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Finite-energy accelerating beam dynamics in wavelet-based representations
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Accelerating beams are wave packets that appear to spontaneously accelerate without external potentials or
applied forces. Since their first physical realization in the form of Airy beams, they have found applications
on various platforms, spanning from optics to plasma physics. We investigate the dynamics of examples
of finite-energy accelerating beams derived from catastrophe theory. We use a Madelung transformation in
momentum space, combined with a wavelet transform analysis, to demonstrate that the beams’ properties arise
from a type of vanishing self-interference. We identify the modes responsible for the wave packet’s acceleration,
and we derive the general acceleration for higher-order cupsoid-related beams. We also demonstrate how bright
solitons resulting from nonlinear Airy beams can be unambiguously detected using the wavelet transform. This
methodology will allow for a better understanding of special wave packet dynamics.
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I. INTRODUCTION

Accelerating beams are wave packet solutions of the free
Schrödinger equation that possess the spectacular properties
of accelerating without the need of an external potential and
without diffracting. They were first discovered in 1979 by
Berry and Balazs [1] with the Airy beam, a nonphysical
solution that was long considered to be a mathematical cu-
riosity. About three decades later, physical (square-integrable)
approximations of Airy beams were experimentally demon-
strated [2–4], in which the resulting Airy packets exhibited
their special properties for a finite time. Finite-energy Airy
beams (FEABs) have since been observed in platforms other
than optically based ones, using, e.g., electron beams [5]
or surface plasmon polaritons [6]. These realizations set the
ground for a wide range of applications [7–12]. FEABs have
also been extensively studied in a nonlinear context. In the
presence of a self-focusing nonlinearity, the packet sponta-
neously splits between a weak accelerating remnant and an
“off-shooting” bright soliton [13–19], bringing even richer
physics and further potential applications.

More fundamentally, Airy beams are only the simplest
example of a whole class of caustic beams that arise within
the framework of catastrophe theory, introduced by Thom
[20,21]. Caustic beams emerge from canonical diffraction
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integrals of codimension K ,

ξK (r) =
∫ +∞

−∞
eiVK (u;r)du, (1)

with the associated potential functions,

VK (u; r) = uK+2 +
K∑

n=1

rnun, (2)

which depend on one state variable u and on certain control
parameters rn. For example, the fold catastrophe (K = 1) is
related to the Airy function that is the FEAB’s building block:

ξ1(x) =
∫ +∞

−∞
ei(u3+ux)du = 2π

3
√

3
Ai

(
x

3
√

3

)
, (3)

while higher-order catastrophes have also been recently stud-
ied. The cusp catastrophe (K = 2) was realized experimen-
tally with Pearcey beams [22,23] and the swallowtail catas-
trophe (K = 3) with swallowtail beams [24].

In this paper we study finite-energy accelerating beam
dynamics from a new perspective. We employ the wavelet
transform (WT), a spectral decomposition which provides
broad insights into nontrivial wave packets dynamics [25].
In the context of Schrödinger physics, this technique is par-
ticularly suited to detect interference between different wave
packets [26]. It has been recently applied to understand the
intriguing phenomenon of wave packet self-interference in
exciton polaritons [27] and atomic condensates [28], and to
explain the formation of nonlinear X-waves in systems that
possess a hyperbolic dispersion [29].

In the aforementioned cases, the wave dynamics arise due
to the properties of the dispersion relation, such as its curva-
ture or the presence of inflection points [27–29]. Accelerating
beams are different. Their short time dynamics result from the
intrinsic phase engineering of the initial condition combined
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with the effect of the parabolic dispersion relation. At long
times the latter becomes dominant, and the packet reshapes
into a smooth diffusing one. To understand the resulting
complex wave packet phase dynamics, we use a Madelung
decomposition of the wave function, not in real space, but
in momentum space, which is here essential to interpret the
results of the WT. We find that the accelerating fringes in
the wave packet density result from a transient dynamical
self-interference of the packet’s internal modes. This allows
us to derive the packet acceleration from the WT picture only,
without the need for difficult calculations or special functions.

The paper is organized as follows. Section II introduces our
method of analysis and we apply it to the FEAB. In Sec. III
we study the case of a FEAB in the nonlinear regime. In
Sec. IV we consider the case of the finite-energy Pearcey
beam (FEPB), and we derive a general expression for the
acceleration of higher-order cupsoid-related beams. Finally,
Sec. V concludes the paper.

II. FINITE-ENERGY AIRY BEAM DYNAMICS

We start by introducing our method of analysis for a
wave packet evolved with the one-dimensional Schrödinger
equation, here written in momentum space:

i∂tψ (k, t ) = E (k)ψ (k, t ), (4)

with h̄ = m = 1 and where the kinetic energy has the usual
parabolic dispersion E (k) = k2/2. We consider a truncated
Airy function as the initial condition, which can be expressed
in momentum space as

ψ0(k) = Fk[Ai(bx) exp((a + ik0)x)] =
exp

(
(a−i(k−k0 ))3

3b3

)
2b

√
2π

.

(5)

The parameter b governs the width of the peaks in position
space, while a controls the exponential cutoff of the wave
function density to ensure its square integrability [30]. The
parameter k0 specifies the momentum of the initial con-
dition. The solution of Eq. (4) is obtained by simple in-
tegration: ψ (k, t ) = ψ0(k) exp(−ik2t/2). The real-space so-
lution is found by inverse Fourier transform as ψ (x, t ) =
F−1

x [ψ (k, t )]. The space-time dynamics for a FEAB with a
negative initial momentum is shown in Fig. 1(a), and density
profiles at selected times in Fig. 1(b). Because of the negative
initial “kick”, the center of mass of the packet moves to the left
(dashed-blue line). However, and as expected, the Airy peaks
accelerate along a parabolic trajectory, initially moving to the
left, until a reversing time trev after which they continue to
accelerate to the right. With zero initial momentum (k0 = 0),
the packet’s center of mass would instead remain at the origin
(x = 0) and the peaks would always move to the right.

Other representations of the wave function can also be ac-
cessed through the Fourier transform, such as ψ (k, E ) (often
referred as the far field) or ψ (x, E ) [31]. Alternatively, the WT
permits a simultaneous representation of the wave function in
both position (x) and momentum (k). The WT reads [25]

W (x, k) = (1/
√

|k|)
∫ +∞

−∞
ψ (x′)G∗[(x′ − x)/k]dx′. (6)

FIG. 1. Airy beam propagation. (a) Wave function density
|ψ (x, t )|2. The peaks initially move towards the left until t = trev.
The dashed red, blue, and horizontal black lines indicate the wave
front trajectory, the packet’s center of mass x̄, and the reversing
time trev, respectively. (b) Wave function density |ψ (x)|2 at selected
times. (c)–(f) Corresponding wavelet energy densities |W (x, k)|2.
The dashed purple and orange lines are the mode displacements
dAi(k, t ) derived from the FEAB solution’s phase [see Eq. (9)].
The red dot indicates the position of the branch extremum dAi(kext )
around which the self-interference occurs and the solid red line
shows its trajectory. Parameters are as follows: a = 0.01, b = 0.3,
k0 = −1, wG = 8. Supplemental Movie S1 provides an animation of
the FEAB dynamics with its WT [40].

For this study we use the Gabor wavelet family,

G(x) = 4
√

π exp(iwGx) exp(−x2/2), (7)

which consists of Gaussian functions with an internal fre-
quency wG . We apply the WT to the FEAB and show its
wavelet energy density |W (x, k)|2 at four selected times in
Figs. 1(c)–1(f). It shows two distinct branches that are initially
separated at t = 0. However, the branches collapse onto each
other at trev, before splitting and spreading at longer times.
This peculiar distribution can be understood by analyzing the
wave packet’s phase dynamics.

It is common to perform a Madelung decomposition of
the complex real-space wave function into an amplitude and
a phase term as ψ (x, t ) = √

N (x, t ) exp(−iφ(x, t )), notably
to perform a hydrodynamic analysis [32]. In this picture,
the gradient of the phase corresponds to the fluid velocity
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v(x, t ) = ∂xφ(x, t ). Here, we perform the same decomposi-
tion of the FEAB, but in momentum space with ψ (k, t ) =√

N (k) exp(−iφ(k, t )), where the amplitude is a time-
independent Gaussian of width σk =

√
3b3/4a, and where the

phase is

φ(k, t ) = 3a2(k − k0) − (k − k0)3

3b3
+ 1

2
k2t . (8)

What does the gradient of the phase (with respect to k)
represent? For a trivial Gaussian initial condition without any
applied phase, the k-dependent phase of the packet would be
simply φ(k, t ) = E (k)t . As the derivative of E (k) gives the
group velocity dispersion v(k) [33], the gradient of the phase
now represents a distance as ∂kφ(k, t ) = ∂kE (k)t = v(k)t =
kt = d (k, t ). Explicitly, the term d (k, t ) gives the distance
traveled by a given mode k after a time t . The simple case
of the WT for a Gaussian packet is further discussed in
Appendix A.

With a FEAB the modes propagate in a more complex
fashion, with

dAi(k, t ) = ∂kφ(k, t ) = a2 − (k − k0)2

b3
+ kt . (9)

From Eq. (9) we can see that dAi(k, t ) contains two terms:
The first comes from the FEAB’s initial phase, and the second
from the dispersion E (k). The FEAB’s dynamics arise from
the interplay between these two phase terms, which govern the
propagation of modes k. As only the second term in Eq. (9)
is time dependent, at long times, the mode displacement
essentially obeys the dispersion relation.

The mode displacement dAi(k, t ) is plotted in Figs. 1(c)–
1(f) as dashed orange and purple lines on top of the wavelet
energy density, and show excellent agreement with the
branches from the WT calculations [34]. At long times, the
mode displacement of the FEAB becomes essentially the one
obtained from the dispersion (see Appendix A).

From the WT analysis, the presence of fringes in the real-
space density can now be understood as self-interference of
the wave packet. Indeed, dAi(k, t ) is here a multivalued func-
tion [see Figs. 1(c)–1(f)], which leads to a self-interference
when the wavelet energy density spreads over its extremum,
i.e., where it becomes multivalued. For a given position x, two
k modes can have support in the wave function and overlap
in real space, resulting in interference. This effect was first
identified for condensed-matter systems possessing a non-
parabolic dispersion relation, where the extrema correspond
to inflection points of the dispersion [27,28].

The trajectory of the branch’s extremum point, with coordi-
nates {dAi(kext ), kext} in the x-k phase space, can be determined
from the expression of dAi(k, t ). First, solving ∂kdAi(k, t ) = 0
for k, one obtains kext = 1

2 (2k0 + b3t ). One can then substitute
kext back into Eq. (9), which gives

dAi(kext ) = a2

b3
+ k0t + b3t2

4
. (10)

The point {dAi(kext ), kext} is shown in Figs. 1(c)–1(f) as a
red dot and its trajectory as a solid red line. As dAi(kext )
corresponds to the largest mode displacement, it gives, from
this simple calculation, the trajectory of the FEAB wave front
in real space. It is indeed parabolic and shown as a dashed

red line in Fig. 1(a). One can also obtain the reversal time for
the acceleration by solving ∂t dAi(kext ) = 0 for t , which gives
trev = −2k0/b3.

In the systems with a nonparabolic dispersion mentioned
earlier [27,28], the value kext is time independent, i.e., the
self-interference always occurs around the same value of
momentum. What makes the FEAB special is the fact that
both the coordinates of the point {dAi(kext ), kext} around which
the self-interference occurs are time dependent. This explains
why the FEAB’s density fringes vanish at long times. One
can observe from Figs. 1(c)–1(f) that the wavelet energy
density distribution along k is roughly constant in time—it
mostly spreads along x. However, the point {dAi(kext ), kext}
linearly shifts to large momentum as kext ∝ t . At long times,
there is less and less signal available to participate into the
self-interference effect, which explains why the wave packet’s
fringes inevitably disappear. One could maintain the self-
interference for a longer time by reducing the exponential
cutoff a to increase the spread in momentum space, since σk ∝
1/

√
a. Alternatively, in Appendix B we discuss the possibility

of maintaining the self-interference by engineering additional
mode filtering and amplification.

III. FINITE-ENERGY AIRY BEAM DYNAMICS WITH
SELF-FOCUSING NONLINEARITY

We now briefly consider the effects of introducing an
attractive interaction on the FEAB dynamics, rewriting Eq. (4)
as a 1D Gross-Pitaevskii equation:

i∂tψ (x, t ) =
[
−1

2
∂2

x + g|ψ (x, t )|2
]
ψ (x, t ), (11)

where g < 0 is the interaction strength. We solve Eq. (11) for
the same parameters as in Sec. II, and show the wave packet
dynamics in Figs. 2(a) and 2(b).

In this situation, the wave front follows a trajectory that
slightly deviates from a parabola [35], along with the gen-
eration of a density peak propagating at constant veloc-
ity, previously identified as an “off-shooting” bright soliton
[13–19]. This can be confirmed by looking at the far field
|ψ (k, E )|2, plotted in Fig. 2(c). It follows the usual nonin-
teracting parabolic dispersion, but also displays a clear linear
dispersion, tangential to the parabola at the point k = k0,
which is an explicit signature of a bright soliton [36,37]. The
bright soliton dispersion is obtained by performing a Taylor
expansion of the main (parabolic) branch around k0, giving

EBS(k) = kk0 − k2
0/2. (12)

The bright soliton velocity can be determined from the
slope of the linear dispersion as vBS = ∂kEBS(k) = k0. In the
wavelet analysis, this corresponds to a single mode displace-
ment:

dBS(k, t ) = ∂kEBS(k)t = k0t, (13)

which appears as a vertical line in the x-k representation,
as shown in Fig. 2(d). As the bright soliton arises from
a nondiffusing mode, i.e., a linear dispersion, its wavelet
energy density remains localized around the point {k0t, k0}.
This illustrates how the WT can be used to detect the bright
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FIG. 2. Airy beam propagation with self-focusing nonlinearity
g = −0.5 and initial momentum k0 = −1. (a) Wave function density
|ψ (x, t )|2. (b) Wave function density |ψ (x)|2 at selected times.
(c) Spectral density |ψ (k, E )|2 lying on the parabolic dispersion
E (k) (blue line), and the bright soliton dispersion EBS(k) (dashed red
line). (Inset) Close up of the bright soliton dispersion. (d) Wavelet
energy density |W (x, k)|2 at t = 200. The vertical dashed red line
stands for the mode displacement associated with the bright soliton
dispersion EBS(k). Supplemental Movie S2 provides an animation of
the nonlinear FEAB dynamics with its WT [40].

soliton signature and to distinguish it from the remnant beam,
complementary to the usual Fourier techniques.

IV. FINITE-ENERGY PEARCEY BEAM DYNAMICS

We now consider the case of the FEPB obtained from the
cusp catastrophe (K = 2):

ξ2(x, y) =
∫ +∞

−∞
ei(u4+u2y+ux)du = Pe(x, y), (14)

which defines the Pearcey function [38]. The initial con-
dition for Eq. (4) is now, in one dimension, ψ0(x) =
Pe(x, 0) exp(−σx2). The square integrability is ensured by
the Gaussian term of width σ which cuts off the “fat”
tails of Pe(x, 0). The Pearcey function can be expressed
in momentum space as Fk[Pe(x, 0)] = 2π exp(ik4) [39].
The full solution of Eq. (4) for a FEPB reads ψ (k, t ) =
2π exp [−i(−k4 + k2t/2)], and typical Pearcey beam dynam-
ics is shown in Figs. 3(a) and 3(b). Following the procedure
previously applied to the Airy beam, one obtains the mode
propagation distance dPe(k, t ) = −4k3 + kt and hence the ex-
tremum mode kext = ±√

t/12. Subsequently, the wave front
trajectories are

dPe(kext ) = ±(t/3)3/2. (15)

Here a double self-interference effect takes place as dPe(k, t )
is multivalued for both branches. The interference disappears
as the points {dPe(kext ), kext} drift away from the wavelet
energy density as shown in Figs. 3(c)–3(f).

FIG. 3. Pearcey beam propagation. (a) Wave function density
|ψ (x, t )|2. (b) Wave function density |ψ (x)|2 at selected times. (c)–
(f) Corresponding wavelet energy densities |W (x, k)|2. The dashed
purple and orange lines are the mode displacements dPe(k, t ) derived
from Eq. (9). The red dot indicates the position of one branch
extremum dPe(kext ) around which the self-interference occurs, and
the solid red line shows its trajectory. Parameters are as follows:
σ = 1/1000. Supplemental Movie S3 provides an animation of the
FEPB dynamics with its WT [40].

Unlike the FEAB [see Eq. (10)], the two FEPB wave fronts
accelerate as t3/2 and not as t2, which is a consequence of the
phase factor imprinted in the initial condition: ∼exp(ik4) for
the FEPB vs ∼exp(ik3) for the FEAB. We can generalize our
previous result for an initial phase containing any power of
k. Considering a packet with a phase proportional to exp(ikn)
and following the same method as before, one can find the
generalized wave front acceleration,

d (kext; n) = n(n − 2)

(
t

n(n − 1)

) n−1
n−2

, (16)

which is a t2 and t3/2 acceleration for n = 3 and 4. In the limit
of large n, one reaches a nonaccelerating limit as d (kext; n →
∞) = t .

V. CONCLUSION

In conclusion, we have shown that the dynamics of finite-
energy accelerating beams can be fully understood from
a careful phase dynamics analysis using the WT and a

023337-4



FINITE-ENERGY ACCELERATING BEAM DYNAMICS IN … PHYSICAL REVIEW RESEARCH 2, 023337 (2020)

FIG. 4. Diffusion of an initially sharp (σ = 1) Gaussian wave
packet. (a) Wave function density |ψ (x, t )|2. The dashed blue line
indicates the packet’s center of mass x̄. (b) Density profile at selected
times. (c)–(f) Corresponding wavelet energy density |W (x, k)|2.
The dashed green lines indicate the displacement d (k) of mode k
derived from the parabolic dispersion relation. Supplemental Video
S4 provides an animation of the Gaussian packet dynamics with its
WT [40].

Madelung decomposition. We have identified that the key
properties of the beams arise from a transient self-interference
of the wave packet, and that the wave front acceleration can be
obtained analytically. We find that the reshaping mechanism
that controls the accelerating wave front originates from a
dynamical shift of the extremum mode, towards of regions
of low spectral density. This method of analysis is applicable
to other accelerating beams with different phase engineering,
as well as nonlinear objects like bright solitons with a well-
defined dispersion.
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FIG. 5. Airy-engineered wave front. (a) Wave function density
|ψ (x, t )|2. (b) Wave function density |ψ (x)|2 at selected times (top)
and evolution of the total normalized population (bottom). (c) and
(d) Wavelet energy density |W (x, k)|2 at two selected times. The
left branch is fully damped from t = 0 and the right branch is
progressively damped, following the point {dAi(kext ), kext}, while the
rest of the signal is amplified. Supplemental Video S5 provides an
animation of the engineered-FEAB dynamics with its WT [40].

APPENDIX A: GAUSSIAN WAVE PACKET DYNAMICS

We consider the solution of Eq. (4) for a Gaussian wave
packet as the initial condition, which can be either written
in real or momentum space as ψ0(k) = Fk[exp(−x2/2σ 2

x )] 	
exp(−k2/2σ 2

k ), with σx = 1/σk . The full solution in momen-
tum space for Eq. (4) is

ψ (k, t ) = exp

(
− ik2t

2

)
exp

(
− k2

2σ 2
k

)
. (A1)

In Fig. 4(a) we show an example of the well-known freely
diffusing Gaussian wave packet, initialized with σx = 1, as
seen in the density profiles in Fig. 4(b). The dashed blue
line here shows the position of the packet’s center of mass.
We apply the WT to the diffusing Gaussian packet and show
the wavelet energy density |W (x, k)|2 at selected times in
Figs. 4(c)–4(f). It is initially tightly distributed around x = 0
where the packet stands, and then spreads as two branches.
As in Sec. II, we decompose the complex momentum-space
wave function into an amplitude term and a phase term as
ψ (k, t ) = √

N (k) exp(−iφ(k, t )), with the amplitude being

√
N (k) = exp

(
− k2

2σ 2
k

)
, (A2)

and the phase,

φ(k, t ) = E (k)t = k2t/2. (A3)

We now compute the gradient of the phase (with respect to k):

d (k, t ) = ∂kφ(k, t ) = ∂kE (k)t = v(k)t = kt . (A4)
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As the k-dependent velocity is obtained by taking the deriva-
tive of the dispersion relation, the gradient of the phase in
momentum space represents a distance d (k, t ) of propagation
of a given mode k at a time t . The distance traveled for each
mode of the wave packet is superimposed on the wavelet
energy density shown in Figs. 4(c)–4(f). We note that this re-
sult would be qualitatively comparable to other non-Gaussian
wave packets evolved on the same parabolic dispersion, as
long as they do not initially contain any complex phase
relationships. This case corresponds to the long times limit
of finite-energy Airy beams shown in Fig. 1.

APPENDIX B: FINITE-ENERGY AIRY BEAM DYNAMICS
WITH DYNAMICAL MODE FILTERING/AMPLIFICATION

From the wavelet spectra in Fig. 1 it can be seen that, at
long times, the energy density around {dAi(kext ), kext} is small.
The majority of the signal comes from modes participating in
the reshaping of the packet. Therefore we consider developing
a scheme to damp out those modes, and enhance those con-
tributing to the self-interference, and hence to the accelerating
peaks. We set up a dynamical high-pass filter to damp all
the modes below a certain momentum close to kext. This can
be translated as a momentum and time-dependent loss term
for the Schrödinger equation. Similarly, we set a dynamical
amplification for the remaining modes with a gain term, in
order to limit the decay of the normalization. We can now
rewrite Eq. (4) as an open-dissipative Schrödinger equation,

i∂tψ (k, t ) =
[

k2

2
+ i(τ (k, t ) − γ (k, t ))

]
ψ (k, t ), (B1)

where τ and γ are the gain and loss terms, respectively. We
define these functions as

γ (k, t ) = 

[−k + 1

2 b3t
]
, (B2)

τ (k, t ) = β

[
k − 1

2 b3t
]
, (B3)

where 
 is the Heavyside step function, and β a constant
chosen to control the amplification of the remaining modes.
The “boundary” in k space between damping and amplifica-
tion here follows the position of dAi(kext ), which is a linear
function of time.

To solve Eq. (B1) we use the same parameters as in Fig. 1
but with k0 = 0. The newly Airy-engineered wave packet
is shown in Figs. 5(a) and 5(b) and does not display any
reshaping. Instead, it is an essentially shape-preserving and
accelerating wave front. The normalization is approximately
constant over the considered time interval due to the amplifi-
cation of the high k modes. The effect of the high-pass filter
is shown in Figs. 5(c) and 5(d). The signal overlapping the
left branch of dAi(k, t ) is fully damped from t = 0, leading
to a sudden population decrease at short times. The signal
overlapping the right branch is then progressively damped,
following the drift of dAi(kext ), while the remaining signal is
amplified.

This is the simplest way to dynamically damp and amplify
a desired range of modes. This is sufficient to prevent the total
population varying by more than a factor of two over the time
interval we consider. This procedure could be further opti-
mized using more complex functions for τ (k, t ) and γ (k, t ),
notably to enable an experimental realization of this scheme.
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023337-6

https://doi.org/10.1119/1.11855
https://doi.org/10.1103/PhysRevLett.99.213901
https://doi.org/10.1364/OL.32.000979
https://doi.org/10.1038/nphoton.2009.95
https://doi.org/10.1038/nature11840
https://doi.org/10.1364/OL.36.003191
https://doi.org/10.1038/nphoton.2008.201
https://doi.org/10.1126/science.1169544
https://doi.org/10.1038/nmeth.2922
https://doi.org/10.1103/PhysRevLett.105.253901
https://doi.org/10.1364/OL.35.003456
https://doi.org/10.1364/OL.44.001896
https://doi.org/10.1103/PhysRevLett.106.213903
https://doi.org/10.1103/PhysRevA.84.021807
https://doi.org/10.1364/OL.38.004585
https://doi.org/10.1364/OE.22.007160
https://doi.org/10.1364/OE.25.001856
https://doi.org/10.1364/OE.26.032971
https://doi.org/10.1103/PhysRevA.97.051801
https://doi.org/10.1016/S0079-6638(08)70215-4
https://doi.org/10.1364/OE.20.018955
https://doi.org/10.1016/j.rinp.2019.102656
https://doi.org/10.1088/1367-2630/aa6ecd


FINITE-ENERGY ACCELERATING BEAM DYNAMICS IN … PHYSICAL REVIEW RESEARCH 2, 023337 (2020)

[26] C. H. Baker, D. A. Jordan, and P. M. Norris, Phys. Rev. B 86,
104306 (2012).

[27] D. Colas and F. P. Laussy, Phys. Rev. Lett. 116, 026401 (2016).
[28] D. Colas, F. P. Laussy, and M. J. Davis, Phys. Rev. Lett. 121,

055302 (2018).
[29] D. Colas, F. P. Laussy, and M. J. Davis, Phys. Rev. B 99, 214301

(2019).
[30] One cancompute the total normalization from Eq. (2) as

N = ∫ +∞
−∞ |ψ0(x)|2dx = exp( 2a3

3b3 )/8
√

2πab and this result is
finite.

[31] E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A.
Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart,
G. Malpuech, and J. Bloch, Nat. Phys. 6, 860 (2010).

[32] E. B. Sonin, Dynamics of Quantised Vortices in Superfluids
(Cambridge University Press, Cambridge, 2016).

[33] C. Kittel, Introduction to Solid State Physics, 11th ed. (Wiley,
New York, 1996).

[34] We note that the WT is governed by an uncertainty principle
between its resolution in space (�x) and momentum (�k), so
that the product �x�k cannot be arbitrarily small. One typically
needs to adapt the WT parameters such as the wavelet frequency
to obtain a suitable resolution in the desired momentum/space

range. In Figs. 1(c))–1(f) the WT is less adapted for the low
momenta, which leads to broader energy distributions in this
momentum range.

[35] Y. Hu, Z. Sun, D. Bongiovanni, D. Song, C. Lou, J. Xu, Z. Chen,
and R. Morandotti, Opt. Lett. 37, 3201 (2012).

[36] O. A. Egorov, D. V. Skryabin, A. V. Yulin, and F. Lederer, Phys.
Rev. Lett. 102, 153904 (2009).

[37] M. Sich, D. Krizhanovskii, M. Skolnick, A. Gorbach, R.
Hartley, D. V. Skryabin, E. A. Cerda-Méndez, K. Biermann, R.
Hey, and P. Santos, Nat. Photon. 6, 50 (2011).

[38] The function is named after Trevor Pearcey who, at the end of
World War II, first obtained the numerical values for Pe(x, y)
in a computational tour de force using a mechanical differential
analyzer at the University of Cambridge.

[39] A closed form for Fk[ψ0(x)], i.e., including the truncation,
cannot be obtained in terms of simple functions. We thus based
our analysis on the decomposition the infinite energy version of
the beam (σ = 0) which we expect to be a good approximation
for the FEPB, since the cutoff is chosen as σ 
 1.

[40] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.2.023337 for five videos, consisting
of a time-animated version of Figs. 1– 5.

023337-7

https://doi.org/10.1103/PhysRevB.86.104306
https://doi.org/10.1103/PhysRevLett.116.026401
https://doi.org/10.1103/PhysRevLett.121.055302
https://doi.org/10.1103/PhysRevB.99.214301
https://doi.org/10.1038/nphys1750
https://doi.org/10.1364/OL.37.003201
https://doi.org/10.1103/PhysRevLett.102.153904
https://doi.org/10.1038/nphoton.2011.267
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.023337

