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Parton physics on a quantum computer
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Parton distribution functions and hadronic tensors may be computed on a universal quantum computer without
many of the complexities that apply to Euclidean lattice calculations. We detail algorithms for computing
predictions of parton distribution functions and the hadronic tensor in the Thirring model. Their generalization
to QCD is discussed with the conclusion that the parton distribution function is best obtained by fitting the
hadronic tensor rather than direct calculation. As a side effect of this method, we find that lepton-hadron cross
sections may be computed relatively cheaply. Finally, we estimate the computational cost of performing such
a calculation on a digital quantum computer, including the cost of state preparation for physically relevant
parameters.
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I. INTRODUCTION

Parton distribution functions (PDFs) and hadronic tensors
have been widely studied as they compactly parametrize
the hadronic structure as seen by high-energy probes. They
provide the nonperturbative input to deep inelastic-scattering
cross sections as well as the initial conditions for heavy-ion
experiments. As a result of this fundamental importance,
significant effort has been expended on both the experimental
and the theoretical sides [1].

As the PDF is a nonperturbative object, existing first-
principles calculations proceed from the Euclidean lattice
[2–18]. This presents a fundamental difficulty: The PDF is
defined as an integral of real-time separated correlators, and
direct computation on the lattice is prevented by a sign prob-
lem. Several approaches have been pursued to circumvent this
difficulty, including analytic continuation [3,4], computing
the hadronic tensor [15–18], Compton amplitudes [6], and
quasi-PDFs [5] or pseudo-PDFs [8], each of which carries
unique technical complications.

The near-advent of small-scale universal quantum comput-
ers has stimulated research into their possible applications. Of
particular interest, here, are the algorithms for achieving real-
time evolution of a field theory, particularly gauge theories
[19–44]. Classically hard real-time evolution is among the
most natural operations available on a quantum computer.
However, it is unclear exactly what quantities of physical
interest may be obtained more easily by this method. Inclusive
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cross sections, for instance, are a natural target [45–47] but are
already, in practice, obtainable classically [48]. In this paper,
we propose that PDFs and the hadronic tensor may be a physi-
cally relevant target on which “quantum supremacy”—that is,
the ability of quantum computers to calculate quantities un-
obtainable classically—may be demonstrated. Additionally,
this provides a cheaper way to compute lepton-hadron cross
sections than that discussed in Refs. [45–47]. Finally, these
methods could complement Euclidean lattice methods to ob-
tain theoretical predictions in partonic physics with different
systematics.

The largest quantum computers currently available are
limited to tens of qubits, and in the near future, computers with
more than a few hundred moderately noisy qubits cannot be
reasonably expected. This situation has been termed the noisy
intermediate-scale quantum (NISQ) era. With an eye toward
calculations achievable in the NISQ era, Ref. [49] proposed a
method for computing the hadronic tensor in the Regge limit,
in the framework of color glass condensate effective field
theory. In this paper, we discuss a more expensive prospect:
first-principles calculations in the framework of Hamiltonian
lattice field theory.

The method discussed here, as applied to (3 + 1)-
dimensional QCD, requires computers several orders of
magnitude larger than anything expected in the NISQ era. In
contrast, the (1 + 1)-dimensional Thirring model we discuss
requires substantially fewer resources and could plausibly be
studied in the NISQ era as a toy model. Our purpose is not to
present new calculations, but to describe how these observ-
ables can be computed and what sort of resources are required
to obtain, on a quantum computer, these particular physical
observables from first principles. To that end, we analyze
the cost of adiabatic state preparation of the proton as well
as the practical cost of time evolution on a sufficiently sized
lattice.

For illustration purposes, we work with the staggered
Thirring model in one spatial dimension. The Hamiltonian of
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this model is

H =
∑

x

1

2
(−1)x[χ†(x)χ (x + 1) + χ†(x + 1)χ (x)]

+ m(−1)xχ†(x)χ (x)− g2χ†(x)χ (x)χ (x + 1)χ†(x + 1),

(1)

where χ denotes a single-component fermion field, which
becomes a two-component field in the continuum limit. The
Hilbert space of this model is small enough to allow us to
simulate the evolution of the system with classical resources
on small lattices. The Thirring models differs importantly
from QCD in not being a gauge theory; we will see that, for
the evaluation of the hadronic tensor, this makes no significant
difference to the method but direct computations of PDFs are
dramatically affected.

The rest of this paper is structured as follows. First, we
describe the direct computation of the PDF in Sec. II. As
we will see, this is entirely impractical in a gauge theory,
and so, in Sec. III, we show how the hadronic tensor is
obtained instead. A theoretical prediction for the PDF may
be extracted from the hadronic tensor via the same procedure
used by experiments. In Sec. IV, we discuss the preparation of
the ground state of a proton—a prerequisite for any of these
procedures. We conclude in Sec. V with a discussion of the
future prospects for this and similar methods.

II. QUARK DISTRIBUTIONS

Central to hadronic physics are the quark and gluon distri-
bution functions [50]. The distribution functions f (x) may be
interpreted as giving the probability for a high-energy probe to
see a parton with a given momentum xP within a hadron with
momentum P. It is most natural to consider f (x) on the light
cone; however, in this paper, we will view it in equal-time
quantization as that is the framework in which we would
simulated a field theory on a quantum computer.

We use the Thirring model for illustration, and by analogy
with QCD, we refer to the fundamental fermion as a quark and
the bosonic bound state as a “meson.” Note that, because the
Thirring model is not confining, the dressed fermion is itself
an asymptotic state, of which a PDF may be computed. The
quark distribution function in the Thirring model is simpler
than that of QCD because no Wilson line is needed. It is given
by

f (x) =
∫

dy eixP+y〈P|ψ̄ (y)γ +ψ (0)|P〉, (2)

where γ + ≡ 1√
2
(γ 0 + γ 1) and P+ ≡ 1√

2
(P0 + P1) is the

light-cone momentum of the incoming hadron. The expec-
tation value is taken in the ground state of a hadron with
momentum P. Here, we see that the PDF is the Fourier
transform of a time-separated correlator.

Our strategy will be to calculate the integrand on a quantum
computer for many values of y and then approximate the
Fourier transform classically. In a form more readily obtained
on a quantum computer, the quark correlator is

φ(y) = 〈P|eiHy0
ψ̄ (�y)e−iHy0

γ +ψ (0)|P〉. (3)

The preparation of the hadron state |P〉 is involved, and we
postpone its discussion to Sec. IV. Assuming that |P〉 is
readily prepared, we must now translate this expression to the
lattice, where ψ is staggered and y is discrete. It may be seen
by taking the Fourier transforms of the fields ψ and χ that an
appropriate “staggered PDF” is

fstag(x) = 〈P|
∑
y,z

eixP(y−z)
[
δ

|y|
|z| + i(−1)zδ

|y|
|z+1|

]

× eiH (y−z)χ†(y)e−iH (y−z)χ (z)|P〉. (4)

For brevity, we have used the notation |y| = 0 when y is even
and 1 when y is odd.

We must translate the operators χ†, χ , and e−iHt into
bosonic qubit operators. The operators χ (y) and χ†(y) are
anticommuting and are constructed from bosonic qubit op-
erators σ via the Jordan-Wigner transformation [51]. The
construction of e−iHt follows the standard techniques of Trot-
terization. The Hamiltonian is split up into several mutually
noncommuting terms Hx, Hy, and Hz, each of which is easily
diagonalized in isolation. A single time step under H is then
approximated by a brief period of time evolution under each
of the terms alternately: e−i(Hx+Hy+Hz )δ ≈ e−iHxδe−iHyδe−iHzδ .
After the Jordan-Wigner transformation, the three terms of the
Hamiltonian are

Hx =
N∑

n=1

axx(n)σx(n)σx(n + 1),

(5)

Hy =
N∑

n=1

ayy(n)σy(n)σy(n + 1),

and

Hz =
N∑

n=1

az(n)σz(n) + azz(n)σz(n)σz(n + 1).

where az(n) = m(−1)n/2, axx(n) = ayy(n) = (−1)n+1/4, azz

(n) = g2/4.
The operator that forms the matrix element in Eq. (4) is not

Hermitian. In order to evaluate this non-Hermitian operator
on a quantum computer, we decompose into a sum of unitary
operators, each of which may be evaluated à la Ref. [52]
with the help of an ancillary qubit. The decomposition of the
operator in Eq. (4) is as follows:

eiH (y−z)χ (y)e−iH (y−z)χ†(z) =
∑

i, j=x,y

Ci jUi j (6)

Ui j = eiH (y−z)χi(y)e−iH (y−z)χ j (z), (7)

where χx = χ + χ† and χy = i(χ − χ†). The coefficients
Ci j are determined from the Jordan-Wigner transfor-
mation: Cxx = 1/4, Cxy = −i/4, Cyx = i/4, Cyy = 1/4. Fol-
lowing Ref. [52], each term in Eq. (6) is measured on a
quantum computer by first preparing the state,

|P′〉 = 1√
2

(|0〉a|P〉 + |1〉a|P〉), (8)

where a denotes the ancillary qubit and then applying Ui j

controlled on the ancillary to |P′〉. Measurements of σx and
σy of the ancillary qubit on the resulting state give us the
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real and imaginary parts, respectively, of the terms in Eq. (6),
〈P|Ui j |P〉.

Two technical complications remain. First, because the cor-
relators are evaluated along the light cone, the speed of light
must be known precisely. Without the hypercubic symmetry
of the Euclidean lattice preventing renormalization, the speed
of light must be computed nonperturbatively. In principle, we
could measure the speed of light on the quantum computer.
This is a formidable task, entailing careful measurements of
the dispersion relation near the continuum limit. But this is,
in fact, unnecessary. The dispersion relation is reflected in the
low-energy portion of the spectrum of the Hamiltonian, which
can be readily determined on an anisotropic Euclidean lattice
[53,54]. Thus, the speed of light on a quantum computer may
be determined without any calculations being performed on a
quantum computer as long as the Hamiltonian limit is taken on
both the classical and the quantum machines. In the specific
case at hand of the (1 + 1)-dimensional Thirring model, the
situation is even simpler: Numerical experiments reveal that
the speed of light in the continuum limit is 1 in lattice units.

The speed of light is only defined in the continuum limit.
On the lattice, no exact light cone exists, and “spacelike”
separated fermionic operators need not exactly anticommute.
As a result, the lattice PDF will not have the desired symmetry
properties until the continuum limit is taken. Additionally, if
periodic boundary conditions are used, care must be taken not
to evaluate the quark correlator at separations larger than the
spatial size of the lattice.

Finally, we must take the Fourier transform. Only a finite
number of values of the quark correlator may be computed,
and naively taking the Fourier transform will show highly
oscillatory artifacts (as in Euclidean lattice calculations [11]).
In order to take the Fourier transform in a stable way, without
these artifacts, we impose a Gaussian window, defining

f (x) =
∫ L

−L
dx eixP+y−x2/εφ(y), (9)

and first taking the limit L → ∞, and only then allowing
ε → 0. These limits may be taken numerically.

This completes the description of how to obtain the PDF of
the Thirring model on a quantum computer, given an already-
prepared hadronic state. In Fig. 1 is shown a calculation by
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FIG. 1. The quark distribution function of the lowest-lying
fermion in the Thirring model, computed on a ten-site lattice. The
Fourier transform of Eq. (9) is taken with ε = 3.

exact diagonalization of the Hamiltonian of the fermion distri-
bution function of the lowest-lying fermion state at vanishing
and weak couplings.

The PDFs of asymptotic states in the Thirring model may
be interesting in the context of quantum supremacy: The qubit
cost of this calculation makes it potentially accessible in the
NISQ era, whereas classical algorithms struggle to obtain this
observable. Ultimately, however, we would like to calculate
the PDFs of mesons and baryons in QCD. Quark distribution
functions in QCD are given by

fi(x) =
∫

dx eixP+y〈P|ψ̄i(y)γ +W (y; 0)ψi(0)|P〉, (10)

where W (y; 0) is a lightlike Wilson line connect y to the origin
required to ensure gauge invariance [50] and i enumerates the
quark flavors.

Several proposals have been advanced for how gauge-field
theories may be simulated on a quantum computer. Let us
consider the scheme laid out in Ref. [41], which provides
a procedure for computing Wilson loops. In this scheme,
time evolution is implicitly performed in the A0 = 0 gauge
so that a W (y; 0) is approximated by a sequence of spatial
link operators applied at different points in time. (The timelike
links are fixed to be the identity in this gauge),

W (y; 0) ≈ eiHyW (y; y − a)e−iHa · · · e−iHaW (a; 0) (11)

In Ref. [41], it was shown that obtaining a time-separated
correlator of two gauge links (i.e., a temporal Wilson loop)
requires a second-order derivative to be taken numerically.
Here, perturbations to the Hamiltonian occur at every time
slice between the two operators (necessarily so that the Wilson
line is approximately lightlike). The order of the finite differ-
encing needed is equal to the number of time slices affected.
This high-order finite differencing is not practical even in
the absence of quantum noise. Nevertheless, this is the only
candidate we are aware of for directly computing correlators
of the form Eq. (10) on a quantum computer.

Fortunately, an alternative procedure can be constructed:
One may compute an easier observable—the hadronic
tensor—and extract the PDFs after the fact.

III. HADRONIC TENSOR

Unlike the PDF, the hadronic tensor is constructed of cur-
rents Jμ, which are each gauge invariant, unlike the fermionic
operators. Thus, the hadronic tensor does not require a Wilson
line, and the issue of high-order finite differencing is avoided.
The hadronic tensor of a d-dimensional theory is given explic-
itly by

W μν (q) = Re
∫

dd x eiqx〈P|T {Jμ(x)Jν (0)}|P〉 (12)

for a given current Jμ, where |P〉 denotes a proton in the zero
momentum frame. Here, we will assume Jμ = ψ̄γ μψ , corre-
sponding to the current coupling to the photon. In combination
with the leptonic tensor Lμν ,

Lμν = 2(kμk′
ν + kνk′

μ − gμνk · k′). (13)

W μν (q) may be directly related at leading order (in the QED
coupling α) to the cross section of lepton-proton scattering via
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the exchange of a photon with momentum q by [1]

d2σ

dx dy
= α2y

Q4
LμνW μν. (14)

In these equations, Q2 = −q2, x = Q2/2P · q, y = P · q/

P · k, and k′ = k − q.
With an eye toward implementation on a quantum com-

puter, Eq. (12) has two critical features. First, it is gauge
invariant without the need for a Wilson line. In fact, because
it involves only gauge-invariant operators, it can be defined
and measured without reference to unphysical gauge-variant
(Gauss-law-violating) states. Second, each operator in the
correlator is individually Hermitian so that the decomposition
procedure of the previous section is not required.

Several options exist for measuring the integrand of the
hadronic tensor. One may follow the procedure of the previous
section closely, decomposing Jμ(x) as a sum of N unitary
operators. After this, the operator in the integrand becomes
a sum of N2 unitary operators, each of whose expectation
values may be directly evaluated à la Ref. [52]. However,
as mentioned above, this is needlessly complicated for the
hadronic tensor.

In this context, the procedure of Ref. [55] for studying
linear response is more straightforward. Consider a unitary
evolution operator,

U (εx, ε0) = eiHt eiJμ(�x)εx e−iHt e−iJν (�0)ε0 . (15)

The first derivative of the expectation value of this operator
with respect to either ε vanishes. The second derivative gives
the desired correlator,

d

dεx

d

dε0
〈P|U (εx, ε0)|P〉 = 〈P|Jμ(x)Jν (0)|P〉. (16)

Finally, a more sophisticated procedure for the calculation
of linear response is given in Ref. [56].

After measuring Eq. (16) at many values of x, the Fourier
transform may be taken classically via Eq. (9). Alternatively,
the (regulated) Fourier transform may be subsumed into the
expectation value, yielding

W μν (q) = 〈P|T
{

Jμ(0)
∫

dd x eiqx−x2/εJν (x)

}
|P〉. (17)

This expression requires only one quantum circuit for a de-
sired value of q; however, when many values of q are to be
obtained, it is not efficient.

There is an important way in which these procedures are
not analogous to those performed in the laboratory: On a
quantum computer, one may introduce a current coupling only
to particular flavors of fermions. This allows one to isolate
a single-flavor distribution function or hadronic tensor in a
straightforward way without any fitting.

To apply this method to the Thirring model, one needs the
staggered form of Jμ,

J0(x) = χ†(x)χ (x), (18)

J1(x) = i

4
(−1)x{χ†(x)[χ (x + 1) + χ (x − 1)]

− [χ†(x + 1) + χ†(x − 1)]χ (x)}. (19)

As mentioned, the leading-order cross section for lepton-
hadron scattering may be computed once the hadronic tensor
is in hand. This is not the first proposal for computing a scat-
tering cross section on a quantum computer; in Refs. [45–47]
is detailed a procedure in which two asymptotic states are
prepared adiabatically on a large lattice and then allowed to
propagate towards each other. When obtaining a cross section
via the hadronic tensor, the need to prepare two asymptotic
states is removed—reducing substantially the cost of state
preparation. Instead, we prepare only a single asymptotic
(zero momentum, in fact) state and probe it with arbitrary
momentum. Additionally, this avoids the long-range nature of
the QED interaction that complicates lattice calculations. This
procedure is substantially simpler, but the trade-off comes in
that, whereas Refs. [45–47] compute the full cross section,
our procedure is perturbative: To obtain higher-order contri-
butions in α, one must calculate multiple matrix elements
defined by additional current insertions.

If one ultimately wants the PDF, one can extract it from
W μν (q) via a procedure analogous to how the experimental
determinations are performed. To first review, there are a
number of processes where collinear factorization can be
proven (e.g., deep inelastic scattering, Drell-Yan, weak boson
production, and inclusive jet production). Here, we consider
deep inelastic scattering, but similar expressions are derivable
for the other processes. The cross-section σeP→eX can be
schematically decomposed into

σeP→eX =
∑
i, j

fi ⊗ Pi→ j ⊗ σe j→e j, (20)

where i and j run over all species of parton, fi are parton
distributions, Pi→ j is the splitting function required to match
all experimental data at a single scale and can be computed
perturbatively, and σe j→e j is the hard partonic cross section.
Theoretical expressions, such as Eq. (20), are used to numer-
ically fit parametrized PDFs to the experimental data over
large ranges of kinematics [1]. The complicated nature of
the perturbative splitting function and hard cross section in
addition to the need to perform two convolutions prove to
make this process highly nontrivial.

In the same spirit, the hadronic tensor that would be
obtained by a quantum computer can be defined in terms of
the PDFs as

W μν =
∑
i, j

fi ⊗ Pi→ j ⊗ Ŵ μν, (21)

where Ŵ μν are partonic tensors that couple to external cur-
rents. Thus, if one desires the PDFs, they can be extracted
by numerical fits to parametrized PDFs when the hadronic
tensor is computed in the kinematic regime of collinear fac-
torization’s validity. It is important to note that our procedure
can, by allowing different four-momenta for the hadronic
states, be trivially generalized to computing generalized par-
ton distributions [57] and similar small changes to obtain
other distributions—something that is not trivially possible for
Euclidean field theory.

IV. STATE PREPARATION

Thus far, we have neglected to discuss the preparation
of the state |P〉. This is not a trivial matter, and, in this
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section, we rectify the situation. For concreteness, let us
assume that we are preparing a zero-momentum proton on a
three-dimensional QCD lattice.

A great deal of literature discusses the problem of prepar-
ing a ground state of a given Hamiltonian [45–47,58,59].
Typically, formal analysis of the efficiency of ground-state
preparation methods is not available, and the in-practice per-
formance cannot yet be measured. Here, we consider adiabatic
state preparation [45–47] where we will be able to make some
crude estimates of the cost of preparing a proton. Note that
this does not imply adiabatic state preparation is the most
efficient method in practice, simply that it is the easiest to
analyze without the need to test on a full-scale quantum
computer. Other possibilities for ground-state preparation, not
to be discussed here, are the spectral comb [58] and hybrid
methods [49,59].

When a method is cast as preparation of a ground state,
it is typically still applicable to the preparation of a state,
such as |P〉: The preparation of the proton may be translated
to ground-state preparation. To do this, consider only the
sector of Hilbert space which is translation invariant (thus,
zero momentum) and has quantum numbers of the proton.
As long as time-evolution e−iHt maps this sector to itself
(as standard Trotterized time evolution does), we may safely
use the algorithm to prepare the ground state of this sector
specifically, which is, of course, the zero-momentum proton.
Note that this “trick” is exactly the same as what is needed to
prepare a gauge-invariant ground state where we must restrict
ourselves to the physical subspace of the Hamiltonian.

We now estimate the costs of adiabatic state preparation in
the context of QCD. We make several assumptions about the
spectrum of the lattice model. In the restricted Hilbert space
with baryon number 1, the lowest-lying state should be the
zero-momentum proton. If simulating pure QCD (that is, in
the absence of weak interactions), we may further restrict to
the states with isospin of the proton, thus, avoiding a small
gap between the proton and the neutron. Finally, on a finite
volume, the gap between a particle and a slowly moving par-
ticle is O( 1

L ). If we restrict to the zero-momentum subspace,
then the gap between the proton and the nearest-energy state
is the pion mass mπ ≈ 135 MeV.

Adiabatic state preparation begins by preparing the ground
state for some modified Hamiltonian for which the ground
state is known with great precision. In this case, we chose the
free theory. The ground state of the baryon-number-1 sector
is three zero-momentum fermions in a box. As the gauge
coupling is 0, the configuration of the gauge fields in the
ground state is also Gaussian and may be prepared efficiently.

Adiabatic state preparation proceeds by slowly deforming
the Hamiltonian over a time T from the initial (in this case,
free) Hamiltonian H0 to the desired Hamiltonian HT . The
simplest trajectory we can pick increases the coupling from
0 to its desired physical value at a constant rate. The defor-
mation must be performed slowly and more slowly when the
gap in Ht is small. The adiabatic theorem guarantees we will
remain in the ground state (with high probability) as long as
Ḣ/�2 � 1, where � is the gap and Ḣ is the rate of change
in the Hamiltonian [60]. Thus, to estimate the performance
of the adiabatic procedure, we must estimate the gap along
the trajectory. At the end of the trajectory as mentioned,

the gap is large: about 1/7 the mass of the proton. This
part of the evolution can be performed quickly. At vanishing
coupling, the outlook is less rosy. The proton fills the lattice,
and excited states are simply back-to-back low-momentum
states of two fermions. (The massless glue excitations can
be removed with appropriate boundary conditions or by using
the 1080-element approximation to SU (3) [41,42].) The gap,
therefore, is O(1/L), and we see that the adiabatic algorithm
will require O(L2) time-evolution steps to keep the ground
state.

Not all ground-state preparation methods may have this
scaling. As an example, spectral combing [58] does not re-
quire a trajectory starting from weak coupling (thus, avoiding
the 1/L gap) and appears in numerical studies to scale, such as
�−1. However, in the absence of large-scale tests, it is unclear
how faithfully the method actually prepares a ground state.

V. DISCUSSION

With the procedure completely described, we may estimate
what manner of quantum resources are required for a practical
calculation of the hadronic tensor of the proton. For the sake of
specificity, we will assume that the proposal of Refs. [41,42]
is used, namely, that SU (3) gauge theory is approximated
by the 1080-element discrete subgroup, and the calculation
is performed in A0 = 0 gauge with no further gauge fixing.
The qubit cost of other methods is expected to be similar.
The applicability of the S(1080) approximation is limited by
the lattice spacing at which the lattice theory undergoes a
phase transition. It was shown in Ref. [42] that it remains a
good approximation down to a lattice spacing of a = 0.08 fm,
suggesting that it is sufficient for low- and intermediate-
momentum probes of hadronic physics [13].

The qubit costs are easiest to count: Representing a single
element of the group S(1080) on a link must cost, at least,
11 qubits, and, therefore, a L3 lattice requires taking into
account a 12-component (4-spinor × 3-color) Wilson fermion
at each site, ∼50L3 qubits to store. Time evolution brings in
the need for some number of ancillary qubits, but this need not
scale with the volume of the system and must, therefore, be
negligible. Assuming a lattice spacing a = 0.1 fm and a 203

lattice—chosen to be well within the range of applicability
of S(1080) and large enough to fit a proton with moderate
finite-volume effects, ∼4 × 105 qubits are required to perform
the calculation.

Estimating the gate cost associated with the calculation is
difficult, not least because circuits have not yet been produced
for any concrete proposal for simulating SU (3) gauge theory.
Nevertheless, we can give the scaling of the algorithm with
volume. The procedure is dominated by state preparation,
which requires time evolution for O(L2) steps. In computing
the hadronic tensor, we must evaluate L3 × T matrix ele-
ments, where T gives the length of time evolution needed
in approximating the Fourier transform. As the Jμ(x)’s at a
single time are mutually commuting, L3 measurements can
be performed simultaneously without needing to reevolve the
system. Assuming the evolution time T to be proportional to
L, we find that O(L3) time-evolution steps will be required.
Each time-evolution step, of course, scales with the volume
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of the lattice, so the total scaling of the procedure should
be O(V 2). This is comparable to the scaling of calculations
performed on the Euclidean lattice.

In this paper, we have detailed a possible application for
large-scale quantum computers beyond the NISQ era: first-
principles calculations of parton physics in field theories,
particularly QCD. As a side effect, this would allow the
calculation of hadron-lepton cross sections in the standard
model more cheaply than existing proposals. Although not

explored in this paper, a nearer-term target of this method is
the physics of bound states in fewer dimensions.
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