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Graph-theory treatment of one-dimensional strongly repulsive fermions
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One-dimensional atomic mixtures of fermions can effectively realize spin chains and thus constitute a clean
and controllable platform to study quantum magnetism. Such strongly correlated quantum systems are also of
sustained interest to quantum simulation and quantum computation due to their computational complexity. In this
article, we exploit spectral graph theory to completely characterize the symmetry properties of one-dimensional
fermionic mixtures in the strong interaction limit. We also develop a powerful method to obtain the so-called Tan
contacts associated with certain symmetry classes. In particular, compared to brute-force diagonalization that is
already virtually impossible for a moderate number of fermions, our analysis enables us to make unprecedented
efficient predictions about the energy gap of complex spin mixtures. Our theoretical results are not only of direct
experimental interest but also provide important guidance for the design of adiabatic control protocols in strongly
correlated fermion mixtures.
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I. INTRODUCTION

From quantum magnetism to the highly debated high-
temperature superconductivity, many spectacular phenomena
observed in condensed-matter physics emerge from strong in-
teractions among particles with a spin degree of freedom [1].
When constrained to one dimension, the effect of correlations
is even higher, leading to counter-intuitive behavior such as
spin-charge separation and the so-called fermionization [2].
Although the study of such strongly correlated systems is
a notoriously complex task, recent experimental realizations
of one-dimensional (1D) systems involving ultracold atomic
fermions with κ � 2 spin degrees of freedom offer exciting
opportunities, both in terms of our fundamental understanding
of 1D quantum magnetism and in the prospect of quantum
technological applications [3–8]. Indeed, in the limit of strong
repulsion, it has been shown that these systems are equivalent
to spin chains whose interaction parameters are experimen-
tally tunable with the external potential [9–11]. In particular,
this nontrivial observation provides a mapping to a matrix
diagonalization problem. However, the algebraic structure
of this matrix has never been clearly identified. Therefore,
although many recent theoretical articles have studied this
model, the results were typically limited to six particles,
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beyond which the complexity of the system seemed to be an
impassable barrier [12–19].

In this article, we claim that the spin-chain model asso-
ciated with 1D strongly repulsive fermionic mixtures has a
natural interpretation in terms of spectral graph theory. This
hitherto unobserved connection to a well-studied mathemat-
ical branch [20–24] provides a general and rigorous frame-
work, which enables us to completely elucidate the symmetry
structure of the spectrum for arbitrary external potentials
and numbers of particles. This has strong implications: For
example, it allows us to prove a generalized form of the Lieb-
Mattis theorem, which implies in particular that the ground
state of the system is unmagnetized [25]. Once again, this
theorem has previously only been conjectured for six-particle
mixtures confined in a harmonic potential [16,17]. More
importantly, this framework and the symmetry structure we
deduced allows one to split the problem, which is extremely
complex, into lower-dimensional irreducible representations.
This enables us in particular to compute the energy gap with
polynomial efficiency instead of exponential, thus providing a
simple answer to a critical outstanding problem for adiabatic
quantum computing [26,27].

II. MODEL AND QUANTITIES OF INTEREST

We consider a 1D system of N particles divided in κ

fermionic components (e.g., spin orientations) with popula-
tions given by the partition ν ≡ (N1, . . . , Nκ ) of N , i.e., such
that N1 � · · · � Nκ > 0 and N1 + · · · + Nκ = N . We suppose
that it is SU (κ ) symmetric, so that all the particles have the
same mass m, interact via the same δ-type potential with
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FIG. 1. A spin mixture with two spin-up and two spin-down
fermions. (a) Typical experimental realization, where the fermionic
atoms are confined to 1D by interfering optical lattice beams along
two dimensions. (b) Graph theory interpretation of the system. The
vertices are labeled by the permutations of the mixture, or snippets,
and an edge by the nearest-neighbor exchange constant αk [cf.
Eq. (6)] if it connects two vertices that are equal up to a transposition
in positions (k, k + 1). The V (2,2) matrix defined in Eq. (5) of the
main text is then the Laplacian matrix of X (S(2,2) ⊂ S4, Sc ).

interaction strength g1d and are submitted to the same con-
fining potential Vext (x), which can be arbitrary. It can be
described by the following Hamiltonian:

Ĥ =
N∑

j=1

[
− h̄2

2m

∂2

∂x2
j

+ Vext (x j )

]
+ g1d

∑
i< j

δ(xi − x j ), (1)

where x j is the coordinate of particle j and we suppose that the
N1 first particles belong to component 1, etc. [Fig. 1(a)]. Such
a model has been realized experimentally using a harmonic
potential to confine 173Yb ultracold atoms, whose ground
state’s purely nuclear spin (I = 5/2) guarantees the absence of
spin-flip collisions and SU (κ ) symmetry with κ ∈ {2, . . . , 6}
[6]. In the following, we will consider the strongly repulsive
limit g1d → +∞, which can be achieved by means of a
confinement-induced resonance [28]. In the formal 1/g1d =
0 regime, the system is said to be fermionized: It has the
same spectrum (to the degeneracy) as the spinless N-particle
fermionic system, with a totally antisymmetric Slater determi-
nant ψA of one-particle orbitals as a wave function. However,
its permutation symmetry is a priori different. Following
Refs. [9,10] and generalizing Girardeau’s Bose-Fermi map-
ping [29], we write the wave function ψ of the system in the
Bethe ansatz-like form

ψ =
∑

P∈SN

aP θ (xP1 < · · · < xPN ) ψA(x1, . . . , xN ), (2)

where SN is the permutation group of {1, . . . , N},
P(1, . . . , N ) = (P1, . . . , PN ), θ (x1 < · · · < xN ) is equal to
1 if x1 < · · · < xN and 0 otherwise and the vector (aP ) ∈
RN! totally encodes the permutation symmetry of the state.
For a given mixture ν = (N1, . . . , Nκ ) the Pauli princi-
ple reduces the number of different coefficients to Dν =
N!/(N1!N2! · · · Nκ !). The Dν-dimensional vector space of

classes of sectors that are equivalent up to a permutation of
identical particles is called the snippet space [30]. Noting
that the system is no longer degenerate in the vicinity of the
1/g1d = 0 point, one can write a first-order expansion of the
energy in 1/g1d:

E (1/g1d ) = EA − Kν[(aP )]/g1d + o(1/g1d ), (3)

where EA is an eigenenergy of the noninteracting Hamilto-
nian associated with ψA and the energy slope Kν[(aP )] =
− limg1d→∞ ∂E

∂g−1
1d

= g2
1d

∂E
∂g1d

is a functional of (aP ). This quan-

tity is equivalent to the so-called Tan’s contact, a pivotal and
experimentally accessible quantity in δ-interacting systems
that governs the large p behavior of the momentum distribu-
tion n(p) [31–36]. Then, it can be shown that the values of
(aP ) and Kν[(aP )] corresponding to the states belonging to
the same degenerate manifold can be found by solving the
following eigenvalue equation [9,37]:

V ν�a = Kν�a, (4)

where �a is the vector of the Dν independent aP coefficients and
V ν is a Dν × Dν real symmetric matrix defined in the snippet
space by

V ν
PQ =

{−αP,Q if P �= Q∑
R �=P αP,R if P = Q . (5)

The so-called nearest-neighbor exchange constants αP,Q are
given by

αk =
∫

x1<···<xN

dx1 . . . dxN δ(xk − xk+1)

∣∣∣∣∂ψA

∂xk

∣∣∣∣
2

(6)

if P and Q are equal up to a transposition in positions k
and k + 1 with the particles in k and k + 1 belonging to
different components and αP,Q = 0 otherwise. Their values
depend exclusively on Vext (x) and N , which makes them
experimentally tunable. Then, the ground state corresponds to
the vector �amax associated with the largest eigenvalue Kν

max of
V ν , and the other states are given by the eigendecomposition
of V ν .

III. CONNECTION WITH SPECTRAL GRAPH THEORY

In what follows, we explain how symmetry and spectral
properties of the spin-chain model can be elucidated using
spectral graph theory. The basic notions of finite group and
representation theories are available from Refs. [38–40].

Given a finite group G and a generating subset S of G, it is
possible to associate a graph X (G, S) called a Cayley graph,
where each vertex of X (G, S) is labeled by the elements of
G and such that two vertices (g, g′) are connected by an edge
if and only if there is s ∈ S such that g′ = sg. If we assign
a weight ws > 0 to each s ∈ S, then the graph X (G, S) is
weighted [41]. If we also consider a subgroup H of G, then
one can associate with G, H , and S a so-called Schreier graph
X (H ⊂ G, S), whose vertices are indexed by the left cosets
gH and with the edges given by (gH, sgH ), where g ∈ G,
s ∈ S, and gH �= sgH [42]. These graphs are an essential tool
in combinatorial and geometric group theory [43]. Then our
connection can be established as follows: Given a fermionic
mixture defined by a partition ν ≡ (N1, . . . , Nκ ) of N , the V ν
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FIG. 2. Panels (a)–(f): Schreier graphs X (Sν ⊂ S5, Sc ) corre-
sponding to the partitions ν = (4, 1), (3,2), (3,1,1), (2,2,1), (2,1,1,1),
(1,1,1,1,1) of N = 5 (respectively). The one-component case ν =
(5) is trivial. In the case (f) where there are as many components
as particles, the corresponding Cayley graph X (S5, Sc ) is called a
permutohedron [45]. As argued in the main text, the spectral gap in
this case is the same as in the much simpler case (a) of the path graph.

matrix defined in Eq. (5) is equal to the Laplacian matrix of
the weighted Schreier graph X (Sν ⊂ SN , SC ). Here Sν =
Sν

N1
× · · · × Sν

Nκ
is the Young subgroup associated with ν,

with Sν
Ni

the set of permutations P ∈ SN such that P(i) = i
if i does not belong to {N1 + · · · + Ni−1 + 1, . . . , N1 + · · · +
Ni−1 + Ni} [44] and SC ≡ {(1, 2), (2, 3), . . . , (N − 1, N )} is
the set of nearest-neighbor transpositions, where each (k, k +
1) ∈ SC is associated with a weight αk as defined in Eq. (6).
An illustration in the case of a mixture of two spin-up and two
spin-down is given in Fig. 1(b) and all the nontrivial graphs
X (Sν ⊂ S5, Sc) in the case of N = 5 particles are displayed
in Fig. 2. Interestingly, this correspondence provides an in-
terpretation of the Laplacian matrix V ν as the generator of a
random walk known as an interchange process [23,46]: The
particles can be seen as a deck of N cards, and, at rate 1, two
adjacent cards (k, k + 1) are selected with a probability given
by αk and exchanged.

IV. GENERAL STRUCTURE OF THE SPECTRUM

Considering two Schreier graphs X (H ⊂ G, S) and
X (K ⊂ G, S) such that K ⊂ H , one can show that the
latter is a covering graph of the former, and therefore
the Laplacian spectrum σ [X (H ⊂ G, S)] is contained in

σ [X (K ⊂ G, S)] [21,22]. In our situation, for example, the
fact that S(2,1,1,1)

∼= S2 ⊂ S3
∼= S(3,1,1) implies that the

graph in Fig. 2(e) is a covering of the one in Fig. 2(c) and
that σ [V (3,1,1)] ⊂ σ [V (2,1,1,1)]. More generally, at fixed N ,
σ (V ν ) ⊂ σ [V (1,1,...,1)] for every partition ν of N . In physical
terms, this means that the high-spin limit N = κ , where there
are as many particles as components encompasses all the other
cases of mixtures. The resulting question is to determine,
for a given mixture ν, to which subset of σ [V (1,1,...,1)] the
spectrum of V ν corresponds. To answer this question, one has
to note that the V ν matrices can be seen as representations of
the symmetric group SN . In the case where ν = (1, 1, . . . , 1),
each vertex of the Cayley graph X (SN , Sc) corresponds
uniquely to a permutation of the mixture. Then V (1,1,...,1) acts
on the vector space whose basis is indexed by the elements
of SN , known as the group algebra. Thus, this matrix can be
expressed in terms of the so-called regular representation ρ,
which is equivalent to the direct sum of all the irreducible
representations (irreps) ρμ labeled by the partitions μ of
N [47]. Denoting by ek the element of the group algebra
corresponding to a transposition (k, k + 1) and by IR the set
of all the irreps of SN , we get that σ [V (1,1,...,1)] is equal to

⋃
ρμ∈IR

{
d − λ : λ ∈ σ

[
ρμ

(
N−1∑
k=1

αkek

)]}
, (7)

where d = ∑N−1
k=1 αk . Then, in the case of an arbitrary mixture

ν, the key observation is that each snippet can be uniquely
associated with a so-called tabloid of shape ν and therefore
that V ν is acting on the vector space indexed by the tabloids,
known as the permutation module Mν [48]. According to
the so-called Young’s rule [47], σ (V ν ) is thus given by
Eq. (7), where ρμ is now taken over the elements of IR such
that μ � ν. Here � is the dominance order: [μ1, . . . , μr] �
[ν1, . . . , νr] if μ1 + · · · + μk � ν1 + · · · + νk for all k. This
central result, which can be understood as a consequence
of the Pauli principle, completely elucidates the symmetry
structure of the spectrum.

V. SYMMETRY ORDERING

Denote by K [μ]
max the maximum eigenvalue of V (1,1,...,1) be-

longing to the symmetry class [μ]. From our previous discus-
sion, we see that K [μ]

max ∈ σ (V μ) (since μ � μ) and thus that
K [μ]

max � Kμ
max. In fact, using the fact that the graph X (Sν ⊂

SN , SC ) is bipartite, one can always construct an eigenvector
with eigenvalue Kμ

max that belongs to the symmetry class [μ],
so that K [μ]

max = Kμ
max [49]. Therefore, we have shown that

μ � μ′ ⇒ K [μ]
max � K [μ′]

max . (8)

This fact has been numerically [16,17] and experimentally [6]
observed. It can be interpreted as a generalized Lieb-Mattis
theorem [25], cf. Eq. (3), which is salient in the context
of quantum magnetism. Intuitively, the ground state is as
spatially symmetric as possible and its total spin is minimized.

VI. PECULIAR EIGENVALUES AND SPECTRAL GAP

From basic properties of the Laplacian matrix, we see
that 0 ∈ σ (V ν ) for every mixture ν. Moreover, the fact that
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X (SN , SC ) is bipartite and d-regular implies that K (1,1,...,1)
max =

2d , and more generally that K ∈ σ [V (1,1,...,1)] if and only if
2d − K ∈ σ [V (1,1,...,1)] [43]. The simple eigenvalues 0 and 2d
are associated with the trivial [N] and sign [1, 1, . . . , 1] irreps,
respectively.

In Ref. [21], Bacher has studied σ [X (SN , SC )] in the
unweighted case where αk = 1 for all k, obtaining in par-
ticular an expression for the spectral gap, which is deeply
related to the geometrical properties of X (SN , SC ) [50,51].
His argument is based on a mapping between this graph and
the Cartesian product of r path graphs X (S(N−1,1) ⊂ SN , SC )
[cf. Fig. 2(a)].

We now proceed to generalize this nontrivial
result to the weighted case. Let σ [V (N−1,N )] =
{0 < λ2 < λ3 < · · · < λN }, where V (N−1,N ) is given by
the Laplacian matrix of the weighted path graph:⎛

⎜⎜⎜⎜⎝
α1 −α1

−α1 α1 + α2 −α2

. . .
. . .

. . .
−αN−2 αN−1 + αN−2 −αN−1

−αN−1 αN−1

⎞
⎟⎟⎟⎟⎠.

(9)
Then σ [V (1,1,...,1)] contains the following eigenvalue:

K =
r∑

i=1

λni , (10)

with 1�n1 < n2 < · · ·< nr �N − 1. Such an eigenvalue is
associated with the symmetry class [N − r, 1, . . . , 1], with a
multiplicity of

(N−1
r

)
. Most importantly, the spectral gap of

σ [V (1,1,...,1)] is given by

K2 = 2d − KN!−1 = λ2, (11)

where KN!−1 is the second largest eigenvalue of σ [V (1,1,...,1)].
Equation (11) means for instance that the spectral gap of the
Cayley graph in Fig. 2(f) is equal to the one of the path graph
in Fig. 2(a). This quantity can be related to the energy gap
of the system through Eq. (3). In the context of adiabatic
quantum computing, the minimum value εmin of the energy
gap along an adiabatic process is related to the minimum
runtime T of the algorithm by T = O(1/ε2

min) [27]. It is there-
fore crucial to ensure that this gap remains sufficiently large
along the adiabatic path, which is a priori an exponentially
hard problem. Here we have shown that it is sufficient to
compute the lowest nonzero eigenvalue of the N × N matrix
V (N−1,N ) defined in Eq. (9), instead of the whole V (1,1,...,1)

matrix, of size N! × N! [52]. Thus, by providing an efficient
way to compute the energy gap for many configurations of
a many-body setting, our method constitutes a huge practical
advantage.

In the case of a box potential of size L, we can use the exact
expression of α1 = · · · = αN−1 [53] and obtain:

Kbox
2 = π2N (N + 1)(2N + 1)

3L3

(
1 − cos

π

N

)
. (12)

Quite surprisingly, we note that in this case the spectral gap
behaves as Kbox

2 ∼ π4N/(3L3) in the large-N limit and is
thus an increasing function of the number of particles. As
displayed in Fig. 3, this scaling behavior is in net contrast with

FIG. 3. Spectral gaps K2 as a function of N = κ , in log-log scale,
in the cases of a box trap (red squares), harmonic (blue circles), and
quartic (green diamonds) potentials. Values for the αk coefficients
[Eq. (6)] come respectively from Refs. [53,54] and the CONAN
software [55]. Our approach allows us to drastically reduce the
complexity of the problem: For N = 30, dim V (1,1,...,1) = 30! ≈ 1033

while dim V (29,1) = 30.

the cases of a harmonic potential, where K2 is a decreasing
function of N , or a quartic potential, where K2 is almost
constant. We observe that the spectral gap is larger for more
confining potentials, i.e., potentials Vext (x) that grow faster
when x approaches infinity.

VII. DISCUSSION

Our results suggest that strongly confined 1D SU (κ =
N ) systems may become promising candidates for quantum
adiabatic computing, allowing (i) complex encoding due to
the large number of spins, (ii) an adiabatic tuning of the
exchange constants of the effective spin chain through the
external potential, and (iii) a well-controlled energy gap that
can be computed efficiently with our method. This paves the
way to further theoretical and experimental investigations that
may eventually lead to technological applications [56].

There are also many theoretical perspectives to this study.
For instance, one may combine this framework with random
matrix theory in order to study the subtle interplay between
disorder and interactions by considering the graphs we have
introduced in this work with a random choice of weights αk

accounting for the presence of a random external potential
[57]. Furthermore, noting that the case when the external
potential is homogeneous is integrable [58], our connection
suggests that these graphs play an important role in quantum
integrable systems and, conversely, that one could apply re-
sults derived from this theory to the study of Cayley graphs.
More generally, this hitherto unobserved link between dif-
ferent communities, ranging from cold atom and condensed-
matter physics to pure mathematics (for the graph-theoretical
and probabilistic interpretations) and even quantum technolo-
gies, should stimulate fruitful collaborations.
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APPENDIX A: BASIC NOTIONS OF GRAPH THEORY

Here we recall a few basic definitions of graph theory [59].
A graph is a pair G = (V, E ), where V is a set of vertices and
E is a set of edges that are elements of V × V . We say that
G is undirected when (i, j) ∈ E if and only if ( j, i) ∈ E . The
degree deg(v) of a vertex v is the number of vertices that are
connected by an edge, or adjacent, to v. A weighted graph is
a graph G where each edge e ∈ E is associated with a positive
real number we—the unweighted case corresponding to we =
1 for all e. In this case deg(v) is the sum of the weights of the
edges between v and its adjacent vertices. A graph is said to be
regular when all his vertices have the same degree. It is said
to be bipartite when V can be divided into two disjoint sets
V1 and V2 such that each edge connects an element of V1 with
an element of V2. If all the vertices of V1 (respectively, V2)
have the same degree x (respectively, y), the graph is said to
be (x, y)-biregular. A graph G1 = (V1, E1) is a covering graph
of G2 = (V2, E2) if there is a surjective map f : V1 → V2 such
that, for each v ∈ V1, the restriction of f to a neighborhood of
v is a bijection onto a neighborhood of f (v).

Given a graph G = (V, E ), one can canonically associate
a set of |V| × |V| matrices, |V| being the number of vertices,
whose spectra can be related to the structural properties of the
graph [43]. The adjacency matrix AG of G is such that entry Ai j

is equal to 1 (or w(i, j) if the graph is weighted) if vertex “i” is
adjacent to vertex “ j” and 0 otherwise. The degree matrix DG
is simply the diagonal matrix whose diagonal entries are given
by the degree of the corresponding vertex. The Laplacian
matrix is then defined by

�G = DG − AG . (A1)

This matrix can be seen as a discrete version of the (negative)
continuous Laplacian operator, hence the name. It can also be
interpreted as the generator of a random walk on V [46].

Let us now enunciate some basic properties of the Lapla-
cian matrix. It is easy to see that, for an undirected graph,
G, �G is symmetric and therefore it can be diagonalized in
an orthonormal basis and has a real spectrum σ (�G ) ⊂ R.
Moreover, the fact that all the diagonal entries of �G are
positive and that each diagonal entry is equal to the sum of
the absolute values of the nondiagonal entries in that row
imply that σ (�G ) ⊂ R+. Furthermore, since every row sum
and column sum is zero, the vector u = (1, 1, . . . , 1) ∈ R|V|
always satisfies �Gu = 0 and thus 0 ∈ σ (�G ). Noting that if
G has m connected components [60], �G is a block-diagonal
matrix with m blocks, then we see that the multiplicity of 0 is
equal to m. In particular, for a connected graph, σ (�G ) can be
written as follows:

0 = λ1 < λ2 � · · · � λ|V|. (A2)

Many bounds have been obtained on these eigenvalues, and
in particular on λ|V| and on the spectral gap λ2, which can be
related to geometrical properties of G (see, e.g., Ref. [50] or
Ref. [51]). For example, one has [20]

λ|V| � max{deg(u) + deg(v); (u, v) ∈ E}, (A3)

with equality if and only if G is biregular (in the case of a
connected graph).

Finally, one can get the spectrum of graphs obtained by
operations on other graphs with a known spectrum [20]. For
example, given two graphs G1 = (V1, E1) and G2 = (V2, E2),
we can define the Cartesian product G1 × G2 with vertices
in V1 × V2 and such that there is an edge between (a, b)
and (a′, b′) if either (a, a′) ∈ E1 or (b, b′) ∈ E2. Then, writing
σ (�G1 ) = (λi)1�i�k and σ (�G2 ) = (μi )1�i�l , one has

σ
(
�G1×G2

) = (λi + μ j )1�i�k,1� j�l . (A4)

This formula is crucial in Bacher’s proof for the unweighted
version of Eq. (11) of the main text [21].

APPENDIX B: REPRESENTATION THEORY OF SN

In what follows we describe the construction of the set IR
of irreducible representation (irreps) of the symmetric group
SN (see, e.g., Ref. [47]).

The set IR is in bijection with the conjugacy classes of
SN , which are characterized by a given structure for their
decomposition in disjoint cyclic permutations. Thus, there
is a one-to-one correspondence between IR and the set of
partitions of N . A convenient way of representing a partition
[61] μ = [μ1, . . . , μr] of N is through a Young diagram, a
left-justified set of boxes with r rows, where each row i ∈
{1, . . . , r} contains μi boxes. For example, an irrep of S8 is
characterized by the partition [4, 3, 1] or, equivalently, by the
following Young diagram:

(B1)

[4, 3, 1] is called the shape of Y[4,3,1], and we denote the
corresponding (class of) irrep(s) by ρ[4,3,1]. The conjugate of
a Young diagram of shape μ = [μ1, . . . , μr] is the diagram
with columns of lengths μ1, . . . , μr . For example, the conju-
gate of the previous example is

(B2)

The set of Young diagrams is partially ordered by the so-
called dominance order �, such that μ ≡ [μ1, . . . , μr] � ν ≡
[ν1, . . . , νr] (where the last terms of one of the partitions may
be equal to zero) if and only if

μ1 + · · · + μk � ν1 + · · · + νk for all 1 � k � r. (B3)

For example, one has

(B4)

Intuitively, it means that one can go from the left diagram
to the right one by moving a certain number of boxes from
upper rows to lower rows. Note that it is not a total order when
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N > 5. For instance, it is not possible to compare

(B5)

Let us be a little more precise on how an irrep can be
constructed from a Young diagram. A Young tableau is a
Young diagram whose boxes are labeled by integers. Two
tableaux of same shape μ are said to be row-equivalent if they
are equal up to permutations of the rows. For example,

(B6)

are row-equivalent. This defines equivalence classes on the
set of μ tableaux that are called tabloids. For the previous
example, it is represented as

(B7)

Note that each permutation of a fermionic mixture, or snippet,
can be regarded as a tabloid with rows of lengths N1, . . . , Nκ

and with entries of row i corresponding to the positions of the
particle of type i. For example, if we consider an eight-particle
mixture with four particles of type a, three particles of type
b, and one particle of type c, the tabloid given in Eq. (B7)
corresponds to the following snippet:

(B8)

We now define the permutation module as the C-vector
space Mμ whose basis is indexed by the set of μ tabloids. Note
that its dimension is Dμ, as defined in the main text. Note also
that M[1,1,...,1] is in bijection with C[SN ], the group algebra of
SN , whose basis (eP )P∈SN is indexed by the elements of SN

and such that ePeQ = ePQ. Associated with C[SN ] is the (left)
regular representation ρ of SN : Writing a vector in C[SN ] as
u = ∑

Q∈SN
uQeQ with uQ ∈ C, and given P ∈ SN , the linear

map ρ(P) is defined by

ρ(P)u = ePu =
∑

Q∈SN

uQePQ =
∑

Q∈SN

uP−1QeQ, (B9)

which can be linearly extended on C[SN ] by writing
ρ(

∑
Q∈SN

uQeQ) ≡ ∑
Q∈SN

uQρ(Q). Similarly, one can iden-
tify any permutation module Mμ with a representation of
SN by considering the natural action of SN on the vector
space Mμ.

Then, for a given μ tableau T , one can associate the
following element of Mμ:

ET =
∑
P∈CT

ε(P){P(T )}, (B10)

where CT is the subgroup of permutations preserving all
columns of T , ε(P) is the sign of the permutation P, and {T }
is the tabloid corresponding to T . ET is called a polytabloid.

Then the Specht module Sμ is defined as the subspace of Mμ

generated by the elements ET when T runs through all the
μ tableaux. It can be shown that the basis of Sμ is given by
the elements ET when T runs though all the standard Young
tableaux of shape μ, that is, the tableaux whose entries are
increasing from left to right along the rows and up to down
along the columns. In particular, its dimension is given by
the number of standard Young tableaux, which can be easily
obtained from the so-called hook length formula. Furthermore,
the so-called Young’s rule states that the permutation module
Mμ can be decomposed in the following way:

Mμ ∼=
⊕
μ′�μ

kμ′μSμ′
, (B11)

where kμ′μ are positive integers.
Here again, Sμ can be seen as a representations of SN .

Then it can be shown that the set of all the Specht modules
Sμ is, in fact, IR. Note that when taking μ = [1, 1, . . . , 1],
Eq. (B11) implies in particular that the regular representation
is a sum of all the irreps. In this case, the kμ′[1,1,...,1] numbers
are given by the dimensions of the Sμ′ = ρμ′ irreps. Intu-
itively, keeping in mind Eq. (B10), an irrep ρμ can be seen
as symmetrizing the rows and antisymmetrizing the columns
of the μ tableaux.

APPENDIX C: GENERALIZED LIEB-MATTIS
THEOREM—A DETAILED PROOF OF K[μ]

max = Kμ
max

Denoting by K [μ]
max the maximum eigenvalue of V (1,1,...,1)

corresponding to the symmetry class [μ] and by Kμ
max the

maximum eigenvalue of V μ, we have shown in the main text
that K [μ]

max ∈ σ (V μ), and then we claimed that in fact

K [μ]
max = Kμ

max. (C1)

In order to prove this assertion, let us first observe that
the graphs X (Sμ ⊂ SN , Sc) are bipartite. This is immediately
clear for the Cayley graph X (SN , Sc), where the vertices
associated with P ∈ SN are separated between the ones corre-
sponding to ε(P) = 1 and the ones corresponding to ε(P) =
−1. In the general case of a Schreier graph, the vertices are
the left cosets PSμ or, equivalently, the set of tabloids. With
each PSμ, we can associate the representative P ∈ PSμ such
that the indices corresponding to particles belonging to a same
component are displayed in increasing order. For example, the
representative of the tabloid displayed in Eq. (B8) corresponds
to

abbaacba ↔ 15623874, (C2)

with particles 1,2,3,4 of type a; 5,6,7 of type b; and 8 of type c.
Defining the sign of PSμ by sgn(PSμ) ≡ ε(P), we see that
the vertices of X (Sμ ⊂ SN , Sc) are also separated between
the positive and the negative ones.

Given a mixture μ, we consider an eigenvector a of V μ

with eigenvalue Kμ
max. Then, we can define a vector ã such

that, for every component i ∈ {1, . . . , Dμ} corresponding to
some coset PiSμ:

ãi = sgn(PiSμ)|ai|. (C3)

Seeing a as an element of the permutation module Mμ, we
deduce from the definition of sgn(PSμ) that ã is an element
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of the Specht module Sμ, i.e., that the corresponding state
belongs to the symmetry class of type [μ]. Moreover, since
V μ is a real symmetric matrix, we can write ã as a sum of
orthogonal eigenvectors ã j with eigenvalues K j . Therefore,
we have

‖ã‖2 =
∑

j

‖ã j‖2 = ‖a‖2 (C4)

and

‖V μa‖2 = (
Kμ

max

)2‖a‖2 �
∑

j

(K j )2‖ã j‖2 = ‖V μã‖2
. (C5)

Since Kμ
max is the maximum eigenvalue of V μ, we deduce

that ã belongs to the eigenspace with eigenvalue Kμ
max and we

obtain Eq. (C1).
In fact, we can prove that, in generic cases, the only vectors

with maximum eigenvalue Kμ
max belong to the symmetry class

[μ]. This can be seen as a consequence of a general theo-
rem [24], which states that, for a given weighted graph, the
spectrum of its Laplacian matrix is simple for generic choices
of weights [62]. In our situation, this means that a small
random perturbation of the external potential Vext (x) will lead
to a spectrum σ (V μ) that contains no accidental degeneracies
between different symmetry classes—although it usually does
contain degeneracies associated with kμ′μ, which denote the
number of time the irrep Sμ′

appears in the decomposition of
the permutation module Mμ according to Young’s rule [cf.
Eq. (B11)].

Using the decomposition of the spectrum according to the
irreps of SN as described in the main text, Eq. (C1) implies
that

μ � μ′ ⇒ K [μ]
max � K [μ′]

max . (C6)

Writing E [μ]
0 (1/g1d ) = EA − K [μ]

max/g1d, the energy of the cor-
responding ground state with symmetry [μ] in the strongly
repulsive limit, we thus have:

μ � μ′ ⇒ E [μ]
0 (1/g1d ) � E [μ′]

0 (1/g1d ) (g1d � 1).

(C7)

This is a generalized version of the Lieb-Mattis theorem,
which has important consequences in the theory of magnetism
[25]. Intuitively, the ground-state wave function “wants” to
be as symmetric as possible. For spin-1/2 particles (κ = 2
case), this means that the total spin of the system is minimized
and thus that the ground state is unmagnetized. Equation (C6)
has been checked for several few-body systems [16,17]. Our
approach provides a rigorous and general proof.

Note that Eq. (C1) provides a way to compare ground-state
energies E [μ]

0 (1/g1d ), E [μ′]
0 (1/g1d ) when μ and μ′ are not

comparable according to the dominance order. It is indeed
sufficient to compare the spectral radii Kμ

max and Kμ′
max of the

real symmetric matrices V μ and V μ′
(respectively), which can

be obtained effectively, e.g., using the Lanczos algorithm [63].

APPENDIX D: PROPOSED EXPERIMENTAL
IMPLEMENTATION

The model of strongly correlated one-dimensional spinor
gases can be realized in the laboratory by working with group-
II atoms like strontium and ytterbium. These atoms in their
singlet ground state only have nuclear spin components, and
therefore they exhibit SU (κ ) symmetry [3–6]. To prepare a
specific number of atoms N , one can use optical tweezers
to prepare one atom per tweezer in the collisional blockade
regime [64] and use acousto-optical modulators [65], spatial
light modulators [66], or microlens arrays [67] to scale up to a
desired number of tweezers. Alternatively, one can use a quan-
tum gas microscope to determine the number of atoms loaded
into isolated chains [68,69]. To obtain a specific superposition
of spins, one can coherently address different spin states using
clock transitions with long-lived coherence times. Having pre-
pared the atom number and quantum states, these atoms can
then be loaded into an overall 1D potential while the tweezer
or lattice potentials separating the individual atoms are turned
off. A harmonic 1D potential can be created by interfering
red-detuned lattice beams in two dimensions. A confinement-
induced resonance, where the transverse confinement length
is tuned to match the scattering length, can be used to reach
the strongly repulsive regime g1d → ∞ [70]. To vary αk , one
can change the external 1D potential. For example, instead of
a harmonic potential, a box potential can be created with the
help of steep repulsive walls formed from blue-detuned light
shaped by spatial light modulators [71] or other diffractive
optics [72].

The contact K can be determined from a range of exper-
imental methods, including Bragg spectroscopy [73,74], RF
spectroscopy [35,75–77], RF Ramsey interferometry [78], and
photoassociation experiments [79,80]. Of these, measuring
the molecular fraction from photoassociation is likely to be
one of the most sensitive methods [81] in the limit of one
atom per spin component, where N = κ . Beyond the ground
state, the contact for the first excited state KN!−1 will become
accessible as the temperature of the ultracold atoms increases.
In particular, our graph theory analysis predicts the difference
between the maximum contact Kmax and the second-largest
contact KN!−1, where N = κ to be the same as K2 for the case
of N − 1 particles in spin-down and one particle in spin-up.
Such symmetry allows us to gain insight on spectral gaps in
the latter case, especially for highly excited many-body states
that are otherwise experimentally challenging to access.
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and M. D. Lukin, Science 354, 1024 (2016).

[66] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A.
Browaeys, Science 354, 1021 (2016).

[67] D. O. de Mello, D. Schäffner, J. Werkmann, T. Preuschoff,
L. Kohfahl, M. Schlosser, and G. Birkl, Phys. Rev. Lett. 122,
203601 (2019).

023059-8

https://doi.org/10.1038/nphys2878
https://doi.org/10.1038/nphys2878
https://doi.org/10.1038/nphys2878
https://doi.org/10.1038/nphys2878
https://doi.org/10.1088/1367-2630/18/4/045011
https://doi.org/10.1088/1367-2630/18/4/045011
https://doi.org/10.1088/1367-2630/18/4/045011
https://doi.org/10.1088/1367-2630/18/4/045011
https://doi.org/10.1038/ncomms13070
https://doi.org/10.1038/ncomms13070
https://doi.org/10.1038/ncomms13070
https://doi.org/10.1038/ncomms13070
https://doi.org/10.1038/ncomms6300
https://doi.org/10.1038/ncomms6300
https://doi.org/10.1038/ncomms6300
https://doi.org/10.1038/ncomms6300
https://doi.org/10.1103/PhysRevA.90.013611
https://doi.org/10.1103/PhysRevA.90.013611
https://doi.org/10.1103/PhysRevA.90.013611
https://doi.org/10.1103/PhysRevA.90.013611
https://doi.org/10.1103/PhysRevLett.115.215301
https://doi.org/10.1103/PhysRevLett.115.215301
https://doi.org/10.1103/PhysRevLett.115.215301
https://doi.org/10.1103/PhysRevLett.115.215301
https://doi.org/10.1103/PhysRevLett.110.165302
https://doi.org/10.1103/PhysRevLett.110.165302
https://doi.org/10.1103/PhysRevLett.110.165302
https://doi.org/10.1103/PhysRevLett.110.165302
https://doi.org/10.1103/PhysRevLett.115.247202
https://doi.org/10.1103/PhysRevLett.115.247202
https://doi.org/10.1103/PhysRevLett.115.247202
https://doi.org/10.1103/PhysRevLett.115.247202
https://doi.org/10.1103/PhysRevA.92.061601
https://doi.org/10.1103/PhysRevA.92.061601
https://doi.org/10.1103/PhysRevA.92.061601
https://doi.org/10.1103/PhysRevA.92.061601
https://doi.org/10.1103/PhysRevA.93.051601
https://doi.org/10.1103/PhysRevA.93.051601
https://doi.org/10.1103/PhysRevA.93.051601
https://doi.org/10.1103/PhysRevA.93.051601
https://doi.org/10.1088/1367-2630/18/5/055011
https://doi.org/10.1088/1367-2630/18/5/055011
https://doi.org/10.1088/1367-2630/18/5/055011
https://doi.org/10.1088/1367-2630/18/5/055011
https://doi.org/10.1103/PhysRevA.94.053614
https://doi.org/10.1103/PhysRevA.94.053614
https://doi.org/10.1103/PhysRevA.94.053614
https://doi.org/10.1103/PhysRevA.94.053614
https://doi.org/10.1103/PhysRevA.95.053632
https://doi.org/10.1103/PhysRevA.95.053632
https://doi.org/10.1103/PhysRevA.95.053632
https://doi.org/10.1103/PhysRevA.95.053632
https://doi.org/10.1088/1361-6633/ab3a80
https://doi.org/10.1088/1361-6633/ab3a80
https://doi.org/10.1088/1361-6633/ab3a80
https://doi.org/10.1088/1361-6633/ab3a80
https://doi.org/10.1006/jabr.1994.1195
https://doi.org/10.1006/jabr.1994.1195
https://doi.org/10.1006/jabr.1994.1195
https://doi.org/10.1006/jabr.1994.1195
https://doi.org/10.1007/s004930070004
https://doi.org/10.1007/s004930070004
https://doi.org/10.1007/s004930070004
https://doi.org/10.1007/s004930070004
https://doi.org/10.1007/s10801-009-0208-x
https://doi.org/10.1007/s10801-009-0208-x
https://doi.org/10.1007/s10801-009-0208-x
https://doi.org/10.1007/s10801-009-0208-x
https://doi.org/10.1137/17M1124474
https://doi.org/10.1137/17M1124474
https://doi.org/10.1137/17M1124474
https://doi.org/10.1137/17M1124474
https://doi.org/10.1103/PhysRev.125.164
https://doi.org/10.1103/PhysRev.125.164
https://doi.org/10.1103/PhysRev.125.164
https://doi.org/10.1103/PhysRev.125.164
https://doi.org/10.1103/PhysRevA.90.042321
https://doi.org/10.1103/PhysRevA.90.042321
https://doi.org/10.1103/PhysRevA.90.042321
https://doi.org/10.1103/PhysRevA.90.042321
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1103/PhysRevA.84.023626
https://doi.org/10.1103/PhysRevA.84.023626
https://doi.org/10.1103/PhysRevA.84.023626
https://doi.org/10.1103/PhysRevA.84.023626
https://doi.org/10.1103/PhysRevLett.91.090401
https://doi.org/10.1103/PhysRevLett.91.090401
https://doi.org/10.1103/PhysRevLett.91.090401
https://doi.org/10.1103/PhysRevLett.91.090401
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.003
https://doi.org/10.1016/j.aop.2008.03.003
https://doi.org/10.1016/j.aop.2008.03.003
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1088/1367-2630/13/3/035007
https://doi.org/10.1088/1367-2630/13/3/035007
https://doi.org/10.1088/1367-2630/13/3/035007
https://doi.org/10.1088/1367-2630/13/3/035007
https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1103/PhysRevLett.104.235301
https://doi.org/10.1103/PhysRevLett.104.235301
https://doi.org/10.1103/PhysRevLett.104.235301
https://doi.org/10.1103/PhysRevLett.104.235301
https://doi.org/10.1103/PhysRevLett.117.235303
https://doi.org/10.1103/PhysRevLett.117.235303
https://doi.org/10.1103/PhysRevLett.117.235303
https://doi.org/10.1103/PhysRevLett.117.235303
https://doi.org/10.1137/0122054
https://doi.org/10.1137/0122054
https://doi.org/10.1137/0122054
https://doi.org/10.1137/0122054
https://doi.org/10.1016/j.acha.2012.06.003
https://doi.org/10.1016/j.acha.2012.06.003
https://doi.org/10.1016/j.acha.2012.06.003
https://doi.org/10.1016/j.acha.2012.06.003
https://doi.org/10.1007/s00601-017-1227-0
https://doi.org/10.1007/s00601-017-1227-0
https://doi.org/10.1007/s00601-017-1227-0
https://doi.org/10.1007/s00601-017-1227-0
https://doi.org/10.1088/0953-4075/49/12/125305
https://doi.org/10.1088/0953-4075/49/12/125305
https://doi.org/10.1088/0953-4075/49/12/125305
https://doi.org/10.1088/0953-4075/49/12/125305
https://doi.org/10.1016/j.cpc.2016.08.021
https://doi.org/10.1016/j.cpc.2016.08.021
https://doi.org/10.1016/j.cpc.2016.08.021
https://doi.org/10.1016/j.cpc.2016.08.021
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.6028/jres.045.026
https://doi.org/10.6028/jres.045.026
https://doi.org/10.6028/jres.045.026
https://doi.org/10.6028/jres.045.026
https://doi.org/10.1038/35082512
https://doi.org/10.1038/35082512
https://doi.org/10.1038/35082512
https://doi.org/10.1038/35082512
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1103/PhysRevLett.122.203601
https://doi.org/10.1103/PhysRevLett.122.203601
https://doi.org/10.1103/PhysRevLett.122.203601
https://doi.org/10.1103/PhysRevLett.122.203601


GRAPH-THEORY TREATMENT OF ONE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 2, 023059 (2020)

[68] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,
Nature 462, 74 (2009).

[69] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,
and S. Kuhr, Nature 467, 68 (2010).

[70] G. Zürn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries, J. E.
Bohn, and S. Jochim, Phys. Rev. Lett. 108, 075303 (2012).

[71] A. L Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and
Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).

[72] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah,
J. Struck, and M. W. Zwierlein, Phys. Rev. Lett. 118, 123401
(2017).

[73] E. D. Kuhnle, H. Hu, X.-J. Liu, P. Dyke, M. Mark, P. D.
Drummond, P. Hannaford, and C. J. Vale, Phys. Rev. Lett. 105,
070402 (2010).

[74] E. D. Kuhnle, S. Hoinka, H. Hu, P. Dyke, P. Hannaford, and
C. J. Vale, New J. Phys. 13, 055010 (2011).

[75] R. J. Wild, P. Makotyn, J. M. Pino, E. A. Cornell, and D. S. Jin,
Phys. Rev. Lett. 108, 145305 (2012).

[76] Y. Sagi, T. E. Drake, R. Paudel, and D. S. Jin, Phys. Rev. Lett.
109, 220402 (2012).

[77] B. Mukherjee, P. B. Patel, Z. Yan, R. J. Fletcher, J.
Struck, and M. W. Zwierlein, Phys. Rev. Lett. 122, 203402
(2019).

[78] R. J. Fletcher, R. Lopes, J. Man, N. Navon, R. P. Smith,
M. W. Zwierlein, and Z. Hadzibabic, Science 355, 377
(2017).

[79] F. Werner, L. Tarruell, and Y. Castin, Eur. Phys. J. B 68, 401
(2009).

[80] G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and
R. G. Hulet, Phys. Rev. Lett. 95, 020404 (2005).

[81] L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, N. R. Hutzler, T.
Rosenband, and K.-K. Ni, Science 360, 900 (2018).

023059-9

https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.105.070402
https://doi.org/10.1103/PhysRevLett.105.070402
https://doi.org/10.1103/PhysRevLett.105.070402
https://doi.org/10.1103/PhysRevLett.105.070402
https://doi.org/10.1088/1367-2630/13/5/055010
https://doi.org/10.1088/1367-2630/13/5/055010
https://doi.org/10.1088/1367-2630/13/5/055010
https://doi.org/10.1088/1367-2630/13/5/055010
https://doi.org/10.1103/PhysRevLett.108.145305
https://doi.org/10.1103/PhysRevLett.108.145305
https://doi.org/10.1103/PhysRevLett.108.145305
https://doi.org/10.1103/PhysRevLett.108.145305
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1103/PhysRevLett.122.203402
https://doi.org/10.1103/PhysRevLett.122.203402
https://doi.org/10.1103/PhysRevLett.122.203402
https://doi.org/10.1103/PhysRevLett.122.203402
https://doi.org/10.1126/science.aai8195
https://doi.org/10.1126/science.aai8195
https://doi.org/10.1126/science.aai8195
https://doi.org/10.1126/science.aai8195
https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1103/PhysRevLett.95.020404
https://doi.org/10.1103/PhysRevLett.95.020404
https://doi.org/10.1103/PhysRevLett.95.020404
https://doi.org/10.1103/PhysRevLett.95.020404
https://doi.org/10.1126/science.aar7797
https://doi.org/10.1126/science.aar7797
https://doi.org/10.1126/science.aar7797
https://doi.org/10.1126/science.aar7797

