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Effect of a local nonlinearity on the light dynamics around an exceptional point:
A quantitative analysis
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Time-asymmetric state evolution due to the dynamical encirclement around a second-order exceptional point
has garnered enormous attention for the topological study of various photonic structures. The selective mode-
conversion in an optical waveguide can help in the designing of various integrated photonics devices. Here we
explore a dual-mode planar optical waveguide and study the beam dynamics with the onset and offset of Kerr
nonlinearity together with the encirclement of the identified exceptional point in the parameter space. The onset
of the same amount of focusing and defocusing type nonlinearity in the waveguide gives two different outputs
for a unidirectional propagation of light, beyond the chiral aspect of the device.
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I. INTRODUCTION

Non-Hermitian quantum mechanics, which can more ac-
curately describe an open system, has garnered enormous
attention in the field of quantum-inspired photonic systems.
Such open systems have abundant physical aspects due to their
interaction with their surroundings. Non-Hermitian quantum
mechanics provides a formalism to define any open system
by an effective Hamiltonian [1]. The appearance of hidden
singularities called the exceptional points (EPs) is one of
the intriguing topological features of such systems [2,3]. A
second-order EP is a branch point singularity in parameter
space where two eigenvalues and their corresponding eigen-
vectors of a system’s Hamiltonian coalesce simultaneously,
thereby creating a defect [4–6]. Such anomalous behavior of
EP has given rise to various phenomena such as flip of states
[7–14], asymmetric mode conversion [15–18], topological
energy transfer [19], lasing and antilasing [20], unidirectional
light reflection and transmission [21], EP-aided enhanced
sensing [22], nonreciprocity [23–25], stopping of light [26],
and cross-polarization mode coupling [19,27–29].

A stroboscopic encirclement around an EP in parameter
space allows adiabatic state exchange between a pair of cou-
pled eigenmodes [7–9,12–14,17,30]. However, a dynamical
parametric encirclement around an EP results in the break-
down of the adiabaticity during state evolutions where the
two coupled modes evolve with different decay rates [31,32].
At the end of the encirclement, the state with an average
lower decay rate dominates. Clockwise and anticlockwise
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parametric encirclements yield different dominating out-
put modes irrespective of the choice of input modes
[15,17,33]. Apart from the already reported dual-mode sys-
tems [15–17,34] with asymmetric mode conversion, the real-
ization of different dominating modes at the same output port
due to a single encirclement direction is more practical for
integrated photonic devices from designing aspects and is yet
to be explored. Apart from the already-reported dual-mode
systems with chirality driven asymmetric mode conversion,
a more practical scenario owing to an integrated device ap-
plication is the exhibition of the nonchiral asymmetric mode
conversion for unidirectional propagation of light in the same
device. Such nonchiral asymmetric mode conversion can be
realized with the onset of nonlinearities in the system. Non-
linearities in systems hosting an EP exhibit intriguing phe-
nomena such as nonreciprocal optical transmission [23,24],
enhanced second-harmonic generation [35], and so on.

In this paper, to address the proposition mentioned above,
we report a gain-loss assisted dual-mode optical waveguide
hosting a second-order EP in the parameter plane. Considering
a length-dependent gain-loss variation along the propagation
direction of the waveguide, the embedded EP has been dy-
namically encircled to achieve a chirality driven asymmetric
mode conversion scheme, where, depending on the direction
of light propagation, light is converted to a specific dominat-
ing output mode, irrespective of the choice of input modes.
Now introducing the local Kerr-type nonlinearity as an addi-
tional parameter, we show that beyond the conventional chiral
aspect of the device in the vicinity of an EP, the interplay
of EP and nonlinearity can additionally possess a special
unidirectional asymmetric mode conversion scheme. Here,
in the presence of a certain amount of nonlinearity above a
particular threshold, light is converted to a specific dominating
mode while propagating in a particular direction, where the
same amount of focusing and defocusing nonlinearities results
in different dominating outputs in the same direction, respec-
tively. The proposed scheme should be suitable to design
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asymmetric mode-converters without using the chiral aspect
of the device.

II. ANALYTICAL MODEL ANALOGOUS TO A
DUAL-MODE PLANAR WAVEGUIDE

The appearance of an EP in a dual-mode planar waveguide
can analytically be realized by considering a two-level non-
Hermitian Hamiltonian as

H =
(

βp + iαp η

η∗ βq + iαq

)
, (1)

where, βp and βq are the real propagation constants with the
respective decay rates αp and αq. For simplification, we define
two new terms β̃ j = β j + iα j ( j = p, q) as complex propa-
gation constants. The off-diagonal terms η and its complex
conjugate η∗ appear as perturbation to modulate the coupling
between β̃p and β̃q. Now, the eigenvalues of the Hamiltonian
H can be written as

β± = β̃p + β̃q

2
±

√√√√(
β̃p − β̃q

2

)2

+ |η|2. (2)

In Eq. (2), we bring up two individual replacements e.g. β̃av =
(β̃p + β̃q)/2 and δβ̃ = (β̃p − β̃q)/2, which gives a revised
form of β± as

β± = β̃av ±
√

(δβ̃ )2 + |η|2. (3)

Here, two coupled eigenvalues coalesce with β+ = β−, which
gives the condition for occurrence of an EP. Thus, in the
complex η-plane, an EP appears at the critical point ηc =
±iδβ̃c, whereas the position of the identified EP can be
accessed by real and imaginary parts of δβ̃ (where, δβ̃ ≡
δβ + iδα) with the fulfillment of the conditions βp = βq and
η = |αp − αq|/2.

While implementing the above analytical scheme in a
physical dual-mode waveguide system, the coupling terms (η
and η∗) can be introduced in terms of optical gain-loss. Now,
if we consider the intensity-dependent local nonlinearity in
the waveguide, the parameters β j and α j ( j = p, q) in the
corresponding Hamiltonian H varies as a function of signal
intensity (I), i.e., β j = β j (I ) and α j = α j (I ). Typically, we
can define a threshold intensity Ith, where only for I > Ith,
the effect of nonlinearity comes into the picture, and then
simultaneously with the introduced gain-loss, the nonlinear-
ity factor indeed affects the overall interaction phenomenon.
There would be no effect of nonlinearity for I < Ith. Such
interplay between gain-loss and nonlinearity will be discussed
later in more context.

III. OPTICAL WAVEGUIDE HOSTING AN ASYMMETRIC
MODE CONVERSION SCHEME

We design a planar optical waveguide, as shown schemati-
cally in Fig. 1(a). We consider the z-axis as the propagation
direction for the light beam and x-axis as the transverse
direction. The region −W/2 < x < W/2 of the waveguide
consists of a core of passive refractive index nh = 1.5, sur-
rounded by cladding with passive refractive index nl = 1.46,
respectively. By normalizing ω = 1, we set the width of the

FIG. 1. Waveguide hosting a dynamical EP-encirclement
scheme. (a) Schematic of the designed optical waveguide with
transverse x-axis. Propagation is considered along the z-axis.
(b) Transverse refractive index profile n(x) showing Re(n) (solid
brown line) and Im(n) (upper panel) at specific γ = 0.008 and
τ = 3.179. Normalized output field intensity profiles of the
supported modes(ψFM and ψHOM). (c) Trajectories of complex β

values with respect to γ for a specific value of τ = 3.179, where
the two βs coalesce near γ = 0.008. (d) Length-dependent variation
of Im(n) after mapping the chosen parameter as shown in the inset.
Chosen topological structure of the waveguide with simultaneous
variation of γ and τ around the identified EP (inset). (e) Beam
evolution for the clockwise dynamical encirclement scheme. (e.1)
Evolution of ψFM to ψHOM. (e.2) Evolution of ψHOM to ψHOM.
(f) Beam evolution for the anticlockwise dynamical encirclement
scheme. (f.1) Evolution of ψFM to ψFM. (f.2) Evolution of ψHOM to
ψFM.

structure W = 40λ/2π = 40 and the length L = 10 × 103 in
a dimensionless unit. For the chosen set of characteristic
parameters, the waveguide supports only the fundamental
mode (FM) and the first higher-order mode (HOM). Now the
non-Hermitian characteristic is introduced in the system by
a specific transverse distribution of an unbalanced gain-loss
profile, where the complex profile of n(x) for a specific cross-
section of the waveguide can be written as follows:

n(x) =

⎧⎪⎨⎪⎩
nl + iγ for W/6 � |x| � W/2,

nh − iγ for − W/6 � x � 0,

nh + iτγ for 0 � x � W/6.

(4)

Here, γ and τ are the two control parameters that represent
the gain-coefficient and the loss-to-gain ratio, respectively.
The overall refractive index profile for a specific cross-section
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of the waveguide as represented by Eq. (4) is shown in the
upper panel of Fig. 1(b). We can modulate non-Hermiticity in
the designed waveguide by tuning these parameters indepen-
dently according to the Kramers-Kronig causality relation at a
single operating frequency [36]. A prototype of the proposed
planar waveguide structure can be fabricated by thin film
deposition of glass material (nh = 1.50) over a thick silica-
glass substrate (nl = 1.46). The patterned gain-loss profile
can be achieved by a standard photolithography technique
or by controlled doping of gain or lossy materials with a
state-of-art-fabrication technique.

In the proposed waveguide, the values of the propagation
constants (β ) of the quasiguided modes are calculated by solv-
ing the scalar modal equation [∂2

x + n2(x)ω2 − β2]ψ (x) = 0,
which corresponds to a steady-state mode profile ψ (x). The
intensity profile for the propagating modes of the waveguide
for the chosen set of parameter is shown in the lower panel
of Fig. 1(b) where the green line represents the fundamental
mode and the black line represents the higher-order mode.

With the onset of gain-loss, the supported modes (say,
ψFM and ψHOM) are mutually coupled. Here, to encounter an
EP, we exploit the concept of avoided resonance crossings
(ARC) phenomena [8,9,14,17] between the corresponding
propagation constants (say, βFM and βHOM) with crossing and
anticrossing of their real and imaginary parts, i.e., Re(β )
and Im(β ). Now varying the parameter γ within a chosen
range [0,0.015], we study such ARC-interactions phenomena
between βFM and βHOM for different τ -values. Judiciously
examining the several cases, we set a specific τ = 3.179, for
which, βFM and βHOM coalesce in the β-plane near γ ≈ 0.008
as can be seen in Fig. 1(c), that refers the presence of an
EP in the (γ , τ )-plane, around which we can observe two
topologically different ARC phenomena. Thus, numerically
we identify an EP at ∼(γEP = 0.008, τEP = 3.179).

Now, to encircle the identified EP, we consider a closed
parameter space in the (γ , τ )-plane following the equations

γ (φ) = γ0 sin

(
φ

2

)
; τ (φ) = τEP + a sin(φ). (5)

Here γ0 and a are two characteristic parameters, and φ (0 �
φ � 2π ) is a tunable angle variable that govern the variation
of γ and τ around the EP. Here, to ensure the presence of
EP inside the parametric loop, we must consider γ0 > γEP.
Here, the variation of φ from 0 to 2π gives the clockwise
progression of γ and τ . On the other hand, the variation of
φ from 2π to 0 gives the anticlockwise progression of γ and
τ . Unlike the conventional circular loops, this specific shape
of the parametric-loop facilitates the device to achieve passive
modes at the input and output interface [9,15,17]. Now, to
consider the dynamical encirclement and to realize the actual
beam propagation through the waveguide around an EP, we
have to map this parameter space [given by Eq. (5)] along the
z-direction through the complete length (L) of the waveguide.
For this mapping, we choose φ = 2πz/L to consider φ =
0 at z = 0 and φ = 2 at z = L. Thus the length-dependent
variation of γ and τ can be written as

γ (z) = γ0 sin
[πz

L

]
; τ (z) = τEP + a sin

[
2πz

L

]
. (6)

Such a length-dependent parameter space is shown in Fig. 1(d)
with γ0 = 0.009 (>γEP) and a = 0.5. The shape of the corre-
sponding closed-loop in the (γ , τ )-plane [following Eq. (5)]
is shown in the inset. Thus, a complete encirclement around
the EP following Eq. (5) is equivalent to one complete
pass of light along the length of the waveguide; where the
clockwise encirclement is equivalent to the propagation from
z = 0 to z = L, i.e., the forward propagation, and the anti-
clockwise encirclement is equivalent to the propagation from
z = L to z = 0, i.e., the backward propagation. Now, such
propagations of the modes through the waveguide should
follow the time-dependent Schrödinger equation (TDSE),
where time is the quantum-mechanical counterpart of the
z-axis. To study the modal propagation, we use scalar beam
propagation to solve the equation 2iω∂zψ (x, z) = −[∂2

x +
�n2(x, z)ω2]ψ (x, z) [�n2(x, y) ≡ n2(x, z) − n2

l ], taking into
account the paraxial approximation and the adiabatic variation
of Im(n) in the z-axis.

The light dynamics in the designed waveguide follow-
ing the dynamical EP encirclement scheme [described in
Fig. 1(d)] are shown in Figs. 1(e) and 1(f). Light is launched
at z = 0 for the implementation of a clockwise encirclement
scheme, which yields the conversion of both ψFM and ψHOM

to ψHOM at z = L as shown in plots (e.1) and (e.2) of
Fig. 1(e). Here, we have one nonadiabatic transition (NAT)
corresponding to ψHOM. Now, to implement an anticlockwise
encirclement scheme, we launch the light at z = L, which
yields the conversion of both ψFM and ψHOM to ψFM, as shown
in Fig. 1(f). Here ψHOM is converted adiabatically to ψFM and
ψFM follows a NAT. Thus, we observe a breakdown in adia-
baticity in modal evolutions due to the dynamical variation of
the control parameters (γ and τ ) around the EP [15,17,31,32]
that results in a chirality-driven asymmetric mode conversion
phenomenon, where regardless of the choice of inputs, light
is converted in a specific mode depending the direction of
propagation.

IV. EFFECTS OF NONLINEARITY
ON THE BEAM DYNAMICS

Now, we introduce local Kerr nonlinearity as an additional
parameter along with optical gain-loss in the waveguide to
control the interactions between the two supported modes.
The Kerr nonlinearity has the form �nNL(x, y) = σn2I , where
n2 is the nonlinear coefficient, I is the signal intensity, and
σ = +1 for focusing nonlinearity and σ = −1 for defocusing
nonlinearity. In a prototype of the proposed waveguide, the
local nonlinearity distribution can be achieved through the
intensity (I) of the injected light-signal, and varying the signal
power, we can change the nonlinearity amounts. In a gener-
alized form, the nonlinearity amounts can also be quantified
with respect to �n (= nh − nl ) through the percentage of
nonlinearities as (�nNL/�n) × 100%. During the numerical
investigation of the dynamics of the eigenmodes, we choose
the appropriate value of the nonlinear coefficient (n2) of silica-
based materials and launch the light signal with an initial
power of 80 watts and vary the signal power in between 80
to 120 watts to achieve the nonlinearity levels up to 6%.

While introducing nonlinearity below 1%, we do not ob-
serve any effect of nonlinearity on the overall phenomenon
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FIG. 2. Beam propagation results in presence of 3% nonlinearity.
(a) The conversions ψFM → ψHOM (plot a.1) and ψHOM → ψHOM

(plot a.2) in the presence of focusing nonlinearity (FN) while en-
circling the EP in the clockwise direction. (b) Plots (b.1) and (b.2)
show the normalized field intensities at z = 0 (solid curves indicating
the inputs) and z = L (dotted curves indicating the outputs) corre-
sponding to the beam propagation shown in plots (a.1) and (a.2),
respectively. (c) Beam propagation results showing the conversions
ψFM → ψFM (plot c.1) and ψHOM → ψFM (plot c.2) in the presence
of defocusing nonlinearity (DFN) while encircling the EP in the
clockwise direction. (d) Plots (d.1) and (d.2) show the normalized
field intensities at z = 0 (solid curves indicating the inputs) and
z = L (dotted curves indicating the outputs) corresponding to the
beam propagation shown in plots (c.1) and (c.2), respectively.

of asymmetric mode conversion, as described in the pre-
ceding section. Here the EP-aided nonadiabatic corrections
essentially control the overall light dynamics through the
waveguide, where the conversion of the eigenmodes depends
on the direction of propagation of light. A completely dif-
ferent scenario is observed when we increase nonlinearity
above this threshold value. Now implementing a clockwise
encirclement scheme where we consider the propagation of
light from z= 0 to z = L; initially, we choose σ = 1 for
focusing nonlinearity. After reaching nonlinearity of 3%, both
the modes collapse to ψHOM, as shown in Figs. 2(a.1) and
2(a.2), respectively. In the plots (b.1) and (b.2) of Fig. 2(b), we
show the normalized field intensities at two different ports of
the waveguide corresponding to the beam propagation shown
in plots (a.1) and (a.2), respectively of Fig. 2(a). Here the solid
and dotted curves of respective colors (green for ψFM and
black for ψHOM) represent the input and output intensities.
Next, by choosing σ = −1 for defocusing nonlinearity, we
study the modal dynamics with the onset of the same amount
of nonlinearity as before and observe the conversion of both
the modes to ψFM, which can be seen in Figs. 2(c.1) and
2(c.2). The corresponding normalized output intensities to
the beam propagation shown in the plots (c.1) and (c.2) of
Fig. 2(c) are shown by the dotted green and black lines in
Figs. 2(d.1) and 2(d.2).

Now, to change the direction of propagation of light, we
implement an anticlockwise encirclement scheme and study

FIG. 3. Beam propagation results in presence of 5% nonlinearity.
(a) The conversions ψFM → ψFM (plot a.1) and ψHOM → ψFM (plot
a.2) in the presence of DFN while encircling the EP in the anticlock-
wise direction. (b) Plots (b.1) and (b.2) show the normalized field
intensities at z = 0 (solid curves indicating the inputs) and z = L
(dotted curves indicating the outputs) corresponding to the beam
propagation shown in plots (a.1) and (a.2), respectively. (c) Beam
propagation results showing the conversions ψFM → ψHOM (plot c.1)
and ψHOM → ψHOM (plot c.2) in the presence of FN while encircling
the EP in the anticlockwise direction. (d) Plots (d.1) and (d.2) show
the normalized field intensities at z = 0 (solid curves indicating
the inputs) and z = L (dotted curves indicating the outputs) corre-
sponding to the beam propagation shown in plots (c.1) and (c.2),
respectively.

the modal dynamics. Considering a defocusing-type nonlin-
earity (σ = −1), we increase the amount of nonlinearity up
to 5 %, where it is observed that both the eigenmodes collapse
to ψFM, as shown in the plots (a.1) and (a.2) of Fig. 3(a),
respectively. The plots (b.1) and (b.2) of Fig. 3 show the
normalized input (solid green and black lines for the FM
and HOM, respectively) and output intensities (dotted lines of
respective colors) for the propagations shown in Figs. 3(a.1)
and 3(a.2). Again, the onset of the same amount of focusing
nonlinearity (σ = 1) yields the conversion of both the eigen-
modes to ψHOM, as shown in plots (c.1) and (c.2) of Fig. 3(c).
In a similar way, the corresponding input-output intensities are
shown in plots (d.1) and (d.2) of Fig. 3.

Thus, with an unconventional dynamical EP-encirclement
scheme in the presence of local Kerr nonlinearity (above
a specific threshold) in the spatial distribution of refractive
index of the waveguide a nonchiral, unidirectional asymmetric
mode conversion scheme (as illustrated in Figs. 2 and 3) is
proposed that is entirely different from the EP-aided chirality-
driven asymmetric-mode-conversion scheme [as shown in
Figs. 1(e) and 1(f)], in the absence of nonlinearity. The pro-
posed waveguide exhibits a chirality-driven asymmetric mode
conversion scheme in the absence of nonlinearity, where, at
the output, the waveguide delivers ψHOM during the propaga-
tion in the forward direction, whereas ψFM during the back-
ward propagation, irrespective of the choice of inputs. Thus,
the dominating output depends on the device chirality, i.e., the
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FIG. 4. Schematic representation of the overall scheme explored
in this work. (a) The chirality-driven asymmetric mode conversion
scheme in the presence of nonlinearity below the threshold level (or
in the absence of nonlinearity). Nonchiral unidirectional asymmetric
mode conversion schemes (b) for 3% nonlinearity (high transmission
in the forward direction) and (c) for 5% nonlinearity (high transmis-
sion in the backward direction). The group of red arrows indicate the
direction of light propagation.

direction of light propagation. For our specific configuration,
we find a threshold nonlinearity amount at 1%, i.e., below 1%
nonlinearity level, the waveguide holds the standard EP-aided
chiral behavior. However, once the nonlinearity level exceeds
its threshold amount, the waveguide enables unidirectional
asymmetric mode conversion. The presence of nonlinearity
above its threshold amount induce a notable difference in
transmission levels during the propagation of light in two dif-
ferent directions [24]. Here, we observe that in the presence of
3% local nonlinearity, the waveguide offers high transmission
in the forward direction and low transmission in the backward
direction. During the forward propagation of light, the same
amount of focusing-type nonlinearity yields ψHOM, whereas
defocusing-type nonlinearity yields ψFM, at the output. Thus,
without changing the direction of light propagation, we get
a different dominating mode at the same output port that
yields a nonchiral (i.e., beyond the chiral aspect of the de-
vice) asymmetric mode conversion phenomenon. Now, if we
consider backward propagation of light under this operating
condition, then we get similar outputs for focusing and defo-
cusing nonlinearity, however, for 3% nonlinearity, the trans-
mission becomes low in the backward direction. We found
an average of 2-dB difference between forward and backward
transmissions. Thus, we further optimize the nonlinearity
amount by varying the signal intensity to check the device
applicability in the backward direction and find that when
we increase the nonlinearity to 5%, the proposed waveguide
offers high transmission in the backward direction and low
transmission in the forward direction. Under this operating
condition, during the backward propagation of light, the same
amount of focusing-type nonlinearity yields ψHOM, whereas
defocusing-type nonlinearity yields ψFM, at the output. The
overall observation is shown schematically in Fig. 4, where
in Fig. 4(a), the chirality driven asymmetric mode conversion
scheme in the absence of nonlinearity (or the presence of
nonlinearity amount below the threshold level) is illustrated,
and in Figs. 4(b) and 4(c), two nonchiral unidirectional asym-
metric mode conversions are demonstrated for two different

nonlinearity amounts for which the waveguide shows high
transmission in two different directions.

In the proposed scheme, the nonchiral asymmetric mode
conversion is independent of the direction of light propagation
(or direction of EP encirclement), whereas it mainly depends
on the type of nonlinearity. For a specific nonlinearity type,
there is the breakdown in the chirality of the device because
here the waveguide delivers ψHOM in the presence of focusing
nonlinearity, whereas ψFM in the presence of defocusing
nonlinearity, irrespective of the direction of light propagation
(however, to get high transmission we have to choose two
different nonlinearity amounts, while considering forward and
backward propagation), and also the choice of inputs.

V. ANALYTICAL APPROACH TOWARD THE
NONADIABATIC CORRECTIONS

IN THE BEAM DYNAMICS

The analytical treatment behind such nonadiabatic state
evolution of one of the two eigenstates is presented here
[17,31]. We assume the 2 × 2 Hamiltonian H(t ), given in
Eq. (1), depends on two generic time-dependent potential pa-
rameters κ1(t ) and κ2(t ) that includes the simultaneous effect
of gain-loss and nonlinearity. However, the effect of nonlin-
earity comes into the picture only when nonlinearity amount
exceeds its threshold level (1% for the proposed waveg-
uide configuration). Now, instead of β±, here we consider
the physical eigenvalues βad

FM(κ1, κ2) and βad
HOM(κ1, κ2) with

corresponding eigenvectors ψad
FM(κ1, κ2) and ψad

HOM(κ1, κ2) to
represent the proposed waveguide. The time dependence of
the potential parameters κ1(t ) and κ2(t ) governs the dynamical
nonadiabatic corrections in the solutions of the TDSE associ-
ated with the Hamiltonian H(t ). Such nonadiabatic correction
terms due to dynamical encirclement around the EP can be
written as

MNA
F→H = CF→H exp

{
−i

∮ T

0
�βad

F,H[κ1, κ2]dt

}
, (7a)

MNA
H→F = CH→F exp

{
+i

∮ T

0
�βad

F,H[κ1, κ2]dt

}
, (7b)

with the pre-exponent terms

CF→H =
〈
ψad

FM(κ1, κ2)

∣∣∣∣∣∣
2∑

j=1

κ̇ j
∂

∂κ j

∣∣∣∣∣∣ψad
HOM(κ1, κ2)

〉
, (8a)

CH→F =
〈
ψad

HOM(κ1, κ2)

∣∣∣∣∣∣
2∑

j=1

κ̇ j
∂

∂κ j

∣∣∣∣∣∣ψad
FM(κ1, κ2)

〉
. (8b)

The factor �βad
F,H [in the exponent terms of Eq. (7)] can be

expressed as

�βad
F,H(κ1, κ2) = βad

FM(κ1, κ2) − βad
HOM(κ1, κ2)

≡ Re
[
�βad

F,H(κ1, κ2)
] − i�γ ad

F,H(κ1, κ2). (9)

In Eq. (7), MNA
F→H and MNA

H→F represent the nonadiabatic
correction factor for the conversion of |ψad

FM〉 to |ψad
HOM〉 and

vice versa. T is the duration of EP encirclement and |�γ ad
F,H|

is the relative gain between the supported modes. Since the
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pre-exponent terms given by Eq. (8) contain the time deriva-
tive of the two potential parameters κ̇ j ( j = 1, 2), the diver-
gence in T due to the exponential terms of MNA

F→H and MNA
H→F

surpasses the decay of T −1 incorporated in CF→H and CH→F,
respectively. Thus, for the situations, �γ ad

F,H > 0 and T → ∞,
the correction terms MNA

F→H → 0 and MNA
H→F → ∞. Here,

the situation MNA
F→H → 0 yields the adiabatic evolution of

|ψad
FM〉, and the situation MNA

H→F → ∞ yields the nonadiabatic
evolution of |ψad

HOM〉. Therefore, under a slow parametric
variation encircling an EP, out of the two considered modes,
only one mode with an overall lower decay rate undergoes
with the adiabatic evolution whereas the other one evolves
nonadiabatically.

Now, we consider our proposed waveguide configuration
in the absence of nonlinearity (or in the presence of nonlin-
earity below the threshold amount). Here, while considering
the clockwise dynamical encirclement scheme, we obtain
MNA

F→H → 0 and MNA
H→F → ∞, and accordingly, the mode

ψFM evolves adiabatically and converted to ψHOM, whereas,
ψHOM evolves nonadiabatically and remains in ψHOM, as can
be seen in Fig. 1(e). In a similar way, for the anticlockwise
dynamical encirclement scheme, we obtain MNA

F→H → ∞ and
MNA

H→F → 0 that yields nonadiabatic evolution of ψFM (→
ψFM) and adiabatic conversion of ψHOM to ψFM, as can be
seen in Fig. 1(f).

Now, in the presence of nonlinearity above the threshold
level, the desired outputs for the nonchiral unidirectional
asymmetric mode conversions shown in Figs. 2 and 3 can
also be predicted analytically. The application of the differ-
ent types of nonlinearity in the optical waveguide modifies
the refractive index profile locally, which in turn changes
the β-values of the quasiguided modes, and accordingly,
the sign of relative-gain factor �γ ad

F,H in Eq. (9) are also
modified. Here, for both the optimized nonlinearity levels,
when we consider focusing-type nonlinearity, then we find
that �γ ad

F,H > 0, irrespective of the direction of light propa-
gation. This criterion gives the conversions of both ψFM and
ψHOM to ψHOM, as can be seen in Figs. 2(a) and 2(b) and

Figs. 3(c) and 3(d), respectively. Here, ψFM evolves adiabati-
cally and ψHOM behaves nonadiabatically. However, while we
consider defocusing-type nonlinearity, for both the optimized
nonlinearity amounts, we obtain �γ ad

F,H < 0, irrespective of
the direction of light propagation. Accordingly, ψFM behaves
nonadiabatically and remains in ψFM, whereas ψHOM evolves
adiabatically and is converted to ψFM [as shown in Figs. 2(c)
and 2(d) and 3(a) and 3(b), respectively).

VI. CONCLUSION

In summary, we report a gain-loss assisted dual-mode
optical waveguide hosting dynamical EP encirclement scheme
and study the effect of Kerr nonlinearity on the associated
light dynamics around the EP. The waveguide exhibits a
chirality-driven asymmetric-mode-conversion, in the absence
of nonlinearity. Now, when we introduce local Kerr nonlin-
earity above a particular threshold, it locally modifies the
spatial index distribution and then the waveguide enables a
unique unidirectional asymmetric-mode-conversion scheme.
Here, beyond the device chirality, light is converted to a
specific dominating mode irrespective of the direction of
propagation, where the same amount of focusing (σ = 1) and
defocusing (σ = −1) nonlinearities yields a different domi-
nating output in the same direction. The proposed scheme will
undoubtedly facilitate the fabrication possibilities of optical
mode converters, switches and isolators in chip-based devices
for next-generation photonic circuits.
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