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Designing metamaterials with quantum annealing and factorization machines
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Automated materials design with machine learning is increasingly common in recent years. Theoretically,
it is characterized as black-box optimization in the space of candidate materials. Since the difficulty of this
problem grows exponentially in the number of variables, designing complex materials is often beyond the
ability of classical algorithms. We show how quantum annealing can be incorporated into automated materials
discovery and conduct a proof-of-principle study on designing complex thermofunctional metamaterials. Our
algorithm consists of three parts: regression for a target property by factorization machine, selection of candidate
metamaterial based on the regression results, and simulation of the metamaterial property. To accelerate the
selection part, we rely on the D-Wave 2000Q quantum annealer. Our method is used to design complex structures
of wavelength selective radiators showing much better concordance with the thermal atmospheric transparency
window in comparison to existing human-designed alternatives.
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I. INTRODUCTION

Further evolution in materials that controls energy carri-
ers, such as photons, electrons, and phonons, is a condition
to realize sustainable industry and society. The key is to
manipulate transport properties at the scale of characteristic
length of energy carriers. For the last decades, metamaterial
industries have realized top-down fabrications, bottom-up
syntheses, and atomistic and spectroscopic characterizations.
These advances have given us access to a nearly unlimited
exploration of structures with enhanced energy transport char-
acteristics. This situation has resulted in many breakthroughs
in photovoltaics [1], thermal radiators [2,3], batteries [4],
thermoelectrics [5], and others. Here, metamaterials are a
representative case where the artificial structure produced
inside a material gives rise to extraordinary properties.

Currently, the major obstacle is that there are too many
candidate structures to explore. For example, exploring single
crystals is exhausting when considering compounds, but the
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number of candidates becomes truly massive when extend-
ing to include composites in a broad sense with nanoscale
inhomogeneity in the composition or simply “nanostructures.”
However, some materials with such a compositional inhomo-
geneity exhibit superior properties compared to their counter-
parts with ordered structures, particularly in the case where
the structures are smaller than the coherence length of energy
carriers as shown for photons [6], phonons [7], electrons [8],
and magnons [9]. Therefore, for further evolution of mate-
rials in energy technology, it is imperative to overcome the
challenge of massive candidates. One solution is automated
materials discovery.

Automated materials discovery based on black-box op-
timization is an iterative process to select one candidate
from a massive number of candidates (i.e., design space) for
experimental investigations [10–12]. From existing materials
properties data, machine learning predicts the properties of
unobserved candidates and defines an acquisition function
in design space. The global optimization problem in design
space is solved with respect to this acquisition function. The
best candidate is selected as the next candidate material for
experiments. Using the observed properties of the selected
candidate, the machine learning model is updated and defines
a different acquisition function for the next iteration. Repeat-
ing this procedure with the aid of the machine learning should
drastically reduce the number of experimental investigations
to design materials with the desired properties.

There are two barriers that hinder applying automated
materials discovery to complex materials design: statistical
and computational. A statistical barrier refers to difficulty
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FIG. 1. Procedure of our automated materials discovery using a
factorization machine (FM) for regression and quantum annealing
(QA) for selection. This simulation can use various simulation
methods or experiments, depending on the target properties.

predicting the properties of materials with a limited number of
training data by machine learning. A computational barrier is
related to the well-known hardness of the global optimization
defined by the acquisition function. The statistical barrier
is reduced by using a fast simulator, which calculates the
properties of the target materials, instead of an experiment.
As several recent studies show, a simulation is not as over-
whelming as the computational barrier [10,12]. To circumvent
the difficulty with global optimization, exhaustive searches
have been replaced by methods such as local searches, tree
searches [13], and genetic algorithms [14]. Because these
alternative methods have a lower optimization quality, other
options continue to be investigated.

To overcome this computational barrier, we propose a
new algorithm that employs a D-Wave quantum annealer
[15]. This computer can obtain highly accurate solutions
of a particular type of combinatorial optimization called
quadratic constrained binary optimization (QUBO) by the
quantum annealing (QA) process [16–18]. Many studies have
discussed the computational performance of this computer
from theoretical and experimental viewpoints [19–25]. To
date, diverse applications have been reported in biological
science [26,27], machine learning [28–30], and Internet-of-
Thing (IoT) [31–33].

Figure 1 depicts the schematic procedure of our algorithm.
It can solve a black-box optimization problem over binary
variables representing the structure of materials. First, a fac-
torization machine (FM) [34] is trained with the available data
to model the material property of interest. In this study, the
target property is the figure-of-merit (FOM) for radiative sky
cooling, which is evaluated by rigorous coupled wave analysis
(RCWA). Selection of a new candidate with respect to an
acquisition function based on a trained FM comes down the
QUBO solved by a quantum annealer. The properties of the
new candidate are obtained by RCWA. Then the pair of new
candidate and its property is added to training data, and the

FM is retrained. We call our algorithm FMQA (factorization
machine with quantum annealing) [35].

As a proof-of-principle, we apply our method to design a
metamaterial with tailored thermal radiation spectrum. Tai-
loring the thermal radiation is fundamentally important be-
cause every material emits and absorbs thermal radiation.
From an engineering viewpoint, diverse applications require
wavelength-selective thermal radiation (photons). For in-
stance, engineered thermal-emission leads to high-efficiency
thermophotovoltaics [36,37], incandescent light sources [38],
biosensing [39,40], microbolometers [41,42], imaging [43],
and drying furnace [44].

Another application that has recently attracted much atten-
tion, in response to concerns of global warming and energy
crises, is radiative sky cooling that utilizes the untapped
3 K cold space as a heat sink. Previous designs on radiative
cooling [2,45–55] have focuses on simultaneously blocking
solar energy (0.4–4 μm) while maximizing thermal radiation
loss (>4 μm) to the surroundings. These designs have been
experimentally demonstrated to be successful in dry and clear
weather. However, this design strategy is not as effective in hot
and humid areas because the atmospheric window (8–13 μm),
which allows thermal radiation to directly transmit to the
outer space, becomes less transparent and a large part of the
downward radiation that is beyond the window is absorbed
by the radiator. Therefore, a radiator that only emits thermal
radiation to outer space through the transparency window is
desirable. Such a radiator can help maximize the outgoing ra-
diative cooling power while minimizing the ambient radiative
energy absorption. In this study, our proposed optimization
method is used to design such a radiator with a wavelength
selectivity higher than previously designed ones.

II. TARGET METAMATERIALS AND METHODS
USED IN FMQA

A. Target metamaterials

A metamaterial, which only emits or absorbs the ther-
mal radiation within the transparency window of the atmo-
sphere (8–13 μm), is preferable for radiative sky cooling
[49,53]. Various material structures have been proposed to
match the spectrum of the atmospheric window, including
planar multilayer structures [2,48], patterned meta-surface
structures [47,50,51,54], and polymers doped with nanopar-
ticles [45,52,55]. Most of these structures do not have a high
emittance over the whole span of the atmospheric window.
Additionally, their cooling capability is insufficient. On the
other hand, our design employs SiO2 and SiC to achieve this
stringent spectral selectivity. The dielectric functions of SiO2

and SiC indicate that they have phonon-polariton resonances
positioned at 9.7 and 12.5 μm, respectively. Moreover, they
both have very small extinction coefficients in the solar energy
wavelength band, implying that the absorption of solar energy
should be suppressed.

Inspired by previous research [46], the target metamate-
rial structure is comprised of SiO2 and SiC wires placed in
poly(methyl methacrylate) (PMMA), which has a negligible
absorption in the visible to far-infrared range. Each wire is
arranged along the y axis, and light is incident from the top
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FIG. 2. Example of the target metamaterial structure for L = 6 and C = 3, the binary variables expressing it, and the emissive powers of
target metamaterial (red curve) and blackbody (blue curve) calculated by RCWA.

layer (Fig. 2). The periodic boundary condition is applied in
the x directions (i.e., the structure repeats along the x axis).
Because the RCWA calculation solves a two-dimensional
(x-z) problem, the wire is assumed to be infinitely long with-
out any variations in the cross section in the y direction. For
structural optimization, the x-z plane is uniformly discretized
into square units with 1 μm side lengths, which are either
SiO2, SiC, or PMMA. The numbers of meshes along the z
and x directions are defined as L and C, respectively.

One constraint adopted in this study is that a layer can
contain only SiO2 or SiC exclusively. The constraint and the
unit size, which correspond to the minimum wire size, are de-
termined considering future fabrication via photolithography.
Pretrial simulations confirm that a unit size of 1 μm provides
sufficient resolution for the optimization problem. For these
structures, the emissivity properties are calculated based on
RCWA, and the FOM for radiative cooling is evaluated. In
our optimization, the target is the emittance property under
p-polarized incidence (TM wave) for a polar angle θ = 0o.

To utilize a quantum annealer for automated materials
discovery, the metamaterial structure should be encoded into
binary variables. Initially, the configuration of the wired ma-
terials (SiO2 or SiC) and PMMA is determined by L × C bits
(Fig. 2). Then additional bits, which express the type of wired
materials in each layer, are prepared. Consequently, the struc-
ture of a metamaterial is well-defined using L × (C + 1) bits.
Note that our algorithm can perform a structural optimization
where L and C are fixed.

B. Simulation by rigorous coupled wave analysis

To calculate the thermal emissivity properties of the tar-
get metamaterials (Fig. 2), RCWA is employed. RCWA is
a semi-analytical method to solve Maxwell’s equation and

provides a high numerical accuracy (see Supplemental note A
in Ref. [56]). The spatial distribution of the dielectric constant
and the involved electromagnetic field are decomposed in the
x and z directions. By imposing a periodic boundary condition
in the x direction and a continuous boundary condition in the
z direction, the governing Maxwell’s equation can be solved
quickly and accurately.

Although PMMA is not universal in identical materials due
to the influence of the fabrication process, our calculations
assume that the PMMA is pure and the refractive index is
fixed as 1.48 for simplicity [57]. The dielectric functions of
SiO2 and SiC are obtained from the tabulated data from Palik
[58] with interpolation. Comparing the experimental results
validates [59] that the RCWA method is a credible approach
to design metamaterials for thermal radiators. Figure 2 shows
a calculated example of the emissive power.

For a good thermal radiator for radiative cooling, the
emittance spectra should fall within the wavelength region
between 8 and 13 μm. To evaluate the likelihood that the
designed metamaterial is the ideal case, the FOM is defined
as [3]

FOM =
∫ λf

λi
ελEbλdλ

∫ λf

λi
Ebλdλ

−
∫ λi

λmin
ελEbλdλ

∫ λi

λmin
Ebλdλ

−
∫ λmax

λf
ελEbλdλ

∫ λmax

λf
Ebλdλ

,

(1)

where λi = 8 μm, λf = 13 μm, λmin = 1 μm, and
λmax = 20 μm. Here, ελ and Ebλ are the spectral emittance and
the spectral blackbody emissive power calculated by RCWA,
respectively.

In Eq. (1),
∫ λf

λi
ελEbλdλ denotes the actual energy heat flux

radiated within the wavelength range 8–13 μm. Furthermore,∫ λf

λi
Ebλdλ is the energy flux radiated out by the blackbody at
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the same temperature in the atmospheric-window wavelength
range. This is the maximum energy flux that an object at
that temperature can emit. Thus, the first term in Eq. (1)
is the ratio that quantitively describes the similarity of the
designed structure to the ideal emissivity with respect to the
energy flux. For the remaining wavelength range (i.e., λ <

8 μm and 13 μm < λ), the optimization strives to make the
emissivity as low as possible. Therefore, in the definition of
FOM, the coefficients are negative. Since the ideal FOM value
is 1 and the worst FOM value is −2, where the emissivity
functions take exactly the opposite shape, our optimization
task maximizes the FOM.

It should be noted that according to Kirchoff’s law, the
spectral emittance is equal to the spectral absorptance in
the thermal equilibrium state. In the following calculations,
the spectral emittance property is obtained directly from the
spectral absorptance.

C. Learning by FM

Using a D-Wave quantum annealer, the lower energy states
of QUBO can be effectively searched. QUBO with N bits is
given by

H =
N∑

i=1

N∑

j=1

Qi jqiq j, (2)

where qi is the 0/1 binary bit and Qi j = Qji takes a real
value. The key to our idea is to use a machine learning
regression model, which can be expressed by QUBO. Then
the next candidate material structure with a high acquisition
function can be rapidly selected by a quantum annealer. For
the prediction, we utilize an FM, which is given by

f (q) =
N∑

i=1

wiqi +
N∑

i=1

N∑

j=1

K∑

k=1

vikv jkqiq j, (3)

where q = {q1, . . . , qN } determines the structure of the target
metamaterial (Fig. 2), and N = L × (C + 1). In this model,
as the factorization size K decreases, the number of fitting
parameters {vik} is reduced. Note that the K = N case is
equivalent to the regression model by QUBO itself. An FM
with small K should realize a good prediction without over-
fitting when the training dataset is small (see Supplemental
note B in Ref. [56]). Thus, this model should be suitable for
automated materials discovery due to the small number of
training data.

In this paper, the factorization size is fixed as K = 8, which
is the default parameter in the LIBFM package [34,60,61].
In the training, a negative FOM is given as f (q) to treat
the maximization task of the FOM as the minimization by a
quantum annealer. Some parameters ({wi} and {vik}) are tuned
to predict a negative FOM with a higher accuracy. That is, the
predicted negative FOM is used as the acquisition function
itself. In this paper, these parameters are determined by Adam
(adaptive moment estimation) for the training dataset.

D. Selection by the D-Wave quantum annealer

A D-Wave 2000Q quantum annealer is utilized to se-
lect the next candidate material in the automated materi-

als discovery. The D-Wave 2000Q has 2038 qubits on the
chimera graph [62]. An FM is implemented on a fully
connected graph, and the D-Wave 2000Q can create a
graph with 63 nodes by regarding some qubits as one vari-
able. The dwave.embedding.chimera.find_clique_embedding
method [63] is used for this embedding. Although the max-
imum problem size for automated materials discovery using
our algorithm is 63, the fast selection from at most 263

candidates is very attractive in materials science. The trained
parameters ({wi} and {vik}) in the FM are converted to the
parameters ({Qi j}) in the QUBO format. If num_reads = 50,
which is the parameter for the D-Wave 2000Q [64], 50 states
are outputted as the ground state candidates within 16 ms as
the QPU time. Then the state with the lowest energy out of
these 50 states is used as the next material structure candidate.
After the candidate is selected, its FOM is evaluated by
RCWA, and the number of training data for the FM increases.
By repeating this procedure (Fig. 1), the metamaterial struc-
ture with a high FOM can be obtained with a small number
of evaluations. So far, Ising machines, including quantum
annealers, are experimentally utilized in the training processes
for machine learning [28,29]. Consequently, our selection
process is a new application of Ising machines.

Since our implementation does not exclude already ob-
served structures as the candidates in the selection by a
quantum annealer, it is possible to select an already observed
structure. When such a situation occurs, a metamaterial struc-
ture is randomly selected from the unobserved structures as
the next candidate.

III. METAMATERIALS DESIGN BY FMQA

A. Performance of FMQA

First, to clarify the usefulness of an FM as a regression
model for our metamaterial design, the performances using an
FM and a Gaussian process (GP) to find the best structure for
the L = 4 and C = 3 case are compared. An exhaustive search
of the acquisition function defined by the negative FOM can
easily be performed on classical computers to select the next
candidate material. Furthermore, a search where the next
candidate material is randomly generated from all candidates
in the selection part is also compared. In this case, since the
number of candidate material structures is only 216 = 65 536,
all the FOMs by RCWA are evaluated to identify the best
structure.

Figure 3(a) shows the best FOM as a function of the
number of calculated structures (iterations of the cycle de-
picted in Fig. 1) by each method. Here, 16 optimization runs
with different initial choices are performed and the FOMs
are averaged out. All three methods use the same first 50
randomly selected structures as the initial data. The regression
results are used from step 51 for the FM and the GP cases.
The results in order from worst to best are the random search,
the GP, and the FM. Because the FM finds the best structure
within 300 iterations, it is suitable for the regression model of
our target. This result says that, at least, the learning by the FM
is more useful than a random search to discover metamaterial
structures with a high FOM within a small number of simula-
tions. This result is promising for our metamaterial design.
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FIG. 3. (a) Dependence of the best FOM on the number of
calculated structures (iterations) by automated materials discovery
using an FM, a Gaussian process, and a random search for the L = 4
and C = 3 case. Inset is the optimum structure and its FOM. Blue,
red, and gray squares denote SiO2, SiC, and PMMA, respectively.
(b) Best FOM by FMQA using a quantum annealer and the random
search for the L = 6 and C = 3 case. Inset is the structure with the
best FOM identified by FMQA. (c) Computing time to perform 500
iterations of automated materials discovery using a quantum annealer
and an exhaustive search on a classical computer with an Intel Xeon
E5-2690 v3 @ 2.6GHz for the selection part, respectively. Learnings
and simulations are performed by the same classical computer.

Next, the problem with L = 6 and C = 3 by FMQA is con-
sidered using a quantum annealer. Since the candidate number
is 224=16 777 216, an evaluation of all FOMs predicted by
regression models such as an FM and a GP to select the next
candidate is a time-consuming task on classical computers.
Thus, a more realistic option is to use a quantum annealer for
the selection part rather than an exhaustive search. Figure 3(b)
plots the best FOM by FMQA and a random search as
functions of the iteration number. The average values from
16 independent runs with 50 different initial structures are
plotted. FMQA can reduce the number of simulations to find
a metamaterial structure with a higher FOM. Hence, it is a
useful tool to design new metamaterials. Supplemental note C
in Ref. [56] compares the effectiveness of a quantum annealer
for FMQA to a local search method and simulated annealing.

Because the computing time to perform FMQA is impor-
tant, the computing time of automated materials discovery
based on an FM when the selection part is conducted by a
quantum annealer is compared to an exhaustive search by a
classical computer with an Intel Xeon E5-2690 v3 @ 2.6GHz.
Note that to this point, the black-box optimization algo-
rithms accompanied by acquisition functions (e.g., Bayesian
optimization) have employed an exhaustive search for the
selection part. Here, an exhaustive search is compared to the
computing time between our algorithm and a conventional
algorithm. Figure 3(c) plots the computing time to perform
500 iterations as a function of the problem size (number of
encoding bits). The selection time, learning time by an FM,
and simulation time by RCWA are separately illustrated. The
target structure is the L = 3 case with various C = 2, 3, 4, or

5, which are encoded using 9, 12, 15, and 18 bits, respectively.
Table S1 in Ref. [56] summarizes the empirical computing
time.

Since the learning and simulation are conducted on the
same classical computer, these parts require about the same
time in both cases. The use of a quantum annealer reduces
the selection time. Both methods provide the structure with
the highest FOM within only 500 iterations, and the number
of simulations can be reduced to find the best one. Note that
if the FOMs of all structures are evaluated by the RCWA
simulations for the 18 bits case to identify the best structure,
the required time is more than ten times longer than the
algorithm where the exhaustive search method is used for
the selection part. Although RCWA is a relatively high-speed
simulation method (one calculation takes one minute at most),
the most time-consuming part becomes the simulation time
when FMQA is performed. Consequently, a quantum annealer
can be used to solve the hard computational barrier in the
automated materials discovery.

B. Optimum metamaterial structure search by FMQA

We search the optimum structure of the metamaterial for
radiative cooling. Varying the number of layers and columns
of the target structure should help elucidate a trend to achieve
a high FOM. Starting from the previous setting (L = 6 and
C = 3), the number of layers L is changed. The range of
L is varied from 3 to 9, and a single run with the first 50
randomly generated initial structures and 2000 iterations is
conducted for each optimization trial. Figure 4(a) plots the
best FOMs as a function of the number of calculated structures
for various numbers of layers. The structure with five layers
(L = 5) exhibits the highest FOM. Figure 4(b) shows the
found structure with the best FOM for each L. Interestingly,
when L � 6, some layers only contain PMMA but removing
the PMMA-only layers decreases the FOM. Consequently,
the existence of the PMMA layer plays an important role in
improving the FOM for thick metamaterials.

Next, the number of columns C in the target structures is
changed while the number of layers is fixed to five (L = 5).
Figure 4(c) shows the best FOM as a function of the iteration
number. Larger FOMs appear for the C = 4 and 6 cases.
Increasing the number of columns to more than seven (C � 7)
does not yield a higher FOM. Since larger cases are multiples
of smaller ones with commensurate periods, a metamaterial
structure for C = 8 should have a similar FOM as the C = 4
case. Thus 2000 samplings are too small to find the optimum
structure with a higher FOM due to the massive number of
candidates for C = 8. In fact, the change in the FOMs with
the number of calculated structures gradually increases for
larger systems [Fig. 4(c)]. Consequently, searches should be
continued to find the best structure for larger systems.

Figure 4(b) summarizes the metamaterial structures with a
high FOM found by FMQA for various L and C values. The
structure for the L = 5 and C = 6 case has the highest FOM,
and its value is 0.724 for radiative cooling. Figure 4(d) shows
the emissive power of the structure. The large emittances
fall into the atmospheric window. Note that the maximum
FOM of a multilayer structure constructed by SiO2, SiC, and
PMMA is 0.250 for five layers. In the multilayer structure,
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FIG. 4. (a) Best FOM as a function of the iteration number for C = 3 with various L. Plotted results are for a single run with the first
50 randomly generated initial structures. Parentheses denote the number of candidates. (b) Structures with a high FOM designed by FMQA
depending on L and C. Red dotted line denotes the structure with the highest FOM in our search. (c) Change in the best FOM for L = 5 with
various C obtained by a single run with the first 50 randomly generated initial structures. (d) Emissive power calculated by RCWA (red curve)
of the designed structure with the highest FOM for the L = 5 and C = 6 case, which is surrounded by the red dotted line in (b). For comparison,
the blackbody emissive power (blue curve) and the multilayer optimum case with five layers (grey curve) are shown (see Supplemental note D
in Ref. [56]).

each planar layer is constructed by the same material similar
to the C = 1 case. Hence, the material arrangement in the
z direction is optimized. (For the detail optimized structure,
see Supplemental note D in Ref. [56].) This means that our
designed metamaterial structure is essential to obtain a high
FOM for radiative cooling.

C. Mechanism of high emittance in designed metamaterial

From the list of optimized structures [Fig. 4(b)], structures
with SiO2 located separately at the top and bottom where
SiC mediates the middle part always show a higher FOM.
To understand which part of the structure absorbs the wave
energy, the electric power dissipation density we of each part

is evaluated. This value is calculated as [65]

we = 1
2ε0εImω|E|2, (4)

where ε0 is the permittivity in a vacuum, εIm is the imaginary
part of the dielectric function, ω is the angular frequency, and
E is the complex electric field calculated by RCWA.

Figure 5(a) shows we for several typical wavelengths of
the optimum structure designed above [i.e., the metamaterial
structure surrounded by the red dotted line in Fig. 4(b)].
The top and bottom SiO2 absorb most of the wave energy
within 8–11 μm, whereas the middle parts of the SiC layers
dominate the absorption between 11–13 μm. Furthermore,
around 11.8 μm, SiO2 also facilitates absorption.
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FIG. 5. Contour plots of (a) the normalized electric power dissi-
pation density at select wavelengths and (b) the normalized magnetic
field for the designed optimum structure with L = 5 and C = 6 which
is shown in Fig. 4(b).

Next, the mechanism of the high emittance of the designed
metamaterial is examined. The emittance contour plot of the
p-wave dispersion relation indicates that a high emittance is
almost insensitive against the incident angle (see Supplemen-
tal note E in Ref. [56]). Hence, the resonance is not due to
the surface phonon polariton, which is highly sensitive to the
incident angle. On the other hand, in terms of the magnetic
polariton [66], the diamagnetic response between the external
field and centralized magnetic field inside the structure is usu-
ally excited. Consequently, the magnetic polariton is almost
insensitive of the incident angle.

To further elucidate the magnetic polariton resonance,
Fig. 5(b) plots the magnetic field normalized by the maximum
value at several typical wavelengths. Comparing Figs. 4(d)
and 5(b) reveals that the magnetic fields always show a
strong confinement at the part with a high emittance, which
is where the polariton resonance is excited. Furthermore,
when the emittance curve falls, the confined magnetic field
becomes flatter and less centralized. These results suggest
that the high emittance of the designed structure originates
from the magnetic polariton resonance. Since a multilayer
structure with five layers only shows a narrow absorption
band between 8.5 and 10.5 μm [Fig. 4(d)], the structure
design of materials is critical to confine the magnetic field. To
promote the understanding of our designed thermal radiator,
the angle dependence and theoretical cooling power analysis
are discussed in Supplemental notes E and F in Ref. [56].

IV. DISCUSSION AND SUMMARY

In summary, we have proposed a new optimization tech-
nique called FMQA, which uses a quantum annealer for
automated materials discovery. In our algorithm, the next
candidate material, which is selected with respect to the
acquisition function, is represented as a solution to a combi-
natorial optimization by using an FM, and this optimization
problem is solved by a quantum annealer. By performing
FMQA using the D-Wave 2000Q quantum annealer, we have

demonstrated that a metamaterial can be designed for radiative
cooling within a small number of RCWA simulations. In the
target metamaterial, which has SiO2 and SiC wires placed
in PMMA, a high FOM of 0.724 is achieved for radiative
sky cooling. Compared to previously designed structures,
the targeted single polarization FOM is far greater than the
best reported structures with a comparable polarization- and
angle-averaged cooling power (see Supplemental note F in
Ref. [56]).

Although fabrication is beyond the scope of this paper,
a stratified structure similar to the designed structures has
been prepared using current technology [67]. Hence, it should
be possible to fabricate the designed optimal structure. The
results will be discussed elsewhere. Here, we demonstrate that
our method is applicable to the case where the metamaterial
design is expressed by binary bits. However, if combined with
methods for encoding integer variables [68,69], our algorithm
is applicable to discrete structural and compositional opti-
mizations of any property as long as the property calculation is
relatively fast with respect to the optimization process. There-
fore our algorithm should help manage the transportation of
various carriers (e.g., phonons, electrons, and magnons) and
contribute to creation of new energy materials by combining
with a straight-forward extension such as tailoring spectral
and angular-dependent radiative heat transfer.

Ising machines are conventionally used to optimize ex-
plicitly defined functions. Herein quantum annealer as an
Ising machine is used for the black-box optimization algo-
rithm. In the future, the application domain of our algo-
rithm will expand to even larger problems as next-generation
quantum annealers or other Ising machines equipped with
many bits [70–76] become available. As demonstrated by our
experiments, the hard computational barrier (e.g., candidate
selection) in automated materials discovery can be partly
resolved with the help of an Ising machine. Accordingly, the
most time-consuming part will be the simulation of material
properties even if a fast simulation on classical computers
is used. Therefore it is essential to speed up the materials
simulations. As there are increasing number of studies on
materials simulations by quantum computing to overcome this
problem [77–86], we expect in the future that our algorithm
will further accelerate materials discovery.
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M. Soljačić, and E. N. Wang, Enhanced photovoltaic energy
conversion using thermally based spectral shaping, Nat. Energy
1, 16068 (2016).

013319-8

https://doi.org/10.1038/nenergy.2015.15
https://doi.org/10.1038/nenergy.2015.15
https://doi.org/10.1038/nenergy.2015.15
https://doi.org/10.1038/nenergy.2015.15
https://doi.org/10.1038/nature13883
https://doi.org/10.1038/nature13883
https://doi.org/10.1038/nature13883
https://doi.org/10.1038/nature13883
https://doi.org/10.1021/acscentsci.8b00802
https://doi.org/10.1021/acscentsci.8b00802
https://doi.org/10.1021/acscentsci.8b00802
https://doi.org/10.1021/acscentsci.8b00802
https://doi.org/10.1038/nenergy.2016.132
https://doi.org/10.1038/nenergy.2016.132
https://doi.org/10.1038/nenergy.2016.132
https://doi.org/10.1038/nenergy.2016.132
https://doi.org/10.1126/science.1093164
https://doi.org/10.1126/science.1093164
https://doi.org/10.1126/science.1093164
https://doi.org/10.1126/science.1093164
https://doi.org/10.1038/nature01940
https://doi.org/10.1038/nature01940
https://doi.org/10.1038/nature01940
https://doi.org/10.1038/nature01940
https://doi.org/10.1038/nmat3826
https://doi.org/10.1038/nmat3826
https://doi.org/10.1038/nmat3826
https://doi.org/10.1038/nmat3826
https://doi.org/10.1126/science.1232572
https://doi.org/10.1126/science.1232572
https://doi.org/10.1126/science.1232572
https://doi.org/10.1126/science.1232572
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevX.7.021024
https://doi.org/10.1103/PhysRevX.7.021024
https://doi.org/10.1103/PhysRevX.7.021024
https://doi.org/10.1103/PhysRevX.7.021024
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1021/acscentsci.8b00213
https://doi.org/10.1021/acscentsci.8b00213
https://doi.org/10.1021/acscentsci.8b00213
https://doi.org/10.1021/acscentsci.8b00213
https://doi.org/10.1080/14686996.2017.1344083
https://doi.org/10.1080/14686996.2017.1344083
https://doi.org/10.1080/14686996.2017.1344083
https://doi.org/10.1080/14686996.2017.1344083
https://doi.org/10.1080/10426910802612270
https://doi.org/10.1080/10426910802612270
https://doi.org/10.1080/10426910802612270
https://doi.org/10.1080/10426910802612270
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1103/PhysRevA.91.042314
https://doi.org/10.1103/PhysRevA.91.042314
https://doi.org/10.1103/PhysRevA.91.042314
https://doi.org/10.1103/PhysRevA.91.042314
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1038/srep00571
https://doi.org/10.1038/srep00571
https://doi.org/10.1038/srep00571
https://doi.org/10.1038/srep00571
https://doi.org/10.1038/s41534-018-0060-8
https://doi.org/10.1038/s41534-018-0060-8
https://doi.org/10.1038/s41534-018-0060-8
https://doi.org/10.1038/s41534-018-0060-8
http://arxiv.org/abs/arXiv:1510.06356
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1371/journal.pone.0206653
https://doi.org/10.1371/journal.pone.0206653
https://doi.org/10.1371/journal.pone.0206653
https://doi.org/10.1371/journal.pone.0206653
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.1371/journal.pone.0172505
https://doi.org/10.1371/journal.pone.0172505
https://doi.org/10.1371/journal.pone.0172505
https://doi.org/10.1371/journal.pone.0172505
https://doi.org/10.3389/fcomp.2019.00009
https://doi.org/10.3389/fcomp.2019.00009
https://doi.org/10.3389/fcomp.2019.00009
https://doi.org/10.3389/fcomp.2019.00009
https://github.com/tsudalab/fmqa/
https://doi.org/10.1038/nphoton.2012.146
https://doi.org/10.1038/nphoton.2012.146
https://doi.org/10.1038/nphoton.2012.146
https://doi.org/10.1038/nphoton.2012.146
https://doi.org/10.1038/nenergy.2016.68
https://doi.org/10.1038/nenergy.2016.68
https://doi.org/10.1038/nenergy.2016.68
https://doi.org/10.1038/nenergy.2016.68


DESIGNING METAMATERIALS WITH QUANTUM … PHYSICAL REVIEW RESEARCH 2, 013319 (2020)

[38] O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic,
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