PHYSICAL REVIEW RESEARCH 2, 023308 (2020)

Evolutionary dynamics in fluctuating environment

Immanuel Meyer

and Nadav M. Shnerb

Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel

® (Received 16 September 2019; accepted 4 May 2020; published 9 June 2020)

Temporal environmental variations are ubiquitous in nature, yet most of the theoretical works in population
genetics and evolution assume fixed environment. Here we analyze the effect of variations in selection sign,
selection intensity, and population size on the fate of a mutant type. Using Kimura’s diffusion approximation we
present simple formulas for effective population size and effective selection, and use it to calculate the chance of
ultimate fixation, the time to fixation, and the time to absorption (either fixation or loss). For simple models, in
which the number of environmental states is relatively small, the effective parameters are obtained analytically.
For more complicated models, where the monitoring of the weights of all microstates is complicated, we present
a semianalytic solution whose parameters are obtained from short numerical experiments. Our analysis shows
perfect agreement with numerical solutions for neutral, beneficial, and deleterious mutant, under periodic and
stochastic environmental variations and different competition modes.
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I. INTRODUCTION

Evolution takes place in a temporally fluctuating environ-
ment, and the interplay between the deterministic effect of se-
lection and these temporal variations poses a major theoretical
challenge. Even if the macroproperties of the environment are
fixed over time, local fluctuations affect the reproductive suc-
cess of individuals in an uncorrelated manner, a phenomenon
known as genetic drift, demographic stochasticity, or internal
noise. These uncorrelated fluctuations generate, for a popu-
lation of size n, an O(4/n) abundance variations. Moreover,
in many cases entire populations are subject to macroenviron-
ment variations that affect coherently the reproductive success
(birth and death rates) of all individuals. These effects may
be either periodic (seasonality) or stochastic (draughts, floods,
precipitation fluctuations, and so on) and yield stronger, O(n),
abundance variations. In the literature, stochastic temporal
variations of this kind are known as environmental stochas-
ticity or external noise [1].

Traditionally, the theory of population genetics and evo-
lution was focused on the interference of selection (with in-
tensity s) and demographic stochasticity (drift) [2], assuming
fixed birth and death rates. Effects of environmental variations
were considered only rarely [3,4]. Recent empirical studies
have documented periodic and stochastic coherent variations
in relative fitness [5—7] as well as variations in the birth and
death rates [8§—14]. These findings triggered a renewed interest
in the effect of macroenvironmental variations on evolutionary
dynamics [15-22].
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When n is large, macroenvironmental fluctuations yield
stronger abundance variations and their effect dominates the
noise associated with genetic drift, but when #n is small drift
effects are dominant. In particular, biological extinction is
related to the discreetness of individuals which manifests
itself only via the drift. Therefore, the small n sector has
crucial importance to evolutionary dynamics. Practical impli-
cations require one to take into account both drift and cor-
related variations, which makes the theoretical analysis quite
intricate.

The simplest and most important scenario in evolution
involves zero-sum competition between two haploid types (a
very similar model describes the dynamics of a two-allele,
one locus system for diploid population with additive effect
on fitness). The total number of individuals is N, and the
frequency of a given species with abundance n is x = n/N.
The three properties that govern evolutionary dynamics are
IT(x), the chance that a mutant type will reach ultimate
fixation, Ty (x), the time to absorption (either fixation or loss),
and Tp(x), the time to fixation. IT(x) plays a determinant
role in the evolutionary dynamics as it controls the long-term
adaptation of populations and the rate of accumulation of
neutral substitutions (molecular clock) [23]. Tx(x) sets the
timescale for coexistence and controls the crossover from
successive fixation to clonal interference dynamics [24], and
Tr (x) governs the adaptation process and the speed of evolu-
tion [25].

Here we present a generic scheme for the analysis of
this system when both s and N vary in time in an arbitrary
(stochastic or periodic) manner. Our analysis relays on three
assumptions.

(1) The selection parameter s is assumed to be small and
O(s?) terms are neglected.

(2) The system is in its “microevolutionary” (annealed)
regime as defined in [15]: the time to fixation is assumed to
be large enough to allow for a reliable sampling of the state
space by a typical trajectory.
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(3) We implement the diffusion approximation, which re-
quires the relevant quantities (like IT) to be smooth enough
over the integers [26].

These assumptions are quite plausible. Empirical selection
parameters are usually much smaller than one; for example,
selective sweeps in the long-term evolutionary experiment of
Lenski and co-workers reach fixation in about 1000 genera-
tions [27], suggesting s &~ 0.001. Such a timescale is much
larger than the correlation time of many environmental vari-
ations, and s> terms are indeed tiny. The implementation of
the diffusion approximation is natural in the regime where
s is small and N is large. This approximation is known to
be remarkably robust to modifications of the microscopic
dynamics of the model [2].

Given assumptions (1)—(3), we will show that the standard
formulas, that were obtained many years ago for systems
with fixed N and s [23,28], are applicable in temporally
varying environment, provided that N and s are replaced by
effective values Nggr and s.g. For any given state of the external
parameters, the frequency x may change, x — x + Ax, and
the emerging diffusion (or backward Kolmogorov) equations
depend only on the mean and the variance of these changes.
sefr 18 the total selection, i.e., the weighted contribution of
all environmental states to the mean of Ax, while Ny is
determined by the weighted contribution to the variance
of Ax.

Importantly, when our assumptions hold the contributions
of different microstates are commutative, i.e., the order of
events does not matter, only their rate of occurrence. Accord-
ingly, periodic and stochastic variations yield the same values
of seir and Negr, provided that they visit, on average, the same
microstates in the same rates. This feature is exploited through
this paper, as it allows us to choose the simplest setup for our
analytic calculations.

This paper is organized as follows. In the next section
we present our analysis using simple models that allow
for complete analytic derivation of N and s., and then
compare the predictions to the outcomes of numerical sim-
ulations. In Sec. III we treat the general case, where a
fully analytic solution is too cumbersome. For that case we
implement a semianalytic approach, in which the effective
parameters are derived from an easy and quick numerical
simulation of a single environmental cycle. Technical details
of the calculations and the numerics are given in the Ap-
pendixes. A general overview is presented in the Discussion
section.

II. ANALYTIC SOLUTION OF MODELS WITH SHARP
ENVIRONMENTAL TRANSITIONS

In this section we present a solution for evolution in fluc-
tuating environment, provided that the system jumps abruptly
between two environmental states. This class of models al-
low for a fully analytic solution and provides good insights
into the general problem. They also allows us to demon-
strate the robustness of the results and the periodic-stochastic
equivalence, thus laying the foundations for Sec. III, where
a semianalytic approach is implemented in the general
case.

A. Models definition

We consider a wild type and a mutant population compet-
ing for a single resource (say, food). The relative fitness of the
mutant type, s, reflects its access ability to consume or to reach
the food. The parameter s is positive for a beneficial mutant,
negative for a deleterious mutant, and s = 0 for a neutral
mutant. Under fixed environmental conditions, the absolute
value of sN sets the strength of selection: when [sN| < 1
(weak selection) demographic fluctuations (drift) dominate
and the dynamics is effectively neutral; when |sN| > 1 (strong
selection) selective forces dominate. For fixed N and s the so-
lutions for these quantities are known for many years [23,28].

We allow the total size of the community, N, to vary in time
due to seasonal fluctuations (such as food shortages during
winter) or stochastic disturbances (droughts, floods). The car-
rying capacity decreases when the environment deteriorates
and increases when the environmental conditions improve.
Fluctuations in selective parameters may be correlated or un-
correlated with fluctuations in population size, and the general
theory presented in Sec. Il allows one to deal with the general
situation once s(N, t) is given. For the sake of concreteness we
consider here three types of selective effects, one (character-
ized by the parameter s) at population equilibrium (N fixed)
and two others during periods of growth (s,) or decline (s4) in
N. These parameters may differ in amplitude and in sign: for
example, plants with larger seeds that admit larger metabolic
reserves may have a better chance of establishment during
periods of increasing stress, while smaller seeds, produced
in larger quantities, have a better chance to colonize a new
suitable habitat during fast expansion [29].

In this section we model resource variations that affect the
total population size N through a simple two-state dynamics.
When the resource density declines, the total size decreases
from N to rN (without loss of generality we assume r <
1), while an increase in the amount of available resource is
followed by population growth from rN back to N (see Fig. 1).
Population size variations are assumed (in this section) to be
instantaneous.

The persistence time of the environment is 7. Two types of
dynamics, periodic or stochastic, are considered.

(1) In periodically varying environment (seasonal varia-
tions) t is the duration between two successive switches.

(i1) In randomly fluctuating environment, the time between
two successive switches is drawn from an exponential distri-
bution with mean t.

At equilibrium, competition takes place in a series of birth-
death events, and time is incremented by 1/N(¢) after each of
these events, so 7 is measured in units of a generation (one
generation = N elementary birth-death events).

We consider two types of zero-sum equilibrium dynamics:
local and global.

(1) The local dynamics corresponds to the case where a
random encounter between individuals may involve a fight
for a piece of food, a mate, or a territory. To model that,
two individuals are picked at random for a “duel”; the loser
dies and the winner produces a single offspring. If the mutant
frequency is x, the chance of a duel between a mutant and a
wild type is 2x(1 — x). The chance of the mutant to win the
duel is defined to be 1/2 + s/4, so s reflects the intensity of
selection. When s = 0 the equilibrium dynamics is neutral.
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FIG. 1. Illustration of population size dynamics in varying envi-
ronment. Under high resource density the total number of individuals
is N, while during periods of shortage the total number is rN.
Transitions between the two states correspond to periods of sharp
population growth or sharp decline, here taken to be instantaneous.
If the dynamics is periodic, the time between two consecutive
jumps (between sharp growth to sharp decline or vise versa) is T
generations. If the dynamics is stochastic (as in this cartoon) the
persistence time is picked from an exponential distribution with
mean 7. Selection parameter at equilibrium is s, s, is the selection
parameter during periods of sharp growth, and s, is the selection
parameter during sharp decline.

(i) Global dynamics best illustrates the competition in a
forest, say, where an adult tree dies at random and the gap is
recruited by a single seed or seedling. If the local seed bank
reflects the composition of the whole forest (long distance
dispersal), the chance of the mutant type to capture the gap
depends on both its abundance and its fitness. In our global
model this chance is

xé
l—x+xe’
where the fitness factor e* reflects an excess productivity of
seeds or the excess chance of germination per seed.

With this parametrization, both models yield, to the leading
order in s, the logistic behavior [21]

x = sx(1 —x). (1)

As explained below, this allows us to implement the same
formulas for the effective population size and the effective
selection in both cases, once the s value is equal.

During periods of sharp growth (1 — r)N slots open up,
and the number of new recruits by the mutant strain is picked
at random from By —)[x + sgx(1 — x)], a binomial distribu-
tion with N(1 — r) trials where the chance to win each trial is

x eSg

P ~ x4 sgx(1 — x). 2)

Accordingly, in a period of sharp growth on average x — x +
s¢x(1 — x)(1 — r) and the leading contribution to the variance
is Var(x) = x(1 — x)(1 — r)/N.

During a period of sharp decline, each individual survives
with a certain probability that may depend on its phenotype.
To model that, we assumed the number of mutant survivors to

TABLE I. Glossary.

Sharp transition model

N Total number of individuals

n (or m) Number of individuals of focal species
x=n/N Focal species’ frequency

T Average persistence time of the environment
K Selection parameter at equilibrium

Sg Selection parameter during growth

Sd Selection parameter during decline

r Ratio between high and low population states

Logistic model (Sec. III)

Ky K_
A Total population’s growth rate

Maximum/minimum carrying capacity

be picked from B,y[r(1 + s;z)] and the number of wild type
survivors is drawn from B(j_xy[r] [of course the condition
sq < (1 —r)/r must be imposed]. If s; < 1, in a period of
sharp decline x — x + syx(1 — x) and Var(x) = x(1 — x)(1 —
r)/(Nr) [30].

Sort descriptions of the various parameters used through
this paper are presented in Table I.

B. Effective population size and effective selection

Under purely demographic stochasticity, when population
size is fixed at N and the mutant strain has fixed log fitness s
and frequency x = n/N, the chance of fixation I1(x) is known
to satisfy [23,28]

1 N
— y —TIT'(x) =0, 3
S 1@+ 2o 3)
with the boundary conditions IT1(0) = 0 and I1(1) = 1. Simi-
larly, the time to absorption T satisfies

1

AT 00+ T = iy 0@
with T4, (0) = T4 (1) = 0.
The solution for IT(x) is a known formula,
ITx) = ﬂ. 5)
1 —eNs

An important parameter is the strength of selection sN, which
is the ratio between selection intensity and the strength of
the drift (the variance of x variations per generation 1/N).
As mentioned above, when [sN| <« 1 (weak selection) the
process is effectively neutral, the sign of s is irrelevant, and
IT(x) &~ x. If |sN| > 1 (strong selection) the chance of a
single deleterious mutant (x = 1/N) to reach fixation decays
exponentially with sN, while for a single beneficial mutant
(s >0)II(1/N) ~ s.

Now let us implement the diffusion approximation in
varying environment. Specifically we would like to consider
stochastic environmental variations with local competition at
equilibrium. Below we explain why the outcome is applicable
to the other cases (global competition and periodic variations).

In our model the population size flips instantaneously
between its two allowed values, N and rN, so during each
elementary time step either the system jumps (N <> rN) or
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a duel between two individuals takes place. Accordingly,
Jt =1/Nt and J~ = 1/Nrr are the chances, per elementary
competition step (duel), that the environment flips to the other
state.

When a duel takes place, it will be an intraspecific duel
with probability 1 — 2x(1 — x) and an interspecific duel with
probability 2x(1 — x). Intraspecific duels have no effect on the
number of mutant individuals (either a wild type replaces a
wild type or a mutant replaces a mutant). After an interspecific
duel, the number of mutants grows by one with probability
1/2 + s/4 or decreases by one with probability 1/2 — s/4.

When the environmental conditions suddenly improve,
rN — N, the overall population increases by N(1 — r) indi-
viduals. As explained, the share of the mutant species is taken
to be By(1—r)[x + s;x(1 — x)], so the chance of the mutant type
to grow from n individuals to m individuals is

Pgrowlh

n—m fN(lfr),ersgx(lfx)(m —n), mzxn, (6)

where fj, ,(a) is the probability mass function of the bino-
mial distribution, i.e., the chance to pick a successes from b
trials with success probability p. By the same token PECn"
describes the chance of frequency change from x = n/N to
x'=m/N.

During periods of sharp decline, on average N — rN. If
s is small, this may be achieved if each wild type individual
survives with probability » and each mutant individual sur-
vived with probability r(1 + s4). Accordingly, if the number
of mutant individuals before decline is n, the number after
decline is picked from B, [r(1 + s4)], and correspondingly the
number of wild type individuals after the decline is By_,[r].
Therefore, for the mutant,

PN = o (150 (M) @)
and for the wild type
P;\jlefljﬁm’ = fon,r(m/)- ®)

The chance to reach x’ = m/(m + m'), starting from x = n/N,
is

P)?ifii/ne = fn.r(l+sd)(m)fN—n,r(m/)~ (9)

To compare our analytic expression with Markov-matrix-
based numerics that require exactly N individuals in the poor
state we implemented a slightly different decline procedure
that has the same mean and variance, while in Monte Carlo
simulations we used the two binomial deviates. Details are
given in Appendix B.

Overall, the transition probabilities in each elementary time
step are

WE =1 —JH[1 - 2x(1 —x)],

X—>X

+ + 1 s
Wiy =0 =J7)2x(1 —x) 3 + )

_ _ 1 s
W vryony = 1 =J7)2x(1 —x) 3 + 1)

wt — (1 — JH2x(1 1 s
iy = (1= J7)2x(1 — x) 5-1)

— _ 1 s
WX—>X—]/(rN) ={0-=J)2x(1 —x) E — Z ,

- __ 7+ pdecline
Qx—>x’ =J Px—)x’ ’
+ __ y— pgrowth
Qx—)x’ =J Px»x’ . (10)

In these expressions Wxix, (or equivalently Wni;nl) is the
chance to reach x' from x in an elementary duel when the
environment is poor (minus, total population rN) or rich (plus,
total population N). Correspondingly, Qfﬁx, (or equivalently
£ ) is the chance to reach x’ if the system was at x right
before a sharp decline or a sharp increase.
If at = 0 the mutant strain is represented by » individuals,
and the environment is in its rich/poor (plus/minus) state, the
chance of fixation by the mutant, H;—L, satisfies the discrete

backward Kolmogorov equation (BKE),

Hj = Wninﬂnirl + Wninflnnifl + vv/i)n Hrf
+ > 0F., 07 (a1

This BKE is a (N +rN —2) x (N 4+ rN — 2) linear system
and may be solved numerically to obtain ITF. This matrix-
based technique was used to obtain the numerical results of
Figs. 2 and 3; see Appendix B.

To solve the problem analytically, one would like to map
the difference equation (11) into a differential equation. We
define a significant step as an interspecific duel (note that n
must change in such a significant step). For a given x, the
chance of an elementary step (duel) to be significant is 2x(1 —
x). The mean number of elementary steps needed for two
sharp jumps (an increase and the following decrease or vice
versa) is (N + rN)t = N(1 + r)t. Therefore, the number of
significant steps per a single decline/increase jump is

% =x(1 —x)Nt(1l +7r). 12)
The chance of a single event to be a jump is therefore /(1 +
n) and its chance to be a competition step (duel) is 1/(1 + 7).
Moreover, for each significant step (interspecific duel) in the
rich environment there are only r significant steps in the poor
environment.

Now we can write the backward Kolmogorov equation
for TI(x) = [[1(x) + IT~(x)]/2, i.e., for the chance to reach
fixation when the initial state is in the plus or in the minus
state with probability 1/2. When written per significant step it
takes the form

Ne) = ——[a( L+ \ne+ 1wy +a(L =8
0= a5+ e a3 )

 TI(x — 1/N) —i—B(% n %)l’[(x +1/rN)

(L \nw— 1/
+8(3 nos— 1m0 |

n growth ’ decline /
o > [PENIIG) + PEeTI ()],

X

13)

where A =1/(1+r)and B=r/(1 +r).
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FIG. 2. TI(x) [panels (a) and (d)], T4(x) [(b) and (e)], and Tr(x) [(c) and (f)] as a function of x for various values of N, 7, r and selection
coefficients. Results for stochastic environment are presented in panels (a)—(c), while the results for periodic variations are shown in panels
(d)—(f). For each set of parameters, the solid black line represents the relevant analytic prediction [Eq. (5) for I, (19) for T4, and (20) for
Tr, where N is replaced by N from Eq. (17) and s is replaced by ser from (18)]. In panels (a)—(c) (stochastic environment) we show
numerical solutions of a Markov matrix model with local (dashed cyan curves) and global (magenta diamonds) competition, together with MC
simulation results for local competition (colored circles, plotted with one std error bars that are usually too small to be seen). In panels (d)—(f)
(periodic environment), analytic results are compared with MC simulations for local (colored circles) and global (blue circles) competition.
Our numerical procedures are explained in Appendix B. Parameters ranges are N € [1000, 4000], r € [0.2, 0.75], and t € [0.05, 5]; the details
for each curve are listed in Appendix A. Parameter set 1 (see Appendix A) is missing in panel (f), since the chance of fixation is too small. The
red lines were obtained for combinations of s, s;, and s, that yield se = 0.

Next one would like to replace the sums over many destina-
tions in the last two terms of Eq. (13) by jumps to two possible

J

D PO &

7

|:I'I (x + s5gx(1 —x)(1 —r)+

N =

X

destinations: one is the mean plus the standard deviation and
the other is the mean minus the standard deviation,

(1 =01 —r)) . n<x+sgx(1 PRI (. —);\),(1 - r)>:|7

N

> plciren() & l[H(Hsdx(l —x) +,/w> + H()C-I-SdX(l —x) — w)} (14)
= 2 Nr Nr

Plugging Eq. (14) and the value of n as defined in Eq. (12)
into (13) and expanding all functions to second order in 1/N
and to first order in selection terms yields

I ETALC
2r 4tr N2
s Se(1 —r)+s4\ IT
+( L= d) @ _
147

2t(1 —r) N
In Eq. (15) we assumed that jumps are relatively rare and
n K1 so 1l—n=1; otherwise, the effect of equilibrium

0. (15

(

competition is negligible in comparison to the effect of the
jumps. Note that the condition s; < (1 — r)/r ensures that in
the limit » = 1 the contribution from s; vanishes.

Similar considerations for T;(x) = [TA+(x) +T, (x)]/2
yield

1 +1—r TA”(x)+ s n
2r 4tr N2 147
1

T ONA+rx(1-x) 1o

So(1 — 1)+ sd) T,(x)
21+ 1) N
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FIG. 3. In the inset we present R vs x, where R is the ratio
between our analytic expression for Il(x) [Eq. (5) with the Neg
given in (17)] and its numerically calculated value for stochastic
environment obtained from inversion of the Markov matrix (see
Appendix B). Parameters are r = T = 0.5 and s, = 5, = 0. Different
values of N were used (see legend), where the value of sN is kept
constant (sN = —0.1), so the analytic prediction is N independent.
Clearly, the ratio becomes closer and closer to one as N increases,
meaning that the quality of our approximation improves with N.
The results for a single mutant (n = 1 or x = 1/N) show the slow-
est convergence. In the main figure this “worst case scenario” is
considered. The logarithm of TTI(n = 1) is plotted against In N, and
the analytic prediction (dashed black lines) is compared with the
numerical results for the local (light circle) and global (dark crosses)
competition models. All the results were obtained for t = 0.1 and
r=0.5, and s, = s, = 0. Markers with different colors stand for
s = —0.2 (blue). s = —0.1 (green), s = —0.05 (brown), and s = 0.2
(purple).

The last term in Eq. (16) reflects the mean time for a signif-
icant step, which is 1/2Nx(1 — x) with probability 1/(1 4 r)
and 1/2rNx(1 — x) with probability /(1 + r).

Comparing Eq. (15) with Eq. (3) and Eq. (16) with Eq. (4),
one finds that the solution still has the form of the solution in
static environment. Accordingly, one can implement the szatic
environment formulas [like Eq. (5) above] to obtain the IT(x),
Tx(x), and Tr(x), by replacing the value of N and s by their
effective counterparts

Nug = N 4re (17)
T A+ QT+ 1—r)
and
1_
SCH=S+M+S_”’_ (18)

2T 2T

These formulas allow us to calculate the chance of fixation,
time to absorption, and time to fixation, using the expressions
that were derived for fixed environmental conditions. Before
doing that, we would like to discuss the range of applicability
of this derivation.

Since our expressions for Neg and ser were derived using
the continuum (diffusion) approximation, the agreement be-

J

tween the analytic formula and the numerical results becomes
better as N grows, as demonstrated in Fig. 3.

C. Universality: Local-global and
stochastic-periodic equivalence

As explained in the Introduction, the derivation of (17)
and (18) is based on three assumptions. We assumed that
the number of up-down flips before fixation is large (when
the chance of fixation to take place during a single sweep
is large, I1 depends not only on x but also on the initial
state of the environment), that selection parameters are small
(we neglected s° terms), and that the diffusion approximation
holds (N and rN are large, so I1 is relatively smooth over the
integers).

Importantly, when these assumptions hold the results are
universal, i.e., they do not depend on many details of the
model (see below). So far we have analyzed only the case of
stochastic variations and local equilibrium competition, but
our results turn out to be valid as well for periodic variations
and/or global competition.

This amazing property is demonstrated in panels (a) and
(d) of Fig. 2. The numerical results (obtained by inverting a
Markov matrix or from direct Monte Carlo simulations, as
explained in Appendix B) show perfect agreement with the
analytic predictions for deleterious, beneficial, and neutral
mutants, under global and local competition and in periodic
or stochastic environment.

The equivalence of stochastic and periodic variations
(when the parameters of the process are calibrated appro-
priately, as done here) appears to be a generic feature of
the approximation used. When the diffusion approximation
holds, each “elementary” event (rapid growth, rapid decline,
equilibrium dynamics over T generations) contributes a given
amount of mean change in x to the coefficient of IT'(x) (or
T, etc.), and given variance to the coefficient of I1”(x). Since
we kept only terms that are linear in s (or sz or s,) and
in 1/N, each elementary event may split into two or more
subevents without changing the corresponding BKE. In the
next section, we implement this property when one cannot
obtain an exact analytic solution to the contribution of each
microstate.

D. Mean time to absorption and mean time to fixation

The same diffusion approximation technique allows one
obtain the mean time to absorption 74 (x) and the mean time
to fixation Ty (x) using the static environment formulas with
Negr and segr as defined in Eqs. (17) and (18). Expressions
for Ty(x) and Tr(x) in static environment were presented
in [28] and in Appendix C we derive simpler expressions
for these quantities, using the exponential integral E;(x) =
— [%dt exp(—1)/t. These are

1 1—
Tu(x) = C + Cre*N* 4 = <e_SNxE,-(sNx) — NI IE[—sN(1 —x)] + In [ ¥ XD (19)
S SINX
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and

Cy + Cie™N* + L eV Ey(sNx) — eV E[—sN(1 — x)] + In [ £])

F =

IT(x)
J— _ oSN _ _ ,—sNx _
+E,[ SNx] — e *"Ei[sN(1 —x)] — e In[x/(1 x)]‘ 20)
SNTI(x)

The constants C;...Cs are given in Appendix C. Panels
(b),(c) and (e),(f) of Fig. 2 demonstrate the agreement between
these formulas (with N — N and s — Ser) and the numeri-
cal result for 7, and T in different scenarios.

III. GRADUAL TRANSITIONS:
A SEMIANALYTIC APPROACH

Until now we considered only two-state systems, in which
the total population N may take either of two values and
the jumps between them are discontinuous and abrupt. In
experimental and natural situations one expects different dy-
namics. By and large, the changing environmental conditions
(for example, increase in precipitation or a draught) affect the
potential number of individuals that a given area may sustain,
and these changes, as well as the response of the population
size N to the variations, are gradual. For example, in standard
dilution experiments rN individuals are transferred to the next
test tube or petri dish (this is a sharp dilution step with dilution
factor r) but then it takes a few generations (doubling times)
until the population reaches the potential carrying capacity of
the new environment, where in general during this period the
growth is exponential. In nature, one may imagine changes in
the potential carrying capacity K(¢) after which the total pop-
ulation size N(¢) decreases or increases logistically towards
the moving target K(¢) and so on [31].

In the general scenario many N states (not only two) are
allowed, and correspondingly there are many types of jumps
(changes of population fraction x in response to environ-
mental variations) and steps (changes in x at fixed N due
to competition). Still, as explained above, one may define
an effective population size parameter N and an effective
selection parameter s.. As before, an appropriate s.s reflects
the sum over the contributions of all types of jumps and
steps to the mean displacement Ax, and N is determined
by the sum of the corresponding contributions to the variance
of Ax. The contribution of each microscopic process has to
be weighted by its relative rate of occurrence. An analytic
solution in that case requires a tedious (and in many cases
impractical) bookkeeping of all possible microstates visited
during the process.

To overcome this difficulty, we implement here a semi-
analytic approach. Since stochastic and periodic processes
yield (to first order in s) the same effective parameters as
explained above, we focus on a single cycle of a periodic
process and calculate numerically, by averaging over many
runs, its contribution to the mean and to the variance. Once
Seff and Negr are calculated, we plug the results into the relevant
fixed environment expressions to obtain the chance of fixation
or the time to absorption/fixation. This method allows us to
predict the results of a very long process from the mean and
the variance of Ax for a single cycle.

As an example, we have implemented this approach to the
case of logistic growth that resembles the one considered in
[31]. The potential carrying capacity K is time dependent,
and for convenience it jumps between two values, Ki. In a
single cycle of the periodic dynamics, K alternates between
the two states with period 2t; see Fig. 4. The total population
N responds logistically to K:

dN N
= = uv(1 - —> 21
dt K@)

The parameter A sets the rate in which N responded to K
changes. When At > 1 the dynamics is close to the two-
state system considered before, since N tends to stick to the
instantaneous value of K. On the other hand, when At < 1
the value of N fluctuates only weakly around the harmonic
mean 2K, K_ /(K4 4+ K_) [31].

In our individual-based numerics, after each dual time is
incremented by dt = 1/N(t), the new value of N is calculated
from Eq. (21) using its exact solution,

N(@)K
K —N@)(1 — ety

If AN=N(t+dt)—N(t)>1, g individuals are added,
where ¢ is the nearest integer less than or equal to AN.

N +dt) = (22)

2000w

1000

u
=
]
L |
T

21 3T

FIG. 4. Population size, N(t), as a function of time, in fluctuating
environment with logistic growth [Eq. (21)]. The potential carrying
capacities are K, = 2000 and K_ = 1000 (dotted black lines) and
the system switches between these two states every 7 generation
(here T = 1). The deterministic value of N converges to an orbit
N(t). Att = 0 (where the system jumps to K = K,) N(0) = {[1 +
exp(At)]K K_}/[exp(rAt)K, + K_] and the rest of the periodic orbit
is given by Eq. (22). When At > 1, the N orbit traced quite closely
the K profile (red, . = 25). As At decreases, population fluctuations
flatten out until (at At — 0) they converge to (2K, K_)/(K, + K_).
The yellow, green, and blue lines are the stable orbits for A =6,
A =1,and A = 0.1, correspondingly.
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FIG. 5. TI(x) [panels (a) and (d)], Tx(x) [(b) and (e)], and Tr(x) [(c) and (f)] as a function of x for various values of K, K_, A, 7, and
selection coefficients. Results for stochastic environment are presented in panels (a)—(c), while the results for periodic variations are shown
in panels (d)—(f). For each set of parameters, the solid line represents the semianalytic prediction, based on Egs. (5), (19), and (20), where N
and s are replaced by their effective values. Neg and s were obtained from a one-cycle numerical experiment (the number of trials must be
large enough to provide stable mean and variance of Ax; for the parameter sets at hand we run 10 trials) as described in the main text; see
Eq. (23). These semianalytic predictions are compared with the outcomes of full Monte Carlo simulations (circles, with one standard deviation
error bars), in which the simulation runs from a given initial condition until fixation or extinction (averaged over 1000 runs). Universality
implies that periodic and stochastic simulations yield the same results for the same sets of parameters. To avoid duplications of graphs, we
invert the values of all selection parameters when crossing from a given stochastic system to its periodic counterpart. The stochastic parameters
are K, = 4000, K_ =400, A =6, 7 =0.1, and s = —0.025, 5, = 0.0125, and sd = 0 (blue); K. = 6000, K_ = 600, A =12, T = 0.02, and
s =0,5, =0, and sd = 0 (red); K, = 6000, K_ = 600, A = 16, 7 = 0.02, and s = —0.00025, s, = —0.00125, and sd = —0.001875 (green);
K, = 6000, K_ = 1500, A = 16, T = 0.02, and s = —0.01875, 5, = 0, and sd = —0.025 (magenta). The chance of fixation [panel (a)] for the
magenta curve is vanishingly small (between 1072 and 107! for x < 0.8) so we cannot compare the T predictions with MC simulations in

panel (c).

The share of each of the two species in these ¢ slots is
determined, as before, by By[x + s,x(1 — x)]. If AN = N(t +
dt) — N(t) < —1, |gq| individuals are subtracted, where g is
the nearest integer greater than or equal to AN. In that
case each wild type individual survives with probability p =
1 — g/N(t) and a mutant individual survives with probability
o' where b = In(1 + s4)/ In(K_/K,). (The goal of this
parametrization is to make sure that the overall strength of
selection when the system declines from K, to K_ is equal to
s, that we defined in the last section for sharp jumps.)

Our seminumeric approximation is based on many runs of
a single cycle of the periodic dynamics. First we calculated
analytically the profile N(¢) during a single period. Starting
from N(t = 0), Eq. (22) provides N(t = t) where K = K.
A second iteration, using N(¢ = t) as the initial condition
and Eq. (22) with K = K_, yields N(t = 2t). N(t =0) of
the stable orbit is than obtained from the requirement N (0) =
N(27) (see Fig. 4).

The second, numerical step involves many runs of the
individual-based model, starting at the calculated value of
N(0) and letting the system run for a period of 2z, where
the initial fraction of focal species individuals in the total
population is x(t = 0) = n/N(0). For each run, x(¢ = 27) is
saved, and the values of & = E[x(27) — x(0)] and its variance
02 = E[{x(21) — x(0)}?] — u? are obtained from the average
over many runs. It turns out that both Ax and the variance

scale like x(0)[1 — x(0)] (the expected behavior for the lead-
ing correction in small s, s,, and s;). We then define

m 4x(1 — x)
= A 1 Neff = —2’
2tx(1 —x) o

and calculate IT, Ty, and 7r by plugging these values into
Egs. (5), (19), and (20). Some results are depicted in Fig. 5,
and one sees a perfect agreement with Monte Carlo simula-
tions.

Note that this semianalytic method admits a self-
consistency requirement, as the values of s and Neg must be
independent of the value of x(0). Our small s approximation is
thus (numerically) controlled, and its violation may be iden-
tified at this step—if the values of these parameters depend
significantly on x(0), one has to pursue the higher-order terms.

(23)

Seff

IV. DISCUSSION

Through this paper we presented and examined a method-
ology aimed at calculating important quantities (chance of
fixation, time to fixation, or absorption) for populations in
fluctuating environment. To first order in the selection pa-
rameters (s, g, and s4) the diffusion approximation yields a
family of backward Kolmogorov equations, like Egs. (3) and
(4). The only effect of the environmental fluctuations is the
replacement of N and s by their effective values.
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These effective parameters, seir and Neg, reflect the mean
frequency displacement Ax and its accumulated variance,
both measured per one generation. Here we implemented an
ergodic approach and replaced the mean and the variance
for a given trajectory by the corresponding quantities for
an ensemble of trajectories, by calculating the relative con-
tribution of each microstate to the relevant quantities. For
sharp transition models, where the number of microstates is
small, we calculated analytically these effective parameters by
monitoring the contribution of each microstate. This method
may be used in other cases, like dilution experiments where
the growth phase is a simple exponential, but becomes very
difficult when the system visits many microstates. To over-
come that, we presented the semianalytic approach described
in Sec. III. Such an ergodic approach is feasible, as stated
in the Introduction, only if the trajectories are long enough
(annealed), which in general translates to the self-consistency
condition Tr > T.

Our technique relays on an additional condition: commu-
tativity. As long as one neglects O(s?) and higher order terms,
the contributions of each microstate are independent of its
place in the chain of events. As a result, the overall answer
depends only on the prevalence of each type of event and
not on their order. Accordingly, two systems (one periodic
and one stochastic, or one with global competition and one
with local competition) yield the same effective parameters if
their microscopic dynamics is calibrated appropriately. This
universality facilitated our calculations: in the second section
we solved for stochastic dynamics with local competition and
implemented the results to periodic and local competition
systems; in the third section we used Ngg and seg as obtained
numerically for a periodic system and predict the outcome of
its stochastic counterpart.

The generally applicable semianalytic approach of Sec. III
has a few advantageous features. First, for the first order
in s approximation to be valid, the mean and the variance
of Ax must scale with x(1 — x), while if O(s?) corrections
are important this property is lost. Therefore, the first order
approximation is controlled by the numerical result. Second,
the results obtained for a single cycle allow one to predict the
outcome of a whole process that may be arbitrarily long. Here
we used this feature to facilitate the analysis of numerical
simulations, but one may implement the same technique in
the laboratory, predicting the results of long experiments over
many generations from the outcomes of a few short, single
cycle experiments.

When 52 or hi gher contributions are important, the effects
of different environmental states are no longer commutative.
For example, equilibrium competition through t generations
and two /2 periods contribute differently to s> terms. More-
over, global and local competition yield different results [21].
These nonlinear effects are important when equilibrium se-
lection changes sign [20,21,32] and control the efficiency of
bet-hedging strategies like phenotypic switching [33,34].

In previous works some authors [35,36] address variations
in N and s by implementing Haldane’s [37] branching pro-
cess approximation. This method is limited to calculation of
IT (not Ty or Tr), to the regime x < 1, and to beneficial
mutations only. Our technique is not subject to all these
restrictions.

A completely different approach was taken recently by
Wienand and co-workers [31,38], who calculated the proba-
bility of ultimate fixation for a deleterious mutant in a fluctuat-
ing environment (their “pure resource competition scenario”).
Wienand et al. considered a logistic growth model that allows
for one selection parameter s, which reflects the different
duplication rates of the two species. As a result, their model
admits a single dimensionless parameter, the ratio between the
persistence time of the environment t, and the time to fixation
that scales like 1/s. In their work the chance of fixation was
approximated by the integral

I~ / dN TI(N)P,: (N), (24)

where [1(N) is the static environment formula, Eq. (5). P;; (N)
in this formula is the probability to find the system with N
individuals, when the mean time between two environmental
switches is the dimensionless parameter st. We reexamine
this formula and discovered that it works quite nicely not
only for the chance of ultimate fixation IT and negative
selection parameter (the case considered in [31,38]), but also
for positive selection and for the time parameters 74 and 7F.

However, our models admit many time scales (different
selection parameters and the environmental response param-
eter X, together with t) so there is no single dimensionless
parameter. Accordingly, this strategy of replacing 7 in P, (V)
by the dimensionless parameter is not applicable. As a result,
we cannot use the clever ansatz (24) and instead we had to
develop a generic diffusion-based approach. The price we had
to pay for this reliance on the diffusion approximation is that
our theory is limited to the annealed regime where the system
visits each state many times before fixation or extinction. Our
result must be interpreted accordingly. For example, taking ©
to infinity in our formulas is allowed only if it diverges with
N such that 7 remains much larger than t.

Interestingly, once the system reaches the annealed limit
in the model considered by Wienand et al., further decrease
of t does not affect the outcome that sticks to the result at
constant population, where this constant corresponds to the
harmonic mean of the carrying capacities. Our models, with
more degrees of freedom, show quite a rich behavior in the
annealed regime.
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APPENDIX A: DETAILED DESCRIPTION OF THE
PARAMETER SETS USED IN FIG. 2

Figure 2 of the main text is reproduced here with a number
attached to each data set. Here, in Fig. 6, the parameters are
given for each number in Table II.
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0.5 0.5

FIG. 6. II(x) [panels (a) and (d)], T4 (x) [(b) and (e)], and Tr (x) [(c) and (f)] as a function of x for various values of N. The number attached
to each line in panels (a)—(c) corresponds to a different set of parameters, detailed in Table II. Panels (d)—(f) were obtained for exactly the same
set of parameters, except that the direction of selection was reversed (i.e., s — —s, 5, = —5,, and 54 — —5,).

APPENDIX B: NUMERICAL TECHNIQUES

Through this paper we compared the analytic predictions
[Egs. (5), (19), and (20) of the main text, with Ng and Sesr]
with numerical results that were obtained from two types of
numerical calculations. Here we provide some details for the
numerics.

1. Markov matrix inversion

The essence of this technique is explained in Eq. (11) above
and in the following text; for more details and examples see
Appendix A2 of [39] or Appendix A of [40].

A technical problem appeared when we tried to imple-
ment our method to the sharp decline period. If the number
of mutant individuals is picked at random from B,y[r(1 +
s4)] and the number of wild type is picked independently
from B(_yn[r], the total size of the population after the

decline fluctuates around Nr. To implement our exact numeric
technique the total population size after the decline period
must be exactly Nr, so we cannot use two independent bi-
nomial trials.

To overcome this difficulty we assumed that, in a decline
step,

2
n
n— rﬁ ~+ sqrn(l —n/N) + Buw

—n)
N

[r]. B

Therefore,

Pdecline — fo(l—x),r[m _ rNx2 + sdrNX(l — X)]

n—-m

(B2)

When s; << 1 this process has the same mean and variance
of the two independent binomial trial processes, and since the
solution involves only the mean and the variance, it yields the
same outcomes.

TABLE II. Parameters: Fig. 2.

Index Color N T r s Sg Sq

1 Light green 4000 1 0.25 0.01 —0.03 0.05

2 Light brown 2500 1 0.2 0.01 0 0

3 Dark green 1000 5 0.25 0.01 0.0 —0.01
4 Turquoise 1000 0.05 0.5 0.001 0.001 0.001

5 Red 1000 0.1 0.5 —0.002 0.01 —0.0046
6 Purple 2000 0.1 0.5 —0.005 0.000001 —0.00001
7 Yellow 1000 0.05 0.25 0.01 0 —0.01

8 Dark brown 1000 0.05 0.75 0 0.2 —0.2
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2. Monte Carlo simulations

We have implemented direct MC simulations for two rea-
sons. First, the Markov matrix inversion numerics is appli-
cable only in the stochastic case, when per each step there
is a finite probability that the system switches from poor
to rich state or vice versa. To implement the same matrix
technique in the periodic case one must calculate first the
corresponding Floquet operator for equilibrium periods of
duration t. Instead, we implemented direct MC simulations.

Secondly, the Markov matrix technique is applicable only
if the system jumps between two states, one with exactly N
individuals and the other with rN. As we have seen above,
this restriction is incompatible with the realistic modeling of
sharp decline periods, where the chance of each individual
to survive is r, so we implemented an ad hoc binomial
mass function which has the same mean and variance. In
the MC simulation, on the other hand, decline involves two
independent binomial deviates, one for the mutant and one for
the wild type, without any global restriction.

APPENDIX C: DERIVATION OF T, AND Ty
IN STATIC ENVIRONMENT

The formulas derived below are our simplified version of
the solutions presented in [28], p. 430.

1. Calculation of 7,

To calculate T} in static environmental conditions (s and N
are time independent) one writes the backward Kolmogorov
equation (BKE). Starting with n individuals, the time to either
fixation or extinction is 7, = > W, ,,T,, + At, where At is
the time needed for a step (in our case, At = 1/N). The
sum is over all possible destination states [in our case, m €
[n —1,n,n+ 1] and the W’s are the transition probabilities
defined in Eq. (10)]. Accordingly,

1 2 1—5/2
Tn=2x(1—x)< LAy At Tn_l)

1
+[1—2x(1 —x)]IT, + N

In the continuum limit, x =n/N and
T'(x)/N + T"(x)/(2N?),

T+ ~T(x) £

N

T" 4 sNT = ———
ts x1—x)

(623

The boundary conditions are of course 7(0) = T(1) = 0.
Using the integration factor exp(sNx) one may find 7',

T' = Ce™*N* — Ne N E;(sNx) + Ne'N I ™E;(—sN[1 — x]),
(C3)

where we used the exponential integral

o0 —t
Ei(x) = —/ dteT.

X

(C4

Second integration and implementation of the boundary
conditions yields Eq. (19) of the main text with

—2eNyp 4+ e»NE;(—sN) + E;(sN) — 2 ¢*" In(sN)

G =
s(esN —1)
ve(1 +eV) — eN[2 In(sN) — Ei(—sN)] — E;(sN)
G = .
s@N —1)

(©5)

2. Calculation of Tr
To calculate Ty one defines [41] Q = I1 - Tr. Q satisfies

N Ne—sNx
- + )
x(1—x) x(1—x)

Q" +sNQ' = (Co)

with the boundary conditions Q(0) = Q(1) = 0. Except for
the last term, we obtained the same equation as Eq. (C2),
meaning that

/ ! X —SINX
5 3 Q(x):TA(x)—i-Nln(l_x)e N, (C7)
(ChH Accordingly, one obtains Eq. (20) of the main text with
|
_ —3ygeN —3eNIn(sN) — In(sN) + eVEi(—sN) + e*VEi(—sN) + 2Ei(sN) — yg ©8)

G =

eV —1)s
e NByge™™ + ype*N + 2N In(sN) + 2N In(sN) — 2 e*NEi(—sN) — e*VEi(sN) — Ei(sN)]

C =

(esV — 1)s
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