
PHYSICAL REVIEW RESEARCH 2, 023298 (2020)

Dynamical resource theory of quantum coherence
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Decoherence is all around us. Every quantum system that interacts with the environment is doomed to
decohere. While preserving quantum coherence is a major challenge faced in quantum technologies, the
potential benefits for information processing are very promising since coherence can lead to various operational
advantages, such as in quantum algorithms. Hence, much work has been devoted in recent years to quantify the
coherence present in a system. In the present paper, we formulate the quantum resource theory of dynamical
coherence. The underlying physical principle we follow is that the free dynamical objects are those that neither
store nor output coherence. This leads us to identify classical channels as the free elements in this theory.
Consequently, even the quantum identity channel is not free as all physical systems undergo decoherence and
hence, the preservation of coherence should be considered a resource. The maximally coherent channel is then
the quantum Fourier transform because of its abillity to preserve entanglement and generate maximal coherence
from nothing. In our work, we introduce four different types of free superchannels (analogous to MIO, DIO, IO,
and SIO) and discuss in detail two of them, namely, dephasing-covariant incoherent superchannels (DISC),
maximally incoherent superchannels (MISC). The latter consists of all superchannels that do not generate
non-classical channels from classical ones. We quantify dynamical coherence using channel-divergence-based
monotones for MISC and DISC. We show that some of these monotones have operational interpretations as
the exact, the approximate, and the liberal coherence cost of a quantum channel. Moreover, we prove that the
liberal asymptotic cost of a channel is equal to a new type of regularized relative entropy. Finally, we show that
the conversion distance between two channels under MISC and DISC can be computed using a semidefinite
program (SDP).
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I. INTRODUCTION

All physical systems undergo decoherence. It is an irre-
versible process, and it can be viewed as the reduction of a
general quantum state to an incoherent mixed state due to
coupling with the environment [1–3]. Mathematically, deco-
herence is represented as the vanishing of the off-diagonal
terms of a density matrix. It is because of decoherence that
we do not observe quantum mechanical behavior in everyday
macroscopic objects, and in the context of quantum informa-
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tion, it can be viewed as the loss of information from a system
into the environment [4].

During the past two decades, interest in quantum informa-
tion science has shifted towards using quantum mechanical
phenomena (like entanglement, nonlocality, coherence, etc.)
as resources to achieve something that is otherwise not pos-
sible through classical physics (e.g., quantum teleportation)
[5–14]. Quantum resource theories (QRTs) use this resource-
theoretic approach to exploit the operational advantage of
such phenomena and to assess their resource character sys-
tematically [15]. The preservation of quantum coherence is
crucial for building quantum information devices, since the
loss of quantum superposition due to decoherence negates
any nonclassical effect in a quantum system [1,16,17]. Hence,
from a technological perspective, there is increasing inter-
est in developing a resource theory of coherence [15]. In
addition, the resource-theoretic study of quantum coherence
can provide new operational and quantitative insights into
the differences between classical and quantum physics. Some
other examples of quantum resource theories include the
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QRT of entanglement, thermodynamics, magic states, Bell
nonlocality, etc.

Most quantum resource theories are governed by the con-
straints arising from physical or practical settings. These
constraints then lead to the operations that can be freely
performed. For instance, in the static resource theory of
quantum entanglement, for any two spatially separated but
possibly entangled systems, the spatial separation puts the
restriction that only local operations along with classical com-
munications (LOCC) can be performed [5,6,18–20]. Given
this restriction, only separable states can be generated using
LOCC, which makes them the free states of the theory. But
unlike entanglement, whose free states (i.e., separable states)
are determined from the a priori fixed set of operations (i.e.,
LOCC), coherence theory typically begins by fixing a set
of free states. In this case, the free states are the physically
motivated objects, and the free operations are not unique,
only being required to satisfy the basic golden rule of a
QRT, that the free operations should be completely resource
nongenerating (CRNG) [15].

In the static (or state-based) resource theory of quantum
coherence there is a fixed basis, the so-called classical or
incoherent basis, and the set of density matrices that are
diagonal in this basis form the free states of the theory. Such
states are called incoherent states. The free operations are then
some set of quantum channels that map the set of incoherent
states to itself. The most well-studied classes of free opera-
tions are the maximally incoherent operations (MIO), the in-
coherent operations (IO), the dephasing-covariant incoherent
operations (DIO), and the strictly incoherent operations (SIO)
[21–26]. However, all of these operations cost coherence to be
physically implemented in the sense that they do not always
admit a free dilation [23–26]. Therefore, it can be questioned
in what sense these operations are truly “free” [23]. However,
as argued in Ref. [27], detecting the presence of resource in
a given state should be possible using the free operations,
and often this detection requires the consumption of resource.
If such a detection is not possible, then both resource and
nonresource states are equally useful (or useless) to the exper-
imenter since the two cannot be distinguished, thus begging
the question in what sense the former is truly a resource. In
general then, having free operations with a nonzero resource
cost can still lead to an insightful static resource theory.
Indeed, even though MIO/DIO/IO/SIO consume coherence
in their implementation, they are still useful for comparing the
coherence in two different states based on their convertibility
using the given operations. A large amount of fruitful work
has been devoted to developing the theory of static coherence
under these operations [28].

A consequence of these observations is that the principles
for assessing the resourcefulness of quantum states should not
necessarily be applied when assessing the resourcefulness of
quantum operations. In particular, the well-known approaches
to quantifying the resourcefulness of a quantum channel in
terms of its resource cost [29,30] or its resource-generating
power [31–35] can fall short of fully characterizing its utility
in a resource theory. The ability for a channel to generate “re-
source detectability” is typically something not captured by its
resource cost or resource-generation power [27]. Restricting
to the resource theory of coherence, a POVM {Pm}m can

FIG. 1. A cloud quantum computer offers no computational re-
source if the upload and download channels are completely dephas-
ing (D). Channels having the form D ◦ N ◦ D are thus identified as
free dynamical objects in the resource theory studied here.

detect the coherence in a state ρ if Tr[�mρ] �= Tr[�mD(ρ)]
for some outcome m, where D(ρ) =∑d

i=1 |i〉〈i|ρ|i〉〈i| is the
completely dephasing map in the incoherent basis {|i〉}d

i=1.
Since a POVM {Pm}m is unable to detect coherence in some
state if (and only if) it is incoherent, i.e., D(Pm) = Pm for all
m, a channel N fails to generate a detection of coherence if its
dual maps any incoherent POVM to an incoherent POVM:

N † ◦ D(Pm) = D ◦ N † ◦ D(Pm) ∀{Pm}m. (1)

Maps satisfying Eq. (1) have been called detection incoherent
in Ref. [27] and nonactivating in Ref. [36], and any map not
of this form is a dynamical resource from the coherence-
detection perspective. It is not difficult to find channels that
satisfy Eq. (1) while having a nonzero coherence cost and
coherence-generating power (for instance, consider any re-
placement channel that outputs a coherent state for any input).
A full resource theory can then be worked out on the level of
channels in which maps having the form of Eq. (1) are free
and the allowed operations are certain superchannels that act
invariantly on the set of detection incoherent channels [27].

In this paper, we identify another coherence property of
quantum channels that is not captured by coherence cost,
coherence-generating power, or coherence detection. We are
motivated by the interpretation of a quantum channel as a
quantum memory that transmits quantum information from
one point in spacetime to another [37–39]. As a concrete
pragmatic scenario, we consider a cloud quantum computer
in which a client uploads and downloads quantum information
to a quantum computing processor and memory (see Fig. 1).
Ideally, both the upload and download links are noiseless, and
if ρ is the quantum state sent to the cloud computer to perform
operation N , the state returned to the client will be N (ρ).
However, in practice the channels connecting client to cloud
will be noisy. In the extreme cases, a completely dephasing
upload channel has the form N = N ◦ D and can be inter-
preted as a cloud process N in which the coherences of the
input state are not registered and stored, while a completely
dephasing download channel has the form N = D ◦ N and
can be interpreted as a cloud process that fails to output
any coherence. Here we consider the worst-case scenario
in which both channels channels are completely dephasing.
More precisely, we identify a channel NA with input/output
space A0/A1 to be free if

NA = DA1 ◦ NA ◦ DA0 , (2)
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TABLE I. Different classes of free channels in dynamical re-
source theories of coherence.

Channel type Definition

Detection Incoherent [27,36] D ◦ N = D ◦ N ◦ D
Creation Incoherent (MIO) [21] N ◦ D = D ◦ N ◦ D
Detection and Creation D ◦ N = N ◦ D
Incoherent (DIO) [23,26]
Incoherent Storage N = N ◦ D
Incoherent Output N = D ◦ N
Classical [studied here] N = D ◦ N ◦ D

where DA0 and DA1 are completely dephasing channels for
systems A0 and A1 in their respective incoherent bases. Note
the similarity between the dynamical free objects defined in
Eq. (2) and the static free objects in coherence theory. On the
level of states, a density operator ρ is incoherent with respect
to the fixed basis if

ρ = DA1 (ρ). (3)

In fact, this can be seen as a special case of Eq. (2) when
system A0 is one-dimensional.

Channels satisfying Eq. (2) we refer to as classical channels
since their action is described entirely by transition probabili-
ties p(i| j) from incoherent states | j〉〈 j|A0 to incoherent states
|i〉〈i|A1 . We will denote the set of classical channels that take
system A0 to A1 by C(A0 → A1),

NA ∈ C(A0 → A1) ⇐⇒ NA = DA1 ◦ NA ◦ DA0 . (4)

In particular, the identity channel idA0→A1 is not classical
as it does not satisfy the above condition (here, A0 and A1

correspond to the same system in two different temporal or
spatial locations and so, |A0| = |A1|). Physically, the identity
channel corresponds to the preservation of coherence for a
certain given amount of time. Even though we refer to the
our free channels as being “classical,” they are still quantum
objects. That is, they represent physical processes acting on
quantum systems. A summary of different types of channels
relevant to different dynamical QRTs of coherence are given
in Table I.

Why study a resource theory of classical channels? Here
we describe three different motivations. First, some of the
most basic nonclassical channels are true resources for quan-
tum information processing. For instance, diagonal unitaries
such as the T -gate are essential for universal quantum com-
puting. Even the identity channel can be considered as a
resource since all physical systems undergo decoherence, and
the preservation of coherence in a quantum memory (for some
given time or some specified distance [40]) should thus be
considered a resource. While both the T gate and the identity
are detection incoherent, they are identified as dynamical
resources when limiting the free channels to be classical. In
this regard, all the nonclassical channels form the dynami-
cal resources of our theory. The quantum Fourier transform
(QFT) channel that can generate maximal coherence from
free states (due to its unitarity) and preserve entanglement
is the maximally coherent channel. (We have shown this
analytically in Appendix C by proving that the QFT channel
attains the upper bound of log-robustness of coherence of
channels which is a monotone in our resource theory.)

Second, quantum cloud computing scenarios like that de-
picted in Fig. 1 are soon to be physically realized [41]. Having
large amounts of noise between the client and cloud computer
is to be expected, especially as the spatial separation increases.
A highly practical question is then what advantages are pos-
sible in the very noisy regime. From this perspective all but
the completely dephasing upload/download channels should
be deemed as yielding a potential resource for quantum cloud
computing. The dynamical QRT we propose here embodies
this perspective.

Third, a resource theory in which classical channels consti-
tute the free objects is simple enough that entropic resource-
theoretic measures can be analytically derived. Compared to
static resource theories, a plethora of new resource measures
arise in dynamical theories, and the abstract theory of these
measures has been recently developed [27,29,30,35,37,39,42–
51]. Unfortunately, the application of this abstract theory to
concrete resource theories is usually quite challenging. Here
we provide a rare example of a physically motivated resource
theory in which, for example, channel-divergence resource
measures can actually be computed.

It may be challenged that since the set of classical channels
is so small, almost all quantum channels are resources and
thus the resource theory considered here offers little physical
insight into coherence. However, almost all quantum states
are not diagonal in the incoherent basis, and so the same
argument could be alleged toward the static resource theory
of coherence. Arguably some insight into static quantum
coherence has been gained by its recent resource-theoretic
development, and so we initiate an effort to attain a similar
insight into dynamical quantum coherence. With the free
dynamical “states” identified in this resource theory, we now
turn to the free operations. This will be some collection of
superchannels, which are linear maps that map a quantum
channel to another quantum channel even if acting on part
of the channel. A superchannel can be realized using a pre-
and a post-processing channel. The details of supermaps and
superchannels have been presented in preliminary Sec. II B.
For the case of dynamical coherence considered here, the set
of free superchannels must map the set of classical channels
to itself. Since there are many different superchannels hav-
ing this property, which ones should be identified as being
free? In previous works on dynamical coherence [27,35],
the free superchannels were constructed by concatenation of
free channels in series or in parallel. In general, this is the
most common approach for constructing free superchannels
[27,29,30,35,49,52–54]. However, as argued above in the case
of static coherence, a free implementation of the allowed
operations should not necessarily be required to detect or learn
about the resource contained in a state. We now apply this
principle on the level of superchannels.

For example, like MIO in the QRT of static coherence, we
define as one class of free superchannels the set of maximally
incoherent superchannels (MISC), which is the entirety of
all superchannnels that do not generate nonclassical chan-
nels from classical ones. Similar to MIO in the static case,
MISC cannot be implemented without coherence-generating
channels. Indeed, if we take the preprocessing channel to be
any detection-incoherent channel [as defined in Eq. (1)] and
the post-processing channel to be any maximally incoherent
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FIG. 2. MISC.

channel, then we obtain a superchannel that belongs to MISC
but its pre- and post-processing channels are nonclassical.
Nonetheless, much like the argument in static coherence, since
we are interested in quantifying the coherence of a channel
(as opposed to the coherence of a superchannel), we can
use such superchannels as they cannot generate coherence
at the channel level, even if it is tensored with the identity
superchannel(i.e., it is CRNG).

The bulk of this paper is devoted to developing a resource
theory of dynamical coherence based on the ideas just
described. This requires borrowing a few mathematical tools,
like the concept of log-robustness, the concept of channel
divergence, liberal smoothing, etc., from references like
Refs. [44,45] that establish the formal structure of dynamical
QRTs. Since our work presented here is more mathematical
in nature, we would now like to briefly summarize the broad
ideas and problems addressed in various sections of this
article. This will also serve to highlight the main results of
our work.

In Sec. III, we define four different sets of free su-
perchannels: maximally incoherent superchannels (MISC),
dephasing-covariant incoherent superchannels (DISC), inco-
herent superchannels (ISC), and strictly incoherent super-
channel (SISC), which are the analog of MIO, DIO, IO, and
SIO, in the static case. We focus specifically on the QRTs of
MISC and DISC. Similar to how MIO is defined with respect
to the dephasing channel, we define MISC with respect to
dephasing superchannel, � (whose pre- and post-processing
channels are dephasing channels) in the following way:

� ∈ MISC(A → B) ⇐⇒ �B ◦ �A→B ◦ �A = �A→B ◦ �A,

(5)
where MISC(A → B) means that the superchannel � converts
a quantum channel that takes system A0 to A1 to another
quantum channel that takes system B0 to B1. Its illustration
is given in Fig. 2.

DISC is defined analogously to how DIO is defined in static
coherence, i.e.,

� ∈ DISC(A → B) ⇐⇒ �B ◦ �A→B = �A→B ◦ �A, (6)

and its illustration is given in Fig. 3. In our work, we provide
simple characterization of MISC and DISC in terms of their
Choi matrices in Eqs. (76) and (84), respectively.

In Sec. IV, we study the quantification of dynamical co-
herence using techniques from QRT of quantum processes
[35,45,53] and Sec. V is dedicated to the study the inter-
conversion of channels (i.e., simulation of one channel with
another) under MISC and DISC.

In Sec. IV, we first discuss a complete family of monotones
under MISC and DISC, and show that these functions can
be computed using a semidefinite program. A semidefinite
program or an SDP is a subfield of convex optimization. These
optimization problems require the variable to be a symmetric
matrix which is positive-semidefinite. Section IV B discusses
the relative entropies for the quantification of dynamical co-
herence, which are relevant information quantities to consider
for quantum information tasks. Section IV C talks about the
montones that have an operational interpretation when we
discuss the interconversion of quantum channels. We now list
below a few key definitions used in the paper. First, we define
the relative entropy of dynamical coherence under MISC to be
[for any quantum channel NA ∈ CPTP(A0 → A1)]

C(NA) := min
M∈C(A0→A1 )

D(NA‖MA)

:= min
M∈C(A0→A1 )

max
φ∈D(R0A0 )

D
[
NA0→A1

(
φR0A0

)
∥∥MA0→A1

(
φR0A0

)]
, (7)

where C(A0 → A1) denotes the set of all classical channels,
D(R0A0) denotes the set of density matrices on system R0A0,
and D(ρ‖σ ) = Tr[ρ log ρ − ρ log σ ] is the quantum relative
entropy. This monotone is faithful, i.e., zero iff NA ∈ C(A0 →
A1), and does not increase under MISC. For DISC, we define
the relative entropy of dynamical coherence to be the function
D�, given by

D�(NA) := D(NA‖�A[NA]). (8)

We show that it is a faithful monotone under DISC.
Similarly, the log-robustness of dynamical coherence is

defined as

LRC(NA) := min
E∈C(A0→A1 )

Dmax(NA‖EA) (9)

and the dephasing log-robustness of dynamical coherence as

LR�(NA) := Dmax(NA‖�A[NA]) ∀ N ∈ CPTP(A0 → A1),
(10)

FIG. 3. DISC.
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where Dmax(EA‖FA) is the max-relative entropy between two
CP maps EA and FA and is discussed in detail in the prelimi-
nary Sec. II D. We prove that both these quantities are additive
under tensor product and have operational interpretations as
the exact dynamical coherence costs in the MISC and DISC
cases, respectively. We also compute numerically the log-
robustness of coherence for qubit channels and show that in
the qubit case, the Hadamard channel attains the maximum
value.

In Sec. V, the first subsection, Sec. V A, discusses
the general conditions of conversion of one channel
using another. This is done by constructing functions
called conversion distance such that if the conversion
distance from a channel, say NA to another channel,
say MB, is zero, then one can perfectly simulate MB,
using NA and the free superchannels. Moreover, we use
a diamond norm to define the interconversion distance,
dF(NA → MB) := min�∈F(A→B)

1
2 ‖�A→B [NA] − MB‖�

between two quantum channels, NA ∈ CPTP(A0 →
A1) and MB ∈ CPTP(B0 → B1) and show that if the set of
free superchannels F = MISC or DISC, then dF(NA → MB)
can be computed using a semidefinite program (SDP). The
diamond norm [see Eq. (56)] used in the equation of the
interconversion distance is used to measure the closeness
or the distance between two quantum channels. We use this
function to find the interconversion distance in the qubit case,
numerically. We find that a maximally coherent replacement
channel (a channel that outputs the maximally coherent
state φ+

B1
) can be simulated by a Hadamard channel using

the maximally incoherent superchannels. This was expected
because any coherent channel can be simulated using the
maximally coherent channel and the free superchannels. More
interestingly, we also found that we can simulate a Hadamard
channel using two maximal replacement channels. Apart from
these numerical calculations, we show in Appendix C that the
ratio between the log-robustness of coherence of a maximally
coherent channel and the log-robustness of coherence of
maximally coherent replacement channel for any dimension
is always 2, i.e., using two maximally replacement channels
and the free superchannels, we can simulate the maximally
coherent channel which is the quantum Fourier transform
channel. Using this fact that we just need two copies of the
maximal replacement channel (or two maximally coherent
states) to simulate the maximally coherent channel, we can
find the coherence cost of a channel using the maximally
coherent state. Sections V B, V C, and V D discuss various
types of coherence costs of channels. We define the coherence
cost of a channel as the minimum amount of the maximally
coherent state to be used to simulate the given channel. In
Sec. V B, we calculate the exact coherence cost of a channel
under MISC and DISC, i.e., when the free superchannel acts
on the maximally coherent state the output is the desired
channel. Similarly, in Sec. V C, we consider the problem of
finding the approximate coherence cost of a channel (which
we also refer to as the coherence cost of a channel), i.e., the
amount of the maximally coherent state used to convert it
to a channel that is very close to the desired channel. This
is interesting because experimentally it is extremely difficult
to convert one channel into another perfectly. We then, in
Sec. V D, compute the liberal asymptotic cost of dynamical

coherence (which is the dynamical coherence cost of a
channel when the smoothing is “liberal” [45]) under MISC,
and show that it is equal to a variant of the regularized relative
entropy given by

D(∞)
C

(NA) := lim
n→∞

1

n
sup

ϕ∈D(RA0 )
min

E∈C(An
0→An

1 )

× D
[
N⊗n

A0→A1

(
ϕ⊗n

RA0

)∥∥EAn
0→An

1

(
ϕ⊗n

RA0

)]
. (11)

Last, in Sec. V E, we formulate the one-shot distillable
dynamical coherence and compute its value for a few specific
channels.

II. PRELIMINARIES

A. Notations

In this article, we will denote all the dynamical systems
and their corresponding Hilbert spaces by A, B,C, etc., and
all the static systems and their corresponding Hilbert spaces
by A1, B1,C1, etc. In this setting, the notation for a dynamical
system, say A, indicates a pair of systems such that A =
(A0, A1) = (A0 → A1) where A0 and A1 represent the input
and output systems, respectively. The choice of notation for
the static systems is because all the states can be viewed
as channels with trivial input. For a composite system, the
notation like A1B1 will be used to mean A1 ⊗ B1. To represent
the dimension of a system, two vertical lines will be used.
For example, the dimension of system A1 is |A1|. A replica
of the same system would be represented by using a tilde
symbol. For instance, system Ã1 is a replica of system A1, and
system Ã1B̃1 is a replica of system A1B1, i.e., |Ã1| = |A1| and
|Ã1B̃1| = |A1B1|.

The set of bounded operators, Hermitian operators, positive
operators and density matrices on system A1 would be de-
noted by B(A1), Herm(A1), Pos(A1), and D(A1), respectively.
Note that D(A1) ⊂ Pos(A1) ⊂ Herm(A1) ⊂ B(A1). Density
matrices would be represented by lowercase Greek letters ρ,
σ , τ , etc. We will denote the maximally coherent state (or
the plus state) by φ+

B1
for a system B1 and the unnormalized

maximally entangled states by φ+
A1B1

for a bipartite system
A1B1 (note the subscripts in both). The maximally mixed
state for a system B1 will be denoted by uB1 . The set of
all linear maps from B(A0) to B(A1) would be denoted by
L(A0 → A1), the set of all completely positive maps from
B(A0) → B(A1) would be denoted by CP(A0 → A1) and the
set of quantum channels would be denoted by CPTP(A0 →
A1) with CPTP(A0 → A1) ⊂ CP(A0 → A1) ⊂ L(A0 → A1).
Throughout this article, we would use calligraphic letters
like E,F ,M,N , etc., to represent quantum channels. For
simplicity, we will denote a quantum channel with a subscript
A, like EA, to denote an element of CPTP(A0 → A1). The
identity map in L(A0 → A0) will be denoted by idA0 .

The notation L(A → B) will be used to denote the set of
all maps from L(A0 → A1) to L(B0 → B1). Similarly, the set
of all maps from Herm(A0 → A1) to Herm(B0 → B1) would
be denoted by Herm(A → B) ⊂ L(A → B). All linear maps
in L(A → B) and Herm(A → B) are known as supermaps.
We will use capital Greek letters like �,
,�, etc., to denote
supermaps. Square brackets will be used to denote the action
of supermaps on linear maps. For instance, �A→B[EA] is
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a linear map in L(B0 → B1) obtained by the action of a
supermap � ∈ L(A → B) on a map E ∈ L(A0 → A1). The
set of supermaps that map quantum channels to quantum
channels (even when tensored with the identity supermap, i.e.,
even when acting on part of quantum channels) are called
superchannels [44,55] and would be represented by S(A →
B). Identity superchannel in S(A → A) would be denoted by
1A. Last, we reserve the symbol � to represent a dephasing
superchannel. Such a superchannel converts any channel to a
classical channel, and has the dephasing channels as its pre-
and post-processing channels. More detailed description of
supermaps and superchannels is provided in the next subsec-
tion.

B. Supermaps and superchannels

The space L(A0 → A1) is equipped with the following
inner product:

〈NA,MA〉 :=
∑
i, j

〈NA(|i〉〈 j|A0 ),MA(|i〉〈 j|A0 )〉HS (12)

where 〈X,Y 〉HS := Tr[X ∗Y ] is the Hilbert-Schmidt inner
product between the matrices X,Y ∈ B(A1). The above inner
product is independent of the choice of the orthonormal basis
{|i〉〈 j|} ∈ B(A0), and can be expressed in terms of Choi
matrices. The Choi matrix of a channel NA is given by

JN
A0A1

= NÃ0→A1

(
φ+

A0Ã0

)
, (13)

where φ+
A0Ã0

≡ |φ+〉〈φ+|A0Ã0
is an unnormalized maximally

entangled state where |φ+〉A0Ã0
≡∑|A0|

i=1 |i〉A0.|i〉Ã0
. With this

notation, the inner product of two channels NA and MA can
be expressed as the inner product of their Choi matrices, i.e.,

〈NA,MA〉 = 〈JN
A , JM

A

〉 = Tr
[(

JN
A

)∗
JM

A

]
. (14)

The canonical orthonormal basis of L(A) (relative to the above
inner product) is given by {E i jkl

A }, where

E i jkl
A

(
ρA0

) = 〈i|ρA0 | j〉 |k〉〈l|A1 ∀ ρA0 ∈ B(A0). (15)

The space L(A → B) [where A = (A0, A1) and B =
(B0, B1)] is equipped with the following inner product:

〈�A→B,�A→B〉 :=
∑

i, j,k,l

〈
�A→B

[
E i jkl

A

]
,�A→B

[
E i jkl

A

]〉
, (16)

where �A→B,�A→B ∈ L(A → B) and the inner product on
the right-hand side is the inner product between maps as
defined in Eq. (12). The dual of a linear map � ∈ L(A → B)
is a linear map �∗ ∈ L(B → A) with the property

〈NB,�[MA]〉 = 〈�∗[NB],MA〉, (17)

for all MA ∈ L(A) and for all NA ∈ L(B).
Similar to how we can express the inner product of two

maps by the inner product of their Choi matrices, we can
define the inner product of two supermaps as the inner product
of their Choi matrices as well. The Choi matrix of a supermap
�A→B is defined as [44]

J�
AB =

∑
i, j,k,l

JE i jkl

A ⊗ J�[E i jkl ]
B , (18)

where JE i jkl

A and J�[E i jkl ]
B are the Choi matrices of E i jkl

A and
�A→B[E i jkl

A ], respectively. With this notation, the inner prod-
uct between two supermaps �A→B and �A→B can be ex-
pressed as

〈�A→B,�A→B〉 = 〈J�
AB, J�

AB

〉
HS = Tr

[(
J�

AB

)∗
J�

AB

]
. (19)

We now give three alternate expressions of the Choi matrix
of the supermap � ∈ L(A → B) [44]. First, from its defini-
tion, the Choi matrix of a supermap uses the CP map analog
of entangled states which we represent as P+

AÃ
and is given by

P+
AÃ

=
∑

i, j,k,l

E i jkl
A0→A1

⊗ E i jkl
Ã0→Ã1

. (20)

Similar to the properties of the maximally entangled state,
the channel P+

AÃ
satisfies the following relation for any � ∈

L(A → B):

�Ã→B[P+
AÃ

] = �T
B̃→A[P+

AÃ
], (21)

where �T ∈ L(B → A) is the transpose of the supermap �

which is defined by its components,〈
E i jkl

A ,�T
[
E i′ j′k′l ′

B

]〉
= 〈E i′ j′k′l ′

B ,�
[
E i jkl

A

]〉 ∀ i, j, k, l, i′, j′, k′, l ′, (22)

where {E i jkl
A } and {E i′ j′k′l ′

B } are the canonical orthonormal basis
of L(A) and L(B), respectively. Then, the Choi matrix of a
superchannel � ∈ L(A → B) can be expressed as

J�
AB = �[P+

AÃ
]
(
φ+

A0Ã0
⊗ φ+

B0B̃0

)
. (23)

The second way of defining the Choi matrix of a supermap
is by noticing its action on the Choi matrices of channels. Lets
consider a linear map �A→B ∈ L(A → B) such that NB =
�A→B[MA] for some MA ∈ L(A) and NB ∈ L(B). Then the
Choi matrices of MA and NB are related via

JN
B = TrA

[
J�

AB

((
JM

A

)T ⊗ IB
)]

. (24)

From the above equation, the Choi matrix of the supermap �

can be interpreted as the Choi matrix of a linear map R�
A→B

that takes JM
A to JN

B , i.e.,

R�
A→B

(
JM

A

) = JN
B . (25)

For the last representation of the Choi matrix of a su-
permap, we can view it as a linear map Q� : B(A1B0) →
B(A0B1) which is defined by the map satisfying

J�
AB := Q�

Ã1B̃0→A0B1

(
φ+

A1Ã1
⊗ φ+

B0B̃0

)
. (26)

We will see that the three representations play a useful role in
our study of dynamical resource theory of coherence.

Now let us define a superchannel. A superchannel is a
supermap that takes quantum channels to quantum channels
even when tensored with identity supermap [44,55–60]. For
a linear map � ∈ L(A → B), the following are equivalent
[44,55]:

(1) � is a superchannel
(2) The Choi matrix J�

AB � 0 with marginals

J�
A1B0

= IA1B0 ; J�
AB0

= J�
A0B0

⊗ uA1 , (27)

where uA1 = IA1
|A1| is the maximally mixed state for system A1.
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FIG. 4. Realization of a superchannel in terms of pre- and post-
processing channels and its action on an input channel N .

(3) The map R�
A→B in Eq. (25) is CP, and there exists a

unital CP map R�
A0→B0

such that the map R�
A→B0

≡ TrB1 ◦
R�

A→B satisfies

R�
A→B0

= R�
A0→B0

◦ TrA1 . (28)

(4) There exists a Hilbert space E , with |E | � |A0B0|,
and two CPTP maps F ∈ CPTP(B0 → A0E ) and E ∈
CPTP(A1E → B1) such that for all NA ∈ L(A0 → A1),

�[NA] = EA1E→B1 ◦ NA0→A1 ◦ FB0→A0E (29)

(see Fig. 4).

C. QRT of static coherence

Coherence of a state is a basis-dependent concept. Hence,
a basis is fixed first in the resource theory of static coherence.
The density matrices that are diagonal in this basis form the
free states of the theory. These states are also called incoherent
states. Let us denote this set by IA1 ⊂ B(A1) for any system
A1. Hence, all the incoherent density operators ρA1 ∈ IA1 have
the following form:

ρA1 =
|A1|−1∑

i=0

pi|i〉〈i|A1, (30)

with probabilities pi and obey

DA1

(
ρA1

) = ρA1 , (31)

where DA1 is the dephasing channel for the system A1 and is
defined as

DA1 (σA1 ) =
|A1|−1∑

i=0

|i〉〈i|σA1 |i〉〈i| (32)

for any σA1 ∈ D(A1). For multipartite systems, the preferred
basis is the tensor product of the preferred basis of each
subsystem [61–63].

From the golden rule of QRT, the free operations are
the set of channels that take the set of incoherent states to
itself in the complete sense, i.e., they are completely resource
nongenerating. Such operations are called incoherent oper-
ations. In literature, several types of incoherent operations
have been studied. The largest set of incoherent operations is
known as the maximally incoherent operations (MIO) [21].
Other incoherent operations include incoherent operations
(IO) [22], dephasing-covariant incoherent operations (DIO)

[23–26], strictly incoherent operations (SIO) [63,64], phys-
ically incoherent operations (PIO) [23–25], translationally
invariant operations (TIO) [65], genuinely incoherent opera-
tions (GIO) [66], fully incoherent operations (FIO) [66], etc.
In this section, we will briefly discuss about MIO, DIO, IO,
and SIO, as we will be defining four sets of free superchannels
in the next section taking their analogy.

The maximally incoherent operations (or MIO) [21] are de-
fined as the set of CPTP and nonselective maps E ∈ L(A0 →
A1) such that

E (ρA0 ) ∈ IA1 ∀ ρA0 ∈ IA0 . (33)

Let us denote the set of all channels that follow the above
property by MIO(A0 → A1). Any CPTP map MA0→A1 ∈
MIO(A0 → A1) can be characterized using the dephasing
channels in the following way

MA0→A1

∈ MIO(A0 → A1)

⇐⇒ DA1 ◦ MA0→A1 ◦ DA0 = MA0→A1 ◦ DA0 . (34)

Despite the fact that MIO cannot create coherence, these
operations do not have a free dilation, i.e., they cost coherence
to be implemented [23–26].

A smaller class of free operations, the incoherent oper-
ations (or IO) [22] are defined as the set of CPTP maps
E ∈ CPTP(A0 → A1) having a Kraus operator representation
{Kn} such that

KnρA0 K†
n

Tr
[
KnρA0 K†

n
] ∈ IA1 ∀ n and ρA0 ∈ IA0 . (35)

This class of operations also do not have a free dilation
[23–26].

The next class of free operations, the strictly incoherent op-
erations (or SIO) [63,64] are defined as the set of CPTP maps
E ∈ CPTP(A0 → A1) having a Kraus operator representation
{Kn} such that

KnDA0

(
ρA0

)
K†

n = DA1

(
KnρA0 K†

n

) ∀ n. (36)

This class of operations also do not have a free dilation
[23–25].

The last class of free operations that is useful to us is the
dephasing-covariant incoherent operations (or DIO) [23–26].
A CPTP map EA is said to be DIO if

[D, EA] = 0, (37)

which is equivalent to

DA1

[
EA0→A1

(
ρA0

)] = EA0→A1

[
DA0

(
ρA0

)] ∀ ρA0 ∈ D(A0).
(38)

D. Max-relative entropy for channels

The max-relative entropy is defined on a pair (ρ, σ ) with
ρ ∈ D(A1) and σ ∈ Pos(A1) of a state ρ with respect to a
positive operator σ is given by

Dmax(ρ‖σ ) := log min {t : tσ � ρ}, (39)

where the inequality sign means that the difference between
the left-hand side (l.h.s.) and right-hand side (r.h.s.) is a
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positive operator. Similarly for channels, the maximum rel-
ative entropy between two CP maps N and E is given by

Dmax(NA‖EA) := log min {t : tEA � NA}, (40)

where the inequality sign means that the difference between
l.h.s. and r.h.s. is a CP map. Denoting the Choi matrix of EA

by JE
A and that of NA by JN

A , Eq. (40) can be rewritten as

Dmax(NA‖EA) = log min
{
t : tJE

A � JN
A , t � 0

}
. (41)

The channel max-relative entropy [Dmax(NA‖EA)] can be
expressed in a simple closed form as a function of the Choi
matrices of the maps NA and EA [48,67]. This implies that it
is also additive under tensor products. For completeness, we
give the following proof.

Lemma 1. The max-relative entropy for channels is addi-
tive under tensor product, i.e.,

Dmax(NA ⊗ MA′ ‖EA ⊗ FA′ )

= Dmax(NA‖EA) + Dmax(MA′ ‖FA′ ). (42)

Proof. For the proof of the inequality Dmax(NA ⊗
MA′ ‖EA ⊗ FA′ ) � Dmax(NA‖EA) + Dmax(MA′ ‖FA′ ), let

Dmax(NA‖EA) = log{t1 : t1EA � NA}, (43)

Dmax(MA′ ‖FA′ ) = log{t2 : t2FA′ � MA′ }. (44)

We can rewrite Dmax(NA ⊗ MA′ ‖EA ⊗ FA′ ) as

Dmax(NA ⊗ MA′ ‖EA ⊗ FA′ )

= log min{t : t (EA ⊗ FA′ ) � NA ⊗ MA′ }

= log min

{
t :

t

t1t2
(t1EA ⊗ t2FA′ ) � NA ⊗ MA′

}
. (45)

From this, we can clearly see

log min {t : t (EA ⊗ FA′ ) � NA ⊗ MA′ } � log(t1t2). (46)

Hence,

Dmax(NA ⊗ MA′ ‖EA ⊗ FA′ )

� Dmax(NA‖EA) + Dmax(MA′ ‖FA′ ). (47)

For the proof of Dmax(NA ⊗ MA′ ‖EA ⊗ FA′ ) �
Dmax(NA‖EA) + Dmax(MA′ ‖FA′ ), note that Dmax in Eqs. (40)
and (41) can be computed using an SDP and its dual is given
by

Dmax(NA‖EA)

= log max
{
Tr
[
βAJN

A

]
: Tr
[
βAJE

A

]
� 1, βA � 0

}
. (48)

Now let β1
A and β2

A′ be optimal for Dmax(NA‖EA) and
Dmax(MA′ ‖FA′ ), respectively. Therefore,

2Dmax(NA‖EA ) = Tr
[
β1

AJN
A

]
, (49)

2Dmax(MA′ ‖FA′ ) = Tr
[
β2

A′JM
A′
]
. (50)

Using Eq. (48), we can express 2Dmax(NA⊗MA′ ‖EA⊗FA′ ) as

2Dmax(NA⊗MA′ ‖EA⊗FA′ ) = max
{
Tr
[
βAA′

(
JN

A ⊗ JM
A′
)]

: Tr
[
βAA′

(
JE

A ⊗ JF
A′
)]

� 1, βAA′ � 1
}
. (51)

Since the choice of βAA′ = β1
A ⊗ β2

A′ satisfies the above con-
straint, we can say

2Dmax(NA⊗MA′ ‖EA⊗FA′ ) � Tr
[
β1

AJN
A

]
Tr
[
β2

A′JM
A′
]

� 2Dmax(NA‖EA )2Dmax(MA′ ‖FA′ ), (52)

which implies

Dmax(NA ⊗ MA′ ‖EA ⊗ FA′ )

� Dmax(NA‖EA) + Dmax(MA′ ‖FA′ ). (53)

From Eqs. (47) and (53), we can conclude that
the max rel-entropy for channels is additive under
tensor products, i.e., Dmax(NA ⊗ MA′ ‖EA ⊗ FA′ ) =
Dmax(NA‖EA) + Dmax(MA′ ‖FA′ ). �

Last, we would be using ε-smooth max-relative entropy
in our work which is discussed in detail in [30,53,68] and
is defined as (explain the equation below in words) in the
following way:

Dε
max(NA‖MA) := inf

N ′
A∈Bε (NA )

Dmax(N ′
A‖MA), (54)

where

Bε (NA) = {N ′
A ∈ CPTP(A0 → A1) : 1

2‖N ′
A − NA‖� � ε

}
.

(55)

The diamond norm measures the distance between two quan-
tum channels and for any two given channels EA and FA, it is
defined as

‖EA − FA‖� = max
ρ

∥∥EÃ0→A1

(
ρA0Ã0

)− FÃ0→A1

(
ρA0Ã0

)∥∥
1,

(56)
where ‖ · ‖1 represents the trace norm.

III. THE SET OF FREE SUPERCHANNELS

As discussed in the introduction, the set of free channels
in the theory of dynamical coherence are classical channels.
Therefore, a free superchannel consists of a preprocessing
classical channel and a post-processing classical channel (see
Fig. 5). However, such a free superchannel always destroy
completely any resource; that is, it converts all channels (even
coherent ones) into classical channels. This means that the
resource theory is in a sense “degenerate” and no interesting
consequences can be concluded from such a theory.

This above type of degeneracy also occurs with the re-
source theory of coherence in the state domain. There, the
only free operations that are physically consistent are PIO
[23], which are very restricted and cannot provide much in-
sight into the phenomenon of coherence in quantum systems.
Therefore, almost all the enormous amount of work in recent
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FIG. 5. The action of a classical superchannel on a quantum
channel.

years on the QRT of coherence was devoted to the study
of coherence under much larger sets of operations, such as
MIO, DIO, IO, and SIO. While these larger sets of operations
cannot be implemented without a coherence cost, they do not
generate coherence, and as such they can be used for the study
of coherence of states. However, since MIO, DIO, IO, and
SIO, all have a coherence cost, they cannot be used as the
“free operations” in a resource theory that aims to quantify
the coherence of quantum channels.

Instead, for a dynamical QRT of coherence, one can define
free superchannels that form a larger set than classical super-
channels. Similar to what happens in the state domain, there
is a coherent cost to implement such superchannels; however,
they do not generate dynamical coherence, and therefore can
be used in a dynamical resource theory of coherence. As it
happens in the state domain, there are several natural sets of
free superchannels that we can define.

A. Maximally incoherent superchannels (MISC)

In any quantum resource theory, free operations cannot
generate a resource. Taking this principle to the level of su-
perchannels, we define the maximal incoherent superchannels
(MISC) as follows.

Definition. Given two dynamical systems A and B, a su-
perchannel � ∈ S(A → B) is said to be MISC if

�A→B[NA] ∈ C(B0 → B1) ∀NA ∈ C(A0 → A1). (57)

In other words, a superchannel is said to be MISC if for every
input classical channel, the output is also a classical channel.
We denote the set of all superchannels that have the above
property by MISC(A → B).

Remark. Similar to the characterization of MIO chan-
nels with the dephasing channel, the condition that � is
in MISC(A → B) can be characterized with the dephasing
superchannels �A and �B. (A dephasing superchannel can be
realized using dephasing channels as pre- and post-processing
channels.) Specifically, we have that

� ∈ MISC(A → B) ⇐⇒ �B ◦ �A→B ◦ �A = �A→B ◦ �A.

(58)
That is, for any input quantum channel EA ∈ CPTP(A0 →
A1), if a superchannel �A→B obeys the equation on r.h.s.
(�B ◦ �A→B ◦ �A[EA] = �A→B ◦ �A[EA]) then, that super-
channel belongs to MISC and vice-versa. Refer to Fig. 2
for an illustrative diagram. To explain it further, notice that
the dephasing superchannel converts any input to a classical
channel. So, for any input quantum channel, say EA, the
dephasing superchannel �A first converts it to a classical

FIG. 6. An example of realization of maximally incoherent su-
perchannel (MISC).

channel, �A[EA] = NA ∈ C(A0 → A1) which goes as input to
the superchannel �. So for a classical channel NA, the r.h.s.
of the above condition can be written as �B ◦ �A→B[NA] =
�A→B[NA]. The l.h.s. of this equation again has a dephasing
channel which implies that whatever the output is after the
action of the superchannel � on the classical channel N , the
output would still be classical.

As stated earlier, the maximally incoherent superchannel
need not be realized using classical pre- and post-processing
channel. For instance, if we use the detection incoherent
channels (as defined in Ref. [27]) and maximally incoherent
operations (MIO) as the pre- and post-processing channels,
then the resultant superchannel is a maximally incoherent
superchannel or MISC. Refer to Fig. 6 below as an illustration.

To show that the above realization is really a MISC, we
use the fact that an operation EA ∈ CPTP(A0 → A1) is called
detection incoherent operation iff DA1 ◦ EA = DA1 ◦ EA ◦ DA0

[27] where D is the completely dephasing channel for the
given system. Recall that an operation FA ∈ CPTP(A0 → A1)
is called maximally incoherent operation if it follows Eq. (34).
Using these definitions, we can see that the above realization
follows Eq. (58) as illustrated in Fig. 7. One of the key
properties of any resource theory is that the free operations
are “completely free.” This is a physical requirement that
a free channel (or superchannel) can act on a subsystem.
In the following theorem we show that MISC(A → B) is
completely free. That is, in the QRT we consider here, there is
no difference between RNG and completely RNG.

Theorem 1. Let A and B be two dynamical systems, and
let � ∈ MISC(A → B). Then, for any dynamical system R,
the superchannel 1R ⊗ � is free; i.e. 1R ⊗ � ∈ MISC(RA →
RB).

Proof. Let NRA ∈ C(R0A0 → R1A1) be a classical channel
satisfying

�RA[NRA] = �R ⊗ �A[NRA] = NRA. (59)

Then,

�RB ◦ (1R ⊗ �A→B)[NRA]

= �R ⊗ (�B ◦ �A→B)[NRA] (60)

= 1R ⊗ (�B ◦ �A→B)[NRA] (61)

= 1R ⊗ (�B ◦ �A→B ◦ �A)[NRA] (62)

= 1R ⊗ (�A→B ◦ �A)[NRA] (63)

= 1R ⊗ �A→B[NRA], (64)

where the first equality follows from the equality �RA =
�R ⊗ �A, the second equality from the fact that NRA is
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FIG. 7. Illustration to show that this particular realization is a maximally incoherent superchannel (MISC).

classical and in particular �R[NRA] = NRA, the third equality
from the similar equality �A[NRA] = NRA, the fourth equal-
ity from Eq. (58), and the last equality follows again from
�A[NRA] = NRA. Hence, 1R ⊗ �A→B[NRA] is classical so that
1R ⊗ � ∈ MISC(RA → RB). This completes the proof. �

The theorem above indicates that MISC can be viewed as
the set of completely resource nongenerating superchannels in
the theory of dynamical coherence. We next consider the char-
acterization of the set MISC. Recall that in the state domain,
we can determine if a channel EA belongs to MIO(A0 → A1)
simply by checking if all the states EA(|x〉〈x|A0 ) are diagonal
for all x = 1, ..., |A0|. This simplicity of MIO implies that all
state conversions in the single-shot regime can be determined
with SDP. In the channel domain, however, the characteriza-
tion of MISC is slightly more complex.

The Choi matrix of any classical channel NA ∈
CPTP(A0 → A1) can be expressed as a column stochastic
matrix. Recall that the action of this classical channel NA on
any input quantum state ρA0 can be viewed as the action of
this column stochastic matrix on a vector whose components
are the diagonal entries of the input quantum state ρA0 . The
output vector’s components then form the diagonal entries
of the output state and the off-diagonal entries of this output
state are zero. The set of all extreme points of the set of
|A0| × |A1| column stochastic matrices consists of matrices
that in each column has |A0| − 1 zeros and 1 one. Therefore,
the number of extreme points is given by |A0||A1|. This may
give the impression that to check if � ∈ MISC(A0 → A1)
one has to check if the channel �[EA] is classical for all
the |A0||A1| extreme classical channels. Since the number of
conditions is exponential in |A1| it may give the impression
that the problem of deciding if a superchannel belongs to
MISC cannot be solved with SDP. However, we show now
that this problem can be solved with polynomial (in |A0A1|)
number of constraints. It can be seen from the relationship
between the Choi matrix of �A→B and that of �A→B ◦ �A

and �B ◦ �A→B.
Lemma 2. Let A and B be two dynamical systems, � ∈

S(A → B) be a superchannel, and �A ∈ S(A → A) and
�B ∈ S(B → B) be the completely dephasing superchannels.
Then, the Choi matrices of �A→B, �A→B ◦ �A, and �B ◦
�A→B, satisfy the relations

J�◦�A
AB = DA

(
J�

AB

)
and J�B◦�

AB = DB
(
J�

AB

)
. (65)

Proof. The Choi matrix of a superchannel � can be ex-
pressed as the Choi matrix of the bipartite channel �Ã→B[P+

AÃ
]

[44]. Similarly, the Choi matrix of the superchannel � ◦ �A

can be expressed as the Choi matrix of the bipartite channel
�Ã→B ◦ �Ã[P+

AÃ
] and that of the superchannel �B ◦ � as the

Choi matrix of �B ◦ �Ã→B[P+
AÃ

].

Denoting �Ã→B[P+
AÃ

] as NAB, the Choi matrix of the
superchannel �B ◦ �A→B can be written as

J�B◦�
AB = J�B[NAB]

AB (66)

= DB1 ◦ NÃ0B̃0→A1B1
◦ DB̃0

(
φ+

A0Ã0
⊗ φ+

B0B̃0

)
, (67)

where the second equality follows from the definition of the
Choi matrix of a channel. Now using the fact that for a given
channel M ∈ CPTP(R0 → R1), we have MR̃0→R1

|φ+
R0R̃0

〉 =
MT

R̃1→R0
|φ+

R̃1R1
〉, we can rewrite Eq. (67) as

J�B◦�
AB = (DB0 ⊗ DB1

) ◦ NÃ0B̃0→A1B1

(
φ+

A0Ã0
⊗ φ+

B0B̃0

)
(68)

= DB
(
J�

AB

)
. (69)

To find J�◦�A , note that for any superchannel � ∈ S(A → B)
we have [44]

1A ⊗ �Ã→B[P+
AÃ

] = �T
B̃→A ⊗ 1B[P+

B̃B
]. (70)

From this, it can be calculated that for the dephasing super-
channel, �T = �. Therefore, we have

�Ã→B ◦ �Ã[P+
AÃ

] = �Ã→B ◦ �T
A [P+

AÃ
] (71)

= �Ã→B ◦ �A[P+
AÃ

] (72)

= �A ◦ �Ã→B[P+
AÃ

] (73)

= �A ◦ NAB, (74)

where the third equality arises because the superchannels �

and � are acting on different subsystems (notice the subscripts
with and without tilde). So, the Choi matrix of �Ã→B ◦
�Ã[P+

AÃ
] is equal to finding the Choi matrix of �A ◦ NAB.

From the calculation of the Choi matrix of �B ◦ NAB above,
we can conclude that

J�◦�A
AB = DA

(
J�

AB

)
. (75)

�
With this lemma at hand we get the following characteri-

zation for the set MISC(A → B).
Theorem 2. Let A and B be two dynamical systems, and

� ∈ S(A → B) be a superchannel. Then, � ∈ MISC(A →
B) if and only if

DAB
(
J�

AB

) = DA ⊗ idB
(
J�

AB

)
. (76)

Proof. The characterization of MISC in Eq. (58) can be
equivalently written in terms of the Choi matrices of the
channels in l.h.s. and r.h.s. Using this property and the lemma
above we have that

J�B◦�◦�A
AB = J�◦�A

AB = DA ⊗ idB
(
J�

AB

)
. (77)

Similarly, using both results from Lemma 2, we can write

J�B◦�◦�A
AB = idA ⊗ DB

(
J�◦�A

AB

) = DAB
(
J�

AB

)
. (78)
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Equating Eqs. (77) and (78), we get

DAB
(
J�

AB

) = DA ⊗ idB
(
J�

AB

)
. (79)

This completes the proof. �
Note that for any Hermitian matrix ZAB ∈ Herm(AB) we

have

Tr
[(
DAB

(
J�

AB

)− DA ⊗ idB
(
J�

AB

))
ZAB
]

= Tr
[
J�

AB

(
DAB(ZAB) − DA ⊗ idB(ZAB)

)]
. (80)

Therefore, the theorem above implies that � ∈ MISC(A →
B) if and only if

Tr
[
J�

ABXAB
] = 0 ∀XAB ∈ KMISC, (81)

where KMISC is a subspace of Herm(AB) defined as

KMISC := {DAB(ZAB) − DA ⊗ idB(ZAB) : ZAB ∈ Herm(AB)}.
(82)

Since the dimension of the subspace KMISC is |AB|(|B| − 1),
it is sufficient to restrict XAB in Eq. (81) to the |AB|(|B| − 1)
elements of some fixed basis of KMISC. Note also that the con-
dition above is equivalent to the inclusion J�

AB ∈ K⊥
MISC, where

K⊥
MISC is the orthogonal complement of KMISC in Herm(AB).

B. Dephasing incoherent superchannels (DISC)

In the QRT of static coherence, the dephasing channel
plays a major role, and in particular, leading to the defini-
tion of DIO. Here, the dephasing superchannel defined by
�A[NA] = DA1 ◦ NA ◦ DA0 plays a similar role, as we have
already seen in the definition of MISC. We use here the de-
phasing superchannel to define the set of dephasing incoherent
superchannels.

Definition. Let A and B be two dynamical systems, and let
� ∈ S(A → B) be a superchannel. Then, � is said to be a
dephasing incoherent superchannel (DISC) if and only if

�B ◦ �A→B = �A→B ◦ �A. (83)

Moreover, the set of all such superchannels that satisfy the
above relation is denoted by DISC(A → B).

Clearly, from its definition DISC(A → B) is a subset of
MISC(A → B), and in particular, it is completely free. Now,
from Lemma 2 it follows that a superchannel � ∈ DISC(A →
B) if and only if

DA ⊗ idB
(
J�

AB

) = idA ⊗ DB
(
J�

AB

)
. (84)

Moreover, similar to the considerations above, since the map
DA ⊗ idB − idA ⊗ DB is self adjoint, it follows that � ∈
DISC(A → B) if and only if

Tr
[
J�

ABYAB
] = 0 ∀YAB ∈ KDISC, (85)

where

KDISC := {idA ⊗ DB(ZAB) − DA ⊗ idB(ZAB)

: ZAB ∈ Herm(AB)}. (86)

Since the dimension of the subspace KDISC is |AB|(|A| + |B| −
1) it is sufficient to restrict YAB in Eq. (85) to the |AB|(|A| +
|B| − 1) elements of some fixed basis of KDISC. Note also

that the condition above is equivalent to the inclusion J�
AB ∈

K⊥
DISC, where K⊥

DISC is the orthogonal complement of KDISC in
Herm(AB).

C. Incoherent superchannels (ISC) and strictly
incoherent superchannels (SISC)

Any superchannel � ∈ S(A → B) has a Kraus decompo-
sition, i.e., an operator sum representation,

�A→B =
n∑

x=1

�x
A→B, (87)

where the Choi matrix of each �x
A→B ∈ L(A → B) has rank

one. We use this property to define two other sets of free
operations that we call incoherent superchannels (ISC) and
strictly incoherent superchannels (SISC).

Definition. Let A and B be two dynamical systems, and let
� ∈ S(A → B) be a superchannel. Then, � is said to be an
incoherent superchannel (ISC) if and only if it has a Kraus
decomposition {�x

A→B}n
x=1 as in Eq. (87) that satisfies

�B ◦ �x
A→B ◦ �A = �x

A→B ◦ �A ∀ x = 1, . . . , n. (88)

Moreover, the set of all such superchannels that satisfy the
above relation is denoted by ISC(A → B).

Definition. Let A and B be two dynamical systems, and let
� ∈ S(A → B) be a superchannel. Then, � is said to be a
strictly incoherent superchannel (SISC) if and only if it has a
Kraus decomposition {�x

A→B}n
x=1 as in Eq. (87) that satisfies

�B ◦ �x
A→B = �x

A→B ◦ �A ∀ x = 1, . . . , n. (89)

Moreover, the set of all such superchannels that satisfy the
above relation is denoted by SISC(A → B).

IV. QUANTIFICATION OF DYNAMICAL COHERENCE

Before we discuss the conversion of one quantum channel
into another using free superchannels, it is important to talk
quantitatively about the coherence present in quantum chan-
nels. This is done by defining functions on quantum channels
that map a channel to a real number. A function is called a
monotone if it follows the condition of monotonicity which
means that the value of the channel should not increase after
the channel is acted upon by a free superchannel. To make this
function meaningful one more condition is added such that the
free channels have the least value. This condition is faithful-
ness, i.e., the value of such a function should be zero iff the
input is a free channel (in our case, the value should be zero
for all classical channels). In the problem of interconversion
of two resources (using the free superchannels), a resource
monotone is specifically useful to tell if one resource can or
cannot be converted to another.

Many types of monotones have been defined in literature
[15], including general distance-based monotones, entropic
monotones, etc. In this section we find the set of monotones
to quantify the coherence present in quantum channels. Our
work is confined to the case of MISC and DISC. We have
divided this section into three subsections. The first subsection
gives a complete family of monotones, i.e., to check for the
convertibility of one channel to another, it is sufficient to
check if the value obtained from all the monotones of this set
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is greater for one channel than other. The second subsection
is based on the relative entropies for channels that form a
monotone under the free superchannels of our theory. We
show that, of the six relative entropies for channels mentioned
in [45], only three relative entropies form a monotone in the
case of dynamical coherence. The last subsection is dedicated
to the monotones that have an operational interpretation in the
resource theory of dynamical coherence, i.e., these monotones
become meaningful when we find the coherence cost of a
channel. One such monotone is known as the log-robustness
of coherence of quantum channels. We show that this function
can be formulated as an SDP. Using this SDP formulation, we
find the upper bound of the log-robustness of coherence of
channels in Appendix C and show that it is achieved by the
quantum Fourier transform channel.

A. A complete family of monotones

In recent works [35,42,44,47,49,51,53,69], various re-
source measures have been formulated for a general resource
theory of channels and for the dynamical resource theory
of entanglement. A complete set of monotones for both the
general resource theory of channels and the resource theory
of entanglement of channels was presented in Ref. [51]. For
the conversion of one quantum channel to another using the
free superchannels of the theory, it is sufficient to check
if all the monotones of this (complete) set acting on one
channel are greater than the other. It was shown that the
complete family of monotones for the dynamical resource
theory of NPT entanglement can be computed using an SDP
(which otherwise for LOCC-based entanglement is known to
be NP-hard [70]). In general, for a given quantum resource
theory, it is not obvious if these functions are computable.
In our work, we find a complete set of monotones under the
free superchannels MISC and DISC, and show that for the
dynamical resource theory of coherence, these functions can
be computed using an SDP.

For a general convex quantum resource theory, we can
define the following complete set of nonnegative resource
measures using any quantum channel PB ∈ CPTP(B0 → B1)
such that these measures take the value zero on free channels
[51],

GP (NA)

:= max
�∈FREE(A→B)

〈PB,�[NA]〉
− max

MB∈G(B0→B1 )
〈PB,MB〉 ∀ NA ∈ CPTP(A0 → A1),

(90)

where G(B0 → B1) denotes the set of free channels for
the given resource theory. Recall that using the free super-
channels, one can transform a free channel to any other
free channel. Therefore, using some free superchannel � ∈
FREE(A → B), a given free channel NA can be converted
to the optimal free channel M′

B that gives the maximum
value for the inner product 〈PB,M′

B〉 and, hence, the value
of GP (NA) is zero for all free channels.

To construct the complete set of resource monotones for
the dynamical resource theory of coherence, we first de-
fine a function fP (MA) using a quantum channel PB ∈

CPTP(B0 → B1) and superchannel � ∈ F(A → B) where
F = MISC or DISC, as

fP (MA)

= max
�∈F(A→B)

〈PB,�[MB]〉 ∀ MA ∈ CPTP(A0 → A1).

(91)

Note that Eq. (91) can be expressed as an SDP for a given
channel MA ∈ CPTP(A0 → A1) in the following manner:

fP (MA) = max
{
Tr
[
J�

AB

(
(JM

A )T ⊗ JP
B

)]}
, (92)

where the maximum is subject to

J�
AB � 0, J�

AB0
= J�

A0B0
⊗ uA1 , J�

A1B0
= IA1B0 , (93)

Tr
[
J�

ABX i
AB

] = 0 ∀ i = 1, . . . , n. (94)

The conditions in Eq. (93) are the conditions on the Choi
matrix of the linear map � to be a superchannel. The set of
matrices {X i

AB}n
i=1 in Eq. (94) denote the basis of the subspace

KF as defined in Eqs. (82) and (86) for F = MISC and DISC,
respectively. Accordingly, for MISC, n ≡ |AB|(|B| − 1) and
for DISC, n ≡ |AB|(|A| + |B| − 1).

Similar to Eq. (90) and using any channel PB ∈
CPTP(B0 → B1), we can define the complete family of mono-
tones for dynamical coherence in the following way:

GP (NA) := max Tr
[
J�

AB

((
JN

A

)T ⊗ JP
B

)]− max Tr
[
JM

B JP
B

]
,

(95)

where we have expressed the inner product between channels
as the inner product of the Choi matrices of the respective
channels. The first maximum in Eq. (95) is subject to the con-
straints given in Eqs. (93) and (94) and the second maximum
is over all classical channels MB ∈ C(B0 → B1). The family
{GP} over all P ∈ CPTP(B0 → B1) form a complete set of
monotones, that is, there exists a � ∈ F(A → B) where F =
MISC or DISC, that can convert a channel EA ∈ CPTP(A0 →
A1) to another channel FB ∈ CPTP(B0 → B1) if and only if

GP (EA) � GP (FB). (96)

Remark 1. For the qubit case we calculated the values of
the monotone GP (NA) under MISC for a few channels (or
a class of channels) by plugging into CVX. This required
construction of 48 basis elements [Eq. (82)]. The value of
GP (NA) for all classical channels is 0 for all PB. We found
that for a fixed PB, the value of all unitary channels is the
same and they attain the maximum value of 2 when PB is the
identity channel. If we fix PB to be the identity channel, then
we see that for a replacement channel that outputs a plus state
(|+〉 = 1√

n

∑n−1
i=0 |i〉), the value of Gid(NA) is equal to 2. For

any other replacement channel and any depolarizing channel,
Gid(NA) is less than 2.

Remark 2. Since there are an infinite number of monotones
in the above complete set GP , it might give an impression that
the conversion of a channel NA ∈ CPTP(A0 → A1) to another
channel MB ∈ CPTP(B0 → B1) using a superchannel � ∈
MISC or DISC, is very hard or impractical, but in Sec. V
we show that the problem of interconversion of two quantum
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channels using a superchannel belonging to MISC or DISC
can be computed using an SDP.

B. Relative entropies of dynamical coherence

A measure of distinguishability or divergence D(·‖·) of
two states is a function D : D(A1) × D(B1) → R such that
it obeys data-processing inequality and is zero on the set
of free states. One example of such a function is Rényi
divergence [71]. Its two generalizations which have been
given an operational interpretation are “Sandwiched” Rényi
relative entropy (also known as quantum Rényi divergence)
and Petz-Rényi relative entropy. “Sandwiched” Rényi relative
entropy (or quantum Rényi divergence) was introduced and
discussed in Refs. [72–75]. It is based on a parameter α ∈
[0,∞] and reduces to the relative von Neumann entropy for
α = 1, to the relative max entropy for α = ∞, and closely
related to the fidelity Tr(σ 1/2ρσ 1/2)

1/2
for α = 1/2, where ρ

and σ are two density matrices which are input to the entropy
function. Also, the “Sandwiched” Rényi relative entropy is a
monotone under quantum operations, i.e., satisfies the data-
processing inequality for α ∈ [1/2,∞] [75]. The Petz-Rényi
relative entropy was introduced and studied in Refs. [76–78]
and it finds an operational interpretation in the context of
quantum hypothesis testing. Therefore, these two are relevant
information quantities to consider for quantum information
theory. Other generalizations of the Rényi divergence and the
quantum Rényi relative entropies are discussed in Ref. [79]
but their operational meaning is not clear.

For the channel case (i.e., dynamical resources), the rel-
ative entropies and divergence have been generalized from
the state case (i.e., static resources) and were discussed

in Refs. [35,44,45,48,53,80,81]. The channel divergence for
two given channels NA,MA ∈ CPTP(A0 → A1) is defined as
Refs. [44,80,81],

D(NA‖MA) = max
φ∈D(R0A0 )

D
[
NA0→A1

(
φR0A0

)∥∥MA0→A1

(
φR0A0

)]
,

(97)
where D(ρ‖σ ) = Tr[ρ log ρ − ρ log σ ] is the relative entropy.
We take the relative entropies listed in [45] and find the
following three relative entropies to be clearly forming a
monotone under MISC

C1(NA) = min
M∈C(A0→A1 )

max
φ∈D(R0A0 )

× D
[
NA0→A1

(
φR0A0

)∥∥MA0→A1

(
φR0A0

)]
, (98)

C2(NA) = min
M∈C(A0→A1 )

sup
ρ,σ∈D(R0A0 )

D
[
NA
(
ρR0A0

)∥∥MA
(
σR0A0

)]
− D

(
ρR0A0

∥∥σR0A0

)
, (99)

C3(NA) = max
ρ∈D(R0A0 )

D
[
NA
(
ρR0A0

)]− D
(
ρR0A0

)
, (100)

where D(ρ) = minD(σ )=σ D(ρ‖σ ). The proof that the above
relative entropies form a monotone under MISC is similar
to the proof for relative entropies forming a monotone for
a general resource theory of quantum processes as given in
Ref. [45] and are quite straightforward. For completeness,
we give the proof of monotonicity for one of the above
monotones C1 and the proof for the other two follows likewise.
Let �A→B ∈ MISC(A → B). Then the relative entropy of the
channel �[NA] ∈ CPTP(B0 → B1) for some channel NA ∈
CPTP(A → B) can be written as

C1(�[NA]) = min
M′∈C(B0→B1 )

max
φ∈D(R0B0 )

D
[
�A→B[NA]

(
φR0B0

)∥∥M′
B0→B1

(
φR0B0

)]
� min

M∈C(A0→A1 )
max

φ∈D(R0B0 )
D
[
�A→B[NA]

(
φR0B0

)∥∥�A→B[MA]
(
φR0B0

)]
� min

M∈C(A0→A1 )
max

ρ∈D(R0A0 )
D
[
NA
(
ρR0A0

)∥∥MA
(
ρR0A0

)]
= C1(NA), (101)

where the first inequality follows because the relative entropy
of the channel �[NA] is the minimum taken over all classical
channels in system B and the second inequality follows be-
cause of the data-processing inequality. Note that the relative
entropies C1(NA) and C2(NA) are faithful, i.e., they take the
value zero iff NA ∈ C(A0 → A1). The relative entropy C3(NA)
is a state-based relative entropy and involves no optimization
over the classical channels.

In Ref. [45], there are three other relative entropies that are
defined similar to C1, C2, and C3, where the optimization is
taken over the set of free states instead of all density matrices.
There, the proof relies on the preprocessing channel to be
completely resource nongenerating. Since, we cannot make
this assumption (because in the dynamical resource theory of
quantum coherence, such a channel would completely destroy
any resource), hence, we cannot say anything about the mono-

tonicity of the relative entropies where the optimization is over
the incoherent states.

To define the resource monotones for DISC, we first define
the function D� : CPTP → R+ as follows for any channel
divergence D:

D�(NA) := D(NA‖�A[NA]), (102)

and for the choice D = Dmax we call it the dephasing log-
robustness and denote it by D� ≡ LR�.

Lemma 3. The function D� is a dynamical resource mono-
tones under DISC.

Proof. Lets � ∈ DISC(A → B) and N ∈ CPTP(A0 →
A1). Then,

D�(�A→B[NA]) = D(�A→B[NA]‖�B ◦ �A→B[NA])

= D(�A→B[NA]‖�A→B ◦ �A[NA])
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� D(NA‖�A[NA])

= D�(NA). (103)

This completes the proof. �
For the case that D(ρ‖σ ) = Tr[ρ log ρ] − Tr[ρ log σ ] is

the relative entropy, we call D� the dephasing relative entropy
of coherence.

C. Operational monotones

This subsection is dedicated to the discussion of the op-
erationally relevant monotones for the resource theory of
dynamical coherence. The monotones discussed here are op-
erationally meaningful in a sense that these monotones are
useful for calculating various costs of coherent channels.
Hence, this subsection can be treated as a preliminary to the
next section where we talk about the interconversion of two
coherent channels. We will see that the monotones which are
based on Dmax, like various types of log-robustness, play a
major role in the calculation of coherence cost of channels.

The log-robustness of entanglement for states was intro-
duced and investigated in [82–85]. It was shown that it is an
entanglement monotone and its operational significance for
the manipulation of entanglement was also discussed. The
log-robustness of coherence for states was similarly defined
in [86] and it was shown that it is a measure of coherence. For
a state ρA1 ∈ D(A1), it is defined as follows:

LRI
(
ρA1

)
:= min

σA1 ∈IA1

Dmax
(
ρA1

∥∥σA1

)
, (104)

where IA1 is the set of incoherent states for system A1. The
log-robustness of channels for a general resource theory was
introduced and discussed in Refs. [35,45,53]. It was shown
that the log-robustness of channels satisfy necessary condi-
tions for the resource measure of channels, i.e., it is both
faithful (means, it gives the value zero for free channels, and is
greater than zero otherwise) and a monotone under tensoring,
and left and right compositions with free channels [53]. Like-
wise, we can define the log-robustness of coherence of chan-
nels, which is a monotone under MISC, in the following way:

LRC(NA) := min
E∈C(A0→A1 )

Dmax(NA‖EA), (105)

where the minimum is taken over all the classical channels.
The proof that it is a monotone is very similar to the proof
presented for the relative entropy C1 [see Eq. (101)] and
follows easily using the data-processing inequality. Besides,
it can be computed with an SDP. To see why, note that

LRC(NA) = log min{t � 0 : tEA � NA,

�A[EA] = EA, E ∈ CPTP(A0 → A1)}, (106)

where the first condition arises from the definition of Dmax for
channels, and the second and third arise from the requirement
of E to be a classical channel. Denoting by ωA the Choi matrix
of tEA we get that (recall that we are using u to denote the
maximally mixed state)

LRC(NA) = log min

{
1

|A0|Tr[ωA] : ωA � JN
A , DA[ωA] = ωA,

ωA0 = Tr[ωA]uA0 , ωA � 0

}
, (107)

which is an SDP optimization problem. As such it has a dual
given by (see the Appendix for details)

LRC(NA) = log max
{
Tr
[
ηAJN

A

]
: DA(ηA) = DA0

(
ηA0

)⊗ uA1 ,

DA1 [ηA1 ] = IA1 , ηA � 0
}
. (108)

Remark. For the qubit case, we calculated the log-
robustness of coherence of few channels. For any classical
channel, the log-robustness of coherence is equal to 0. For the
identity channel it is equal to 1. For any replacement channel
and depolarizing channel, its value is between 0 and 1. If
the replacement channel is the one that outputs the plus state
(|+〉 = 1√

n

∑n−1
i=0 |i〉), then the log-robustness is equal to 1. For

any unitary channel, we found that the value of log-robustness
of coherence is between 1 and 2. We found that the value
obtained for the Hadamard gate is the maximum and is equal
to 2. In these examples, we can see that a quantum channel
can have the ability to preserve and/or generate coherence.
For instance, replacement channels cannot preserve coherence
but can only generate coherence whereas the identity channel
can only preserve coherence but not generate coherence. The
unitary channels can do both, i.e., they can preserve coherence
as well as they can generate coherence. This fact explains the
higher value of the log-robustness of coherence of the unitary
channels as compared to the replacement channels. Also, as
calculated in Appendix C, the quantum Fourier transform
channel has the maximum value for this monotone. This can
be explained from the fact that a QFT channel can generate the
maximally coherent state from a free state and has the ability
to preserve entanglement. (Note that the replacement channels
are entanglement-breaking channels.)

Next, we show the additivity of log-robustness of coher-
ence of channels under tensor products. This result is useful
when we go to the asymptotic limit.

Lemma 4. The log-robustness of coherence of a channel is
additive under tensor products, i.e.,

LRC(NA ⊗ MA′ ) = LRC(NA) + LRC(MA′ ). (109)

Proof. For the proof of the inequality LRC(NA ⊗ MA′ ) �
LRC(NA) + LRC(MA′ ), let LRC(NA) = Dmax(NA||EA) and
LRC(MA′ ) = Dmax(MA′ ||EA′ ) for some optimal EA and EA′ .
Then, we have

LRC(NA ⊗ MA′ ) � Dmax(NA ⊗ MA′ ||EA ⊗ EA′ ) (110)

= Dmax(NA||EA) + Dmax(MA′ ||EA′ ) (111)

= LRC(NA) + LRC(MA′ ). (112)

The first inequality follows trivially from the definition of log-
robustness and the second equality follows from the additivity
of Dmax.

To prove the converse, i.e., LRC(NA ⊗ MA′ ) �
LRC(NA) + LRC(MA′ ), we will use the dual of the
log-robustness as given in Eq. (108). Let ηA and ηA′ be
the optimal matrices for the dual of LRC(NA) and LRC(MA′ ),
respectively. Then we have

2LRC(NA ) = Tr
[
ηAJNA

A

]
, 2LRC(MA′ ) = Tr

[
ηA′JMA′

A′
]
. (113)
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Since, LRC(NA ⊗ MA′ ) = log max Tr[η′
AA′ (J

NA⊗MA′
AA′ )] where

the maximum is over all η′
AA′ � 0, satisfying

DAA′ (η′
AA′ ) = DA0A′

0

(
η′

A0A′
0

)⊗ uA1A′
1
, DA1A′

1

[
η′

A1A′
1

] = IA1A′
1
.

(114)
For the particular choice of ηAA′ = ηA ⊗ ηA′ , it is easy to verify
that it satisfies the above conditions and therefore for this
choice of ηAA′ we have

2LRC(NA⊗MA′ ) � Tr
[
ηAA′

(
JNA⊗MA′

AA′
)] = 2LRC(NA )2LRC(MA′ ).

(115)

In the above equation, the first inequality follows from
the dual of the log-robustness of channels and the sec-
ond equality is because ηA and ηA′ are optimal for
LRC(NA) and LRC(MA′ ). Hence, the above equation
implies

LRC(NA ⊗ MA′ ) � LRC(NA) + LRC(MA′ ). (116)

This establishes the additivity of the log-robustness of
a quantum channel, i.e., LRC(NA ⊗ MA′ ) = LRC(NA) +
LRC(MA′ ). �

Another type of log-robustness, the dephasing log-
robustness, which will be used to find the exact cost under
DISC, is defined by

LR�(NA) := Dmax(NA‖�A[NA]) ∀ N ∈ CPTP(A0 → A1).
(117)

The dephasing log-robustness is a monotone under DISC
which is easy to show using Eq. (83) and data-processing in-
equality. While the log-robustness behaves monotonically un-
der any superchannel in MISC, the dephasing log-robustness
is in general not monotonic under MISC. Instead, it is mono-
tonic under DISC.

Lemma 5. For any N ∈ CPTP(A0 → A1) and � ∈
DISC(A → B) we have

LR�(�A→B[NA]) � LR�(NA). (118)

Proof.

LR�(�A→B[NA]) = Dmax(�A→B[NA]‖�A ◦ �A→B[NA])

= Dmax(�A→B[NA]‖�A→B ◦ �A[NA])

� Dmax(NA‖�A[NA])

= LR�(NA), (119)

where the second equality follows from the commutativity of
� and �, and the inequality follows from the data processing
inequality of the channel divergence Dmax [44]. �

We prove here that the dephasing log-robustness is also
additive.

Lemma 6. Let N ∈ CPTP(A0 → A1) and M ∈
CPTP(B0 → B1) be two channels. Then,

LR�(NA ⊗ MB) = LR�(NA) + LR�(MB). (120)

Proof.

LR�(NA ⊗ MB)

= Dmax(NA ⊗ MB‖�AB[NA ⊗ MB])

= Dmax(NA ⊗ MB‖�A[NA] ⊗ �B[MB])

= Dmax(NA‖�A[NA])

+ Dmax(MB‖�B[MB])

= LR�(NA) + LR�(MB), (121)

where the third equality follows from the additivity of Dmax

for channels. �
We also define smoothed log-robustness and asymptotic

log-robustness which would be useful in finding the approxi-
mate and liberal coherence costs of a channel whose meanings
are discussed in detail in the next section. From Ref. [45],
we know that smoothing maintains monotonicity. Thus, the
smoothed log-robustness which is defined below is also a
monotone

LRε
C(NA) := min

N ′∈Bε (NA )
LRC(N ′

A), (122)

where the minima is taken over the log-robustness of all
channels that lie within the ε-ball given by the diamond norm.
This ε-ball, Bε (NA), around the channel NA is defined as

Bε (NA) = {N ′ ∈ CPTP(A0 → A1) : 1
2‖N ′

A − NA‖� � ε
}
.

(123)

To obtain the asymptotic log-robustness, we first regularize
the smoothed log-robustness and then take the limit ε → 0+.
Thus, the asymptotic log-robustness is defined as

LR∞
C (NA) = lim

ε→0+
lim inf

n→∞
1

n
LRε

C

(
N⊗n

A

)
. (124)

Similarly we define the smoothed dephasing log-
robustness and asymptotic dephasing log-robustness, both of
which are monotones under DISC. The smoothed dephasing
log-robustness is defined by

LRε
�(NA) := min

N ′∈Bε (NA )
LR�(N ′

A) (125)

and the asymptotic dephasing log-robustness as

LR∞
� (NA) = lim

ε→0+
lim

n→∞
1

n
LRε

�

(
N⊗n

A

)
. (126)

Now we define the log-robustness with “liberal” smoothing
[45] which we find to have an operational meaning. Let

LRε,ϕ

C
(NA) := min

N ′∈Bϕ
ε (NA )

LRC(N ′
A), (127)

where

Bϕ
ε (NA) := {N ′ ∈ CP(A0 → A1) :∥∥N ′

A

(
ϕRA0

)− NA
(
ϕRA0

)∥∥
1 � ε

}
, (128)

and consider its “liberal” smoothing

LRε
C(NA) := max

ϕ∈D(RA0 )
LRε,ϕ

C
(NA). (129)

Define also

LRε,n
C

(NA) := 1

n
max

ϕ∈D(RA0 )
LRε,ϕ⊗n

C

(
N⊗n

A

)
(130)

and

LR(∞)
C

(NA) := lim
ε→0+

lim inf
n→∞ LRε,n

C
(NA). (131)
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In Ref. [45], a new type of regularized relative entropy of a
resource given by

D(∞)
C

(NA) := lim
n→∞

1

n
sup

ϕ∈D(RA0 )
min

E∈C(An
0→An

1 )

× D
[
N⊗n

A0→A1

(
ϕ⊗n

RA0

)∥∥EAn
0→An

1

(
ϕ⊗n

RA0

)]
. (132)

The quantity D(∞)
C

(NA) behaves monotonically under com-
pletely RNG superchannels and satisfies the following asymp-
totic equipartition property (AEP),

LR(∞)
C

(NA) = D(∞)
C

(NA). (133)

V. INTERCONVERSIONS

As the name suggests, in this section we discuss the
conversion of one channel into another. Conversion of one
resource to another using the set of free operations is one
of the major tasks of resource theory [15]. This conversion
can be of various types like single shot (exact or approxi-
mate) interconversion, asymptotic interconversion, catalytic
interconversion, etc. Addressing this leads to two very in-
teresting questions. The first is the problem of finding the
cost, i.e., minimum amount of maximal resource necessary
to output a given resource using free operations, and the
second is distillation which is the inverse problem of cost, i.e.,
asking how much maximal resource can be extracted from
a given resource using the free operations. We answer these
questions in this section for the resource theory of dynamical
coherence. Note that since we just require two copies of
the maximally coherent replacement channel to simulate the
maximally coherent channel (refer to Appendix C), we use the
maximally coherent replacement channel to compute the cost
and distillation.

This section is broadly divided into three parts namely, the
conversion distance of coherence, cost of a channel, and the
problem of distilling an arbitrary channel into pure-state co-
herence. The first part is discussed in Sec. V A where we take
up the task of conversion of one channel into another using
MISC or DISC. For this task, we form a function called the
conversion distance, and claim that if the conversion distance
is very small, then, we can simulate one channel using the
other with the help of free superchannels. We show that for
the dynamical resource theory of coherence, the conversion
distance dF(NA → MB) for two given channels NA and MB

can be computed with an SDP. We then take up the problem
of finding various costs of coherence which are discussed
in Secs. V B, V C, and V D. In these three subsections, we
calculate the exact, approximate and “liberal” coherence cost
of a channel and show that the “liberal” cost of coherence is
equal to a variant of the regularized relative entropy. In the last
Sec. V E, we calculate one-shot distillable rates and end the
subsection by providing examples of the distillable rates for
partial depolarizing channel and partial dephasing channel.

A. The conversion distance of coherence

The conversion distance from a channel NA ∈
CPTP(A0 → A1) to a channel MB ∈ CPTP(B0 → B1) is
defined as (with F standing for either one of the four

operations MISC, DISC, ISC, and SISC)

dF(NA → MB) := min
�∈F(A→B)

1
2‖�A→B[NA] − MB‖�.

(134)
Recall that the diamond norm is used to measure the distance
of two quantum channels and is defined in Eq. (56). Therefore,
if the conversion distance from a channel NA to another
channel MB is very small, then �A→B[NA] is very close to
MB, which implies that NA can be used to simulate MB

using free superchannels. We now show that for F = MISC
or F = DISC, this conversion distance can be computed with
a semidefinite program (SDP).

Theorem 3. Let {X i
AB}n

i=1 be the basis of the subspace KF

as defined in (82) where n ≡ |AB|(|B| − 1) for the case F =
MISC and n ≡ |AB|(|A| + |B| − 1) for the case F = DISC.
Let αAB denote the Choi matrix of the superchannel �. Then,
dF(NA → MB), can be expressed as the following SDP:

dF(NA → MB) = min λ, (135)

where the minimum is subject to

λIB0 � ωB0 , ωB � 0, αAB � 0,

ωB � TrA
[
αAB

((
JN

A

)T ⊗ IB

)]− JM
B , (136)

αAB0 = αA0B0 ⊗ uA1 , αA1B0 = IA1B0 , (137)

Tr
[
αABX i

AB

] = 0 ∀ i = 1, . . . , n. (138)

Proof. The proof of the above theorem depends on the fact
that the diamond norm can be expressed as an SDP [87] and
is presented in detail in Appendix B. �

Remark 1. The code to calculate the interconversion dis-
tance from one channel to another is given in Ref. [88].

Remark 2. For MISC, the interconversion distance from
the Hadamard channel to the maximal replacement channel
(i.e., the channel that outputs a maximally coherent state φ+

B1

for any input) is 0, i.e., it is possible to construct a protocol
to convert the Hadamard channel to maximal replacement
channel using the maximally incoherent superchannel. We
also found that the interconversion distance from two maximal
replacement channels to a Hadamard channel is also 0 which
was expected from the results of Appendix C.

B. Exact asymptotic coherence cost

The exact single-shot coherence cost of a channel NA ∈
CPTP(A0 → A1) is defined as the log of the minimum dimen-
sion of the maximally coherent state which can be used to
convert to the given channel using a free superchannel and
can be expressed as

C0
F(NA) := min

{
log |R1| : ∃� ∈ F(R1 → A) s.t.

�R1→A
[
φ+

R1

] = NA
}
, (139)

where the zero on the superscript of C on l.h.s. means that the
conversion is exact. In our work, we consider the two cases of
F = MISC and F = DISC. The exact asymptotic coherence
cost is defined by regularizing the exact single-shot cost which
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is given as

Cexact
F (NA) = lim

n→∞
1

n
C0
F

(
N⊗n

A

)
. (140)

We now compute this exact coherence cost for both MISC and
DISC.

1. Exact cost under MISC

Theorem 4. The exact coherence cost of a channel NA ∈
CPTP(A0 → A1) under F = MISC is given by

Cexact
F (NA) = LRC(NA). (141)

Proof. To prove the above theorem we first prove that

LRC(NA) � C0
F(NA) � LRC(NA) + 1, (142)

and then we regularize the above condition and use the
additivity of LRC(NA) to find the exact asymptotic cost of a
channel.

For the proof of LRC(N ) � C0
F

(N ), let � ∈ MISC(R1 →
A) be an optimal superchannel satisfying �R1→A[φ+

R1
] = NA

such that C0
MISC(NA) = log2 |R1|. Therefore,

LRC(NA) = Dmax(NA

∥∥EA) (143)

= Dmax
(
�R1→A

[
φ+

R1

]∥∥EA
)

(144)

� Dmax
(
�R1→A

[
φ+

R1

]∥∥�R1→A
[
D
(
φ+

R1

)])
(145)

� Dmax
(
φ+

R1

∥∥D(φ+
R1

))
(146)

= log2 |R1| (147)

= C0
F(NA), (148)

where the first equality follows from the definition of log-
robustness of a channel [see Eq. (105)] for some optimal
classical channel EA. The first inequality above arises because
we have chosen the optimal EA such that Dmax(NA‖EA) is
minimum. The second inequality, i.e., Eq. (146) follows from
the data-processing inequality. The equality in Eq. (147) can
be be easily computed following Eq. (39).

To prove C0
F

(NA) � LRC(NA) + 1, first let

LRC(NA) = Dmax(NA ‖ EA) = log2 t (149)

for some optimal t satisfying tEA � NA. Also, let m = �t�,
so that mEA � NA still holds. Let R1 be a static system such
that |R1| = m. We now define the following supermap. For
any state ρR1 ∈ D(R1),

�R1→A
[
ρR1

]
:= m

m − 1

(
Tr
[
φ+

R1
ρR1

]− 1

m

)
NA

+ m

m − 1

(
1 − Tr

[
φ+

R1
ρR1

])
EA. (150)

Note that the supermap �R1→A ∈ F(R1 → A) as it can be
expressed as

�R1→A
[
ρR1

]
:= Tr

[
φ+

R1
ρR1

]
NA

+ 1

m − 1

(
1 − Tr

[
φ+

R1
ρR1

])
(mEA − NA),

(151)

where mEA − NA � 0. Also observe that �R1→A(φ+
R1

) = NA.
Hence, such a superchannel implies that

C0
F(NA) = log2 m = log2�t� � log2 t + 1 = LRC(NA) + 1.

(152)

This completes the proof of LRC(NA) � C0
F

(NA) �
LRC(NA) + 1.

Therefore, using regularization and the additivity of
LRC(NA), we can conclude

Cexact
F (NA) = LRC(NA). (153)

�

2. Exact cost under DISC

The dephasing log-robustness is given by Eq. (117),

LR�(NA) := Dmax(NA‖�A[NA]) ∀ N ∈ CPTP(A0 → A1).
(154)

By definition we have LRC(NA) � LR�(NA).
Theorem 5. The exact coherence cost of a channel NA ∈

CPTP(A0 → A1) under F = DISC is given by

Cexact
F (NA) = LR�(NA). (155)

Proof. We first prove that

LR�(NA) � C0
DISC(NA) � LR�(NA) + 1, (156)

and then we use the additivity of LR�.
For the proof of LR�(NA) � C0

DISC(NA), let � ∈
DISC(R1 → A) be an optimal superchannel satisfying
�R1→A[φ+

R1
] = NA such that C0

DISC(NA) = log2 |R1|. There-
fore,

LR�(NA) = Dmax(NA‖�A[NA]) (157)

= Dmax
(
�R1→A

[
φ+

R1

]∥∥�A ◦ �R1→A
[
φ+

R1

])
(158)

= Dmax
(
�R1→A

[
φ+

R1

]∥∥�R1→A
[
DR1

(
φ+

R1

)])
(159)

� Dmax
(
φ+

R1

∥∥DR1

(
φ+

R1

))
(160)

= log2 |R1| (161)

= C0
DISC(NA). (162)

For the proof of C0
DISC(NA) � LR�(NA) + 1, first let

LR�(NA) = Dmax(NA

∥∥�A[NA]) = log t (163)

for some optimal t that satisfies t�[N ] � N . Also, let m =
�t� so that m�[N ] � N still holds, and let R1 be a static
system with dimension |R1| = m. We now construct the fol-
lowing supermap. For any state ρ ∈ D(R1),

�R1→A
[
ρR1

]
:= m

m − 1

(
Tr
[
φ+

R1
ρR1

]− 1

m

)
NA

+ m

m − 1

(
1 − Tr

[
φ+

R1
ρR1

])
�A[NA]. (164)

The supermap �R1→A has several properties. First, it sat-
isfies �A ◦ �R1→A = �R1→A ◦ DR1 . Indeed, for any density
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matrix ρ ∈ D(R1) we have

�A ◦ �R1→A
[
ρR1

] = m

m − 1

(
Tr
[
φ+

R1
ρR1

]− 1

m

)
�A[NA]

+ m

m − 1

(
1 − Tr

[
φ+

R1
ρR1

])
�A[NA]

= �A[NA], (165)

and

�R1→A
[
DR1 (ρR1 )

]
= m

m − 1

(
Tr
[
φ+

R1
DR1

(
ρR1

)]− 1

m

)
NA

+ m

m − 1

(
1 − Tr

[
φ+

R1
DR1

(
ρR1

)])
�A[NA]

= m

m − 1

(
1

m
− 1

m

)
NA + m

m − 1

(
1 − 1

m

)
�A[NA]

= �A[NA], (166)

so that �A ◦ �R1→A = �R1→A ◦ DR1 . Second, �R1→A is a su-
perchannel since the above map can be expressed as

�R1→A
[
ρR1

]
:= Tr

[
φ+

R1
ρR1

]
NA + 1

m − 1

(
1 − Tr

[
φ+

R1
ρR1

])
× (m�A[NA] − NA) (167)

and m�A[NA] − NA � 0. Hence, � ∈ DISC(R1 → A). Fi-
nally, observe that �R1→A[φ+

R1
] = NA. Hence, the existence of

such � implies that

C0
DISC(NA) � log m = log�t� � log t + 1 = LR�(NA) + 1.

(168)
This completes the proof. �

C. Coherence cost of a channel

To find the approximate coherence cost (we will call it
coherence cost) of any N ∈ CPTP(A0 → A1), we first define
the smoothed coherence cost as

Cε
F(NA) := min

N ′∈Bε (N )
C0
F

(
N ′

A

)
, (169)

where

Bε (NA) = {N ′ ∈ CPTP(A0 → A1) : 1
2‖N ′

A − NA‖� � ε
}
.

(170)

The coherence cost of the channel NA is then given by the
regularization of the smoothed coherence cost and taking the
limit of ε → 0+

CF(NA) = lim
ε→0+

lim
n→∞

1

n
Cε
F

(
N⊗n

A

)
. (171)

Below we find the coherence cost under MISC and DISC.

1. The cost under MISC

Theorem 6. For F = MISC,

CF(NA) = LR∞
C (NA). (172)

Proof. First, note that from Eq. (142) it follows that

LRε
C(NA) � Cε

F(NA) � LRε
C(NA) + 1. (173)

Hence,

1

n
LRε

C

(
N⊗n

A

)
� 1

n
Cε
F(N⊗n

A ) � 1

n
LRε

C

(
N⊗n

A

)+ 1

n
, (174)

and the limit n → ∞ concludes the proof. �

2. The cost under DISC

Theorem 7. For F = DISC,

CF(NA) = LR∞
� (NA). (175)

Proof. First, note that from Eq. (156) it follows that

LRε
�(NA) � Cε

F(NA) � LRε
�(NA) + 1. (176)

Hence,

1

n
LRε

�

(
N⊗n

A

)
� 1

n
Cε
F

(
N⊗n

A

)
� 1

n
LRε

�

(
N⊗n

A

)+ 1

n
, (177)

and the limit n → ∞ concludes the proof. �
The lack of AEP for channels motivates us to consider a

more liberal method for smoothing.

D. Liberal coherence cost of a channel

We define the liberal one-shot ε-approximate coherence-
cost as

Cε
F(NA) := max

ϕ∈D(RA0 )
Cε,ϕ

F
(NA), (178)

where

Cε,ϕ

F
(NA) := min

N ′
A∈Bϕ

ε (NA )
C0
F(N ′

A), (179)

and

Bϕ
ε (NA) := {N ′ ∈ CP(A0 → A1) : ‖N ′

A

(
ϕRA0

)
− NA

(
ϕRA0

)‖1 � ε
}
. (180)

The liberal coherence cost is defined by regularizing the
liberal one-shot ε-approximate coherence cost and then taking
the limit of ε → 0+ as follows:

C(∞)
F

(NA) := lim
ε→0+

lim
n→∞ max

ϕ∈D(RA)

1

n
Cε,ϕ⊗n

F
(N⊗n)

= lim
ε→0+

lim
n→∞ max

ϕ∈D(RA)
min

N ′∈Bϕ⊗n
ε (N⊗n )

1

n
C0
F(N ′

An→Bn ).

(181)
One can interpret the above cost in the following way. For any
pure state ϕ ∈ D(RA0) (with |R| = |A0| and ϕ is full Schmidt
rank) we define a ϕ-norm

‖EA‖ϕ := ∥∥EA
(
ϕRA0

)∥∥
1. (182)

Then the liberal cost can also be expressed as

C(∞)
F

(NA) = lim
ε→0+

lim
n→∞ max

ϕ∈D(RA0 )
min

‖N ′−N⊗n‖ϕ⊗n �ε

1

n
C0
F(N ′

An→Bn ).

(183)

That is, we smooth with the ϕ⊗n
RA0

-norm and then maximizing
over all such norms.
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Theorem 8. For F = MISC,

C(∞)
F

(NA) = D(∞)
C

(NA). (184)

Proof. From Eq. (142) it follows that that for any fixed ϕ ∈
D(RA0) we have

LRε,ϕ

C
(NA) � Cε,ϕ

F
(NA) � LRε,ϕ

C
(NA) + 1. (185)

From Eq. (185) it follows that C(∞)
F

(NA) = LR(∞)
C

(NA) so that
the theorem follows from the AEP relation Eq. (133). �

E. One-shot distillable coherence

We now consider the problem of distilling an arbitrary
channel into pure-state coherence using MISC and DISC. Let
� ∈ F(A → B1) where F = MISC or DISC, such that for any
input channel EA, the output is a state preparation channel
FB ∈ CPTP(B0 → B1) where B0 is a trivial system. For ε > 0
and n = |B1|, define

DISTILLε
F(NA) = log max

{
n :

〈
φ+

B1

∣∣�[NA]
∣∣φ+

B1

〉
> 1 − ε,

� ∈ F(A → B1)
}
, (186)

which represents the largest coherence attainable by MISC or
DISC within ε-error. For all N ∈ CPTP(A0 → A1), we can
write〈

φ+
B1

∣∣�[N ]
∣∣φ+

B1

〉 = 〈φ+
B1

∣∣(TrA
[
J�

AB1

((
JN

A

)T ⊗ IB1

)])∣∣φ+
B1

〉
= Tr

[
J�

AB1

((
JN

A

)T ⊗ φ+
B1

)]
. (187)

Note that the space of all operators that are invariant under
any permutation in the classical basis, is a linear combination
of maximally mixed state, uA1 and maximally coherent state,
φ+

A1
. Any operator is permutation invariant if

�x σ �†
x = σ ∀ permutation matrices �x. (188)

The permutation-twirling operation can be expressed in the
following way (see, for example, Ref. [89]):

T (·) = 1

m!

∑
x

�x(·)�†
x ∀ �x, (189)

where m is the dimension of the input system. Observe that
the output of the above permutation-twirling operation on any
state is permutation invariant and so can always be represented
as a linear combination of φ+

A1
and uA1 . Hence, we can express

the second equality in Eq. (187) as

Tr
[
J�

AB1

((
JN

A

)T ⊗ φ+
B1

)]
= Tr

[
J�

AB1

((
JN

A

)T ⊗ T
(
φ+

B1

))]
= Tr

[(
idA ⊗ T

(
J�

AB1

))((
JN

A

)T ⊗ φ+
B1

)]
, (190)

where the second equality follows from the fact that T is self-
adjoint in the Hilbert-Schmidt inner product. Hence, without

loss of generality we can express the Choi matrix J�
AB1

in
following way

J�
AB1

= αA ⊗ φ+
B1

+ 1

n − 1
βA ⊗ (IB1 − φ+

B1

)
, (191)

where n = |B1| and αA, βA ∈ Herm(A) such that J�
AB1

� 0,
J�

A1
= IA1 , and J�

A = J�
A0

⊗ uA1 . In terms of αA and βA, we can
write these conditions as

αA, βa � 0, (192)

Tr(αA + βA) = |A1|, (193)

αA + βA = TrA1 (αA + βA) ⊗ uA1 . (194)

From the MISC condition of DAB(J�
AB) = DA ⊗ idB(J�

AB), we
get

D(αA)(n − 1) = D(βA). (195)

Defining βA = ρA0 ⊗ IA1 − αA where ρA0 = 1
|A1|TrA1 (αA +

βA). Since Tr[ρA0 ] = 1, ρA0 is a density matrix. So, we can
rewrite these constraints as

αA � 0, (196)

ρA0 ⊗ IA1 � αA, (197)

1

n
D
(
ρA0

)⊗ IA1 = D(αA), (198)

ρA0 ∈ D(A0). (199)

We can also consider imposing the additional DISC constraint
of idA ⊗ DB(J�

AB) = DA ⊗ idB(J�
AB) which gives

αA + βA = D(αA + βA). (200)

This amounts to replacing Eq. (197) with the condition

nD(αA) � αA. (201)

Next notice that we can always write αA = DA(αA) + γA

for some γA with zeros on the diagonal. Then, since
TrA1 [(JN

A )
T

] = IA0 , we can write

Tr
[
αA
(
JN

A

)T ]
= Tr

[(
DA
(
αA
)+ γA

)(
JN

A

)T ]
= Tr

[
DA
(
αA
)(

JN
A

)T ]+ Tr
[
γA
(
JN

A

)T ]
= Tr

[(
1

n
D(ρA0 ) ⊗ IA1

)(
JN

A

)T]+ Tr
[
γA
(
JN

A

)T ]
= 1

n
+ Tr

[
γA
(
JN

A

)T ]
. (202)

Hence, we have the following one-shot distillable rates.
Theorem 9. For F = MISC or DISC,

DISTILLε
F(N ) = log max n, (203)

such that

Tr
[
γA
(
JN

A

)T ] � 1 − 1

n
− ε, (204)

DA(γA) = 0, (205)

ρA0 ∈ D(A0), (206)
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[
ρA0 − 1

n
DA0

(
ρA0

)]⊗ IA1 � γA � −1

n
DA0

(
ρA0

)⊗ IA1 (specifically for F = MISC), (207)

n − 1

n
DA0 (ρA0 ) ⊗ IA1 � γA � −1

n
DA0

(
ρA0

)⊗ IA1 (specifically for F = DISC). (208)

Remark 1. The first condition in the above theorem,
i.e., Eq. (204) follows by substituting Eq. (191) in
Tr[J�

AB1
((JN

A )T ⊗ φ+
B1

)] and using the fact that Tr[φ+
A1

φ+
A1

] =
Tr[φ+

A1
], and then plugging the result in Eq. (202). The l.h.s.

of Eq. (207) is a consequence of Eq. (197) and (198) whereas
the r.h.s. is a consequence of Eqs. (196) and (198). Similarly,
for DISC, the l.h.s. of Eq. (208) is a consequence of Eqs. (198)
and (201) whereas the r.h.s. of Eq. (208) is a consequence of
Eqs. (196) and (198).

Remark 2. Note that Dε
MISC(N ) = Dε

DISC(N ) when |A0| =
1, and their common rate matches that given in Refs. [90,91]
for distilling coherence from static resources (i.e., states).
However for channels, the MISC and DISC distillable coher-
ence can possibly differ. We leave it as an open problem to
find channels that have such a property.

Example 1. Let us consider the partially depolarizing
channel N dep

λ,d : B(A1) → B(A1),

N dep
λ,d (χ ) = λχ + (1 − λ)Tr[χ ]uA1 , (209)

where d = |A1|. The Choi matrix of this channel is given by

JN dep

A1Ã1
= λφ+

A1Ã1
+ 1 − λ

d
IA1Ã1

. (210)

We exploit the symmetry by noting that both φ+
A1Ã1

and IA1Ã1

are U ∗ ⊗ U invariant. We restrict our twirling to an average
over the group of incoherent unitaries, i.e., each U involves
a permutation and/or a change in relative phase. Note that
dephasing commutes with this operation so if Eq. (198) holds
before the twirl, it will also hold after. The action of twirling
will convert ρA1 ⊗ IÃ1

→ uA1 ⊗ IÃ1
while converting αA into

an operator of the form

αA1Ã1
= p

∑
i �= j

|i j〉〈i j| + q
∑

i

|ii〉〈ii| + r
∑
i �= j

|ii〉〈 j j|

= p
∑
i �= j

|i j〉〈i j| + (q − r)
∑

i

|ii〉〈ii| + rφ+
A1Ã1

. (211)

The eigenvalues of αA1Ã1
are easily seen to be {p, q − r, q −

r + rd}, and so Eqs. (196) and (197) require that p, q − r � 0
and p, q − r + rd � 1

d . From Eq. (198), we must also have
p = q = 1

nd . With these constraints in place, our goal is to
maximize n such that

Tr
[
αT

A1Ã1
JN dep

A1Ã1

] = (1 − λ)
(d − 1)

nd
+
(

1

nd
− r

)
× [λd + (1 − λ)] + r[λd2 + (1 − λ)].

(212)

This function is strictly increasing w.r.t. r, and the constraints
necessitate that r � min{ n−1

d−1
1

nd , 1
nd }. So when n � d , we take

r = n−1
d−1

1
nd and obtain

Tr
[
αT

A1Ã1
JN dep

A1Ã1

] = (1 − λ)
d − 1

nd
+ d − n

nd (d − 1)
[λd + (1 − λ)]

+ n − 1

nd (d − 1)
[λd2 + (1 − λ)]

= (1 − λ)
1

n
+ λ. (213)

Notice that when λ = 1 we obtain Tr[αT
A1Ã1

JN dep

A1Ã1
] = 1. This

says that log n bits can be perfectly distilled, which is ex-
pected: the free superchannel just consists of inputting φ+

A1Ã1

into the given channel and then as post-processing performs
a MIO map that converts φ+

A1Ã1
into φ+

B1
. However, if n � d ,

then we take r = 1
nd and Eq. (213) becomes

Tr
[
αT

A1Ã1
JN dep

A1Ã1

] = (1 − λ)
1

n
+ d

n
λ. (214)

Notice also that in this case our optimizer ρA0 is completely
dephased, which means our solution for MISC is also the
solution for DISC. We summarize our findings as follows.

Lemma 7. For the partial depolarizing channel N dep
λ,d and

0 � ε < 1,

DISTILLε
MISC

(
N dep

λ,d

) = DISTILLε
DISC

(
N dep

λ,d

)
=
{

log
⌊

1−λ
1−λ−ε

⌋
if ε < (d−1)(1−λ)

d

log
⌊

1−λ+λd
1−ε

⌋
if ε � (d−1)(1−λ)

d

.

(215)

Example 2. We next consider the partial dephasing chan-
nel N�

λ,d : B(A1) → B(A1),

N�
λ,d (χ ) = λχ + (1 − λ)D(χ ). (216)

The Choi matrix of this channel is given by

JN dep

A1Ã1
= λφ+

A1Ã1
+ (1 − λ)

d∑
i=1

|ii〉〈ii|. (217)

By the same argument as before, we can assume without loss
of generality that αA has the form

αA1Ã1
= p

∑
i �= j

|i j〉〈i j| + (q − r)
∑

i

|ii〉〈ii| + rφ+
A1Ã1

. (218)

However, this time the fidelity with φ+
B1

is given by

Tr
[
αT

A1Ã1
JN�

A1Ã1

] =
(

1

nd
− r

)
d + r[λd2 + (1 − λ)d]. (219)
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Again, the constraints of the problem demand r �
min{ n−1

d−1
1

nd , 1
nd }. When n � d , it holds that

Tr
[
αT

A1Ã1
JN�

A1Ã1

] = d − n

n(d − 1)
+ n − 1

n(d − 1)
[λd + (1 − λ)]

= 1 + (n − 1)λ

n
. (220)

However, when n � d , we take r = 1
nd to obtain

Tr
[
αT

A1Ã1
JN�

A1Ã1

] = λd + (1 − λ)

n
. (221)

These are the same maximum fidelities as the depolarizing
channel, and we therefore have the following conclusion.

Lemma 8. For the partial dephasing channel N�
λ,d and 0 �

ε < 1,

DISTILLε
MISC

(
N�

λ,d

) = DISTILLε
DISC

(
N�

λ,d

)
=
{

log
⌊

1−λ
1−λ−ε

⌋
if ε < (d−1)(1−λ)

d

log
⌊

1−λ+λd
1−ε

⌋
if ε � (d−1)(1−λ)

d

.

(222)

VI. OUTLOOK AND CONCLUSIONS

In this paper, we have developed the resource theory of
dynamical coherence using the classical channels as free
channels. In previous works on the quantum resource theory
of dynamical coherence [27,29,30,35,43], the free channels
were taken to be the free operations from the QRT of static
coherence, like MIO, IO, etc. However, if we consider dis-
tributed quantum computing scenarios, then one encounters
channels with noisy pre- and post-processing links. In this
case, a natural candidate for free channels are those with com-
pletely dephasing pre- and post- processing. What emerges
is a resource theory in which the free objects are the set
of classical channels. Note that in such a theory, the T-gate
(crucial for quantum computation) is not free and even the
quantum identity channel is not free as the preservation of
coherence should be considered a resource.

Similar to the static QRT of coherence where the free oper-
ations can have a nonfree dilation, in our work on dynamical
QRT of coherence, the free superchannels can have a nonfree
realization. That means, the pre- and post-processing channels
need not be classical. The only requirement on the set of free
superchannels comes from the golden rule of QRT. This im-
plies that the free superchannels must never generate coherent
channels when the input channels are classical, even when
tensored with identity, i.e., even when the free superchannel
acts on a part of the input classical channel. This enlargement
of the set of free superchannels is necessary for a meaningful
resource theory of coherence. Take for example the set of free
superchannels which can be realized only by classical pre- and
post-processing channels. In this case, the output channel is
always classical irrespective of the input channel, eliminating
all the advantage offered by a quantum channel. Thus, such
free superchannels cannot be used to study the resource theory
of quantum coherence.

In Sec. III, we start by defining four sets of free super-
channels. We name them as maximally incoherent superchan-
nels (MISC), dephasing-covariant incoherent superchannels

(DISC), incoherent superchannels (ISC), and strictly inco-
herent superchannels (SISC). We show that the set of free
superchannels in the dynamical resource theory of coherence
can be characterized analogous to the free channels in the
static resource theory of coherence. We also show that MISC
and DISC can be characterized just on the basis of their Choi
matrices and dephasing channels which is given in Eqs. (76)
and (84) for MISC and DISC, respectively.

Section IV then deals with the quantification of dynamical
coherence. In Sec. IV A, we find the complete set of mono-
tones for MISC and DISC. That means, to see if we can
convert from one quantum channel to another, it is sufficient
to check if all the monotones of this (complete) set acting
on one channel are greater than the other. A complete family
of monotones for a general resource theory of processes was
presented in [51]. It is, in general, a hard problem to compute
these functions and in some cases like LOCC-based entan-
glement, it is even NP-hard. We show that for the resource
theory of dynamical coherence, these functions (under MISC
and DISC) can be computed using an SDP [Eq. (92)]. Next,
in Sec. IV B, we also find monotones that are based on the
relative entropy. In Ref. [45], Gour and Winter showed that
the generalization of relative entropy from states to channels
is not unique. In their work, they listed six relative entropies
as measures of dynamical resources. They also introduced a
new type of smoothing called “liberal” smoothing. We show
in Sec. IV B that out of these relative entropies defined in
Ref. [45], three relative entropies clearly form a monotone
under MISC. For the case of DISC, we show that the channel
divergence for a given channel and the same channel acted
on by the dephasing superchannel forms a resource mono-
tone under DISC. We then discuss various types of channel
log-robustness of coherence, which are based on the max-
relative entropy of channels Dmax, and we show that it can
be computed with an SDP [Eq. (107)]. For the qubit case,
we calculated the log-robustness of coherence for classical
channels, identity channel, replacement channel, depolarizing
channels, and unitary channels. We also show that the log-
robustness of coherence of channels is additive under tensor
product (Lemma 4). We then define a “liberally” smoothed
log-robustness of coherence which when regularized is equal
to a regularized relative entropy introduced in [45] (i.e., it
satisfies AEP), and behaves monotonically under completely
resource nongenerating superchannels..

The next section is dedicated to the problem of interconver-
sion of one resource into another. In Sec. V A, we define a con-
version distance between two channels [Eq. (134)]. A given
channel can be simulated using another if the interconversion
distance is very small. For MISC and DISC, we showed that
the interconversion distance can be computed using an SDP
(Theorem 3). We then calculated the exact, asymptotic, and
liberal cost of coherence of a channel and found that the liberal
cost of coherence is equal to a variant of regularized relative
entropy. Last, in this section, we also define the one-shot
distillable coherence for MISC and DISC, and calculate it for
partial depolarizing and partial dephasing channels.

Due to the realization of a superchannel as a pre- and post-
processing channel, there are added complexities in the gen-
eralization of a quantum resource theory of states to channels
as mentioned in Ref. [51]. In our case, we see that the simple
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generalizations do not work. For example, while calculating
coherence costs, we had to introduce the concept of liberal
cost (based on liberal smoothing as defined in Ref. [45]) to
show it to be equal to a relative entropy.

Clearly, our work is just a start of a whole unexplored
field of the quantum resource theory of dynamical coherence.
For instance, one can solve for interconversion, cost, etc., for
ISC and SISC. One can define more sets of superchannels
analogous to how various free operations are defined in the
static case. We also leave as open the problem of finding an
example of a channel where the MISC and DISC distillable
coherence are different. In Sec. V E, we worked out the
distillable coherence for the partial depolarizing channel and
the partial dephasing channel and found no difference for
MISC and DISC case.

Note added. Recently, we became aware of the work [92]
which considers resource preserving channels as a resource in
a general resource theory.
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APPENDIX A: PROOF OF DUAL OF THE
LOG-ROBUSTNESS

Finding the dual of the log-robustness [LRC(NA)] is equiv-
alent to finding the dual of 2LRC(NA ). From Eq. (107), we can
write 2LRC(NA ) as

min

{
1

|A0|Tr[ωA] : ωA � JN
A , DA[ωA] = ωA,

ωA0 = Tr[ωA]uA0 , ωA � 0

}
, (A1)

where uA0 = IA0
|A0| . The primal problem of the above conic

linear program can be stated as

min

{
1

|A0|Tr[ωAIA] : �(ωA) − H2 ∈ K2, ω � 0

}
, (A2)

where �(ωA) is a linear map and is expressed as a
3-tuple such that �(ωA) = {ωA0 − Tr[ωA0 ]uA0 , ωA, ωA −
D(ωA)}. The separation of elements in the tuple can be
understood as a direct sum between the subspaces in a
larger vector space. Likewise, H2 is also expressed as a 3-
tuple such that H2 = (0A0 , JN

A , 0A). The cone K2 can be ex-
pressed as a 3-tuple as K2 = {(0A0 , ζA, 0A) : ζA � 0}. Hence,
the dual cone K∗

2 = {(ZA0 , βA,WA) : ZA0 ∈ Herm(A0), βA �
0, WA ∈ Herm(A)}.

Therefore, it is easy to see that the dual to the above primal
problem is

max

{
1

|A0|Tr
[
βAJN

A

]
: IA − �∗(ZA0 , βA,WA) � 0,

ZA0 ∈ Herm(A0), WA ∈ Herm(A), βA � 0

}
. (A3)

To find �∗(ZA0 , βA,WA), we need to equate

Tr
[(

ZA0 , βA,WA
)
�(ωA)

] = Tr
[
�∗(ZA0 , βA,WA

)
ωA
]
. (A4)

From the l.h.s. of Eq. (A4), we find

Tr
[(

ZA0 , βA,WA
)
�(ωA)

]
= Tr

[
ZA0

(
ωA0 − Tr[ωA0 ]uA0

)]
+ Tr[βA ωA] + Tr[WA (ωA − D(ωA))]. (A5)

Therefore,

�∗(ZA0 , βA,WA
) = ZA0 ⊗ IA1 − Tr

[
ZA0

]
uA0 ⊗ IA1 + βA

+WA − D(WA). (A6)

So, we can rewrite the first constraint in the dual problem as

IA

|A0| − ZA0 ⊗ IA1 + Tr
[
ZA0

]
uA0

⊗ IA1 − βA − WA + D(WA) � 0. (A7)

Now let ηA � 0 obey the following conditions:

DA(ηA) = DA0

(
ηA0

)⊗ uA1 , DA1 [ηA1 ] = IA1 . (A8)

Any such matrix can be expressed as
(uA0 − ZA0 + Tr[ZA0 ]uA0 ) ⊗ IA1 − WA + D(WA). Hence, we
can express Eq. (A7) as

ηA � βA � 0. (A9)

Since JN
A � 0, therefore from the above equation we get

Tr
[
ηAJN

A

]
� Tr

[
βAJN

A

]
. (A10)

Hence, we can recast the dual problem in the following form:

max
{
Tr
[
ηAJN

A

]
: DA(ηA) = DA0 (ηA0 ) ⊗ uA1 ,

DA1

[
ηA1

] = IA1 , ηA � 0
}
. (A11)

Therefore,

LRC(NA) = log max
{
Tr
[
ηAJN

A

]
: DA(ηA) = DA0

(
ηA0

)⊗ uA1 ,

DA1

[
ηA1

] = IA1 , ηA � 0
}
, (A12)

which is Eq. (108).

APPENDIX B: PROOF OF THEOREM 3 AND THE DUAL
OF THE CONVERSION DISTANCE FOR MISC AND DISC

In Ref. [87], it was shown that the diamond norm can be
expressed as the following SDP:

1
2‖EB − FB‖�

= min
ω�0;ω�JE−F

B

‖ωB0‖∞ ∀ E,F ∈ CPTP(B0 → B1). (B1)

Note that Eq. (B1) can be rewritten as [45]
1
2‖EB − FB‖� = min{λ : λQB � EB − FB ;

QB ∈ CPTP(B0 → B1)}. (B2)

Taking EB = �A→B[NA] and FB = MB, dF(NA → MB) in
Eq. (134) becomes

dF(NA → MB) = min{λ : λQB � �A→B[NA] − MB,

QB ∈ CPTP(B0 → B1), � ∈ F(A → B)}.
(B3)

023298-22



DYNAMICAL RESOURCE THEORY OF QUANTUM … PHYSICAL REVIEW RESEARCH 2, 023298 (2020)

For the case F = MISC, let us start by denoting ωB as the
Choi matrix of λQB and αAB as the Choi matrix of �, we can
express dF(NA → MB) as

dF(NA → MB) = min λ,

subject to : (1) λIB0 � ωB0 , (2) ωB � 0,

(3) ωB � TrA
[
αAB
((

JN
A

)T ⊗ IB
)]− JM

B ,

(4) αAB � 0, (5) αAB0 = αA0B0 ⊗ uA1 , (B4)

(6) αA1B0 = IA1B0 ,

(7) Tr
[
αABX i

AB

] = 0 ∀ i = 1, . . . , n,

where n ≡ |AB|(|B| − 1) and {X i
AB}n

i=1 are the bases of the
subspace KF defined in Eq. (82). Here, constraints (1–3)
are due to diamond norm, constraints (4–6) follow from the
requirement of � to be a superchannel, and constraint (7) is
due to the requirement that � ∈ F.

Now consider a linear map L : R ⊕ Herm(B) ⊕
Herm(AB) → Herm(B0) ⊕ Herm(B) ⊕ Herm(AB0) ⊕
Herm(A1B0) ⊕n R, where ⊕nR denotes R ⊕ . . . ⊕ R︸ ︷︷ ︸

n

.

Its action on a generic element μ = (λ, ωB, αAB) of R ⊕
Herm(B) ⊕ Herm(AB) such that λ ∈ R+, ωB � 0, αAB � 0
is

L(μ) := (λIB0 − ωB0 , ωB − Tr
[
αAB
((

JN
A

)T ⊗ IB
)]

,

αAB0 − αA0B0 ⊗ uA1 , αA1B0 , Tr
[
αABX 1

AB

]
, . . . ,

Tr
[
αABX n

AB

])
. (B5)

Taking a generic element ν = (βB0 , γB, τAB0 , ζA1B0 ,

t1, . . . , tn) of Herm(B0) ⊕ Herm(B) ⊕ Herm(AB0) ⊕
Herm(A1B0) ⊕n R such that βB0 � 0, γB � 0, we have

L∗(ν) =
(

Tr
[
βB0

]
, γB − βB0 ⊗ IB1 , τAB0 ⊗ IB1 − (JN

A

)T
⊗ γB − τA0B0 ⊗ uA1 ⊗ IB1 + τA1B0 ⊗ IA0B1

+
∑

i

tiX
i
AB

)
. (B6)

Following Ref. [93], the dual is given by

dF(NA → MB) = max
{−Tr

[
JM

B γB
]+ Tr

[
ζA1B0

]}
, (B7)

where the maximum is subject to

βB0 ⊗ IB1 � γB � 0, 1 � Tr
[
βB0

]
,

ζA1B0 ∈ Herm(A1B0), τAB0 ∈ Herm(AB0), t1, . . . , tn ∈ R,

JN
A ⊗ γB + τA0B0 ⊗ uA1 ⊗ IB1 − τAB0 ⊗ IB1 − τA1B0 ⊗ IA0B1

−
∑

i

tiX
i
AB � 0. (B8)

For the case of F = DISC, note that the only distinction is
in the choice of basis of the subspace KF. So, in this case, the
dual is given by

dF(NA → MB) = max
{−Tr

[
JM

B γB
]+ Tr

[
ζA1B0

]}
, (B9)

where the maximum is subject to

βB0 ⊗ IB1 � γB � 0, 1 � Tr
[
βB0

]
,

ζA1B0 ∈ Herm(A1B0), τAB0 ∈ Herm(AB0), t1, . . . , tn ∈ R,

JN
A ⊗ γB + τA0B0 ⊗ uA1 ⊗ IB1 − τAB0 ⊗ IB1 − τA1B0 ⊗ IA0B1

−
∑

i

tiY
i

AB � 0. (B10)

Therefore, we see that dF(NA → MB) is an SDP in the
dynamical resource theory of quantum coherence if the free
superchannels belong to MISC or DISC.

APPENDIX C: UPPER BOUND ON THE
LOG-ROBUSTNESS OF COHERENCE AND THE

LOG-ROBUSTNESS OF QUANTUM FOURIER
TRANSFORM CHANNEL AND THE MAXIMALLY

COHERENT REPLACEMENT CHANNEL

The log-robustness of a channel NA can be expressed as

LRC(NA) = log max
{
Tr
[
ηAJN

A

]
: DA(ηA) = DA0

(
ηA0

)⊗ uA1 , DA1

[
ηA1

] = IA1 , ηA � 0
}

(C1)

= log max

{
|A0A1|Tr

[
ηA

|A1|
JN

A

|A0|
]

: DA(ηA) = DA0

(
ηA0

)⊗ uA1 , DA1

[
ηA1

] = IA1 , ηA � 0

}
. (C2)

Let ρA := ηA

|A1| , σA := JN
|A0| , and observing that ρA, σA ∈ D(A), we can rewrite the above expression as

LRC(NA) = log max

{
|A0A1|Tr[ρAσA] : DA(ρA) = DA0

(
ρA0

)⊗ uA1

|A1| , DA1 [ρA1 ] = uA1 , ρA � 0

}
. (C3)

Recall that the maximum of the trace of the product of two
density matrices is 1 and can be obtained if the two den-
sity matrices are same and pure, i.e., ρA = σA and Tr[σ 2

A ] =
Tr[σA] = 1. Therefore, for any channel NA,

LRC(NA) � log |A0A1|, (C4)

with |A0| = |A1| = d , the upper bound on the log-robustness
of coherence becomes

LRC(NA) � log d2. (C5)

To achieve this upper bound of the log-robustness of coher-
ence, we require

ηA

|A1| = JN
A

|A0| (C6)
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and σA = JN
A

|A0| to be pure. Thus, for σA to be pure, NA has to be
a unitary channel, i.e.,

JN
A =

∑
x,y

|x〉〈y| ⊗ U |x〉〈y|U †, (C7)

Since for a unitary channel JN
A = ηA (|A0| = |A1| for a unitary

channel), JN
A has to follow the constraints in Eq. (C1) which

can be expressed as

DA
(
JN

A

) = DA0

(
JN

A0

)⊗ uA1 , (C8)

DA1

[
JN

A1

] = IA1 , (C9)

JN
A � 0. (C10)

Constraint in Eq. (C10) follows from the definition of a Choi
matrix of a channel and Eq. (C9) follows trivially for the Choi
matrix of any unitary channel U . From constraint in Eq. (C8),
we can find the condition on the unitary matrix to achieve the
upper bound of the log-robustness of coherence of channels in
the following way. First, we can write the l.h.s. of Eq. (C8) as

DA
(
JN

A

) = DA

(∑
x,y

|x〉〈y| ⊗ U |x〉〈y|U †

)
(C11)

=
∑

x,y,i, j

δx,iδy, j |i〉〈i| ⊗ 〈 j|U |x〉〈y|U †| j〉| j〉〈 j| (C12)

=
∑
i, j

|i〉〈i| ⊗ 〈 j|U |i〉〈i|U †| j〉| j〉〈 j| (C13)

=
∑
i, j

|ui j |2 |i〉〈i| ⊗ | j〉〈 j|, (C14)

where ui j = 〈 j|U |i〉. Simplifying the r.h.s. of constraint in
Eq. (C8) we get

DA0

(
JN

A0

)⊗ uA1 = IA0 ⊗ uA1 . (C15)

Now equating Eqs. (C14) and (C15) we get∑
i, j

|ui j |2 |i〉〈i| ⊗ | j〉〈 j| = IA0 ⊗ uA1 , (C16)

which implies that

|ui j |2 = 1

|A1| = 1

d
∀ i, j (C17)

of a unitary channel that achieves the upper bound of the log-
robustness of coherence.

1. Log-robustness of coherence of QFT channel

The action of a quantum Fourier transform (QFT) on a
basis vector is given by

Fd |i〉 = 1√
d

d−1∑
k=0

ωik|k〉, (C18)

where d denotes the dimension of the system the QFT is
acting on and ω is the complex root of unity. Therefore, a
general element of the QFT matrix can be written as

〈 j|Fd |i〉 = ωi j

√
d

. (C19)

It is trivial to check that it follows the condition required to
achieve the upper bound of the log-robustness of coherence,
i.e.,

|〈 j|Fd |i〉|2 =
∣∣∣∣ ωi j

√
d

∣∣∣∣2 (C20)

= 1

d
. (C21)

Therefore, the log-robustness of quantum Fourier transform
channel (N Fd

A ) is

LRC

(
N Fd

A

) = log d2 = 2 log d. (C22)

2. Log-robustness of maximal replacement channels

The Choi matrix of a maximal replacement channels NA is
given by

JN
A = id ⊗ φ+

A1
, (C23)

where the density matrix of the maximally coherent state in
dimension d is given by

φ+
A1

= 1

d

⎛
⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

...
1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎠

d×d

. (C24)

Using Eq. (C1), we can find the log-robustness of JN
A as

follows:

LRC(NA) = log max Tr
[
ηAJN

A

]
(C25)

= log max Tr
[
ηA(idA0 ⊗ φ+

A1
)
]

(C26)

= log2 max Tr
[
ηA1φ

+
A1

]
, (C27)

where ηA follows the following conditions:

DA(ηA) = DA0

(
ηA0

)⊗ uA1 , DA1 [ηA1 ] = IA1 , ηA � 0.

(C28)
Equation (C27) suggests that the Choi matrix of the maximal
replacement channel is the log of the max of the sum of all
the elements of ηA1 divided by d . And from the constraints
on ηA, we know that the diagonal elements of ηA1 are all 1’s.
Hence, the maximum value would be obtained when all the
elements of ηA1 are equal to 1. If any off-diagonal element
(and so its diagonally opposite element) are greater than 1,
then the determinant of the leading principal minor will be
negative which contradicts the positive semidefinite constraint
imposed on ηA. Hence, the log-robustness of a maximally
coherent replacement channel, i.e., a channel NA that replaces
any input by the maximally coherent state of dimension d is
given by

LRC(NA) = log d. (C29)

In conclusion, we find that the ratio between the log-
robustness of coherence of QFT channel and the maximal
coherent replacement channels is always 2 implying that two
maximal replacement channels are required to simulate a
QFT channel. One interpretation of this finding can be given
by combining the resources of entanglement and coherence.
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As noted above, a distinguishing feature between the QFT
and the maximal replacement channel is that the latter is
entanglement-breaking. Hence, even though it can generate
maximal coherence, in the process of doing so it will destroy
any entanglement the primary system may have with an exter-
nal one. For example, when acting on the first subsystem in
the entangled state

√
1/2(|00〉 + |11〉), the qubit replacement

channel will yield ρ1 = φ+
2 ⊗ I/2, while the QFT will yield

|ψ2〉 = √
1/2(|0+〉 + |1−〉), where |±〉 = √

1/2(|0〉 ± |1〉).
A combined resource theory of entanglement and coher-

ence was studied in Ref. [43]. In particular, the asymptotic

convertibility of states using local incoherent operations was
considered, and for a given state ρAB, one can define the
optimal rate sum RC + RE of coherent bits (RC ) and entangled
bits (RE ) needed to asymptotically prepare the state ρAB.
It turns out that state |ψ2〉 has twice the resource cost as
state ρ1, when resource cost is measured in terms of the
smallest rate sum RC + RE . Here, RC and RE are the asymp-
totic rates of coherence and entanglement used to build the
state. Hence, the greater resource power of the QFT versus
the replacement channel becomes operationally manifest in
this way.
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