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Advances in techniques for thermal sampling in classical and quantum systems would deepen understanding
of the underlying physics. Unfortunately, one often has to rely solely on inexact numerical simulation, due to
the intractability of computing the partition function in many systems of interest. Emerging hardware, such
as quantum annealers, provide novel tools for such investigations, but it is well known that studying general,
non-native systems on such devices requires graph minor embedding, at the expense of introducing additional
variables. The effect of embedding for sampling is more pronounced than for optimization; for optimization one
is just concerned with the ground-state physics, whereas for sampling one needs to consider states at all energies.
We argue that as the system size or the embedding size grows, the chance of a sample being in the subspace
of interest—the logical subspace—can be exponentially suppressed. Though the severity of this scaling can be
lessened through favorable parameter choices, certain physical constraints (such as a fixed temperature and range
of couplings) provide hard limits on what is currently feasible. Furthermore, we show that up to some practical
and reasonable assumptions, any type of postprocessing to project samples back into the logical subspace will
bias the resulting statistics. We introduce such a technique, based on resampling, that substantially outperforms
majority vote, which is shown to fail quite dramatically at preserving distribution properties.
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I. INTRODUCTION

Improving the efficiency of sampling from certain dis-
tributions, such as Boltzmann distributions, could provide
significant benefits for understanding equilibrium physics of
many-body systems, phase transitions in spin glasses, and
certain practical applications in the fields of machine learning
and optimization. Sampling is a challenging task; for example,
sampling from a Boltzmann distribution at sufficiently cold
temperature is NP-hard. Special-purpose hardware, such as
quantum annealers, have been proposed as potentially pro-
viding improved sampling capabilities, for tasks including
machine learning and physics simulation [1–9].

Many interesting cases can be reduced to sampling from a
Boltzmann distribution e−βH (s)/Z with H (s) a classical Ising
model Hamiltonian of the form

H (s) =
∑
i, j

Ji jsis j +
∑

i

hisi, (1)

where the real-valued couplings Ji j and local fields hi

fully specify the problem, with the partition function Z =∑
s exp[−βH (s)] for normalization of the probability dis-

tribution. The energy (cost) associated with state s =
(s1, . . . , sN ) is given by H (s), where the spin variables si take
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values in {−1, 1}. For optimization purposes, one is interested
in the low-cost configurations, or ideally the global minimum.

Depending on the problem one is considering, the cou-
plings can define a complicated graph, such as a three-
dimensional graph, or even a fully connected graph. Hardware
constraints restrict the class of Hamiltonians that can be na-
tively implemented on certain emerging hardware, including
the D-Wave quantum annealing devices, and other special
purpose Ising machines [10,11]. General Hamiltonians can
be mapped to native Hamiltonians, but care must be taken
to understand what properties carry over and which do not.
A common constraint is that in superconducting qubit pro-
cessors, including both universal processors and quantum an-
nealers, only select couplings are available, often just between
nearest-neighbor qubits on the chip. To overcome connectivity
limitations, minor embedding is used, mapping Eq. (1) to a
new Hamiltonian of a similar form, but with only couplings
native to the hardware graph

H̃ (s̃) =
∑
〈i, j〉

J̃i j s̃i s̃ j +
∑

i

h̃i s̃i, (2)

where angle brackets indicate the sum is over the restricted
graph given by the hardware, and s̃ necessarily contains
more variables than s. See Fig. 1 for a simple example. For
optimization, the requirement on embedding is that from the
global minimum of Eq. (2) one can infer the global minimum
of Eq. (1). We call this the global-to-global property. Embed-
ding, and the related topic of parameter setting, is a well-
studied concept, beginning with early work of Choi [12,13].
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FIG. 1. Example of embedding a fully connected graph of three
nodes (triangle) into a square graph. The edges have weights given by
Ji j defined by the Hamiltonian (1). In the embedded graph (right) an
additional variable is used, with the green vertex being split into two,
coupled with strength JF . This combined variable is often referred to
as a logical vertex, or logical spin. Note, the embedding process is in
general not unique.

To isolate the issues introduced by minor embedding from
other implementation issues that may bias the sampling, we
consider the following abstract problem. Suppose that one is
interested in sampling a thermal distribution for H , but can
receive samples only from a thermal distribution for H̃ , a
minor embedding of H . To what extent can we sample from
H’s thermal distribution using samples from H̃ ’s distribution?
While this problem is motivated in part by quantum annealing
where minor embedding is a standard tool, the problem is a
purely classical physics problem. In particular, our analysis is
agnostic as to whether the thermal samples for H̃ are obtained
from classical or quantum hardware. As an aside, we remark
that there are generalizations of this problem to quantum
Hamiltonians, but we consider only classical Hamiltonians
here.

More specifically, imagine the goal is to sample from
a (thermal) distribution D which depends on Hamiltonian
H (1), obtaining samples of the form D(H ). If one has a
perfect sampler, but with a restricted topology, instead one
will sample from a Hamiltonian H̃ of the form (2), thus
obtaining samples D(H̃ ). In order to sample from the target
Hamiltonian (1), one therefore needs to perform a projection
on the sampled distribution �D(H̃ ) → D(H ). The goal is to
find a suitable choice of � so that the target distribution is
faithfully represented.

We focus on the case where D corresponds to a Boltz-
mann distribution, i.e., D(H ) = exp(−βH )/Z , where Z is
the partition function, and β an inverse temperature. These
distributions are of particular relevance given recent work
using quantum annealers with a restricted topology to gen-
erate thermal samples from (classical) Hamiltonians of the
form Eq. (1), for use in machine learning [1–8]. The main
goal of this work is to demonstrate that as system sizes
increase, the greater the need to develop new techniques for
mapping from the embedded distribution to the native, logical
distribution. Our results are threefold. First, we will outline
in more detail the problem of sampling from an embedded
problem. In particular, we argue, and demonstrate numerically
for small-scale systems, that the number of samples received
from D(H̃ ) requiring a nontrivial projection procedure can
grow exponentially in system size N . That is, the probability
of observing a sample from within the logical subspace can
decrease exponentially, provided there are constraints such
as fixed maximum coupling values and temperature. We also

show that, under a reasonable set of assumptions, it is not
possible to find a projection � that preserves Boltzmann dis-
tributions exactly. To highlight this further, we study perhaps
the simplest (and most common) type of projection technique,
typically referred to as majority vote (MV), showing that it
is a poor choice in general. Next, we introduce a resampling
technique (that we call RRS), which empirically outperforms
MV. We finish with a discussion and outline possible future
research directions based on this work.

II. EMBEDDING: DEFINITIONS AND NOMENCLATURE

A minor embedding (henceforth, just “embedding”) uses
multiple physical spins (vertices), and couplings between
them, to represent single spins in the original problem on
the connectivity-limited hardware. If one performs an edge
contraction over these vertices in a specified manner, one
will arrive at the graph for the original Hamiltonian. This
general idea is illustrated in Fig. 1, where a triangular graph
is embedded into a square graph, resulting in one additional
variable, and one additional coupling which we denote by
JF . The task of picking JF requires special attention; lower
bounds on choices of the additional parameters to achieve the
global-to-global property are given in Refs. [12,13].

More formally, consider the graph GH associated with
Hamiltonian H of the form (1). Each spin si in the model H
defines a vertex i in GH , and a coupling between spins Ji j

defines a weighted undirected edge between vertex i and j.
Each node also has associated with it the corresponding local
field hi.

The graph GH is embeddable in another graph G̃ if there
exists a mapping φ : GH → G̃ such that (1) each node i of GH

is mapped to a (connected) subtree Ti of G̃, with Ti ∩ Tj = ∅
for i �= j, and (2) for each edge (i, j) of GH of weight Ji j , there
are edges from Ti to Tj in G̃ which cumulatively sum to Ji j . We
also require that the local fields of each Ti sum to hi. In this
way, GH can be constructed from G̃ by contracting the edges
of each Ti, i.e., GH is a graph minor of G̃. Since the subtrees Ti

necessarily introduce additional variables, the dimensionality
of the configuration space dimH̃ = 2Ñ � dimH = 2N where
H̃ and H are the configuration spaces for the models H̃ and
H , respectively, with Ñ and N variables.

A configuration s̃L ∈ H̃, for which in each subtree Ti the
spins are all aligned identically, is known as a logical config-
uration and belongs to the logical subspace H̃L ⊂ H̃ of size
dimH̃L = 2N . Any configuration in H̃L has a corresponding
and unique configuration in H which is found by simply
replacing the identically pointing spins in each subtree by a
single spin of same orientation. We will therefore throughout
refer to the subtrees {Ti}N

i=1 as logical subtrees, or as logical
spins when referring to the equivalent variables in model H̃ . If
a logical spin contains spins of differing orientations, we will
often refer to these as broken.

In order to encourage the spins composing a logical spin
to align under thermal sampling, strong ferromagnetic bonds
JF < 0 can be placed between the vertices in the logical
subtree, so that there is a cost penalty related to |JF | whenever
a spin is misaligned. If JF can be chosen to be infinitely large
and negative, thermodynamic sampling at finite temperature
guarantees one never observes a configuration outside of the
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logical space. Practically, however, the size of |JF | is limited,
by both the hardware and, since too large a |JF | can introduce
large energy barriers and deep local minima in the landscape
of the problem, making it prohibitive for thermal—including
nonzero temperature quantum annealing—algorithms to tra-
verse. We discuss these points in more detail in Sec. III.

Embeddings of this type guarantee that for any config-
uration s ∈ H of cost H (s), there is an equivalent logical
configuration s̃ ∈ H̃L with cost H̃ (s̃) = H (s) + C where C is
a constant and global energy shift (i.e., independent of any
particular s). If subtree Ti in G̃ contains ni vertices, with edge
weights all JF , the energy shift C is simply given by

C = JF

N∑
i=1

(ni − 1). (3)

This property is crucial for sampling purposes since
it guarantees relative thermal sampling weights wi j :=
exp{−β[H (si ) − H (s j )]} are preserved by the embedding
process, where si, j are spin configurations. In particular, if
we denote the Boltzmann distribution for Hamiltonian H at
inverse temperature β over H by DH(H, β ), then restricting
to the logical subspace of the embedded problem preserves
the distribution:

DH̃L
(H̃ , β ) = DH(H, β ). (4)

A. Embedding graph

Throughout this work, we use as our hardware-restricted
graph G̃ = G̃(K, JF , N ) one in which each subtree is a chain
(i.e., a path) with the same number of vertices K , and internal
logical spin couplings all of the same strength JF . The total
number of spins is N × K . Each problem coupling Ji j of H is
a single edge in G̃ also of weight Ji j , and local fields, hi, are
divided evenly between each spin in a logical spin (i.e., with
value hi/K).

In the hardware graph, each spin has coordinate (k, i)
where i is the logical spin index [equivalent to a vertex index
in G(H )], and 0 � k < K denoting the spins position within
the chain. We have two ways to connect logical spins in
the hardware graph. If there is an edge Ji j �= 0 in G(H ), we
can either (i) pick random 0 � ki, k j < K such that there is
an edge ((ki, i), (k j, j)) with weight Ji j in G̃, or (ii) follow
a deterministic embedding such that, for j > i, vertex (k, i)
connects to (k, j) if j = i + (K − k) + nK for n = 0, 1, . . . ,
with weight Ji j .

This flexibility allows us to either (i) simulate random
embeddings in the hardware graph, or (ii) perform a direct
comparison between different problems using a fixed embed-
ding procedure. The first point is intended to address the fact,
as mentioned in Sec. II, that there is typically not a unique
choice of embedding, and the second point is so we can later
compare between different projection techniques using the
same embedding.

An example of our hardware graph is shown in Fig. 2, for
K = 3, for the deterministic embedding.

We pick this graph G̃ since each logical spin is treated
equivalently, therefore allowing us to study directly the effect
of changing JF and K on sampling quality. Moreover, we can
embed any type (i.e., fully connected) of graph of size N into

FIG. 2. Example of our embedding graph G̃(K = 3, JF , N = 5)
for a five-variable fully connected graph. Each horizontal row of
three spins (yellow circles) is a logical spin (subtree); each variable is
represented by K = 3 logical variables in this example. Some labels
with spin coordinates are shown: each spin has coordinate (k, i),
where i is the logical spin index and k denotes the spin position
within the chain. Red (solid) lines indicate ferromagnetic couplers
of strength JF < 0 “gluing” the logical spins, and the black (dash)
lines are the problem couplings Ji j between variables. Local fields
are also present (divided evenly across the spins in a subtree) but
are not shown for simplicity. For larger problems, or different logical
subtree sizes (K), this basic structure can be repeated indefinitely
(see Sec. II A). Performing an edge contraction over the red (solid)
ferromagnetic edges results in the native fully connected problem.

G̃(K, JF , N ). Throughout, our units are defined relative to the
native Hamiltonian, i.e., relative to max{|Ji j |, |hi|} (which we
pick here to be 1 for convenience).

III. THE PROBLEM OF SAMPLING AFTER EMBEDDING:
ANALYTICAL RESULTS

Section II introduced the key ideas behind embedding.
We will now elaborate on this to highlight potential issues
using embeddings in a sampling task. We focus on the task
of Boltzmann sampling; however, similar arguments can be
applied to any form of sampling in which the statistics may be
biased by embedding and projecting.

Our main result is an equation which shows that for a
given embedding, and at fixed temperature, the probability of
observing a configuration within the logical subspace H̃L is
exponentially small in problem size N , and also the subtree
sizes K . This means that it is not practical to simply restrict to
this subspace and utilize Eq. (4).

We see this striking unfavorable exponential scaling in
Fig. 3, which, for a fully connected graph under the em-
bedding parameters and temperatures we study, demonstrates
once the size is above around N ≈ 120, only around one
sample per billion will be from the logical subspace. It is
therefore prohibitive to simply discard solutions from outside
of the logical subspace, for any problem of even modest size
(e.g., 100 spins). The hotter the distribution, the worse the
scaling, and the more likely it is to leave the logical subspace.
We study the exponential scaling in the next subsection.

Moreover, hardware or algorithmic constraints on (1) the
logical spin strengths, JF , (2) the size of the logical spins
K , by way of the connectivity of the embedded graph, and
(3) the temperature also impose difficulties in skirting around
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FIG. 3. The probability PL ≡ P0 of observing a configuration
from the logical subspace under an embedding, from Boltzmann
sampling at two temperatures (see legend). The embedding is of
a fully connected graph, topology as described in Sec. II A, where
each logical spin is made up of three spins (K = 3) and JF = −2.0.
Couplings Ji j and local fields hi chosen uniformly randomly from
[−1 : 0.2 : 1] (−1 to +1 in steps of 0.2). The solid lines represent
the expected decay in PL from theory [Eq. (13)]. We see a clear
exponential decay with problem size N . Each data point is averaged
over 100 random instances. Error bars are one standard deviation
over the problem instances. For each instance, we compute the exact
PL by iterating over all configurations of the embedded problem (for
N = 10 the embedded problem contains 230 configurations).

this problem by using favorable parameter setting choices for
the embedding or picking a low enough temperature.

While the origin of points (2) and (3) is clear (fixed
hardware graph and cooling limitations), we elaborate on (1).
There are two factors to consider here:

(i) Physical device constraints may determine the maxi-
mum absolute value of any coupling, in particular |JF |, as
this is related to the maximum physical energy scale of the
system and cannot be increased arbitrarily. On the current
generation of D-Wave quantum annealing device all couplings
must have values within [−2,+1] (in units of the fixed system
energy scale). Nominally this limits |JF | to twice the size of
problem couplings (typically chosen in the full range [−1, 1]).
One can achieve relative values of |JF |/JMAX > 2, where
JMAX is the maximum value of the logical problem couplings,
by reducing the problem variables’ magnitude by a constant
factor. Since the temperature is fixed, this effectively increases
the sampling temperature within the logical subspace, i.e., the
distribution tends to the trivial uniform distribution as the ratio
is increased. In principle this problem can be solved if the
temperature of the sampler can be freely tuned, but clearly
this is not feasible in physical devices. This, in addition to
point (ii) below, leads to the notion of an optimal (noninfinite)
JF /JMAX ratio for optimization purposes [14]. Moreover, since
annealing devices are analog in nature and each coupling
is programmed in with fixed precision (normally distributed
about the specified value), problem misspecification is in-
creased by reducing the problem scale and can cause a dra-
matic reduction in sampling quality [15,16].

FIG. 4. Example of spin configuration of chain of size K = 6
with ndw = 3 domain walls. Vertical dash lines represent positions of
the domain walls where the spin value changes between sites. There
can be at most K − 1 domain walls. The red links represent couplings
JF . The energy increase (penalty) for introducing ndw domain walls
is 2ndw|JF |. There are 2( K−1

ndw
) possible configurations of a spin chain

with ndw domain walls.

(ii) As mentioned previously, the landscape can become
challenging to traverse if |JF | is too large. Since thermal
algorithms, including nonzero temperature quantum anneal-
ing, must traverse the landscape of all possible solutions,
introducing large energy penalties (barriers) between different
configurations can cause the system to become stuck in subop-
timal regions, failing to thermalize properly. Though one may
hope that quantum tunneling will help if the barriers in the
effective potential are thin enough [17], whether or not this is
the case here is not clear, in particular as an anneal approaches
the end of the evolution where the transverse field (and thus
tunneling rate) is diminishing.

We will now provide a counting argument which demon-
strates these issues more precisely.

A. Analytic expression for relative subspace sampling

Let us assume for simplicity that each logical subtree is in
fact a path of the same length, i.e., a linear chain, composed
of K vertices. We denote by JF < 0 the ferromagnetic bonds
linking the spins together. The native problem size is N , and,
therefore, the embedded version contains N × K spins (ver-
tices). We now estimate the relative sampling weight between
subspaces with n broken logical spins (i.e., chains with not
all identically aligned spins), under a Boltzmann distribution
at inverse temperature β. In particular, we want to obtain Pn,
where Pn is the probability of sampling from the subspace with
n broken logical spins. This quantity will, of course, depend
on details of the specific Hamiltonian, that is, on the couplings
JF , {Ji j}, {hi} we are considering. To obtain an estimate of
that, we consider its average with respect to the values of the
couplings Ji j and of the local fields hi, assuming that these
random variables are independent and identically distributed
with a symmetric probability density function. For simplicity,
let us assume that their mean is zero. Now, consider two
configurations, σ (�) and σ̃ (�), with � domain walls distributed
over the chains (i.e., number of positions where the spin flips
from one site to the neighbor within the chains); see Fig. 4.
Notice that 0 � � � N (K − 1). Let us relate the spin values
of σ̃

(�)
i and σ

(�)
i = ξiσ̃

(�)
i by the vector ξ , where ξi is +1 if

σ
(�)
i = σ̃

(�)
i , and else, −1 (where i = 1, . . . , NK). We have

labeling with p(σ ) the probability averaged over the values
of the couplings Ji j and hi (“disorder”) of the configuration σ ,

p(σ (�) ) = e−βH (σ (�) )

Z
, (5)
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where Z = ∑
σ exp[−βH (σ )] is the partition function, and

the overline denotes the average over the disorder. By re-
defining couplings via Ji jσiσ j = J̃i j σ̃iσ̃ j , where J̃i j = ξiξ jJi j

(similar for JF and hi), we can relate p(σ (�) ) and p(σ̃ (�) ). In
particular, as shown explicitly in Appendix A, we have

p(σ̃ (�) ) = e−βH (σ̃ (�) )

Z
= e−βH (σ (�) )

Z ′ , (6)

where Z ′ = Z ′(β, H, ξ ) differs from Z = Z (β, H ) through the
remapping of variables via ξ . This calculation uses the fact
that the average over the disorder is done with a probability
density function which is symmetric with respect to a sign flip
of each coupling Ji j and hi (see Appendix A). Unfortunately,
the change of sign of some of the couplings has the effect of
changing the partition function Z → Z ′, and this is due to the
fact that the ferromagnetic couplings JF are fixed and we are
not averaging on their value.

To strongly simplify our equations and ultimately allow
us to estimate Pn, we consider the so-called annealed ap-
proximation (see, for example, Ref. [18]), which consists in
considering the couplings Ji j and hi as dynamical variables,
on the same footing of the spin variables. In this case

Zann = Z =
∑

σ

e−βH (σ ), (7)

and with Z = Zann = Z ′, we obtain

p(σ (�) ) = p(σ̃ (�) ). (8)

Therefore, under the annealed approximation, the probability
of a configuration (averaged over the disorder) depends only
on the number of domain walls. If we call p� the probability
of a configuration with � domain walls, we have

p� = e2β�JF p0. (9)

This fact, together with the fact that there are

N (�) = 2N

(
(K − 1)N

�

)
, (10)

possible configurations with � domain walls, allows us to
write for the total probability of observing � domain walls
P(�):

P(�) = N (�) p� =
(

(K − 1)N

�

)
e2β�JF P0, (11)

where P0 is the probability to sample a configuration from the
logical subspace (summed over all configurations and aver-
aged over the disorder). In other words, P0 = 2N p0 since there
are 2N possible logical configurations. For the probability to
observe a state outside the logical subspace Pout, we have, by
the binomial theorem,

Pout =
(K−1)N∑

�=1

P(�) = P0[(1 + e2βJF )(K−1)N − 1]. (12)

Therefore, using that P0 + Pout = 1,

P0 = (1 + e2βJF )−(K−1)N . (13)

FIG. 5. We compare our theoretical Eq. (17) (dash lines) to
numerical simulations, where Pn is the probability of observing a
configuration with n broken logical spins. Each data point is an
average over 100 random embedded problems for various choices of
N, n, and with parameters given in the legend. Error bars are standard
deviation. We fix |JF | = 2 in units of the original Hamiltonian for all
data points.

Let us now turn to the general case, that is, the computation of
the probability of observing n broken chains. We have

Pn =
(

N

n

) K−1∑
q1=1

· · ·
K−1∑
qn=1

2N

(
K − 1

q1

)
· · ·

(
K − 1

qn

)
pq1+···+qn ,

(14)

where the first binomial coefficient comes from the choice
of n chains to break (among N available), the term
2N ( K−1

q1
) · · · ( K−1

qn
) are the possible configurations of n chains

with q1, . . . , qn domain walls respectively, and pq1+···+qn is
the probability of observing q1 + · · · + qn domain walls. We
obtain

Pn =
(

N

n

) K−1∑
q1=1

· · ·
K−1∑
qn=1

2N

(
K − 1

q1

)
· · ·

(
K − 1

qn

)

× e2βJF (q1+···+qn ) p0

=
(

N

n

)
P0

⎡
⎣K−1∑

q=1

(
K − 1

q

)
e2βJF q

⎤
⎦

n

=
(

N

n

)
(Pw )n

(Pw + 1)N , (15)

where

Pw = (1 + e2βJF )K−1 − 1. (16)

In particular,

Pn

Pn−1
=

(
N + 1

n
− 1

)
Pw, (17)

and we demonstrate the success of this equation, and so of the
annealed approximation for our case, in Fig. 5, plotting for
several parameter choices Pn/Pn−1 as a function of n/(N + 1).
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We now make some brief comments on these relations:
(i) Equations (13) and (15) are trivially exact for β →

0, since in this case all configurations are sampled equally.
In general, the annealed approximation is correct in the
thermodynamical limit as long as the partition function is
a self-averaging quantity. This happens above the critical
temperature of the spin glass transition.

(ii) One consequence of our assumptions is that |JF | must
be large enough so the global-to-global property holds, i.e.,
P0 → 1 as β → ∞. In particular, if |JF | → ∞ then Eq. (13) is
correct since P0 → 1, and on the other hand if |JF | = 0 again
Eq. (13) gives the correct result, that is, each configuration
has the same probability and therefore P0 = 2N/2NK . The
same, correct result is obtained for β = 0, where the annealed
approximation is known to be exact. However, in general it
is unclear the extent to which the annealed approximation
gives an incorrect result in our computation for arbitrary
temperatures or problem sizes (also see Sec. IV C for more
discussion). Last, it is clear that if the global-to-global prop-
erty does not hold, Eqs. (13) and (15) will not be valid at low
enough temperatures.

(iii) The probability P0 decays exponentially in problem
size and chain size. Thus there can be huge sampling benefits
from utilizing more efficient embeddings with smaller chains.
Compatible with intuition we see logical subspace sampling
can be improved for larger β|JF | (colder temperature and/or
stronger ferromagnetic couplings).

(iv) For hardware-constrained β and JF (i.e., cannot scale
with N), it is clear that for large enough problems, and ones
with more complicated embeddings (larger K), there will in-
evitably be difficulties sampling the logical subspace directly.
In Fig. 3 we show the decay of P0 as a function of N , with
K = 3, for two temperatures. The theory of Eq. (13) matches
rather well with the numerical data, giving us confidence
about the assumptions we made in our derivation, for the
chosen parameters.

In the next subsection, we demonstrate the difficulty of
solving this problem through a simple, but tractable, model.

B. Projection techniques and sampling bias

In this subsection, we describe limitations on postprocess-
ing techniques that project from the embedded space back
to the logical space. Specifically, we demonstrate by exam-
ple that under reasonable assumptions on such projections
sampling bias is unavoidable. The example is simple and
not contrived, suggesting that this bias is generally hard to

avoid. The assumptions we make on the postprocessing are
that (1) the temperature of the Boltzmann distribution we are
aiming for remains the same as for the logical subspace, (2) “if
it ain’t broke, don’t fix it”—we do not adjust the values of
any spins from nonbroken logical spins, (3) we do not discard
solutions, and (4) we carry out the projection one solution at
a time. These assumptions are motivated by the need to keep
the postprocessing computational effort tractable and to avoid
trivial solutions to the problem, such as providing Boltzmann
samples at infinite temperature. It might be interesting to see
if relaxing some of them, while keeping the computational
effort reasonable, can lead to less bias or if one can prove
that relaxing the assumptions does not help. These assump-
tions already encompass the leading postprocessing approach,
majority vote, and allow for significantly broader approaches.
In the next section, we will numerically demonstrate the
significant bias resulting from majority voting and provide an
alternative that does better.

We prove the impossibility of postprocessing without bias-
ing the sampling, under the assumptions above, by showing
its impossibility for a simple case, i.e., through a counterex-
ample. Consider an N spin problem which is embedded by
replacing one of its nodes with two nodes, resulting in an
N + 1 spin problem. The postprocessing task is to provide
means to decide, given a configuration in which the two
spins in the logical spin do not align, with what probability
they should be projected to both spin up or both spin down
(fixing the value of all other spins). The hope would be that
after this projection, and with sufficiently many samples, the
distribution is still Boltzmann at the same temperature.

Let us call C the configuration of the fixed N − 1 spins,
and C−1,1,C1,−1,C1,1,C−1,−1 the full configuration of N + 1
fixing the N − 1 spins as in C, with the subscript denoting the
configuration of the logical spin. Similarly, we call the cost
of these configurations E (C)

a,b for a, b ∈ {−1, 1}. With proba-

bility P(C)
(a,b)→(c,c) configuration Ca,b is projected to Cc,c (c ∈

{−1, 1}). If the logical spin is aligned, we should not change
it; P(C)

(a,a)→(a,a) = 1. The probability to observe configuration

Ca,b, before any projection, is exp (−βE (C)
a,b )/Z where

Z =
∑

c

∑
a,b=±1

e−βE (c)
a,b (18)

is the partition function for normalization.
Let us assume there does exist a procedure to remap the

probabilities such that they still follow a Boltzmann distribu-
tion at the same temperature. Then we have

P(C)
−1,−1 = 1

Z

[
e−βE (C)

−1,−1 + P(C)
(−1,1)→(−1,−1) e−βE (C)

−1,1 + P(C)
(1,−1)→(−1,−1) e−βE (C)

1,−1
] != e−βE (C)

−1,−1

ZL
,

P(C)
1,1 = 1

Z

[
e−βE (C)

1,1 + P(C)
(−1,1)→(1,1) e−βE (C)

−1,1 + P(C)
(1,−1)→(1,1) e−βE (C)

1,−1
] != e−βE (C)

1,1

ZL
. (19)

The second equals sign is used to indicate we require that C−1,−1,C1,1 are sampled from a Boltzmann distribution with
corresponding partition function over the logical subspace:

ZL =
∑

c

∑
a=±1

e−βE (c)
a,a . (20)
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For now, let us assume no solutions are discarded, so that P(C)
(−1,1)→(−1,−1) + P(C)

(−1,1)→(1,1) = 1 (and similarly for C(1,−1)). In this
case, these two equations, with two unknowns, can be solved.

One finds

P(C)
(1,−1)→(−1,−1) = −P(C)

(−1,1)→(−1,−1)e
−β(E (C)

−1,1−E (C)
1,−1 ) +

[
Z

ZL
e−βE (C)

−1,−1 − e−βE (C)
−1,−1

]
eβE (C)

1,−1 ,

P(C)
(1,−1)→(−1,−1) = −P(C)

(−1,1)→(−1,−1)e
−β(E (C)

−1,1−E (C)
1,−1 ) +

[
− Z

ZL
e−βE (C)

1,1 + e−βE (C)
−1,1 + e−βE (C)

1,1 + e−βE (C)
1,−1

]
eβE (C)

1,−1 , (21)

which specifies two linear equations with the same gradients
but, in general, different intercept values, which therefore
have no solutions. To see this, compare the ratio Z/ZL from
solving Eqs. (21),

Z

ZL
= 1 + e−βE (C)

−1,1 + e−βE (C)
1,−1

e−βE (C)
−1,−1 + e−βE (C)

1,1

, (22)

with the exact

Z

ZL
= 1 +

∑
c e−βE (c)

−1,1 + e−βE (c)
1,−1∑

c e−βE (c)
−1,−1 + e−βE (c)

1,1

, (23)

which depends on all possible configurations c, and not just
the single configuration C. In general, Eqs. (22) and (23) will
not be the same, meaning Eqs. (19) cannot be simultaneously
satisfied. We demonstrate this by example.

We show that even in the simplest case, in which the
Hamiltonian gives a ferromagnetic ring on N spins, with N
odd, that Eqs. (22) and (23) are violated. The embedded
Hamiltonian on N + 1 spins is then

H = −|JF |s0s1 −
N∑

i=1

sisi+1, (24)

where we identify sN+1 ≡ s0. There are N + 1 total spins.
Let Ci denote a configuration of the N − 1 spins la-
beled 2, . . . , N . We take C1 = (−1, . . . ,−1), and C2 =
(−1,+1,−1,+1, . . . ,−1,+1) (assume N is odd).

We compute the energies E (C1,2 )
(±1,±1), where the subscript is

the spin value for (s0, s1), in Table I.
Now consider the quantity r(C) := Z

ZL
− 1 computed using

the configurations C1 and C2 from Eq. (22):

r(C1) = e−2β|JF |

cosh 2β
, r(C2) = e−2β|JF | cosh 2β. (25)

We have r(C1) �= r(C2) (except for the very particular case
β = 0), while the quantity Z

ZL
− 1 has to be configuration-

independent as we can see from Eq. (23).
Interestingly, in this case even knowing Z and ZL is not

enough to solve this problem. Of course, this does not exclude
the possibility of obtaining Boltzmann samples from an em-
bedded distribution by relaxing at lease one of the restrictions

TABLE I. Energies E
C1,2
(±1,±1).

(−1,−1) (−1,+1) (+1,−1) (+1,+1)

C1 −N − |JF | −N + 2 + |JF | −N + 2 + |JF | −N + 4 − |JF |
C2 N − 2 − |JF | N − 4 + |JF | N + |JF | N − 2 − |JF |

we imposed: (1) one may not require the final distribution
is at the same temperature of the sampler, (2) one could use
additional information about the structure of the problem, (3)
one can discard certain configurations, or (4) one may perform
postprocessing on a large set of configurations.

While the above argument indicates it is difficult, or im-
possible, to perfectly recover the target distribution, it is not
clear the extent to which sampling can be biased by certain
projection techniques. In the next sections we numerically
study some examples.

IV. POSTPROCESSING TECHNIQUES
AND NUMERICAL RESULTS

A. Majority voting

In the context of optimization tasks, one will often use
majority vote (MV) to obtain relevant solutions when illogical
configurations (configurations outside of the logical subspace)
are present in the sampling. This procedure is easy to imple-
ment and understand. Given a single configuration, for each
logical spin which is not aligned identically, correct it by
going with the majority. If there is a tie, one can pick at
random. For optimization purposes, this is a simple way to
obtain a greater number of solutions and does not cause any
intrinsic issues. For sampling, however, this introduces biases
in the sampling rate of certain logical configurations.

We first demonstrate this by example using an embedding
of a fully connected graph, where each variable becomes a
logical spin of size K (see Fig. 2). The problems we study have
values Ji j and hi chosen uniformly randomly from [−1 : 0.2 :
1] (−1 to +1 with step size 0.2). We restrict our analysis for
now to small sizes so we can exactly compute the probabilities
of each configuration (i.e., compute the partition function). As
a result, the largest system we study is 8 × 3 = 24 variables.
In order to demonstrate the sampling bias for these small
(numerically exactly solvable) problems, we take the temper-
ature parameter β = 0.6. In general, colder temperatures will
exhibit less bias (assuming the global-to-global property), by
the arguments of the previous section.

Our analysis shows that in general, and unsurprisingly, per-
forming majority vote induces biases into the sampling pro-
cedure, even when the ferromagnetic couplings are “strong”
(e.g., twice the magnitude of any coupling in the underlying
Hamiltonian, as is the case in typical implementations on
current hardware, such as the D-Wave 2000Q). An example of
this is shown in Fig. 6 where one can notice a few distinctive
features. (1) The distribution after performing MV is not a
Boltzmann distribution as the points do not lie on a straight
line. (2) Moreover, there exist configurations of the same
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FIG. 6. The effect of majority vote (MV) on sampling for an
eight-variable fully connected problem. Here E (c) is the cost as-
sociated with logical configuration c, and P(c) the corresponding
sampling probability under a Boltzmann distribution. In the embed-
ding, each variable becomes a logical variable of size K = 3 (see
Fig. 2). We demonstrate with two different ferromagnetic coupling
strengths, in units of the native Hamiltonian H . The straight lines
are found by least-squares fitting, where the gradient represents the
inverse temperature (see legend).

cost, but different sampling rates. (3) Assigning the best
fit temperature to the distribution gives a hotter distribution
compared to the sampling temperature; in particular, it tends
to flatten out the distribution.

Indeed, in light of the discussion in Sec. III it is not
surprising MV fails as it comes under a special case of the
argument outlined which shows it is not possible in general to
perform such a mapping. What is perhaps not obvious is how
poorly MV can perform, failing to capture much semblance
of a Boltzmann distribution at all by biasing the statistics. We
restricted ourselves to small sizes so that we could perform the
computations exactly (i.e., analyzing all 2NK configurations),
but our analysis also indicates that in general the biases
associated with MV become more detrimental with size.

In Fig. 7 we notice two related effects. First, larger prob-
lems are more adversely affected by MV as determined by
the KL divergence at the optimal temperature, and, second,
this optimal sampling temperature becomes hotter for larger
problem sizes. The latter indicates the distribution is becom-
ing flatter as problem size increases. This is not unexpected
since here the temperature and ferromagnetic couplings JF

are not scaling with problem size, and by the arguments in
the previous section one therefore expects to observe a greater
number of states outside of the logical subspace.

B. A better approach: Restricted resampling

Here we outline an approach called restricted resampling
(RRS) to overcome some of the issues outlined above, in-
spired by thermal sampling algorithms. As before, we assume
one receives perfect thermal (Boltzmann) samples of the
embedded problem, at some inverse temperature β [19]. In

FIG. 7. KL divergence of majority vote distribution to Boltz-
mann distribution P(β ) at inverse temperature β, as a function of
problem size N (number of variables in fully connected graph). The
sampling of the embedded problem was performed with β = 0.6. We
use logical spins of size K = 3 for the embedding (as in Fig. 2). Each
data point is averaged over 500 random problems and embeddings.
The solid blue curve is the KL divergence between the MV data
and the “ideal” Boltzmann distribution (i.e., if no embedding was
required). The dash blue curve is the KL divergence between the MV
data and a Boltzmann distribution at the optimal inverse temperature
βopt (which is found, for each problem, by minimizing the KL
divergence). The dotted red line (right y axis) is the optimal fitting
inverse temperature. Error bars are standard deviation. Here |JF | = 2
in units of the Hamiltonian.

RRS, one performs a thermal resampling at the designated
temperature over a restricted number of problem variables.
In particular, when one observes a configuration with NB

broken logical spins, one implements a “resampling” of these
variables within the logical space at inverse temperature β;
that is, one effectively performs a Monte Carlo algorithm
over a space of size 2NB . Though this does not guarantee
to perfectly recover a Boltzmann distribution (again, this
algorithm also falls under the arguments outlined in Sec. III),
we show numerically it clearly outperforms MV. We therefore
propose RRS as an alternative to majority vote and other
similar projection techniques.

We outline the general idea of RRS in Algorithms 1 and
2. This pseudocode is intended to just give the basic outline
of how one could implement RRS, and we stress that any
algorithm which can provide thermal samples can be used
as the subroutine Algorithm 2. For example, one could use
cluster flips instead of single spin flips, or replica-exchange
Monte Carlo (parallel tempering), to generate the samples.

In Algorithm 1 we first construct the set B of broken logical
spins and a configuration which respects the spin values for
the logical spins which are not broken. We then thermally
resample this configuration at temperature β, but resampling
only over the set of spins B.

In Fig. 8 the analog of Fig. 6 of the previous section, we
show the effect of RRS for a single problem instance. We see
that the resampled distribution is much closer to the ideal as
compared to using MV. In particular, the effective temperature
after resampling is almost identical to the temperature of the
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Algorithm 1. Outline of RRS algorithm. The input is a config-
uration C̃ ∈ H̃ from the embedded space, the native Hamiltonian H
(over N spin variables), and the desired sampling inverse temperature
β. In line 5, V (Tk ) corresponds to the vertices of the kth logical
subtree Tk . Sk is therefore the configuration of the kth logical spin. An
example implementation of the subroutine BoltzmannSampleOver-
Subset is given in Algorithm 2.

1: procedure RRS(C̃, H, β)
2: C ← Random configuration of length N
3: B = [] � Set of broken logical spins
4: for k = 1 to N do
5: Sk = {C̃i : i ∈ V (Tk )}
6: if si = s ∀si ∈ Sk then
7: Ck = s
8: else
9: Add k to set B
10: end if
11: end for
12: return BoltzmannSampleOverSubset(H, β,C, B)
13: end procedure

underlying distribution, and configurations of the same cost
are sampled with much less variation, as compared to MV.

Note that for our simulations we do this remapping exactly
by computing the partition function. In practice, one would
need to implement a thermal sampling algorithm, for example,
based on Monte Carlo techniques.

In Fig. 9 we see that the scaling of RRS is much more
favorable than MV. Moreover, in Fig. 10 we see the effective
sampled temperature after applying RRS is much closer to the
physical sampling temperature.

C. Discussion

We have identified a potential issue for hardware re-
stricted Boltzmann samplers, such as is proposed for current

Algorithm 2. Example of implementation for subroutine used
in Algorithm 1. In line 4, FlipRandomSpinFromSet(C, B) will flip
a spin in configuration C, chosen randomly from set B. We do not
specify explicitly the break condition for the while loop since this is
up to user implementation (e.g., after a fixed number of steps, or after
the energy landscape has been explored sufficiently).

1: procedure BOLTZMANNSAMPLEOVERSUBSET (H, β,C, B)
2: E ← H (C) � Cost (energy) of configuration
3: while True do
4: C′ ← FlipRandomSpinFromSet(C, B)
5: E ′ ← H (C′)
6: if Random(0,1) < min(1, e−β(E ′−E ) ) then
7: C ← C′; E ← E ′

8: end if
9: if break condition True then
10: break
11: end if
12: end while
13: return C
14: end procedure

FIG. 8. The effect of RRS on sampling for the same eight-
variable fully connected problem of Fig. 6. Here E (c) is the cost
associated with logical configuration c, and P(c) the corresponding
sampling probability under a Boltzmann distribution. In the embed-
ding, each variable becomes a logical variable of size K = 3 (see
Fig. 2). The ferromagnetic coupling strengths is units of the native
Hamiltonian H . The straight lines are found by least-squares fitting,
where the gradient represents the inverse temperature (see legend). It
is clear that RRS outperforms MV.

generation quantum annealers, where embeddings must be
used. While for strong enough logical spins (ferromagnetic
couplings |JF |) and low enough temperatures it is exponen-
tially unlikely in β|JF | to leave the logical space, in reality,
these couplings are limited by hardware and do not scale
with N . In fact, in current hardware such as the D-Wave
2000Q, |JF | is typically limited to a strength twice that
of a problem coupling. To make matters worse, Ref. [20]
found that effective sampling temperatures on an experimental

FIG. 9. KL divergence to ideal Boltzmann distribution after per-
forming projection � of RRS (red) or MV (blue). N is the native
problem size, β = 0.6, with embedding as described in Sec. II A
using K = 3 and JF = −2. Error bars (standard deviation) are over
500 random samples.
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FIG. 10. RRS version of Fig. 7, with the same parameters. The
effective temperature is much closer to the sampled temperature,
although still decreasing with problem size. Similarly, the KL diver-
gence values are less, by around an order of magnitude.

quantum annealer tend to increase with problem size. Em-
bedding therefore inevitably leads to the observation of states
which are not in the logical subspace, and since the proba-
bility of this occurring nominally scales exponentially in N
[Eq. (13)], even for moderately sized systems, one may rarely
(or never) observe logical configurations. These states are
not erroneous, caused by errors in the device, but perfectly
acceptable configurations in accordance with the Boltzmann
distribution of the embedded problem. The task therefore is,
given a sampler which works perfectly, what can be done
to project back all configurations to the logical subspace,
so that the distribution observed is the desired one (e.g.,
a Boltzmann distribution). If these so-called illogical states
were observed infrequently, a perfectly acceptable solution
would be to simply discard these states, since the relative
sampling weights are the same in the logical space of the
embedded problem, and the native problem [Eq. (4)].

We argued in Sec. III that under a reasonable set of
assumptions, it is not possible to find such a projection in
general which works without error. Our argument assumed
that (1) the temperature must remain fixed, (2) no illogical
configurations are discarded, (3) the projection is performed
without knowledge of other configurations, and (4) only bro-
ken logical spins are changed. This includes a wide range
of projection algorithms and applies to techniques such as
majority vote (MV) and our introduced restricted resampling
(RRS) scheme. This does not preclude the possibility of
more advanced schemes where one may violate our assump-
tions above, for example, collecting many samples first and
then performing the projection over the set of samples (e.g.,
through machine learning techniques), or discarding certain
samples.

We have shown that one commonly used technique in the
setting of optimization, majority vote, can fail quite spectacu-
larly to capture the intended distribution. The reason for this
is it introduces biases to the statistics, and the result is two
logical states of the same cost can be sampled at massively
different rates (e.g., over an order of magnitude difference
in sampling probability). Moreover, the effective temperature

FIG. 11. Comparison of RRS and MV for a larger problem
using a Monte Carlo thermal sampler. Here the native problem
is fully connected of size N = 35 with couplings and local fields
uniformly random from [−1 : 0.2 : 1]. Since the native problem is
small enough, we can exactly compute the degeneracies gi for each
energy level Ei. The blue solid line is the exact profile. Pi is the
probability of observing energy level Ei under the sampling. The
blue dots (with error bars smaller than the dots) is from sampling
from the 35 spin problem using a Monte Carlo algorithm with β =
0.6, showing excellent agreement with the exact solid line. The red
(MV) and yellow (RRS) dots with error bars (standard deviation)
are from sampling the embedded problem (topology as in Sec. II A)
with K = 3 and JF = −2 (in this case the embedded problem con-
tains 35 × 3 = 105 spins). The red and yellow solid lines are from
least-squares fitting with gradient representing the sampling inverse
temperature β as in the legend. The Monte Carlo algorithm uses 1000
thermalization steps per sample, with 200 random initializations and
106 samples per realization.

after performing MV is much larger than the sampling tem-
perature; i.e., it tends to flatten out the distribution.

We introduced a partial solution to this problem through
a scheme called restricted resampling, where one resamples
over a restricted set of variables; the ones which are not in the
logical space. This not only clearly outperforms MV, but it
also gives a distribution with a temperature much closer to the
desired one. This resampling can be performed by a classical
algorithm (such as a Monte Carlo-type algorithm).

We show another example of a comparison between MV
and RRS for a larger problem in Fig. 11, where all samples
are generated by a Monte Carlo thermal sampler (described in
Appendix B). This is in contrast to the previous sections where
we exactly computed for small sizes the resampling weights
for individual configurations. Since estimating the configura-
tion probabilities is infeasible in this case (with >100 spins),
we focus on estimating the probability of an energy level
being sampled Pi = gi

Z exp(−βEi ). One can see again that
RRS matches closer to the ideal distribution, although there
is a large variation between different samples (large error
bars), in both cases. Fluctuations in the Pi is due to errors
arising from the inexact Monte Carlo implementation and due
to biases from the projection methods.
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FIG. 12. Graph of Eq. (27) for proposed scaling of |JF | (relative
to problem couplings |Ji j |) in order to minimize number of broken
chains. We plot for three choices of embedding size K and two
temperatures.

One drawback of RRS is that it can be quite computa-
tionally intensive; indeed, when given a configuration where
each logical spin has misaligned spins, RRS is equivalent
to performing Boltzmann sampling in the entire space. If
one regularly observes states where ∼N logical spins are
not aligned, then this will quickly become infeasible. By our
Eq. (17) this is determined by the penalty weight term Pw;
since Pn/Pn−1 is decreasing in n (and P1/P0 > 1), the most
probable number nmax of broken logical spins (Pnmax � Pn) is
found by setting Pn = Pn−1 which gives

nmax =
⌊

N + 1

1 + P−1
w

⌋
. (26)

This means if Pw is “large,” one may regularly find samples
with O(N ) broken logical spins. We see therefore that in
looking to sample large problem sizes would require Pw ∼
O(1/N ), which, from Eq. (16), can be achieved by scaling

|JF | ∼ −1

β
log

[(
N + 1

N

) 1
K−1

− 1

]
. (27)

This scales very reasonably in N and K as shown in Fig. 12,
suggesting the possibility of achieving this on hardware in the
future. Note that this scaling is for the absolute size of |JF |,
not the relative |JF |/|Ji j | which can be increased by reducing
the |Ji j |. The distinction is that the former requires an overall
increase in the energy scale available in the hardware, whereas
the latter does not. See point (i) in Sec. III for additional
discussion.

However, even without this restriction there is still hope.
For example, for the parameters examined in this work, if
β = 0.6 and JF = −2 (in units of the logical Hamiltonian),
for chains of length K = 3 we get Pw = 0.19, which means
nmax ∼ N/6.26 for large N . If we wish to sample a 1000 spin
(logical) problem, RRS would likely only need to handle up
to 300 spins, which is significantly easier. Letting Jf =−4

FIG. 13. Same as Fig. 3, but at colder temperatures. We see our
general theory seems to overestimate PL .

reduces the size RRS needs to handle further to around
20 spins (with 1 + P−1

w = 62).
We finally mention an interesting observation, that al-

though our Eqs. (13) and (15) appear accurate for the temper-
atures considered here (in the average case) and are known to
be accurate as T → 0, for intermediate temperatures we find
numerically our estimate of the logical subspace sampling PL

[Eq. (13)] is in fact an overestimate (i.e., a loose, approxi-
mate upper bound). This means that relative to our derived
equations, the sampling quality is in fact worse than expected,
as seen in Fig. 13. The reason for this may be due to the
fact that our derivation assumes breaking a logical spin will
always increase the energy, resulting in an underestimate of
states outside of the logical subspace. This of course means
that relative to our equations, |JF | would have to scale more
aggressively with N than our equations predict [i.e., Eq. (27)].
As discussed in the next section, it is worth exploring this
regime in more detail, as a future research direction.

V. CONCLUSION

We have demonstrated a clear potential pitfall for any
thermal sampler with a restricted topology, such as a quantum
annealer for use in understanding equilibrium physics of many
body systems, phase transitions in spin glasses, and machine
learning and optimization. We showed that under the annealed
approximation of spin glasses, samples from the subspace
one wishes to probe, the logical subspace, are exponentially
unlikely in problem size and the complexity of the embedding
(size of the logical spins K). We found analytic expressions
which numerically capture this unfavorable scaling with good
accuracy, for parameters studied in this work. We proposed a
method for projecting states back to the logical subspace, and
propose a scaling for the ferromagnetic coupling strength of
logical spins JF which guarantees the computational plausibil-
ity of this scheme. Fortunately, this scaling is only logarithmic
in problem size N .

Going forward, it would be beneficial to improve, or bound
in (β, |JF |), the accuracy of our general model [Eqs. (13)
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and (15)], perhaps by restricting to certain problem classes
and therefore making more informed approximations. More-
over, there are many questions about how different problem
types are effected by embeddings on various topologies. Sim-
ilarly, it would be useful to obtain results for larger problem
sizes and a larger range of temperatures, either analytically
where possible, or through advanced sampling techniques
(such as parallel tempering). Last, it is clear there is much
room for development of new projection techniques, expand-
ing on, or going beyond, the introduced RRS scheme. In
RRS, it is assumed the temperature of the thermal sampler is
known, and this may not always be the case; for example, in
quantum annealers different sets of problems may be sampled
at effectively different temperatures [20–22]. One would first
therefore need to estimate the temperature [2,23–26]. Since
in general one will not obtain the exact temperature, a further
study of importance is how the performance of RRS depends
on noise in the temperature parameter.
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APPENDIX A: AVERAGE PROBABILITIES FOR SEC. III A

Here we explicitly obtain Eq. (6). We have N chains of K
spins. Let us label by σi,α the αth spin in the ith chain. The
Hamiltonian is

H =
N∑

i, j=1

K∑
α,β=1

J jβ
iα Ajβ

iα σi,α σ j,β + JF

N∑
i=1

K−1∑
α=1

σi,α σi,α+1,

(A1)
where J jβ

iα = Jiα
jβ are the disordered interaction couplings,

and A is the adjacency matrix of the physical graph. We
are considering the case without local fields for brevity, but
the computations in that case are very similar. Consider two
configurations, σ (�) and σ̃ (�), with � domain walls, as in the
main text. We can write σ̃i,α = σi,αξi,α , where ξi,α is 1 if the
spin labeled by i, α has the same orientation in σ (�) and σ̃ (�),
−1 otherwise. To fix the ideas, we will consider, for sim-
plicity, a bimodal distribution for the couplings (but we can
immediately generalize everything to continuous distributions
with zero mean and symmetric with respect to the origin): For
the disorder-averaged probability of observing σ̃ (�) we have

p(σ̃ (�) ) =
∑

J jβ
iα =±1

1

Z
exp

⎛
⎝−β

⎧⎨
⎩

∑
i, j

∑
α,β

J jβ
iα Ajβ

iα σ̃i,α σ̃ j,β + JF [N (K − 1) − 2�]

⎫⎬
⎭

⎞
⎠

=
∑

J jβ
iα =±1

exp
(−β

{∑
i, j

∑
α,β J jβ

iα Ajβ
iα ξi,α σi,α ξ j,β σ j,β + JF [N (K − 1) − 2�]

})
∑

σi,α=±1 exp
{−β

[∑
i, j

∑
α,β J jβ

iα Ajβ
iα σi,α σ j,β + JF

∑N
i=1

∑K−1
α=1 σi,α σi,α+1

]}

=
∑

J jβ
iα =±1

exp
(−β

{∑
i, j

∑
α,β J jβ

iα Ajβ
iα σi,α σ j,β + JF [N (K − 1) − 2�]

})
∑

σi,α=±1 exp
{−β

[∑
i, j

∑
α,β J jβ

iα Ajβ
iα σi,α σ j,β + JF

∑N
i=1

∑K−1
α=1 ξi,α σi,α ξi,α+1 σi,α+1

]}

=
∑

J jβ
iα =±1

1

Z ′ exp

⎛
⎝−β

⎧⎨
⎩

∑
i, j

∑
α,β

J jβ
iα Ajβ

iα σi,α σ j,β + JF [N (K − 1) − 2�]

⎫⎬
⎭

⎞
⎠, (A2)

where in the second-to-last step we have used the symmetry
of the probability density function of the couplings to perform
the substitution J jβ

iα ξi,α ξ j,β → J jβ
iα and, at the denominator,

we performed the substitution σi,α → ξi,α σi,α . Now, the nu-
merator is the same as that of p(σ (�) ) [Eq. (5)], but the
denominator is different and hence we call it Z ′: that is, we
have obtained explicitly Eq. (6).

APPENDIX B: THERMAL SAMPLER

Here we describe the Monte Carlo thermal sampler, used
to generate Fig. 11.

We implement a very basic sampler using single spin flips:
(1) Pick random spin configuration, compute cost E
(2) Pick random spin to flip, compute cost E ′
(3) Accept change with probability min(1, exp(−β	))

where 	 = E ′ − E
(4) Return to step 2, and take a sample every NT steps.

Break after NS samples have been generated
Here β is the inverse sampling temperature, and NT repre-

sents a thermalization time; a sample is generated every NT

steps of the algorithm. The total number of iterations of the
above is therefore NT × NS .
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If NT is too small, samples will be heavily correlated and
therefore not represent true thermal (random) samples. We
typically take NT ≈10×N where N is the number of problem
variables; i.e., each spin has the chance to be flipped on aver-

age 10 times per thermalization step. We run the steps of this
algorithm over many realizations (i.e., random initial config-
urations) to generate statistics and to try to avoid biases such
as from certain realizations becoming stuck in local minima.
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