresponding detection performances
to the point where the source becomes just-separable, i.e., a
maximally correlated separable state. It is worth noting that,
although Gaussian entanglement is the main resource of QI,
previous literature has also considered the use of separable
non-Gaussian sources with nonpositive P representations,
finding an advantage over a restricted classical benchmark
[11]. More generally, quantum correlations beyond entangle-
ment have also been considered for a number of other quan-
tum information and computation tasks [12–15]. However,
our current study is specifically focused on Gaussian states
because they are, so far, the only sources showing a quantum
advantage over the best classical benchmark. The analysis is
done in the setting of symmetric and asymmetric QHT. In
particular we show how a quantum advantage can still be
achieved with less entangled sources, especially in a scenario
of very short-range target detection.

II. GENERAL QUANTUM-CORRELATED SOURCE

Following Gaussian QI, we consider a source modelled as
a two-mode Gaussian state [16], comprising a signal (s) mode,
sent out to some target region, and an idler (i) mode, retained
at the source for later joint measurement. Each of these modes
has Ns mean number of photons. However, instead of using
a two-mode squeezed vacuum (TMSV) state [16] as in QI,
we can employ a generic zero-mean Gaussian state whose
covariance matrix (CM) takes the following block form:

Vgen
si =

(
S C
C S

)
⊕

(
S −C

−C S

)
, (1)

S := Ns + 1/2, (2)

0 � C �
√

S2 − 1/4 =
√

Ns(Ns + 1), (3)
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where the direct sum operator ⊕ acts on two matrices A
and B such that A ⊕ B = (A 0

0 B). The terms in the leading
diagonal, S := Ns + 1/2, quantify the amount of thermal
noise within each of the local modes, S and I , while the
covariance, C, quantifying the correlations between these
two modes, may take any value within the range given by
Eq. (3). Mathematically, these are the second-order statisti-
cal moments of the quantum state (see Ref. [16] for more
details).

At maximal quantum correlations we have C = Cq :=√
Ns(Ns + 1), corresponding to the TMSV state, while the

case C = Cd := Ns renders the state just-separable [17]. At
this border point, the state is not entangled, but it still has
quantum correlations [18]. In fact, its quantum discord is
maximal among the states within the range C � Cd and is
equal to its Gaussian discord [19] (therefore computable using
Refs. [20,21]). This kind of source has already played a non-
trivial role in other problems of quantum information theory,
e.g., as candidate separable state in relative entropy bounds for
the two-way quantum capacities of bosonic Gaussian channels
[22]. In our work, we will then relax the QI model by studying
the performance of the source in Eqs. (1)–(3), up to the border
case of C = Cd .

Let us now look at the output state at the receiver. Two
hypotheses exist for the experiment’s outcome:

H0: Target is absent, so that the return signal is a noisy back-
ground modeled as a thermal state with mean number of
photons per mode Nb � 1.

H1: Target is present with reflectivity κ � 1, so that a
proportion of signal modes is reflected back to the
transmitter. In this high-loss regime, the return signal
is combined with a very strong background with mean
photons per mode Nb/(1 − κ ).

The joint state of our returning (r) mode and the retained
idler is given by, under H0 and H1, respectively:

V(0)
ri =

(
B 0
0 S

)
⊕

(
B 0
0 S

)
, (4)

V(1)
ri =

(
A

√
κC√

κC S

)
⊕

(
A −√

κC
−√

κC S

)
, (5)

where B := Nb + 1/2 and A := κNs + B. For an arbitrary
Gaussian state with leading diagonal entries a and b, sep-
arability corresponds to the off-diagonal term c � cd :=√

(a − 1/2)(b − 1/2) [22]. For each of these output quantum
states, conditional on H0 and H1, we have that 0 � √

NbNs and√
κC � √

(κNs + Nb)Ns, for small κ , respectively, thus the
separability criterion is always satisfied and neither of these
states are entangled.

In the absence of the idler, the best strategy is to
use coherent states. This is a semi-classical design which
is used as a classical benchmark in quantum informa-
tion to evaluate the effective performance of quantum-
correlated sources [7,9]. Let us work within the formalism of

creation, â†, and annihilation, â, operators for bosonic modes
defined by

â†|n〉 = √
n + 1|n + 1〉, (6)

â|n〉 = √
n|n − 1〉, (7)

where |n〉 is a Fock state (an eigenstate of the photon-number
operator n̂ = â†â). Letting âs be the annihilation operator
for the signal mode prepared in the coherent state |√Ns〉
(satisfying the eigenvalue equation âs|

√
Ns〉 = √

Ns|
√

Ns〉),
we send such a mode to some target region. Under H0 the
return signal, with annihilation operator âr , is equal to that
of the background, which is in a thermal state with mean
photons per mode Nb, i.e., âr = âb. The state has mean vector
of zero and CM (Nb + 1/2)12, where 12 is the 2 × 2 identity
matrix. Under H1 the target is present and reflects a small
proportion of our signal back. This is mixed with with the
background radiation such that our return takes the form âr =√

κ âs + √
1 − κ âb, where κ ∈ (0, 1) and the background has

mean photons per mode Nb/(1 − κ ). This corresponds to a
displaced thermal state with mean vector (

√
2κNs, 0) and CM

(Nb + 1/2)12.

III. HYPOTHESIS TESTING FOR QUANTUM
RADAR DETECTION

Radar detection requires successful distinguishing between
the two alternatives H0 and H1, which happens with detection
probability Pd := P(H1|H1). There are two types of error
which may occur: type-I (false alarm) error Pfa = P(H1|H0),
where we incorrectly reject the null hypothesis, and type-II
(missed detection) error Pmd(H0|H1), where we incorrectly
reject the alternative hypothesis. The optimization of these
probabilities can be carried out in a range of ways based on
the potentially situation-dependent rules one wishes to follow
for decision making. That is, one can associate with each
error type a cost. For example, considering the result of a
diagnostic test, then it is clear that the risk associated with
receiving a false negative (type-II) could far outweigh that
associated with a false positive (type-I). In such scenarios one
may consider asymmetric testing in order to take in account
these discrepancies. On the other hand, a symmetric approach
may be used if one’s aim is to obtain a global minimization
over all errors, irrespective of their origin. In this case, one
considers the minimization of the average error probability

Perr := P(H0)P(H1|H0) + P(H1)P(H0|H1), (8)

where P(H0) and P(H1) are the prior probabilities associated
with the two hypotheses.

In the following subsections, we briefly review the main
tools for symmetric and asymmetric QHT. We will use these
tools for the results of the next sections.

A. Review of symmetric detection

In symmetric QHT, the average error probability Perr of
Eq. (8) is minimized. Consider M identical copies ρ̂⊗M

i of the
state ρ̂i encoding the classical information bit i ∈ {0, 1}. The
optimal measurement for the discrimination is the dichotomic
positive-operator valued measure (POVM) [23] E0 = �(γ+),
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E1 = 1 − �(γ+), where �(γ+) is the projector on the positive
part γ+ of the nonpositive Helstrom matrix γ := ρ̂⊗M

0 − ρ̂⊗M
1 .

This allows for ρ̂0 and ρ̂1 to be discriminated with a mini-
mum error probability given by the Helstrom bound, Pmin

err =
[1 − D(ρ̂⊗M

0 , ρ̂⊗M
1 )]/2, where D is the trace distance [4].

Because this is difficult to compute analytically, the Hel-
strom bound is often replaced with approximations such as
the quantum Chernoff bound (QCB) [24]:

Pmin
err � PQCB

err := 1
2

(
inf

0�s�1
Cs

)M
, Cs := Tr

(
ρ̂s

0ρ̂
1−s
1

)
. (9)

Minimization of the s-overlap Cs occurs over all 0 � s �
1. Forgoing minimization and setting s = 1/2 one defines
a simpler, though weaker, upper bound, also known as the
quantum Bhattacharyya bound (QBB) [16]:

PQBB
err := 1

2 Tr(
√

ρ̂0

√
ρ̂1)M . (10)

In the case of Gaussian states, we can compute these quantities
by means of closed analytical formulas [25].

Consider N bosonic modes with quadratures x̂ =
(q̂1, . . . , q̂N , p̂1, . . . , p̂N )T and associated symplectic form

� =
(

0 1
−1 0

)
⊗ 1N , (11)

where 1N is the N × N identity matrix. Then consider two
arbitrary N-mode Gaussian states, ρ̂0(x0, V0) and ρ̂1(x1, V1),
with mean xi and CM Vi. We can write the following Gaussian
formula for the s-overlap of the quantum Chernoff bound [25]

Cs = 2N

√
det �s

det �s
exp

(
−dT �−1

s d
2

)
, (12)

where d = x0 − x1. Here �s and �s are defined as

�s := Gs(V⊕
0 )G1−s(V⊕

1 ), (13)

�s := S0[�s(V⊕
0 )]ST

0 + S1[�1−s(V⊕
1 )]ST

1 , (14)

introducing the two real functions

Gs(x) = 1

(x + 1/2)s − (x − 1/2)s
, (15)

�s(x) = (x + 1/2)s + (x − 1/2)s

(x + 1/2)s − (x − 1/2)s
, (16)

calculated over the Williamson forms V⊕
i := ⊕N

k=1ν
k
i 12,

where V⊕
i = SiV⊕

i ST
i for symplectic Si and νk

i � 1/2 are the
symplectic spectra [26,27].

B. Review of asymmetric detection

In asymmetric QHT, we wish to minimize one type of error
as much as possible while allowing for some flexibility on the
other. Consider again M identical copies of the state ρ̂i (ρ̂⊗M

i ),
encoding the classical bit i ∈ {0, 1}. As in the symmetric case,
the optimal choice of measurement is a dichotomic POVM
{E0, E1}. From the binary outcome, we can define the two
types of error, i.e., the type-I (false alarm) error

Pfa := P(H1|H0) = Tr
(
E1ρ̂

⊗M
0

)
(17)

and the type-II (missed detection) error

Pmd := P(H0|H1) = Tr
(
E0ρ̂

⊗M
1

)
. (18)

These probabilities are dependent on the number M of copies
and, for M � 1, they both tend to zero,

Pfa 	 e−αRM , Pmd 	 e−βRM, (19)

where we define the “error exponents” or “rate limits” as

αR = − lim
M→+∞

1

M
ln Pfa, (20)

βR = − lim
M→+∞

1

M
ln Pmd. (21)

It is not possible to make both error probabilities arbitrarily
small simultaneously. Instead we place a relatively loose con-
straint Pfa < ε on the type-I error, allowing us more freedom
to minimize Pmd. The quantum Stein’s lemma [28,29] tells us
that the quantum relative entropy D(ρ̂0||ρ̂1) = Tr[ρ̂0(ln ρ̂0 −
ln ρ̂1)] between two quantum states, ρ̂0 and ρ̂1, is the optimal
decay rate for the type-II error probability, given some fixed
constraint on the type-I error probability. Further, if the type-II
error tends to 0 with an exponent larger than D(ρ̂0||ρ̂1), then
the type-I error converges to 1 [29]. (Note that an alternative
approach based on the quantum Hoeffding bound [30] is not
considered here, but it could be explored using the Gaussian
formulas developed in Ref. [31].)

Refinement of quantum Stein’s lemma has been provided
by considering the second-order (in M) asymptotics [32] to
account for the discontinuity observed in the type-I error
probability, jumping sharply from 0 to 1, when the type-II
error probability increases past the value set by D(ρ̂0||ρ̂1).
Tracking the type-II error exponent to second-order depth,
that is, to order

√
M, allows one to define the quantum relative

entropy variance

V (ρ̂0||ρ̂1) = Tr[ρ̂0(ln ρ̂0 − ln ρ̂1)2] − [D(ρ̂0||ρ̂1)]2, (22)

and in turn establish that the optimal type-II (missed detec-
tion) error probability, for sample size M, takes the exponen-
tial form [32]

Pmd = exp{−[MD(ρ̂0||ρ̂1) +
√

MV (ρ̂0||ρ̂1)�−1(ε)

+ O(log M )]}, (23)

where ε ∈ (0, 1) bounds Pfa and

�(y) := 1√
2π

∫ y

−∞
dx exp(−x2/2) (24)

is the cumulative of a normal distribution. More precisely,
for finite third-order moment (as in the present case) and
sufficiently large M, we may write the upper bound [32,
Theorem 5]:

Pmd � P̃md := exp{−[MD(ρ̂0||ρ̂1)

+
√

MV (ρ̂0||ρ̂1)�−1(ε) + O(1)]}. (25)

We can write explicit formulas for the relative entropy
D(ρ̂0||ρ̂1) and the relative entropy variance V (ρ̂0||ρ̂1) of two
arbitrary N-mode Gaussian states, ρ̂0(x0, V0) and ρ̂1(x1, V1).
The first one is given by [22]

D(ρ̂0||ρ̂1) = −(V0, V0) + (V0, V1), (26)

where we have defined the function

(V0, V1) = ln det
(
V1 + i�

2

) + Tr(V0G1) + δT G1δ

2
, (27)
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with δ = x0 − x1 and G1 = 2i� coth−1 (2iV1�) being the
Gibbs matrix [33]. The second one is given by

V (ρ̂0||ρ̂1) = Tr[(�V0)2]

2
+ Tr[(��)2]

8
+ δT G1V0G1δ,

(28)
where � = G0 − G1 [34] (see also Ref. [35]).

IV. QUANTUM RADAR DETECTION
WITH GENERAL SOURCE

Using the generic quantum-correlated Gaussian source of
Sec. II and the tools for symmetric and asymmetric QHT
of Sec. III, we study the performance of a relaxed QI pro-
tocol, clarifying how much entanglement is needed to beat
the semiclassical benchmark of the coherent-state transmitter
under symmetric testing. Then, in the setting of asymmetric
testing, we repeat the study in terms of the receiver operating
characteristic (ROC), where the misdetection probability is
plotted versus the false alarm probability.

A. Symmetric detection with general source

Let us assume the typical conditions of QI, which are low-
reflectivity κ � 1, high thermal noise Nb � 1, low photon
number per mode Ns � 1. It is then known that, using a
TMSV state, the minimum error probability satisfies [7]

PTMSV
err � e−MκNs/Nb/2. (29)

This is computed using the quantum Bhattacharyya bound,
it is exponentially tight in the limit of large M, and it is
also known to be achieved by the sum-frequency-generation
receiver of Ref. [10]. Its error-rate exponent has a factor of
4 advantage over the same bound computed over a coherent-
state transmitter in the same conditions, for which we have [7]

PCS
err � e−MκNs/4Nb/2. (30)

In order to extend Eq. (29) to the error probability for a
generic Gaussian source, let us start with single probing M =
1, assuming the usual limits κ � 1, Nb � 1 and Ns � 1. The
quantum Bhattacharyya bound takes the form

Pgen
err � e−κNsgC (Ns )/Nb/2, (31)

where the function gC (Ns) is proportional to C2 (see Appendix
for details), i.e., the amount of correlations existing between
the signal and idler modes. Demanding the equivalence of
exponents in the TMSV limit C → Cq, we find that the
quantum Bhattacharrya bound for M probings becomes

Pgen
err � e−MκNsC2/NbC2

q /2. (32)

By comparing Eqs. (32) and (30), we see that a quantum-
correlated transmitter beats the coherent state transmitter if
Pgen

err � PCS
err , which means

C2

C2
q

� 1

4
⇒ C � 1

2

√
Ns(Ns + 1). (33)

Thus, according to the quantum Bhattacharyya bound, the
quadrature correlations required to outperform the semiclas-
sical benchmark is half the value of those of a TMSV state.

At the separable limit C = Ns the relation is satisfied only
for Ns � 1/3 which contradicts the assumption Ns � 1 (a
similar analysis holds if we relax the assumption of Ns � 1).
Therefore, according to the quantum Bhattacharyya bound,
the employment of a source at the separable limit is not
capable of beating coherent states under symmetric testing.

B. Asymmetric detection with general source

Let us compute the quantum relative entropy and the
quantum relative entropy variance for the quantum-correlated
transmitter of Eqs. (1)–(3). Though the full expressions for
these quantities are far too long to display here, we evaluate
them to first order in Nb by taking an asymptotic expansion
for large Nb while keeping Ns fixed. We obtain

Dgen := D
(
ρ̂

(0)
RI ||ρ̂ (1)

RI

)
= κC2

Nb
ln

(
1 + 1

Ns

)
+ O

(
N−2

b

)
,

(34)

Vgen := V
(
ρ̂

(0)
RI ||ρ̂ (1)

RI

)
= κC2(2Ns + 1)

Nb
ln2

(
1 + 1

Ns

)
+ O

(
N−2

b

)
.

(35)

For coherent states these quantities take the form

DCS := D
(
ρ̂

(0)
CS ||ρ̂ (1)

CS

) = κNs ln

(
1 + 1

Nb

)
, (36)

VCS := V
(
ρ̂

(0)
CS ||ρ̂ (1)

CS

) = κNs(2Nb + 1) ln2

(
1 + 1

Nb

)
, (37)

which hold for all values of Ns, Nb and κ . For comparative
purposes we evaluate again to first order in Nb while keeping
Ns fixed to obtain the simple expressions

DCS 	 γ + O
(
N−2

b

)
, VCS 	 2γ + O

(
N−2

b

)
, (38)

where

γ := κNs

Nb
(39)

is the signal-to-noise ratio (SNR), usually expressed in deci-
bels (dB) via γdB = 10 log10 γ .

In the limit of very large M, we can approximately neglect
the variance contribution and just consider the relative entropy
in the type-II (missed detection) error probability of Eq. (23)
which simply becomes Pmd 	 exp [−MD(ρ̂0, ρ̂1)]. Then we
can deduce that, for large M and a very high background
Nb � 1, the error exponent of a quantum-correlated source
[Eq. (34)] has the following ratio with respect to a coherent
state source [Eq. (38)]:

A(C, Ns) := Dgen

DCS
= C2

Ns
ln

(
1 + 1

Ns

)
. (40)

In Fig. 1 we plot the ratio A for a just-separable discordant
source (C = Ns) and that for a TMSV state, for varying Ns. We
can see how the ultimate benefits of employing maximal en-
tanglement for QI are exhibited only for very small energies,
i.e., when Ns is of the order of units or less. For increasing Ns,
the ratio A tends to the same asymptotic value, irrespective of
source specification. This also means that the just-separable
source quickly approaches the performance of QI at as little
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FIG. 1. Error exponent ratio A of Eq. (40) is shown as a func-
tion of number of signal photons per mode, Ns. The just-separable
discordant source quickly approaches the coherent-state transmitter
(A = 1) and the TMSV source, already at Ns 	 20 photons. For
increasing Ns, the ratio A asymptotically approaches 1 independent
of the source specification.

as about 20 photons per mode. As we will see in Sec. IV C,
for a given range R the radar equation imposes a 1/R4 loss
factor in received signal power and necessitates high overall
photon numbers, particularly at long range, regardless of the
underlying detection protocol. Our results show that at long
range there is little-to-no advantage in using a QI-based radar
over a coherent state protocol due to the need of large signal
power (Ns). QI is thus limited to applications where losses
are relatively small so Ns may in turn take small values, for
example, at short ranges.

C. Receiver operating characteristic

In the asymmetric setting, we now study the misdetection
probability versus the false alarm probability of the generic
Gaussian source with respect to the classical benchmark of
coherent states. For the latter, we consider the performance
achievable by coherent states and homodyne detection at the
output. This is the best-known measurement design, which
can be used when the phase of the optical field is perfectly
maintained in the interaction with the target, so that one can
adopt a coherent integration of the pulses (i.e., the quadrature
outcomes can be added before making a classical binary test
on the total value). If the phase of the field is deterministically
changed to some unknown value but it is still coherently
maintained among the pulses, then the typical choice is the
heterodyne detection, followed by coherent integration of
the outcomes from both the quadratures. If the coherence
is lost among the pulses, then the classical strategy is to
use heterodyne and perform a noncoherent integration of the
pulses, which means to sum the recorded intensities (squared
values of the quadratures). In this case, the performance (for
nonfluctuating targets) is given by Marcum’s Q function [37],
an approximation of which is known as Albersheim’s equation
[5,38]. An overestimation of the Marcum benchmark can be
simply achieved by assuming a single coherent pulse with
mean number of photons equal to MNs.

In mathematical terms, the ROC Pmd = Pmd(Pfa) of the
generic Gaussian source can be upper bounded Pmd � P̃md

by combining Eqs. (25), (34), and (35). For sufficiently large
M (e.g., �107), the second-order asymptotics is a good ap-
proximation, and for large Nb (e.g., �102) the expansions in
Eqs. (34) and (35) are valid. Therefore, under these assump-
tions, we may write

P̃gen
md = exp

{
−

[√
Mγ

Ns
�C ln

(
1 + 1

Ns

)
+ O

(
N−1

b , 1
)]}

,

(41)

� :=
[√

Mγ

Ns
C +

√
2Ns + 1�−1(Pfa)

]
. (42)

In the case of coherent states and homodyne detection
(followed by coherent integration and binary testing), the
ROC is given by combining the following expressions:

Phom
fa (x) = 1

2
erfc

[
x√

M(2Nb + 1)

]
, (43)

Phom
md (x) = 1

2
erfc

[
M

√
2κNs − x√

M(2Nb + 1)

]
, (44)

where erfc(z) := 1 − 2π−1/2
∫ z

0 exp(−t2) dt is the comple-
mentary error function. Therefore we can invert Eq. (43) and
replace in Eq. (44) to derive the corresponding ROC.

Finally, as already mentioned, we can also write a lower
bound to Marcum’s classical radar performance by assuming
a single coherent state with mean number of photons MNs so
that the total SNR is given by Mγ . This can be expressed as
follows:

PMarcum
md = 1 − Q(

√
2Mγ ,

√
−2 ln Pfa), (45)

where the Marcum Q function is defined as

Q(x, y) :=
∫ ∞

y
dt te−(t2+x2 )/2I0(tx), (46)

with I0(.) being the modified Bessel function of the first kind
of zero order [37].

Before comparing the ROCs of the various transmitters,
let us choose a suitable regime of parameters for potential
short-range applications (of the order of 1 m, e.g., for security
or biomedical applications), where Ns need not be too large
and a quantum advantage may be observed. By fixing some
specific radar frequency ν and the temperature T of the en-
vironment, we automatically fix the mean number of photons
Nb of the thermal background. Thus, for ν = 1 GHz (L band)
and T = 290 K (room temperature), we get Nb 	 6 × 103

photons (bright noise). Assume broadband pulses, with 10%
bandwidth (100 MHz), so that their individual duration is
about 10 ns. If we use M = 108 pulses then we have an
integration time of the order of 1 s, which is acceptable for
slowly moving or still objects. Since we are interested in low-
energy applications, assume Ns = 1 mean photon per pulse.
What is left is an estimation of the SNR γ which comes from
the overall transmissivity/reflectivity κ .

This remaining quantity can be estimated using the radar
equation. This equation expresses the power PR of the return
signal in terms of the signal power PT at the transmitter, the
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cross section σ of the target, the range R of the target, and
other parameters, such as the transmit antenna gain G, the
receive antenna collecting area AR, and the form factor F ,
which describes the transmissivity of the space between the
radar and the target. It takes the form [36]

PR = GF 4ARσ

(4π )2R4
PT . (47)

Here the factor (4π )−2R−4 accounts for the loss due to the
pulse propagating as a spherical wave (back and forth). This is
partly mitigated by the gain G, which introduces anisotropies
from the spherical wave description, accounting for the di-
rectivity of the actual outgoing beam. In fact G describes the
ratio between the power irradiated in the direction of the target
over the power that would have been irradiated by an isotropic
antenna [36]. For a pencil beam, G can be much higher than 1
(which is the value of an isotropic antenna).

It is clear that κ also provides the ratio between received
and transmitted power, so that Eq. (47) leads to

κ = PR

PT
= GF 4ARσ

(4π )2R4
, (48)

which is also easy to invert, so as to express the range R in
terms of κ and the other parameters. Assume F = 1 (no free-
space loss) and an ideal pencil beam, such that its solid angle
δ is exactly subtended by the target’s cross section σ (valid
assumption at short ranges). This means that gain is ideally
given by

G = 4π

δ
= 4πR2

σ
, (49)

which fully compensates the loss in the forward propagation.
Therefore, we find

κ = AR

(4πR)2
, R = 1

4π

√
AR

κ
. (50)

By fixing the receive antenna collecting area AR, we have a
one-to-one correspondence between range R and transmissiv-
ity κ . Assuming AR = 0.1 m2 and short-range R 	 1 m, we
get κ 	 6 × 10−4, which leads to γdB = −70 dB when we
account for the values of Ns and Nb.

Considering this regime of parameters, we find the ROCs
plotted in Fig. 2. In particular, we show the performance of a
generic Gaussian source with correlation parameter C(p) =
pCd + (1 − p)Cq between the extremal points given by the
just-separable source Cd = Ns and the maximally entangled
source (at that energy) Cq = √

Ns(Ns + 1) (another study of
the ROC of the maximally entangled case can be found in
Ref. [39] but for the regime Ns � 1). We perform the com-
parison for two scenarios while maintaining the same SNR,
background characteristics and total number of uses: the first
with Ns = 1 and the second with Ns = 0.01 corresponding to
ranges R = 1 m and R = 0.1 m, respectively. From the figure,
we can see that intermediate values of entanglement are able
to beat the classical benchmark given by coherent states and
homodyne detection. The potential advantage is greater at
lower signal energy Ns or, equivalently, shorter range R and
additionally, the intermediate level of entanglement required
in order to attain such an advantage reduces. In the upper

FIG. 2. Receiver operating characteristics (ROCs) of the vari-
ous setups. We show the upper bound P̃md = P̃md(Pfa ) for quantum
illumination based on a generic Gaussian state with off-diagonal
correlation parameter C(p) ranging from the maximally entangled
state (red solid) to the just separable state (red dotted). Between
these two extremal curves, there are all the Gaussian states with
intermediate correlations. In particular, we show the performance
for an intermediate value of p (red dashed). For comparison, we
plot the ROC Pmd = Pmd(Pfa ) of the classical benchmark of coherent
states plus homodyne detection (black thick) and the lower bound
to Marcum’s classical performance (black thin). Parameters are ν =
1 GHz and T = 290 K (so that Nb 	 6 × 103), M = 108, pulses
and γdB = −70 dB. Upper panel (a) Ns = 1, corresponding to a
range R 	 1 m with intermediate p = 1/6; lower panel (b) Ns = 0.01
corresponding to a range R 	 0.1 m with intermediate p = 1/2 and
an integration time of about 1 s at 10% bandwidth (100 MHz) in both
cases.

panel, we consider our suggested upper limit for both range
and signal energy: R = 1 m and Ns = 1. This plot shows that
though maximal entanglement is not strictly necessary for
a quantum advantage, the scope for such an advantage is
limited with the minimum intermediate level at p = 1/6, i.e.,
very close to the maximally entangled case. The lower panel
highlights the benefits afforded to QI by limiting applications
to short-range and low-signal energy, plotting results for R =
0.1 m and Ns = 0.01. Here the minimum intermediate level
is given by p = 1/2, which yields a large range of source
specifications capable of achieving a quantum advantage with
potential performances several orders of magnitude greater
than the optimal classical protocol. This effect becomes
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greater still at progressively shorter ranges and lower energies.
It is precisely in these cases where we find that QI is most
suited, and, in the likely scenario that there are inefficiencies
associated with source generation, enhanced detection perfor-
mance is still achievable to a potentially very high degree.

V. CONCLUSION

In this work, we have investigated how to loosen the
transmitter requirements of QI, from the usual maximally en-
tangled TMSV source to a more general quantum-correlated
Gaussian source, which may become just separable. At
the same time, we maintain the optimal quantum joint-
measurement procedure at the receiver side. We perform this
investigation in both scenarios of symmetric and asymmetric
testing where we test the quantum performance with respect
to suitable classical benchmarks. Our results show that we
can still find quantum advantage by using Gaussian sources
which are not necessarily maximally entangled. In particular,
this is an advantage which appears at short ranges, so that the
spherical beam spreading does not involve too many dBs of
loss, a major killing factor for any quantum radar design based
on the exploitation of quantum correlations.

A short-range low-power radar is potentially interesting
not only as a noninvasive scanning tool for biomedical ap-
plications but also for security and safety purposes, e.g., as a
scanner for metallic objects or as proximity sensor for obstacle
detection. Once quantum advantage in detection is achieved at
fixed target distance, it can be extended to variable distances
to enable a measurement of the range. For instance, this could
be done by sending signal-idler pulses at different carrier fre-
quencies and interrogating their reflection at different round-
trip times. For slowly moving objects at short ranges, the total
interrogation time would be small and the effective distance
of the object could be well resolved by sweeping a reasonable
number of frequencies. In a static setting, e.g., biomedical,
detection is naturally associated with a fixed depth, which is
then gradually increased so as to provide a progressive scan
of the target region. This quantum scanner would investigate
the presence of the target at different layers, e.g., of a tissue,
while irradiating small energies. In conjunction with standard
Doppler techniques it could also extract information about the
local velocity of the target within a layer of the tissue. Such
a quantum scanner would then realize an ideal noninvasive
diagnostic tool.
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APPENDIX: QUANTUM BHATTACHARYYA BOUND FOR
GENERIC GAUSSIAN SOURCE

Using the generic quantum-correlated Gaussian source de-
fined in Sec. II along with formulas and tools for symmetric
QHT described in Sec. III A, one can compute the exact
form of the quantum Bhattacharyya bound (QBB) for QI.
The complete formula is too long to be displayed however,
imposing parameter constraints, one can achieve a closed
form for the asymptotic performance in specified limits.

We begin by assuming the typical conditions of QI, which
are low reflectivity κ � 1, high thermal noise Nb � 1, low
photon number per mode Ns � 1. Then, using numerical
techniques, one can confirm that using a TMSV state, the
minimum error probability satisfies [7]

PTMSV
err � e−MκNs/Nb/2, (A1)

which is exponentially tight in the limit of large M and is valid
under the parameter constraints previously defined.

In order to extend Eq. (A1) to the error probability for a
generic Gaussian source, we first note that as we vary only
the value of cross-correlation parameter C the variation in the
bound will be entirely dependent on this parameter. We also
note that the parameter C is constrained by the terms on the

FIG. 3. Numerical study of generic Gaussian source’s QI error
exponent for parameter values: (a) Ns = 10−2, Nb = 20 and (b) Ns =
10−4, Nb = 200. The plots confirm that for small Ns and large Nb

we have that g̃C (Ns ) → gC (Ns ) = C2/C2
q and our formula for generic

Gaussian QI holds in this regime.
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leading diagonal such that

0 � C �
√

Ns(Ns + 1) := Cq, (A2)

where the upper bound corresponds to the maximally entan-
gled TMSV state yielding Eq. (A1). Since the just-separable
state corresponds to C = Cd := Ns it is clear that C = C(Ns).

The form of Eq. (A1) is not surprising; the error exponent is
directly proportional to the SNR, γ = κNs/Nb, and one would
expect the same for our generic source. Starting with single
probing, M = 1, and subject to the limits κ � 1, Nb � 1 and
Ns � 1, we can write the QBB for our generic source as

Pgen
err � e−κNsgC (Ns )/Nb/2, (A3)

where we define the function gC (Ns) as a constant of propor-
tionality, entirely dependent on the parameter C and thus Ns.
In particular, we demand the equivalence of exponents in the
TMSV limit C → Cq such that gCq (Ns) = 1, recovering the
bound given by Eq. (A1).

To determine the form of gC (Ns) we use a numerical
program to perform an asymptotic expansion of our generic
source’s exact QBB for small κ � 1. Keeping terms to first
order, we obtain an equation of the form

2Pgen
err � 1 − xκ + O(κ2) 	 e−xκ , (A4)

where the last equality holds when x = Ns
Nb

gC (Ns), from
Eq. (A3), is small, i.e., Ns � 1 and Nb � 1.

Numerical analysis shows that the coefficient x is exactly
proportional to C2, independent of Ns and Nb, thus we can
write gC (Ns) ∝ C2 and, imposing the condition that gCq (Ns) =
1, determine that

gC (Ns) = C2/C2
q . (A5)

Figure 3 plots the function gC (Ns) as a function of cross-
correlation parameter C for two sets of parameter values: (a)
Ns = 10−2, Nb = 20 and (b) Ns = 10−4, Nb = 200. It shows
that in the regime of low brightness and high background the
function g̃C (Ns) → gC (Ns), given by Eq. (A5), and we can
write that the QBB for a generic Gaussian source is given by

Pgen
err � e−MκNsC2/NbC2

q /2, (A6)

as given in the main text. Note that the extension from M = 1
to generic M just follows from the structure of the QCB and
QBB in Eqs. (9) and (10).
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