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Magnetometers based on nitrogen-vacancy (NV) centers in diamond are promising room-temperature, solid-
state sensors. However, their reported sensitivity to magnetic fields at low frequencies (�1 kHz) is presently
�10 pT s1/2, precluding potential applications in medical imaging, geoscience, and navigation. Here we show
that high-permeability magnetic flux concentrators, which collect magnetic flux from a larger area and concen-
trate it into the diamond sensor, can be used to improve the sensitivity of diamond magnetometers. By inserting
an NV-doped diamond membrane between two ferrite cones in a bowtie configuration, we realize a ∼250-fold
increase of the magnetic field amplitude within the diamond. We demonstrate a sensitivity of ∼0.9 pT s1/2 to
magnetic fields in the frequency range between 10 and 1000 Hz. This is accomplished using a dual-resonance
modulation technique to suppress the effect of thermal shifts of the NV spin levels. The magnetometer uses
200 mW of laser power and 20 mW of microwave power. This work introduces a new degree of freedom for the
design of diamond sensors by using structured magnetic materials to manipulate magnetic fields.
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I. INTRODUCTION

Quantum sensors based on nitrogen-vacancy (NV) centers
in diamond have emerged as a powerful platform for detecting
magnetic fields across a range of length scales [1]. At the
few-nanometer scale, single NV centers have been used to
detect magnetic phenomena in condensed-matter [2,3] and
biological [4,5] samples. At the scale of a few hundred
nanometers, diamond magnetic microscopes have been used
to image biomagnetism in various systems, including magnet-
ically labeled biomolecules [6] and cells [7,8] and intrinsically
magnetic biocrystals [9,10]. At the micrometer scale, diamond
magnetometers have detected the magnetic fields produced
by neurons [11], integrated circuits [12,13], and the nuclear
magnetic resonance of fluids [14,15].

Diamond magnetometers with larger active volumes are
expected to offer the highest sensitivity [16]. However, in
order to be competitive with existing technologies, they
must overcome several technical drawbacks, including high
laser-power requirements and poor sensitivity at low frequen-
cies. The most sensitive diamond magnetometer reported to
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date featured a projected sensitivity of ∼0.9 pT s1/2 using
400 mW of laser power [17]. However this magnetometer
used a Hahn-echo pulse sequence which limited the band-
width to a narrow range around 20 kHz. For broadband,
low-frequency operation, the highest sensitivity reported to
date is ∼15 pT s1/2 in the 80–2000 Hz range, using �3 W of
laser power [11]. A diamond magnetometer based on infrared
absorption detection realized a sensitivity of ∼30 pT s1/2 at
10–500 Hz, using 0.5 W of laser power [18].

To understand the interplay between sensitivity and laser
power, we consider a diamond magnetometer based on
continuous-wave, fluorescence-based optically detected mag-
netic resonance (ODMR). The sensitivity is fundamentally
limited by photoelectron shot noise as

ηpsn ≈ �

γnvC
√

ξPopt/Eph
, (1)

where γnv = 28 GHz/T is the NV gyromagnetic ratio, �

is the ODMR full-width-at-half-maximum linewidth, and
C is the ODMR amplitude’s fractional contrast. The factor
ξPopt/Eph constitutes the photoelectron detection rate, where
Popt is the optical excitation power, ξ is the fraction of
excitation photons converted to fluorescence photoelectrons,
and Eph = 3.7 × 10−19 J is the excitation photon energy
(532 nm). To set an optimistic bound on ηpsn, we insert the
best reported values (ξ = 0.08 [17], �/C = 1 MHz/0.04
[11]) into Eq. (1) to obtain ηpsn ≈ 2 pT s1/2 W1/2 P−1/2

opt . Even
in this ideal case (Appendix M), ∼4 W of optical power
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is needed to realize a sensitivity of 1 pT s1/2, and further
improvements become impractical.

The need for such a high laser power presents challenges
for thermal management and has implications for the overall
sensor size, weight and cost. Applications which call for sub-
picotesla sensitivity, such as magnetocardiography (MCG)
[19], magnetoencephalography (MEG) [20], and long-range
magnetic anomaly detection [21,22], may require alternative
approaches to improve sensitivity. Avenues currently being
pursued often focus on reducing the ratio �/C [16]. Ap-
proaches to reduce � include lowering 13C spin density and
mitigating strain and electric-field inhomogeneity [23,24],
increasing the nitrogen-to-NV− conversion yield [25–27], and
designing techniques to decouple NV centers from paramag-
netic spins [24,28]. Methods to increase C include using pref-
erentially aligned NV centers [29,30], detecting infrared ab-
sorption [18,31], and detecting signatures of photo-ionization
[32–34].

In this paper, we report a complementary approach to
improve the sensitivity of diamond magnetometers. Our ap-
proach uses magnetic flux concentrators to amplify the ex-
ternal magnetic field amplitude by a factor of ∼250 within
the diamond sensor. Using a dual-resonance magnetometry
technique to suppress the effect of thermal shifts of the NV
spin levels, we realize a sensitivity of ∼0.9 pT s1/2 in the
10–1000 Hz range, using a laser power of 200 mW. We show
that, with further improvements, a magnetic noise floor of
∼0.02 pT s1/2 at 1000 Hz is possible before ferrite thermal
magnetization noise limits the sensitivity.

II. EXPERIMENTAL DESIGN

Magnetic flux concentrators have previously been used
to improve the sensitivity of magnetometers based on the
Hall effect [35], magnetoresistance [36], magnetic tunnel
junctions [37], superconducting quantum interference devices
(SQUIDs) [38], and alkali spin precession [39]. Typically, the
magnetometer is positioned in the gap between a pair of ferro-
magnetic structures which collect magnetic flux from a larger
area and concentrate it into the gap. The fractional increase
in magnetic field amplitude due to the flux concentrators,
ε, is a function of their geometry, gap width, and relative
permeability (μr). Ideally, the concentrators are formed from
a soft magnetic material with low remanence, high μr , low
relative loss factor [39], and constant susceptibility over a
broad range of magnetic field amplitudes and frequencies.
The improvement in sensitivity is generally accompanied by
a reduction in spatial resolution, as the total magnetometer
size is larger (Appendix B). Diamond sensors usually have
sub-mm dimensions, whereas the flux concentrators used here
have dimensions of ∼10 mm. Thus our device is best suited
for applications that require a spatial resolution �10 mm,
such as MCG, MEG, and magnetic anomaly detection.

The optimal flux concentrator geometry depends on a
number of factors, which include the sensor dimensions and
target application [35,36,38–40]. Here we consider a pair of
identical cones (height: 10 mm, base diameter: 10 mm), with
∼370-μm diameter flat tips, arranged in a bowtie configura-
tion [Fig. 1(a)]. A static magnetic field, Bext, is applied at an

(a)

(c) (d) (e)

(b)

FIG. 1. Simulations of magnetic flux concentrators: (a) Model geometry. Two identical solid cones, configured in a bowtie geometry, are
placed in an external magnetic field, Bext. (b) Simulated x-z plane cut of the relative magnetic field amplitude, |B(r)|/|Bext|, for cones with
relative permeability μr = 6500 and a tip gap of δ = 43 μm, upon application of Bext at θ = 0. Arrows indicate the direction and magnitude of
B(r). The point at the geometric center is labeled r0. (c) Vector components of the relative magnetic field amplitude at r0 as a function of θ , for
cones with μr = 6500 and δ = 43 μm. The relative axial magnetic field amplitude is fit to the function Bz(r0)/|Bext| = ε cos θ , where in this
case ε = 280. (d) Enhancement factor as a function of δ for cones with μr = 6500. (e) Enhancement factor as a function of μr for δ = 43 μm.
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FIG. 2. Experimental setup and enhancement measurement: (a) Schematic of the experimental setup. Inset: photograph of the diamond
membrane in the gap between ferrite cones. (b) Optically detected magnetic resonance (ODMR) spectrum obtained at Bext = 2.62 μT. Two
peaks are present, with central frequencies f± extracted from Lorentzian fits. (c) Measured ODMR frequencies as a function of Bext. Error bars
are smaller than the plot markers. The gray solid lines are a fit using the NV spin Hamiltonian (Appendix A), assuming Bgap = εBext , with
ε = 254.

angle θ from the cone symmetry axis (ẑ) and the resulting
magnetic field, B(r), is simulated using finite-element magne-
tostatic methods. Figure 1(b) shows a plane cut of the relative
magnetic field amplitude, |B(r)|/|Bext|, for cones with μr =
6500 and a tip gap of δ = 43 μm, upon application of Bext
at θ = 0. Throughout the gap (Appendix B), B(r) is aligned
along ẑ with a uniform relative magnetic field |B(r)|/|Bext| ≈
280.

Figure 1(c) shows the vector components of the relative
magnetic field at the center of the bowtie geometry (r = r0)
as a function of θ . The relative axial magnetic field is well
described by Bz(r0)/|Bext| ≈ ε cos θ , where ε is the enhance-
ment factor (in this simulation ε = 280). On the other hand,
the relative transverse magnetic field, Bx(r0)/|Bext|, is less
than 0.1 for all values of θ . Thus, the structure acts as a filter
for the axial component of external magnetic fields, producing
a uniform field throughout the gap of

Bgap ≈ ε |Bext| cos θ ẑ. (2)

For the remainder of the paper, we consider only external
magnetic fields applied along ẑ (θ = 0) and describe Bgap
according to Eq. (2).

Figure 1(d) shows simulation results of the enhancement
factor as a function of gap length for cones with μr = 6500.
For δ in the 20–100 μm range, ε varies from 560 to 120,
indicating that large enhancement factors are possible for
typical diamond membrane thicknesses. Figure 1(e) is a plot
of the simulated ε as a function of μr for δ = 43 μm. For
μr � 500 the enhancement factor is relatively constant at ε ≈
280. This indicates that a wide range of magnetic materials
can be used for flux concentration and minor variations in μr

(due, for example, to temperature variation; Appendix S) have
a negligible impact on Bgap.

We elected to use MN60 ferrite (μr ≈ 6500) as the ex-
perimental concentrator material, owing to its low thermal
magnetic noise [39,41]. The ferrite cones were machined
to have approximately the same dimensions as simulated in

Fig. 1. Figure 2(a) depicts the experimental setup. An NV-
doped diamond membrane with [100] faces is positioned in
the gap between the ferrite cones. The membrane was formed
from a commercially available, type Ib diamond grown by
high-pressure high-temperature (HPHT) synthesis. The dia-
mond had been irradiated with 2-MeV electrons at a dose
of ∼1019 cm−2. It was subsequently annealed in a vacuum
furnace at 800–1100 ◦C [9] and mechanically polished and cut
into a membrane of dimensions ∼300 × 300 × 43 μm3.

Approximately 200 mW of light from a 532 nm laser is
focused by a 0.79 NA lens to a ∼40 μm diameter beam
that traverses the diamond membrane parallel to its faces.
The same lens is used to collect NV fluorescence, which
is then refocused onto one of the channels of a balanced
photodetector, producing ∼1.2 mA of photocurrent. A small
portion of laser light is picked off from the excitation path
and directed to the other photodetector channel for balanced
detection. Microwaves are delivered by a two-turn copper
loop wound around one of the ferrite cones. The ferrite cones
provide a � twofold enhancement in the microwave mag-
netic field amplitude within the diamond (Appendix I). All
measurements were performed using �20 mW of microwave
power.

The ferrite-diamond assembly is positioned at the center
of a pair of Helmholtz coils (radius: 38 mm), which produce
a homogenous magnetic field parallel to the cone axis of
amplitude Bext. The coils’ current response was calibrated
using three different magnetometers (Appendix J). A 1.5-mm-
thick cylindrical mu-metal shield (diameter: 150 mm, height:
150 mm) surrounds the Helmholtz coils, providing a shielding
factor of ∼100.

To measure the enhancement factor, we recorded the NV
ODMR spectrum as a function of Bext. Figure 2(b) shows
a typical ODMR spectrum acquired at Bext = 2.62 μT. Two
peaks are present, with central frequencies f±. These frequen-
cies correspond to NV electron-spin transitions between the
ms = 0 and ms = ±1 magnetic sublevels (Appendix A). For
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(a)

(b)

(c)

FIG. 3. Dual-resonance magnetometry concept: (a) Microwave frequency modulation used for dual-resonance magnetometry.
(b) Schematic of the lock-in technique. Both microwave signals depicted in (a) are combined and delivered through the microwave loop.
NV fluorescence is continuously excited and its time-varying intensity is recorded by the balanced photodetector. This signal is then fed to a
lock-in amplifier and demodulated by the reference signal. (c) Lock-in signal as a function of Bext for both single-resonance and dual-resonance
modulation protocols. The microwave frequencies were centered about the f± values measured by ODMR spectroscopy at Bext = 1.73 μT.
In all cases, fmod = 15 kHz, and the lock-in uses a 12 dB/octave low-pass filter with a 100 μs time constant. For the f− scan, the lock-in
reference signal had a π phase shift relative to the modulation function. The right vertical axis converts the lock-in signal to the amplitude of
photocurrent oscillations at fmod, which is used to estimate the photoelectron-shot-noise-limited sensitivity, Appendix M.

magnetic field amplitudes within the diamond in the range
0.5 mT � εBext � 5 mT, the transition frequencies may be
approximated as

f± ≈ D(
T ) ± γnv εBext/
√

3, (3)

where, in our experiments (Appendix D), D(
T ) ≈
2862 MHz + χ
T is the axial zero-field splitting parame-
ter which shifts with changes in temperature, 
T , as χ ≈
−0.1 MHz/K [42]. The 1/

√
3 factor in Eq. (3) comes from

projecting Bgap onto the four NV axes which are all aligned at
55◦ with respect to the cone axis.

Figure 2(c) plots the fitted f± values as a function of Bext.
These data were obtained by scanning Bext back and forth
between ±50 μT two times. For a given Bext, the extracted
f± are nearly identical regardless of scan history, indicating
negligible hysteresis (Appendix L). The data were fit accord-
ing to the NV spin Hamiltonian (Appendix A), which reveals
an experimental enhancement factor of ε = 254 ± 19. The
uncertainty in ε is primarily due to uncertainty in the Bext cur-
rent calibration (Appendix J). The experimental enhancement
factor is ∼10% smaller than the one simulated in Fig. 1(b).
This could be explained by a ∼4 μm increase in δ due to
adhesive between the diamond and ferrite tips (Appendix C).

Having established that the ferrite cones provide a ∼250-
fold field enhancement, we now turn to methods of using the
device for sensitive magnetometry. A common approach in
diamond magnetometry [43,44] is to modulate the microwave
frequency about one of the ODMR resonances and demodu-
late the resulting fluorescence signal using a lock-in amplifier
(Appendix F). We call this method “single-resonance” mag-
netometry, as each resonance frequency is measured indepen-
dently. For example, to measure f+, the microwave frequency
is varied as F (t ) ≈ f+ + fd cos (2π fmodt ), where fd is the
modulation depth and fmod is the modulation frequency. The
lock-in amplifier demodulates the photodetector signal using

a reference signal proportional to cos (2π fmodt ). The resulting
lock-in output is proportional to variations in f+.

However, a single ODMR resonance can shift due to
changes in temperature in addition to magnetic field; see
Eq. (3). To isolate the shifts due only to changes in magnetic
field, the difference frequency ( f+ − f−) must be determined.
Previous works accomplished this by measuring both reso-
nances either sequentially [45] or simultaneously by multi-
plexing modulation frequencies [46,47]. The magnetic field
was then inferred by measuring f+ and f− independently and
calculating the difference.

Here, we use an alternative “dual-resonance” approach,
which extracts the magnetic field amplitude directly from
a single lock-in measurement (Appendix F). Two mi-
crowave signal frequencies, centered about f±, are mod-
ulated to provide time-varying frequencies, F±(t ) ≈ f± ±
fd cos (2π fmodt ). In other words, each tone is modulated with
the same modulation frequency and depth, but with a relative
π phase shift [Fig. 3(a)]. The photodetector signal is then
demodulated by the lock-in amplifier using a reference signal
proportional to cos (2π fmodt ) [Fig. 3(b)]. In this way, the
lock-in output is proportional to ( f+ − f−) and is unaffected
by thermal shifts of D(
T ). Furthermore, the dual-resonance
lock-in signal’s response to magnetic fields is larger than in
the single-resonance case. Figure 3(c) shows the experimen-
tal lock-in signal as a function of Bext for dual-resonance
modulation and both of the f± single-resonance modulation
protocols. The slope for dual-resonance modulation is ∼1.3
times larger than that of single-resonance modulation. This is
close to the expected increase of 4/3 (Appendix G).

III. RESULTS

We next show that the combination of flux concentration
and dual-resonance modulation enables diamond magnetom-
etry with sub-pT s1/2 sensitivity over a broad frequency range.
A 1.73 μT bias field and 580 pTrms oscillating test field
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(a)

(b)

(c)

FIG. 4. Sub-picotesla diamond magnetometry: (a) Time-domain lock-in signals for single-resonance ( f−) and dual-resonance modulation.
Throughout, fmod = 15 kHz and the lock-in uses a 12 dB/octave low-pass filter with a 100 μs time constant. The adjacent plot is a zoom of
the dual-resonance signal where the 580 pTrms test field at 135 Hz can be seen. The test-field frequency for f+ and f− single-resonance
experiments were 125 and 130 Hz, respectively, with the same 580 pTrms amplitude. (b) Magnetic noise spectra of single-resonance
(two shades of gray) and dual-resonance (blue) signals. A reference spectrum obtained with microwaves turned off (green) shows noise
from the unmodulated photodetector signal. Each spectrum was obtained by dividing a 100-s data set into one hundred 1-s segments,
taking the absolute value of the Fourier transform of each segment, and then averaging the Fourier transforms together. Spectra were
normalized such that the test field amplitudes matched the calibrated 580 pTrms values (Appendix H). The dashed red line is the
projected value of ηpsn for dual-resonance magnetometry (Appendix M). The dashed magenta line is the calculated thermal magnetization
noise produced by the ferrite cones (Appendix P). (c) Frequency dependence of the test field amplitude measured by dual-resonance
magnetometry.

in the 125–135 Hz range were applied via the Helmholtz
coils. The lock-in signal was continuously recorded for 100 s
using either dual-resonance or single-resonance modulation.
Figure 4(a) shows the magnetometer signals as a function of
time. For single-resonance modulation, the signals undergo
low-frequency drifts, likely due to thermal shifts of D(
T ).
These drifts are largely absent for dual-resonance modulation.

Figure 4(b) shows the magnetic noise spectrum for the
different modulation techniques. In addition to the calibrated
test field signals, numerous peaks appear for both single
and dual-resonance modulation. We attribute these peaks to
ambient magnetic noise that is not sufficiently attenuated by

the single-layer mu-metal shield. In regions without peaks, the
noise floor for single-resonance magnetometry is ∼1.5 pT s1/2

for frequencies �300 Hz, but it exhibits nearly 1/ f behavior
for lower frequencies. On the other hand, the noise floor for
dual-resonance magnetometry is ∼0.9 pT s1/2 for frequencies
�100 Hz and remains at this level, to within a factor of
two, for frequencies down to ∼10 Hz. The remaining noise
below 10 Hz may be due to imperfect cancellation of the
D(
T ) thermal shifts or from temporal variation of ε due to
either thermal variation in the gap length, δ (Appendix R), or
ferrite permeability (Appendix S). For reference, a spectrum
obtained with the microwaves turned off is also shown. It
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FIG. 5. Magnetometer comparison: Magnetic noise spectra of a
commercial magnetoresistive magnetometer (Twinleaf VMR), flux-
gate magnetometer (SENSYS FGM-100) and our dual-resonance
NV-ferrite magnetometer reproduced from Fig. 4(b). Each magne-
tometer was placed in a similar location within the experimental
apparatus and subject to the same bias and test field amplitudes.
The test field frequency was 130 Hz for both commercial sensors
and 135 Hz for NV-ferrite. The manufacturer-specified sensitivi-
ties are 300 pT/

√
Hz and 10 pT/

√
Hz for the VMR and fluxgate,

respectively.

features a constant noise floor of ∼0.8 pT s1/2 throughout the
1–1000 Hz frequency range. This level is consistent with the
projected photoelectron shot-noise limit, ηpsn = 0.72 pT s1/2,
which was calculated based on the average photocurrent and
lock-in slope (Appendix M).

The frequency response of the magnetometer was deter-
mined by recording magnetic spectra at different test-field fre-
quencies, while holding the amplitude of the driving current
constant. Figure 4(c) plots the test-field amplitude, recorded
by dual-resonance diamond magnetometry, as a function of
frequency. The amplitude decays by less than a factor of two
over the 1–1000 Hz range. The observed decay is due to a
combination of the lock-in amplifier’s low-pass filter and a
frequency-dependent magnetic field attenuation due to metal
components within the Helmholtz coils (Appendix H).

Finally, we compared the performance of our magnetome-
ter with two commercial vector sensors: a magnetoresistive
magnetometer and a fluxgate magnetometer. Figure 5 shows
the magnetic noise spectra obtained under comparable ex-
perimental conditions. Evidently, the NV-ferrite magnetome-
ter outperforms these commercial magnetometers throughout
the frequency range. The present sensitivity (�1 pT s1/2) is
comparable to that of commercial scalar alkali-vapor mag-
netometers that operate in μT bias fields. More sensitive
(�0.02 pT s1/2) vector alkali-vapor magnetometers are avail-
able, but they require bias fields �0.1 μT. SQUID mag-
netometers also offer superior sensitivity, but they require
cryogenics.

IV. DISCUSSION AND CONCLUSION

The demonstration of broadband, sub-picotesla diamond
magnetometry is a significant step towards applications in
precision navigation, geoscience, and medical imaging. Since
only 200 mW of laser power and 20 mW of microwave power

were used, the device holds promise for future miniaturization
and parallelization efforts. Moreover, our magnetometer oper-
ates at microtesla ambient fields and its broad spin linewidth
and small size make it relatively insensitive to field gradients.
This raises the intriguing possibility of operating in Earth’s
magnetic field (∼50 μT) without additional bias fields or
compensation coils.

Our implementation used a commercially available, type Ib
HPHT diamond processed using standard electron-irradiation
and annealing treatments [25]. This material exhibits rela-
tively broad ODMR resonances (� ≈ 9 MHz), which leads
to a photoelectron-shot-noise-limited sensitivity of ηpsn =
0.72 pT s1/2 even after the ∼250-fold flux-concentrator field
enhancement. State-of-the-art synthetic diamonds have re-
cently been fabricated that feature several orders of mag-
nitude narrower resonances [24,48]. The excitation photon-
to-photoelectron conversion efficiency in our experiments
(ξ ≈ 10−2) could also be improved by at least an order
of magnitude with optimized collection optics [17]. With
these additions, ηpsn could be further improved by several
orders of magnitude [Eq. (1)]. Such an improvement in sen-
sitivity is necessary for diamond magnetometers to compete
with SQUID and alkali-vapor magnetometers in the most
demanding applications such as MEG. However, at this level,
thermal magnetization noise intrinsic to the flux concentrators
becomes relevant.

Thermal magnetic noise originating from dissipative mate-
rials can be estimated using fluctuation-dissipation methods
[39,49]. The noise has contributions due to thermal eddy
currents and magnetic domain fluctuations. As discussed in
Appendix P, we find that thermal eddy currents in the ferrite
cones produce an effective white magnetic noise of ∼7 ×
10−5 pT s1/2. This negligibly low noise level is a consequence
of our choice of low-conductivity ferrite. On the other hand,
thermal magnetization noise results in a larger, frequency-
dependent magnetic noise. At 1 Hz, this noise is 0.5 pT s1/2,
and it scales with frequency as f −1/2, reaching ∼0.02 pT s1/2

at 1 kHz. This noise, shown in Fig. 4(b), is not a limiting
factor in our experiments, but it may have implications for
future optimization efforts. If a material with a lower relative
loss factor could be identified, it would result in lower thermal
magnetization noise (Appendix Q).

In summary, we have demonstrated a diamond mag-
netometer with a sensitivity of ∼0.9 pT s1/2 over the
10–1000 Hz frequency range. The magnetometer operates at
ambient temperature and uses 0.2 W of laser power. These
improved sensor properties are enabled by the use of ferrite
flux concentrators to amplify magnetic fields within the di-
amond sensor. Our results may be immediately relevant to
applications in precision navigation, geoscience, and medical
imaging. More broadly, the use of micro-structured magnetic
materials to manipulate magnetic fields offers a new degree
of freedom for the design of diamond quantum sensors, with
potential applications in magnetic microscopy [6–13] and
tests of fundamental physics [50].
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APPENDIX A: NV ELECTRON SPIN HAMILTONIAN

Neglecting hyperfine coupling (which is not resolved in our
experiments), the NV ground-state electron spin Hamiltonian
can be written as [51]

Ĥ

h
= DS2

z′ + E
(
S2

x′ − S2
y′
) + γnvB · S, (A1)

where h is Planck’s constant, γnv = 28.03 GHz/T is the NV
gyromagnetic ratio, and E ≈ 3 MHz is the transverse zero-
field splitting parameter. The axial zero-field splitting parame-
ter, D ≈ 2862 MHz, is temperature dependent, as discussed in
Appendix D. S = (Sx′ , Sy′ , Sz′ ) are dimensionless electron spin
operators, and the z′ direction is parallel to the NV symmetry
axis. For a magnetic field of amplitude Bgap applied normal to
a diamond with [100] faces, the Hamiltonian for NV centers
aligned along any of the four possible axes is the same. In
matrix form, it is

Ĥ

h
=

⎛
⎜⎝

D + γnvBgap√
3

γnvBgap√
3

E
γnvBgap√

3
0 γnvBgap√

3

E γnvBgap√
3

D − γnvBgap√
3

⎞
⎟⎠, (A2)

The eigenstates and eigenfrequencies can be found by di-
agonalizing the Hamiltonian. The two microwave transition
frequencies observed in our experiments, f±, correspond to
the frequency differences between the eigenstate with largely
ms = 0 character and the eigenstates with largely ms = ±1
character. We used this Hamiltonian to fit the f± versus Bext

data in Fig. 2(c). We assumed Bgap = εBext and used solutions
to Eq. (A2) to fit for ε = 254. The values of E and D were
determined separately from low-field ODMR data and were
not fit parameters.

Note that Eq. (3), which approximates f± as being linearly
dependent on Bext, is merely a convenient approximation. As
can be seen in Fig. 2(c), the exact values of f± are generally
nonlinear functions of Bext. This is especially pronounced near
zero field, ε |Bext| � E/γnv ≈ 0.1 mT, where f± undergo an
avoided crossing, and also at high field, where mixing due
to transverse fields produces nonlinear dependence. However,
for magnetic fields 0.5 mT � εBext � 5 mT, the transition
frequencies f± are approximately linear in Bext.

APPENDIX B: FLUX CONCENTRATOR SIMULATIONS

Our flux concentrator model and simulations are described
in Sec. II and Fig. 1. Here we describe supplementary re-
sults demonstrating the field homogeneity in the gap, the
enhancement factor as the gap length approaches zero, and
the approximate point spread function. Figure 6(a) describes
the geometry used for the simulations. Figure 6(b) shows the
enhancement factor as a function of δ, with the range extend-
ing to δ ≈ 0. The largest enhancement factors are observed
for small gaps, approaching ε = 5000 for δ = 0. We chose a
gap of δ ≈ 43 μm in our experiments as a compromise that
offers moderate enhancement (ε ≈ 250) while still providing
substantial optical access and straightforward fabrication and
construction.

To visualize the homogeneity of the magnetic field within
the gap, we plot line cuts of the relative field amplitude
along the axial and transverse directions. Figure 6(c) shows
the relative magnetic field along the cone symmetry axis.

FIG. 6. Enhancement factor and field homogeneity: (a) The
model geometry. See Fig. 1(a) for additional dimensions. (b) En-
hancement factor, ε, as a function of the gap length, δ. (c) Enhance-
ment factor as a function of the axial displacement z. The gap is
shaded in light gray, while the ferrite concentrators are shaded in
dark gray. (d) Enhancement factor as a function of the transverse
displacement x. (e) Simulated x-z plane cut of the relative magnetic
field amplitude, |B(r)|/|Bext|, upon application of Bext at θ = 90◦.
See Fig. 1(b) for the case when Bext is applied at θ = 0.
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FIG. 7. Flux concentrator point spread function: The value of
Bgap due to a small current loop located below the device is recorded
as a function of lateral displacement. The resulting field profile has a
FWHM linewidth of ∼11 mm. Inset: geometry for scanning.

Figure 6(d) shows the relative field along a transverse line
passing through r0. Both plots predict a high degree of mag-
netic field homogeneity; residual variations of the relative
field are �1% throughout the region filled by the diamond
membrane.

For reference we also simulated the magnetic field distri-
bution when a magnetic field s applied transverse to the cone
axis. Figure 6(e) shows simulated x-z plane cut of the relative
magnetic field amplitude upon application of the external
magnetic field along the transverse directions. The field is
uniformly suppressed throughout the gap.

Future NV-flux concentrator devices may involve the use of
sensor arrays to perform imaging. While a detailed analysis
of the design space for imaging applications is beyond the
scope of this work, we performed simulations to estimate the
point spread function of our device. A small (1-mm diameter)
current loop was positioned to have an axial displacement
of 1 mm below the base of the bottom cone. The magnetic
field amplitude in the gap, Bgap, was simulated as a function
of the current loop’s lateral displacement, x. Figure 7 shows
the resulting magnetic field profile. While it does not a have
simple Gaussian shape, it can be approximated as having a
full-width-at-half-maximum (FWHM) resolution of ∼11 mm.

APPENDIX C: EXPERIMENTAL SETUP: CONES

The ferrite cones were ordered from Precision Ferrites &
Ceramics, Inc. The diamond membrane was glued on the
tip of one of the ferrite cones with LOCTITE AA3494 UV-
curing adhesive. The second cone with the microwave loop
was mounted inside a metallic holder and micropositioned to
contact the exposed face of the diamond membrane by use of
a Thorlabs MicroBlock Compact Flexure Stage MBT616D.
When in the desired position, the holder was glued to the
support of the bottom cone by superglue, and then detached
from the micropositioning stage.

APPENDIX D: EXPERIMENTAL SETUP: OPTICS

To excite NV fluorescence, a Lighthouse Photonics Sprout-
G laser is used to form a collimated beam of 532 nm light.
The beam is focused with a 1-inch diameter, 0.79-NA aspheric
condenser lens (Thorlabs ACL25416U-B) onto the edge of the
diamond membrane. Fluorescence is collected by the same
lens and is spectrally filtered by a Semrock FF560-FDi01-
25 × 36 dichroic mirror. A second lens (1-inch diameter,
50-mm focal length) focuses the fluorescence onto a photode-
tector. The emission path length between aspheric condenser
and final lens is ∼175 mm. For magnetometry experiments,
including all data in the figures in the main text, we used
a Thorlabs PDB210A balanced photodetector with an active
diameter of 5 mm. For beam characterization (Fig. 8), we used
a CMOS image sensor, and for observing Rabi oscillations
(Fig. 13 below), we used a Thorlabs PDA8A high-speed
photodetector. Figure 8(a) shows an image of the fluorescence
spot from the entrance edge of the diamond membrane. The
FWHM spot diameter of ∼40 μm was selected to match the
diamond membrane thickness. It was adjusted by tailoring
additional telescoping lenses in the excitation path.

With this optical system, we obtained a excitation photon-
to-photoelectron conversion efficiency of ξ ≈ 0.01. The

(a)

(b)

FIG. 8. Beam profile and absorption length: (a) Image of the
fluorescence spot at the entrance edge of the diamond membrane.
The FWHM spot diameter is ∼40 μm. The dashed lines indicate
the approximate edges of the diamond. (b) Fluorescence intensity
produced by a ∼1 mm diameter laser beam entering the edge of a
diamond membrane. The inset shows a fluorescence image of the top
face. Red markers depict the normalized fluorescence intensity along
the cut shown by the dashed line in the inset. The black solid line is
an exponential fit, revealing a 1/e absorption length of 0.7 mm.
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primary factors limiting ξ are due to the limited optical access
afforded by the ferrite cones, loss of fluorescence exiting
orthogonal faces of the diamond membrane, and incomplete
absorption of the excitation beam within the diamond. To
characterize the latter, we used a separate apparatus to image
the fluorescence from the top face of a larger membrane
[Fig. 8(b)]. This larger membrane was the starting piece from
which we cut the smaller membrane used in magnetometry
experiments. We found that the 1/e absorption length of this
material is 0.7 mm. Thus we expect that only ∼35% of the
laser light was absorbed in the ∼300 μm-long diamond mem-
brane used in magnetometry experiments. This approximation
neglects the effects of laser light that is reflected at the air-
diamond interfaces.

The large absorbed optical power results in significant
heating of the diamond membrane. The experimentally mea-
sured axial zero-field splitting parameter D ≈ 2862 MHz
[Fig. 2(c)] indicates a local diamond temperature of ∼385 K
[42]. While the elevated temperature leads to a large shift in
D, it does not significantly diminish the contrast or broaden
the ODMR resonances. Future devices may employ active
cooling or optimized heat sinks to reduce the diamond tem-
perature. Fortunately, the microwave irradiation contributes
only a negligible amount to the overall heating. By varying
the microwave power, we found that the shift in D due to
20 mW of delivered microwave power was <0.1 MHz. This
corresponds to a change in temperature of <1 ◦C.

Our optical collection setup results in an effective NV fluo-
rescence collection volume that is the product of the excitation
beam area, ∼π × (20 μm)2, and the optical path length in the
diamond, 300 μm. The justification for our assumption that
we collect fluorescence from the entire length of the diamond

is a combination of two factors. The first factor is that, while
a reasonably high numerical aperture (NA = 0.79) aspheric
lens is used for collection, the overall imaging system has
a relatively low magnification (M = 3.1), and a large-area
photodiode (5 mm diameter) is used for detection. This means
that we still collect light from emitters with a large axial
displacement from the focus. To verify this, we performed
ray tracing using an ABCD matrix calculation of the marginal
rays collected from point sources along the optical axis. We
found that the axial collection range (defined as the range
where the collection efficiency is at least half as much as at the
focus) for this imaging system is >0.8 mm for point emitters
in air. The second factor is that we expect the waveguiding
effect of the diamond slab to make the emission appear even
more localized [52]. Due to total internal reflections, the emis-
sion exits the diamond primarily out of the four edge facets.
Each edge facet has a cross section of 40μm × 300μm, and
we collect from only one edge. After 3.1× magnification,
the image of the edge facet is still much smaller than the
photodetector active area.

APPENDIX E: EXPERIMENTAL SETUP: ELECTRONICS

Figure 9(a) shows a schematic of the electronic devices
used in our experimental setup. Microwaves are supplied by
two Stanford Research SG384 signal generators. The clocks
of the generators are synchronized by passing the 10 MHz
frequency reference output of one generator to the frequency
reference input of the other. Both generators are configured
to modulate the microwave frequency with a modulation
frequency fmod = 15 kHz and depth fd = 3.3 MHz. In dual-
resonance modulation, the signal generators are configured

(a) (b)

(c)

FIG. 9. Electronics: (a) Schematic of the electronics portion of the experimental apparatus. Vpd is the photodetector signal, Vout is the lock-in
amplifier’s in-phase output signal, Vtest is the test signal waveform, and fmod is the modulation frequency. (b) Alternative electronic scheme for
dual-resonance microwave signal generation and feedback. A voltage-controlled oscillator (VCO) produces a carrier frequency fcar = ( f+ +
f−)/2 ≈ D(
T ) that is mixed with the signal from a second VCO with frequency fdiff = ( f+ − f−)/2, creating two sidebands at the ODMR
frequencies. The sideband frequencies are modulated by adding a reference signal fd cos (2π fmodt ) to the second VCO. This arrangement
allows for rapid feedback to correct for temperature and magnetic field drifts by adjusting the bias voltage to the VCOs. (c) Microwave
signal spectrum resulting from the alternative electronics scheme in (b). A typical ODMR spectrum is shown in red for reference. DAQ: data
acquisition card; HC: Helmholtz coils; LPF: low-pass filter; MW: microwave; PD: photodetector.
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such that their modulation functions, F±, have a relative
π phase shift (see Sec. II). The signals from both genera-
tors are combined with a Mini-Circuits ZAPD-30-S+ 2-way
power combiner, amplified by a Mini-Circuits amplifier ZHL-
16W-43-S+, and finally delivered to a two-turn microwave
loop made from polyurethane-enameled copper wire (38
AWG). Prior to performing dual-resonance magnetometry,
the microwave powers for each f± resonance were indepen-
dently adjusted to give approximately the same lock-in slope
[Fig. 3(c)].

The photodetector output signal, Vpd, is fed to a Signal
Recovery 7280 lock-in amplifier using 50 � termination. The
lock-in multiplies Vpd by a reference signal, proportional to
cos (2π fmodt ), output from one of the signal generators. The
demodulated signal is processed by the lock-in’s low-pass
filter, which was set to 12 dB/octave with a 100 μs time
constant. The lock-in amplifier’s in-phase component, Vout, is
digitized at 50 kS/s by a National Instrument USB-6361 data
acquisition unit.

External fields, Bext, are produced by a pair of Helmholtz
coils (radius: 38 mm) driven by a Twinleaf CSUA-50 current
source. To create oscillating test signals, a Teledyne LeCroy
WaveStation 2012 function generator provides a sinusoidal
waveform, Vtest, to the modulation input of the current source.
The same function generator was used to slowly sweep the
magnetic field for the lock-in signals shown in Fig. 3(c) (in
this case, no oscillating test signals were applied).

While our tabletop prototype uses scientific-grade mi-
crowave generators, a simpler system could be used to de-
liver the requisite dual-resonance microwave waveforms. Fig-
ure 9(b) shows an alternative scheme which uses only voltage-
controlled oscillators and a mixer. This scheme has the benefit
of allowing for rapid feedback to compensate for thermal and
magnetic field drifts, which would enable a higher dynamic
range [47].

APPENDIX F: DUAL-RESONANCE MAGNETOMETRY

We perform our magnetometry experiments with a lock-in
amplifier in order to reduce technical noise, particularly at low
frequencies. Such noise could arise from a variety of sources,
but a common source in NV magnetometry experiments is due
to intensity fluctuations of the laser that are not fully canceled
by balanced photodetection. The lock-in method allows us to
tune our photodetector signal to a narrow frequency band,
where such technical noise is minimal. In our experiments,
this is accomplished by modulating the microwave frequency
at a modulation frequency fmod = 15 kHz and depth fd =
3.3 MHz. The resulting photodetector signal, Vpd, has com-
ponents at fmod and higher harmonics, in addition to the DC
level. The lock-in amplifier isolates the component at fmod, in
a phase-sensitive manner, by multiplying Vpd by a reference
signal proportional to cos (2π fmodt ). The product signal is
passed through a low-pass filter, and the in-phase component,
Vout, serves as the magnetometer signal.

The lock-in signal, Vout, can be converted to magnetic field
units by one of two methods. In the first case, one can sweep
the magnetic field and measure the dependence of Vout on Bext,
as in Fig. 3(c). The slope can be used to infer the conversion
of Vout to magnetic field units. This method works well pro-

vided that the slope never changes. In practice, the slope can
change due to drifts of the laser or microwave powers. It also
can’t account for any dependence of Vout on magnetic field
frequency, as the slope is measured at DC. Thus, we always
apply a calibrated oscillating test field and re-normalize our
magnetometer conversion based on the observed amplitude.
Typically the difference in conversion factors using the two
methods is small (�10%).

We now turn to describing the principle of dual-resonance
magnetometry. In single-resonance magnetometry, the mi-
crowave frequency is modulated about one of the ODMR
resonances (for example, f+) and demodulated at the same
frequency. The in-phase lock-in output Vout is proportional
to small deviations in f+. This allows one to infer both the
magnitude and sign of changes in f+. If the relative phase
between the microwave modulation function, F+, and the
reference signal were shifted by π radians, the magnitude of
Vout would be the same but the sign would reverse.

In dual-resonance magnetometry, we exploit this feature of
phase-sensitive detection. The microwave modulation func-
tion for one resonance has a π phase shift with respect to the
modulation function of the second resonance. The reference
signal has the phase of the first modulation function. In this
way, if both f+ and f− shift by equal amounts in the same
direction [due to a change in D(
T )], their contributions to
the lock-in signal cancel and Vout = 0. If f+ and f− shift by
equal amounts but in opposite directions (due to a change in
Bext), their contributions to the lock-in signal add together and
Vout changes in proportion to their shift. In other words, the
lock-in output is unaffected by thermal shifts of the NV spin
levels (which shift f+ and f− by equal amounts in the same
direction), but it remains proportional to changes in magnetic
field (which shift f+ and f− by approximately equal amounts
in opposite directions).

Note that dual-resonance modulation could also be used to
make an NV thermometer which is unaffected by changes in
magnetic field. This would be accomplished by applying the
same modulation phase to both F± signals and monitoring the
in-phase lock-in signal.

APPENDIX G: SENSITIVITY ENHANCEMENT IN
DUAL-RESONANCE MAGNETOMETRY

The dual-resonance magnetometry approach was primarily
used because it is unaffected by thermal shifts of the NV
spin levels. This enabled better low-frequency performance.
However the dual-resonance approach also has a fundamental
advantage in sensitivity for all frequencies. Compared to the
single-resonance approach, it offers a ∼4/3-fold improvement
in photoelectron-shot-noise-limited sensitivity. This improve-
ment comes about due to a ∼4/3-fold increase in the ODMR
contrast.

To understand where the factor of 4/3 arises, consider the
limiting case when the microwave excitation rate is much
larger than the optical excitation rate. In this regime, a res-
onant microwave field drives the spin levels it interacts with
into a fully mixed state (Fig. 10). For single-resonance excita-
tion, when the microwave field is on resonance, the probability
that NV centers will be in the ms = 0 level is P0 = 1/2. For
dual-resonance excitation, both microwave transitions share
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FIG. 10. Single and dual-resonance spin populations: NV spin
level populations, represented by the number of magenta circles,
are shown under single-resonance and dual-resonance microwave
excitation.

the ms = 0 level and thus P0 = 1/3 when both microwave
fields are on resonance. Defining the fluorescence intensity of
an NV center in the ms = 0 level as I0 and the fluorescence
intensity of an NV center in either of the ms = ±1 levels as
I1, the ODMR contrast is given by

C = I0 − [P0I0 + (1 − P0)I1]

I0
. (G1)

For the single-resonance case, the contrast is Cs = 1
2

I0−I1
I0

.

In the dual-resonance case, the contrast is Cd = 2
3

I0−I1
I0

. The
ratio is therefore Cd/Cs = 4/3. Since the photoelectron-shot-
noise-limited sensitivity is proportional to 1/C [Eq. (1)], this
corresponds to a 4/3 reduction in the magnetic noise floor.

To derive the factor of 4/3 we assumed that the mi-
crowave excitation rate was larger than the optical exci-
tation rate. In experiments, we use 20 mW of microwave
power. This corresponds to a microwave Rabi frequency of
∼0.7 MHz (Appendix I) or a spin flip rate of ∼1.4 × 106 s−1.
The optical intensity used in our experiments was Iopt ≈
0.2 W/(40 μm)2 = 12.5 kW/cm2 (Appendix D). The NV
absorption cross section at 532 nm is σnv ≈ 3 × 10−17 cm2

[25], so this corresponds to an optical excitation rate of
Ioptσnv/Eph ≈ 106 s−1. Thus, in our experiments, the mi-
crowave excitation rate is comparable to, or slightly larger
than, the optical excitation rate. The improvement in dual-
resonance sensitivity was thus not exactly 4/3, but it was
close (∼1.3). Another assumption that we implicitly made is
that the ODMR linewidth is the same under single-resonance
and dual-resonance excitation. This assumption is reasonably
accurate in our experiments; see Fig. 3(c).

APPENDIX H: MAGNETOMETER FREQUENCY
RESPONSE

Figure 4(c) shows the amplitude of test fields, recorded by
dual-resonance diamond magnetometry, as a function of their
frequency. A moderate decay (∼40%) of the signal amplitude
was observed over the 1–1000 Hz range. In order to determine
the causes of this signal decay, we performed a series of
frequency-response measurements under different conditions.

Figure 11 shows the results of these experiments. In
all cases we use fmod = 15 kHz and the lock-in uses a
12 dB/octave low-pass filter with a time constant τli =

FIG. 11. Frequency response of different magnetometer config-
urations: The blue trace is the normalized magnetometer frequency
response, reproduced from Fig. 4(c). The red trace is the same NV
magnetometer setup except without the ferrite cones. The brown
trace is the NV magnetometer without ferrite cones and with metal
components (Fig. 12) removed from the interior of the Helmholtz
coils. The black trace is the lock-in filter response as measured by
amplitude-modulated voltage inputs.

100 μs. We first isolated the lock-in amplifier’s frequency re-
sponse by applying a sinusoidal voltage, oscillating at fmod =
15 kHz, with an amplitude modulation of constant depth and
variable modulation frequency. The resulting lock-in response
is well described by a second-order Bessel filter with a cutoff
frequency of 1/(2πτli ). While this filter is largely responsible
for the magnetometer decay at frequencies �1 kHz, it can
only account for a small fraction of the decay observed over
the 1–1000 Hz range.

Next, we removed the ferrite cones from the assembly
and performed dual-resonance magnetometry. The observed
frequency response is similar to that observed with the ferrite
cones in place. The decay is slightly less pronounced, but
evidently the ferrite cones do not account for the observed
decay.

Finally, we removed the metal mounting hardware used in
the apparatus that were located within the Helmholtz coils
(Fig. 12). We again performed dual-resonance diamond mag-
netometry without the ferrite cones in place. In this case, we
observe a frequency response which is nearly identical to the
lock-in amplifier’s frequency response.

We therefore conclude that metal components within the
Helmholtz coils are responsible for most of the decay in the
1–1000 Hz range observed in Fig. 4(c). The lock-in ampli-
fier’s low-pass filter contributes as well, but to a lesser degree.
The ferrite cones may also contribute a small amount to the
observed decay, but future work would be needed to isolate
their response independently.

The frequency dependence of our magnetometer leaves an
ambiguity as to how best to normalize the magnetic noise
spectra in Fig. 4(b). As seen in Fig. 4(c), when we apply
a test current which is expected to produce an amplitude of
580 pTrms, it produces the correct amplitude at 1 Hz, but at
125–135 Hz it produces an amplitude of ∼540 pTrms. Since
125–135 Hz is the frequency range of the test fields applied in
Fig. 4(b), we therefore had to decide whether to normalize
the noise spectra so that the test-field peaks appeared at
580 pT s1/2 or ∼540 pT s1/2. Conservatively, we chose the
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FIG. 12. Photo of apparatus with shield removed: Metal mount-
ing components that were removed to generate the data in Fig. 11 are
labeled. The brass screw was used for mounting to a translation stage
during initial alignment (Appendix C). Other unlabeled metal parts,
such as brass nuts, were not found to contribute to the frequency-
dependent magnetic field attenuation.

former. We multiplied each spectrum by 580/540 = 1.07,
which raised the test field peaks to 580 pT s1/2 and also raised
the noise floor by 7%. If we had instead chosen to normalize
the test-field peaks to 540 pT s1/2, our noise floor estimates
would improve by ∼7% to ∼0.84 pT s1/2.

APPENDIX I: FERRITE MICROWAVE FIELD
ENHANCEMENT

A feature of our magnetometer is that it uses a simple,
nonresonant coil for microwave excitation and only requires
20 mW of microwave power. This is partially enabled by an
enhancement of the microwave magnetic field provided by the
ferrite cones. Figure 13 shows Rabi oscillations of the same
diamond-coil configuration with and without ferrite cones.
The Rabi frequency with ferrite is � two times larger, indicat-
ing an equivalent � twofold enhancement in the microwave
magnetic field.

APPENDIX J: CALIBRATION OF HELMHOLTZ COILS

Our magnetometer signal’s accuracy relies on a careful
calibration of the conversion between the current applied to
the Helmholtz coils and Bext. Here we call this conversion
factor Mcal. Theoretically, we estimated Mcal = 165 μT/A
based on the known coil geometry and number of turns. We
verified this estimate experimentally by applying currents to
the Helmholtz coils and measuring the resulting magnetic
field using three different magnetometers.

First, two commercial vector magnetometers (Twinleaf
VMR and SENSYS fluxgate; see Fig. 5) were used to calibrate
the Helmholtz coils. Each magnetometer was placed in the
center of the coils at approximately the same location as the
NV-ferrite structure would be. The current in the Helmholtz
coils was varied and the axial magnetic field component was
recorded. Figure 14(a) shows the resulting calibration curves.
The data were fit to linear functions, revealing Mcal (listed in
the legend). For the fluxgate magnetometer, Mcal is approxi-
mately the same as the theoretical estimate when the top of

FIG. 13. Rabi frequency with and without ferrite: (top) Protocol
used to observe continuous-wave Rabi oscillations. (bottom) Rabi
oscillations observed with and without ferrite cones (the setup was
identical otherwise). Black solid curves are fits to an exponentially
damped sinusoidal function revealing fRabi = 16 MHz with ferrite
and fRabi = 7 MHz without ferrite. A microwave power of ∼10 W
was used for both traces in order to clearly visualize the Rabi
oscillations.

FIG. 14. Helmholtz coils current calibration: (a) Helmholtz coils
current calibration performed with two commercial vector magne-
tometers. FG: SENSYS FGM3D/100 fluxgate magnetometer; VMR:
Twinleaf VMR magnetometer. (b) NV ODMR frequencies versus
current in the Helmholtz coils. Solid lines are a fit using Eq. (A2),
where Mcal = 175 μT/A is the fit parameter.
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FIG. 15. Sensitivity with and without ferrite cones: Magnetic
noise spectra for dual-resonance magnetometry with (blue) and
without (red) the ferrite cones.

the magnetic shields was removed. When the shield remained
in place, the calibration factor was ∼5% larger. The VMR
magnetometer reported a lower magnetic field than other
methods. In both cases we relied on conversion constants
between voltage and magnetic field units as provided by the
manufacturers.

Note that when the current was turned off, we still observed
a small residual axial field of Bext = −0.2 μT using both
magnetometers. This is due to the finite attenuation provided
by the shields. When the shields were removed, the axial
component of the laboratory field was approximately −20 μT.
Since the shields provide a ∼100-fold attenuation, this leads
to a small residual field of −0.2 μT.

Next, we used NV magnetometry, with the ferrite cones
removed from the setup (Appendix H), to measure the ODMR
frequencies as a function of the current in the coils. Fig-
ure 14(b) shows the observed f± values alongside a fit
according to the NV spin Hamiltonian, Eq. (A2), with Mcal =
175 μT/A as a fitting parameter.

The value of Mcal used throughout the main text was the
average of all three values reported by the magnetometers
with the shields on. It is Mcal = 167 ± 14 μT/A, where the
uncertainty is the standard deviation. If we had removed
the VMR magnetometer from the analysis, we would have
obtained Mcal ≈ 175 μT/A. This would decrease the reported
sensitivity by ∼5% to ∼0.95 pT s1/2.

APPENDIX K: SENSITIVITY WITHOUT FERRITE

We used the same dual-resonance magnetometry technique
described in the main text to record the diamond magnetom-
etry signal with the ferrite cones removed. Figure 15 shows
the resulting magnetic noise spectrum alongside the spectrum
with ferrite [reproduced from Fig. 4(b)]. The noise floor
without ferrite is ∼300 pT s1/2. This is slightly larger than the
expected 254-fold increase, most likely due to a suboptimal
choice of microwave power.

APPENDIX L: FLUX CONCENTRATOR HYSTERESIS

The data in Fig. 2(c) were obtained by sweeping Bext

from zero to +50 μT, then from +50 μT to −50 μT, and

finally from −50 μT back to zero. To check whether hys-
teresis results in any remanent fields over the course of these
measurements, we separated the f± data into three segments:
0– + 50 μT, +50– − 50 μT, and −50–0 μT. We fit the three
data sets separately according to Eq. (A2) with a residual
magnetic field offset of Bext as the only fitting parameter.
The resulting offset magnetic fields were found to be 8.8 nT,
−9.2 nT, and 9.8 nT, respectively. This variation lies within
the fit uncertainty, so we take 10 nT as an upper bound. Note
that this corresponds to a remanent field within the gap of
�2.5 μT.

APPENDIX M: PHOTOELECTRON SHOT-NOISE LIMIT

The photoelectron-shot-noise-limited sensitivity of our
magnetometer is given by

ηpsn =
√

q Idc

dIac/dBext
, (M1)

where Idc = 2.3 mA is the sum of the average photocurrent
in both channels of the balanced photodetector, dIac/dBext =
33 Arms/T is the lock-in slope expressed in terms of the
AC photocurrent rms amplitude [Fig. 3(c)], and q = 1.6 ×
10−19 C is the electron charge. Thus Eq. (M1) evaluates
to ηpsn = 0.58 pT s1/2. This noise can be thought of as the
standard deviation of the time-domain magnetometer data
obtained in 1-s intervals. In the frequency domain it cor-
responds to the standard deviation of the real part of the
Fourier transform expressed in pT s1/2. In our experiments,
we report the absolute value of the Fourier transform. In order
to represent ηpsn in this way, it must be multiplied by 1.25
to reveal a magnetic noise floor of ηpsn = 0.72 pT s1/2. This
conversion was checked by simulating Poissonian noise and
observing the noise floor in the absolute value of the Fourier
transform.

A similar value ηpsn ≈ 0.75 pT s1/2 was obtained by in-
serting experimental values from ODMR spectra into Eq. (1).
In this case, we used ξ = 0.01, Popt = 200 mW, � = 9 MHz,
and C = 0.04. The effect of flux concentrators is incorporated
by multiplying γnv by ε. Note that the expression in Eq. (1)
refers to the sensitivity to the magnetic field component along
the NV axis. Since we use this measurement to infer the total
field amplitude (which is directed at 55◦ with respect to the
NV axes), the right-hand side of Eq. (1) must be multiplied
by 1/ cos 55◦ = √

3.
In Sec. I we claimed that the lowest value of �/C [11]

was 1 MHz/0.04. To be accurate, the reported contrast in
this paper was 0.05 and the linewidth was 1 MHz. How-
ever this experiment measured the projection of the field
onto NV axes that were aligned at 35◦ with respect to the
field (the field was aligned normal to a [110]-cut diamond
face). Incorporating the projection factor (cos 35◦ = 0.82)
in Eq. (1) has the same effect as scaling down the ratio
�/C by the same proportion. We thus reported the ratio
as �/C ≈ 1 MHz/0.04.

Finally, we would like to clarify some issues with the
optimistic estimation of ηpsn made in Sec. I. There, we
combined the highest-reported value of ξ with the lowest
reported value of �/C. In reality such a combination may
be difficult to achieve as there are competing factors. For
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example, realizing high ξ requires high optical depth. This
is challenging to realize when � is small, because the latter
implies a low NV density. In principle this could still be
accomplished with a multipass configuration or by using a
large diamond. However, as one moves to lower �, the optimal
excitation intensity also decreases (since the optical excitation
rate should not exceed �). This means that, for a fixed power,
the beam area must increase, which further constrains the
geometry and favors larger diamond dimensions. A lower
excitation intensity also results in a smaller magnetometer
bandwidth, since the optical repolarization rate is lower. Fi-
nally, realizing a high value of ξ requires getting waveguides
and/or lenses very close to the diamond. Realizing such a
high optical access may interfere with other magnetometer
components (concentrators, microwave loop, heat sinks, etc.).
Most of these technical challenges are not insurmountable,
but they need to be addressed. Our flux concentrator solution
offers a complementary path that may alleviate some of these
engineering constraints.

APPENDIX N: MAGNETOMETER SENSITIVITY UNITS

In this work, we report magnetic sensitivity with the units
T s1/2. However other magnetometry works report the sensi-
tivity in units of T Hz−1/2. This includes the manufacturer-
specified sensitivities for the commercial magnetometers we
studied in Fig. 5. We justify our choice of units as follows. The
theoretical sensitivity equation [Eq. (1)] results in a quantity
ηpsn which has units of T s1/2 in SI units. These units tell
us how the minimum detectable magnetic field scales with
integration time. Alternatively, they tell us how the minimum
detectable magnetic field scales with sample rate, assuming
continuous sampling. In order to convert to T Hz−1/2, one has
to make an assumption about how the sampling rate converts
to measurement bandwidth. If one assumes that only positive
frequencies are considered, then, by the Nyquist theorem, a
1 Hz measurement bandwidth would imply a sampling rate
of 2/s. Or in other words, Hz−1/2 ↔ (0.5 s)1/2. This is a
common convention used in many metrology communities
and in some parts of the NV sensing works [23,53]. However
if negative frequencies are considered then a 1 Hz measure-
ment bandwidth could span symmetrically from negative to
positive frequencies. In this case, Hz−1/2 ↔ s1/2. Given this
ambiguity, we decided to report the sensitivity in units of
T s1/2. To analyze the experimental data, we digitized the
magnetometer data in the time domain and then processed
the Fourier transform digitally. We normalized the Fourier
transform in units of T s1/2 to remain consistent with the
theoretical sensitivity analysis.

APPENDIX O: MAGNETOMETER ALLAN DEVIATION

As an additional characterization of our magnetometer,
we computed the Allan deviation [54] of the magnetometer
traces studied in Fig. 4. Figure 16 shows the Allan devia-
tion of the dual-resonance measurement and the case when
microwaves were off. Prior to taking the Allan deviation the
dual-resonance time-series data were processed with 1-Hz
bandwidth notch filters about the test field frequency, the
60 Hz line harmonics up to 960 Hz, and at ten other frequen-

FIG. 16. Allan deviations: Absolute Allan deviations of dual-
resonance (blue), and microwaves-off (green) magnetometer signals.
The original time-series data are the same as those studied in Fig. 4.

cies in the 7.6–1000 Hz range corresponding to prominent
noise peaks. The microwaves-off Allan deviation exhibits
t−1/2 behavior throughout the 100-s data set, as expected
for white noise. The dual-resonance Allan deviation approxi-
mately follows t−1/2 scaling up to 0.1 s.

APPENDIX P: FERRITE THERMAL MAGNETIC NOISE

Thermal magnetic noise originating from dissipative ma-
terials can be estimated using fluctuation-dissipation methods
[39,49]. The noise is inferred by calculating the power loss
(P) incurred in the material due to a hypothetical oscillating
magnetic field (angular frequency: ω) produced by a small
current loop (area: A, current: I) situated at the location of
the magnetometer. The magnetic noise detected by the sensor
is then given by

δBgap =
√

8kT P

AIω
, (P1)

where k is the Boltzmann constant. The power loss has sepa-
rate contributions due to thermal eddy currents and magnetic
domain fluctuations:

Peddy =
∫

V

1

2
σE2 dV, Physt =

∫
V

1

2
ωμ′′H2 dV. (P2)

Here σ is the electrical conductivity, μ′′ is the imaginary
part of the permeability (μ = μ′ − iμ′′), E and H are the
amplitudes of the induced electric and magnetic fields, and the
integration is carried out over the volume V of the dissipative
material. In the small excitation limit, E and H scale linearly
with the driving dipole moment (AI), so the magnetic noise in
Eq. (P1) is independent of the size and driving current in the
loop.

We numerically calculated magnetic noise contributions
due to Peddy and Physt for our flux concentrator geometry
[Figs. 1(a) and 1(b)]. We used MN60 material parameters
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TABLE I. Thermal magnetic noise for different cone materials: Magnetic noise arising from Hysteresis and Johnson noise were numerically
calculated by the method described in Refs. [39,49] using finite-element methods. The values of μ′, μ′′, and σ are taken from references:
low-carbon steel 1018 [55], MnZn ferrite MN80 [56], MnZn ferrite MN60 [39], and mu-metal [39]. Note that μ′ and μ′′ are in general
frequency dependent. Here we take the values for the lowest reported frequency and assume that the response is relatively flat below 1 kHz.
The enhancement ε is determined from magnetostatic simulations as in Fig. 1. The effective external magnetic noises δBext = δBgap/ε are
defined by Eqs. (P1) and (P2). δBext is reported at 1 Hz. It scales with frequency as f −1/2.

Material μ′/μ0 μ′′/μ0 σ (S/m) Enhancement, ε δBhyst (1 Hz), pT s1/2 δBeddy, pT s1/2

Steel 1018 250 5 5.18×106 223 6.8 0.4
MnZn MN80 2030 6.1 0.2 251 0.85 0.00007
MnZn MN60 6500 26 0.2 254 0.54 0.00007
mu-metal 30 000 1200 1.6×106 255 0.8 0.2

[39] (σ = 0.2 �−1m−1, μ′ = 6500 μ0, μ′′ = 26 μ0, where μ0

is the vacuum permeability) and a cone gap of δ = 47 μm,
which resulted in the experimental enhancement factor ε =
254. We find that thermal eddy currents produce white mag-
netic noise at the level of δBgap ≈ 0.02 pT s1/2. Since we are
interested in our sensitivity in relation to the external field
[39], noise produced locally by the ferrite cones translates to
an equivalent external field noise of δBext = δBgap/ε ≈ 7 ×
10−5 pT s1/2. This negligibly low noise level is a consequence
of our choice of low-conductivity ferrite materials. On the
other hand, thermal magnetization noise results in a larger,
frequency-dependent magnetic noise. At 1 Hz the effective
noise is 0.5 pT s1/2, and it scales with frequency as f −1/2.
The thermal magnetization noise is annotated in Fig. 4(b). It
is not a limiting factor in our present experiments, but it may
have implications for future optimization efforts. If a material
with a lower relative loss factor (μ′′/μ′2) could be identi-
fied, it would result in lower thermal magnetization noise
(Appendix Q).

APPENDIX Q: THERMAL MAGNETIC NOISE FOR
VARIOUS MATERIALS

We also used Eqs. (P1) and (P2) to estimate the mag-
netic noise produced by cones of the same dimensions as in
Fig. 1(a), but made from different magnetic materials. Specifi-
cally, we considered low-carbon steel 1018 [55], MnZn ferrite
MN80 [56], and mu-metal [39]. The results of these estimates
are listed in Table I along with the material parameters used
for the analysis. In all cases, the hysteresis noise is dominant
for frequencies �10 Hz.

To minimize hysteresis noise, one must limit the relative
loss factor (μ′′/μ′2). We found that the hysteresis noise scales
proportional to

√
μ′′/μ′2 (Fig. 17). Another design consid-

eration is the geometry of the flux concentrators, but such
an optimization is beyond the scope of this work. If the
Johnson noise matters, as in the conductive mu-metal, it could
be further decreased by passivating the skin effect with a
lamination.

Finally, we estimated the magnetic noise produced by the
mu-metal magnetic shield used in our experiments. Here, we
used an analytical expression for a finite closed cylinder [49]
and inserted mu-metal parameters from Table I along with
the shield dimensions (height: 150 mm, diameter: 150 mm,
thickness: 1.5 mm). The calculated Johnson noise for our
shield is δBeddy = 0.02 pT s1/2 and the hysteresis noise at 1 Hz

is δBhyst = 0.007 pT s1/2. These are much lower than the ob-
served noise floors and can safely be neglected. Note that the
noise from the shields is enhanced by the flux concentrators.
This effect was incorporated in the calculations, but we still
arrived at negligibly low values.

APPENDIX R: SENSITIVITY TO VARIATION OF THE GAP
LENGTH

An important systematic effect in our device could arise
from temporal variations in the cone gap length. According
to the data in Fig. 1(d), a small change in gap length in the
vicinity of δ ≈ 43 μm produces a change in the enhancement
factor given by dε/dδ ≈ 6/μm. This variation extrapolates to
a variation in the magnetometer reading given by

dBext

dδ
= dε

dδ

Bext

ε
. (R1)

For ε ≈ 254 and Bext = 1.7 μT, Eq. (R1) predicts that a
change in δ of just 25 pm produces an error in estimation of
Bext of 1 pT.

Fortunately the gap length remains relatively stable in our
construction such that this effect may only be a problem at
low frequencies. If the material in the gap expands and con-
tracts due to changes in temperature, this produces a thermal

FIG. 17. Magnetization noise vs relative loss factor: Calculated
hysteresis magnetic noise (at 1 Hz) as a function of the square root
of the relative loss factor,

√
μ′′/μ′ in four magnetic materials.
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(a) (b)

FIG. 18. Thermal variation of ferrite permeability: (a) MN60 ferrite relative permeability as a function of temperature (as specified by
Ceramic Magnetics, Inc.). (b) Simulated enhancement factor as a function of temperature, using the data in part (a). The right vertical axis
shows the resulting change in magnetometer reading assuming Bext = 1.7 μT.

dependence of the magnetometer output given by

dBext

dT
= dBext

dδ

dδ

dT
. (R2)

If the material in the gap has a thermal expansion coeffi-
cient α, then the temperature dependence of the gap length is
dδ/dT = αδ. For diamond, α ≈ 0.7 × 10−6 K−1. Using this
value, and inserting Eq. (R1) into Eq. (R2), we find a mag-
netometer temperature dependence of dBext/dT ≈ 1.2 pT/K.
For comparison, the temperature dependence due to thermal
shifts of D(
T ) in single-resonance magnetometry is more
than four orders of magnitude larger,

√
3/(γnvε) dD/dT ≈

−24 nT/K (Sec. II). Nevertheless, to reach this limit, care
must be taken to mechanically stabilize the gap using an
approach which does not significantly increase dδ/dT . For
example, using mechanical clamping and/or very thin adhe-
sive layers would be beneficial.

APPENDIX S: SENSITIVITY TO THERMAL VARIATION
OF FERRITE PERMEABILITY

Another possible systematic effect is due to thermal vari-
ation of the ferrite relative permeability, μr . Figure 18(a)
plots the expected dependence of MN60 μr on T as per
one manufacturer’s specifications (Ceramic Magnetics, Inc.).

Knowledge of μr (T ) allows us to simulate the expected
thermal variation of the enhancement factor, ε(T ), using the
finite-element methods described in Appendix B. As seen in
Fig. 18(b), the variation in ε(T ) is �0.2% over the temper-
ature range 275–375 K. This variation is much smaller than
the variation in μr (T ), but it is not necessarily negligible,
particularly for large bias fields.

The right vertical axis of Fig. 18(b) shows the
expected shift in magnetometer reading, 
Bext (T ) =
ε(T )Bext/ε(350 K), as a function of temperature for
the bias fields used in our experiments, Bext = 1.7 μT.
For operating temperatures in the range 305–335 K, the
temperature dependence of 
Bext (T ) is ∼ − 75 pT/K. This
variation is approximately 300 times smaller than that due to
thermal shifts of D(
T ) in single-resonance magnetometry
(Appendix R). However it suggests that the temperature
must be stabilized to within ∼10 mK in order for this effect
to be smaller than the photoelectron-shot-noise-limited
sensitivity for frequencies �1Hz. Fortunately, for other
operating temperatures (∼300 K or ∼350 K) the first-order
variation in μr (T ) vanishes, and thus the dependence of ε

on T is minimal. For example, 
Bext (T ) varies by �10 pT
over the temperature range 348–358 K. Thus, certain bias
temperatures may be employed to make the magnetometer
more robust against thermal variations.
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