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Electric field driven reconfigurable multistable topological defect patterns
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Topological defects appear in symmetry breaking phase transitions and are ubiquitous throughout Nature. As
an ideal testbed for their study, defect configurations in nematic liquid crystals (NLCs) could be exploited in a
rich variety of technological applications. Here we report on robust theoretical and experimental investigations
in which an external electric field is used to switch between predetermined stable chargeless disclination patterns
in a nematic cell, where the cell is sufficiently thick that the disclinations start and terminate at the same
surface. The different defect configurations are stabilized by a master substrate that enforces a lattice of surface
defects exhibiting zero total topological charge value. Theoretically, we model disclination configurations using a
Landau-de Gennes phenomenological model. Experimentally, we enable diverse defect patterns by implementing
an in-house-developed atomic force measurement scribing method, where NLC configurations are monitored
via polarized optical microscopy. We show numerically and experimentally that an “alphabet” of up to 18
unique line defect configurations can be stabilized in a 4 × 4 lattice of alternating s = ±1 surface defects,
which can be “rewired” multistably using appropriate field manipulation. Our proof-of-concept mechanism may
lead to a variety of applications, such as multistable optical displays and rewirable nanowires. Our studies also
are of interest from a fundamental perspective. We demonstrate that a chargeless line could simultaneously
exhibit defect-antidefect properties. Consequently, a pair of such antiparallel disclinations exhibits an attractive
interaction. For a sufficiently closely spaced pair of substrate-pinned defects, this interaction could trigger
rewiring, or annihilation if defects are depinned.
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I. INTRODUCTION

Topological defects (TDs), in which the relevant order
parameter field becomes ill-defined at a point, line, or surface
[1], appear as a consequence of symmetry-breaking phase
transitions. Since these structures generate complex order
parameter patterns, TDs are of interest throughout the physical
sciences, spanning such diverse areas as condensed materi-
als [2–5] and cosmology [6], with TD-dominated physical
properties exhibiting universal behavior independent of the
systems’ microscopic details [1].

Owing to their large response to external stimuli and large
optical and electric anisotropies, liquid crystals [7] (LCs) pro-
vide an ideal test bed for many topological-based phenomena
and motivate manipulation of TDs over a wide range of scien-
tifically important systems, such as superfluid vortices [8,9] in
3He and 4He, Bose-Einstein condensates [10], and Abrikosov
vortices in superconductors [11]. Furthermore, TDs in liq-
uid crystals could be exploited in various technological
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applications. For example, they can strongly impact LC op-
tical properties [7]; generate optical vortices [12]; and effi-
ciently trap appropriate (surface decorated) nano [13–16] or
colloidal particles [17,18], which could lead to development
of tunable metamaterials, rewirable nano or micro-wires, and
self-healing materials.

The nematic phase represents the simplest LC phase
[7]. The conventional uniaxial nematic LC phase is a fluid
consisting of rodlike molecules. Local ordering is commonly
determined by the unit vector field n, referred to as the nematic
“director” field, where ±n states are equivalent in bulk;
this corresponds to quadrupolar symmetry of the director.
In equilibrium there is long range orientational order, with n
being spatially uniform along a symmetry breaking direction.
Common excitations in n are line defects (disclinations)
corresponding to noncontractible loops in the order parameter
space characterized by the “winding number” s, in which n
rotates s times as one circumnavigates the defect core. In two
dimensions (2D), defects are characterized by half-integer or
integer values of s, where different values of s correspond
to topologically different structures. On the other hand, in
3D, only s = ±1/2 defects exist [19,20] (i.e., +n rotates to
−n as one encircles a line defect) where states s = −1/2
and s = +1/2 are topologically equivalent. Their impact on
the director’s far-field is determined by the total topological
“charge” q, defined by noncontractible spheres enclosing
the entire line defect. We refer to line defects with q = 0
and q �= 0 as chargeless and charged TDs, respectively.
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Isolated chargeless loops tend to vanish over time. Note that
for ferromagnetic (dipolar) order, as opposed to nematic
(quadrupolar) order, line defects are not topologically
protected—they can escape along the third dimension
[21] via reorientation of the order parameter—owing to
the ferromagnet’s dipolar order parameter field. Thus a
ferromagnet’s winding number s must be an integer.

There are strong motivations to stabilize and manipulate
diverse complex lattices of nematic line defects, for both
fundamental and application reasons. They could be stabilized
by chirality [7,22], dispersed colloids [23,24], or confining
surface treatments [17,25]. However, in situ manipulation
of TDs is notoriously difficult. Moreover, their controllable
and multistable manipulation among predetermined config-
urations is scarce [17,23,26], and in particular, has been
totally unexplored for ubiquitous “chargeless” defect lines [5].
For purposes of this paper we focus on work presented in
Refs. [25,27–29]. References [25], [27], and [28] illustrate
different methods for enforcing a regular array of topologi-
cal defects of alternating winding number. These include an
atomic force microscope scribing method [25], a plasmonic
photoalignment technique [27], or combining doped ions and
polymer alignment layers [28]. For controlled switching, one
can imagine the use of laser tweezers [5,23], a slow technique
that would need to be utilized serially, from one defect to
another. Interdigitated electrodes [29] have been used for
efficient robust switching among multistable nematic director
patterns, although not for the control of disclination lines. Our
approach of a simple, spatially homogeneous electric field and
patterned defect arrays facilitates rapid rewiring of defects.

Here we demonstrate the systematic assembly and re-
assembly of a lattice of chargeless line defects [see Fig. 1(a)]
in a thin nematic liquid crystal cell that is nanopatterned for
orientational order. We report on a robust theoretical frame-
work and corresponding experimental results in which an
external electric field is used to switch between predetermined
and stable line defect configurations by coupling the field
to the complex director profile surrounding the defects. We
anticipate that our proof-of-concept for “rewiring” topological
line defects in liquid crystals also may lead to a variety
of applications based on reconfigurable nanowires in soft
matrices such as multistable optical displays, electronics, and
charge carrier pathways for photovoltaics.

The plan paper of the paper is as follows. In Sec. II, we
present the geometry and topology that enables a rich diver-
sity of multi-stable nematic chargeless disclinations in our
numerical and experimental research. In Sec. III, a Landau-de
Gennes phenomenological model in terms of the nematic ten-
sor order parameter is introduced. The experimental setup is
described in Sec. IV. In Sec. V, numerical results are reported,
in which we show multistability of defect configurations and
some representative external electric field driven disclination
rewirings. Experimental confirmation of proof-of-concept for
the rewiring mechanism proposed numerically is presented
in Sec. VI. In the last section, we summarize results. Some
technical details are assembled in Appendix.

II. GEOMETRY OF THE PROBLEM

Our investigations examine electric field driven transfor-
mations of lattices of line defect segments in a nematic liquid

FIG. 1. Nematic LC cell with line defects. (a) Experimental
polarizing microscopy texture of a nematic LC cell exhibiting line
defects confined near the master plate. (b) Bright field image of
a section of the sample showing three of the four integer s = ±1
defects having decomposed into half-integer defects.

crystal confined to a plane-parallel cell. Key geometrical and
topological features of the cell used in the main numerical and
experimental studies are sketched schematically in Fig. 2. We
stabilize patterns of TDs in the LC by means of controlled
boundary conditions, i.e., we enforce the topology at the sub-
strates [25]. In terms of Cartesian coordinates (x,y,z), defined
by the unit vector triad (ex, ey, ez ), the bottom master and
the top slave planar-aligning substrates are placed at z = 0
and z = h [Fig. 2(a)], respectively. The master substrate was
patterned with a square array of enforced topological defects
each having strength s = ±1 [see Fig. 2(b)] and defined by
the equation

φ(x, y) =
N∑

k=1

skarctan

(
y − yk

x − xk

)
+ φ0. (1)
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FIG. 2. Geometry and topology used in experimental and most
numerical studies. (a) Nematic LC is confined to a plane-parallel cell.
The bottom master plate strongly enforces a 4 × 4 array of s = ±1
surface defects as shown in (b). The top slave plate enforces isotropic
tangential anchoring.

This is the solution to Laplace’s equation that is appropriate
in the equal elastic constant approximation [30]. Here, φ cor-
responds to the azimuthal orientation of the enforced nematic
director field with respect to the x axis and k corresponds to
the index of the N defects. We impose a “winding number-
neutral” 4 × 4 grid (N = 16) of s = ±1 defects (

∑
k sk = 0)

with lattice spacing d in both the x and y directions. The
opposing slave substrate enforces planar degenerate anchoring
in which the director lies in the xy plane but is free to assume
any orientation imposed elastically through the liquid crystal
by the master surface. Furthermore, we allow the presence of
a spatially homogeneous external electric field E, which is

applied either along the x or y direction, and we consider LCs
with positive electric anisotropy [7].

III. MODELLING

A. Free energy

We used a Landau-de Gennes mesoscopic approach [7]
in which nematic orientational order is modelled by the
traceless and symmetric tensor nematic order parameter field
Q = ∑3

i=1 λi(ei ⊗ ei ), where ei are the eigenvectors and λi

the corresponding eigenvalues. We considered LCs that ex-
hibit equilibrium nematic uniaxial order, commonly expressed
[7] as Q(u) = S(n ⊗ n − 1

3 I). Here, S ∈ [−1/2, 1] stands for
the uniaxial order parameter, the unit vector field n is re-
ferred to as the nematic director field, and I is the unit
tensor.

We assume that the spatiotemporal evolution of the ne-
matic order is determined by [31] γ

dQ
dt = − δF

δQ , where the
LC viscous properties are approximated by a single material
parameter γ . We write the free energy F = ∫ f d3r as the
integral over the nematic LC confined within a plane-parallel
cell of thickness h. The free energy f = fc + fe + f f consists
of the condensation ( fc), elastic ( fe), and external field ( f f )
contribution, which we express [7] as

fc = 1
2 A0(T − T ∗)TrQ2 − 1

3 B TrQ3 + 1
4C(TrQ2)2, (2a)

fe = 1
2 L|∇Q|2, (2b)

f f = − 1
2ε0�εE2 eE · QeE . (2c)

Here, A0, B, and C are material constants, T ∗ is the supercool-
ing temperature of the isotropic phase, L is the representative
elastic modulus in the single elastic constant approximation,
E = EeE is the external electric field pointing along the unit
vector eE , ε0 is the permittivity of free space, and �ε is the
anisotropy of the dielectric constant.

B. Parametrisation and scaling

In our simulations we use the following parametrization
in the Cartesian coordinate frame defined by the unit vectors
(ex, ey, ez ):

Q =
⎡
⎣q1 + q2 q3 q4

q3 q1 − q2 q5

q4 q5 −2q1

⎤
⎦, (3)

where q1, q2, q3, q4, and q5 are variational parameters.
For scaling purposes we introduce [32] the dimension-

less temperature r = (T − T ∗)/(T ∗∗ − T ∗) and the scaled
order parameter Q = Q/S0, where S0 = B

4C and T ∗∗ = T ∗ +
B2/(24A0C) is the superheating temperature. We scale dis-
tances with respect to h, and measure the time with respect
to the characteristic order parameter relaxation time τ =

2γ

3A0(T ∗∗−T ∗ ) expressed at T = T ∗∗.
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The resulting dimensionless free energy densities f̃c, f̃e,
and f̃ f can be expressed as

f̃c = r

6
TrQ2 − 2

3
Q3 + 1

8
(Q2)2, (4a)

f̃e =
(

ξb

h

)2∣∣∇̃Q
∣∣2

, (4b)

f̃ f = −
(

ξb

ξE

)2

eE · QeE . (4c)

Here, ξb = 2
√

LC/B is the bare biaxial correlation length
[32], ξE =

√
LS0/(ε0�εE2) is the external field extrapolation

length [7,32] expressed at T = T ∗∗, and ∇̃ = h∇.
Minimization of the free energy is performed numerically

deep inside the nematic phase. At the master plate we enforce
strong anchoring of the 4 × 4 pattern of s = ±1 defects using
Eq. (1); at the slave plate we enforce strong degenerate planar
anchoring, and use free boundary conditions at lateral walls.
The corresponding interference textures are calculated for
monochromatic light, with the polarizer and analyzer along
ex and ey, by using the Jones matrix beam propagation model
[33], in which scattering and reflections are neglected.

We used the following parameters for simulations: h
ξb

=
50, d

ξb
= 50 (if not stated otherwise), r = −8. In calculating

polarized microscopy textures, we impose crossed polariz-
ers, and set no = 1.54 (ordinary refractive index), ne = 1.74
(extraordinary index), λ = 520 nm (light wavelength), and
h = 16 μm.

IV. EXPERIMENTAL SETUP

For experiments we use the nematic liquid crystal 4-cyano-
4′-pentylbiphenyl (5CB) confined to a cell of thickness h =
16.0 ± 0.2 μm. Our atomic force microscope (AFM) scribing
method [25] is used to scribe the defect pattern given by
Eq. (1) onto the polyvinyl alcohol coated master plate using
an AFM stylus; here d ∼ 20 μm. The slave substrate is spin-
coated with the planar-degenerate alignment layer polymethyl
methacrylate.

The experiment requires two independent electric fields in
the plane of the cell, each along one of the principle axes of
the square array. To pattern the two electrode pairs, we mask
four rectangular strips on an indium-tin-oxide (ITO) coated
slide so that they form a square in the middle of the sample.
The exposed ITO is removed by soaking in piranha solution,
leaving behind two pairs of mutually orthogonal electrodes. A
cartoon is shown in Fig. 3.

This ITO-coated master substrate is cleaned by sonicat-
ing sequentially in detergent, acetone, and ethanol, and then
coated with the strong planar anchoring agent polyvinyl al-
cohol (PVA) by spin coating. The sample is baked at 170 °C
for 2 h. We create a spatially varying easy axis over an 85 ×
85 μm square at the center of the electrode pattern by using
a Bruker AFM stylus (TESPD, 300 kHz resonance) with a
rigid cantilever (40 N/m spring constant) delivering a scribing
force of about 1 μN, which does not measurably alter the
PVA topography [25]. The scribing speed was approximately
18 μm s−1. AFM-scribed lines are spaced between 150 and
300 nm apart, with narrower spacings used in regions of

FIG. 3. Cartoon of master (patterned) surface. Two pairs of ITO
electrodes are shown, allowing application of an electric field along
the x axis or along the y axis. The patterned region is represented by
the small square in the center. A scale bar is shown.

higher curvature. The scribed region is shown pictorially by
the small square in Fig. 3.

For the cell’s opposing slave substrate, a glass slide was
spin-coated with the planar-degenerate alignment layer [34]
polymethyl methacrylate (PMMA) and baked at 80 °C for
2 h. On filling with liquid crystal, the initial alignment is
isotropic planar, although a weak azimuthal memory effect
develops over time. This memory effect is expected to have
only a perturbative effect on the numerical simulations, which
assume isotropic planar boundary conditions at the slave
surface. A complete cell was assembled with Mylar spacers,
and was measured by interferometry to have a thickness of
16.0 ± 0.2 μm. The cell was filled with the positive dielectric
anisotropy, room temperature nematic liquid crystal 4-cyano-
4′-pentylbiphenyl (5CB) by capillary action in the isotropic
phase. The sample was then cooled to the nematic phase and
placed on the stage of a polarized microscope.

The ITO electrodes formed two pairs of orthogonal rectan-
gles, with the shorter leg of each rectangle facing the patterned
square. The gap along the x-axis electrode pair was d (x)

e =
2.35 mm, and along the y axis it was d (y)

e = 2.59 mm; both
are much larger than the dimensions of the patterned square,
and thus the field at the square can be considered uniform to
better than 0.5%. For in-plane electrodes the applied electric
field was determined by conformal mapping techniques, and
is given at the midpoint between the electrodes by [35] = 2V

πde
,

where V is the potential difference applied between electrodes.
It is important to note that because of the positioning and
small size of the scribed region as represented by the square
in Fig. 3, and the fact that the cell thickness is much smaller
than the gaps de, both the x and y electric fields are nearly
uniform across the square and the z component of the electric
field is virtually zero. We also remark that owing to the large
electrode gaps de, ac voltages of many hundreds of volts were
required (500 Hz square wave).
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V. NUMERICAL SIMULATIONS

A. “Alphabet” of disclination patterns.

Of interest are different disclination patterns that could
emerge from the master plate imposed 4 × 4 grid of surface
defects in sufficiently thick cells (h > d/2). We first analyze
the structure of disclinations and diversity of patterns that they
form using the Landau-de Gennes mesoscopic [7] approach.

For conditions of interest (cells of thickness h ∼ 20 μm),
each s = ±1 defect tends to decompose into a pair of half-
integer daughter defects of the same total strength [see
Fig. 1(b)]. This decomposition reduces the elastic energy,
which scales as s2 away from the defect core [7,36–38]. The
decomposed daughter [39] defects repel each other such that,
at the master surface, their separation distance is a competition
between the anchoring strength imposed by the master sub-
strate and the repulsion between same-strength defects (see
Supplemental Material movie 1 in Ref. [40]).

For thin cells (h � d/2), disclination lines tend to be
charged [41] and run from the positive (negative) defect at the
master substrate to the induced defect of the same sign at the
slave substrate. An example is shown in Fig. 4(a). However,
for cells sufficiently thick relative to the defect d spacing, the
disclination lines run approximately parallel to the patterned
substrate, between defects having opposite strength [42,43].
These defects are chargeless, consisting of s = +1/2 and
s = −1/2 sections, where a typical structure is depicted in
Fig. 4(b). Running close to the master surface, these disclina-
tion lines are associated with the pair of daughter defects and
are attracted by, and terminate on, nearest-neighbor defects of
opposite sign. In the case of a single chargeless disclination,
the director field far from the master surface tends to be
aligned uniformly.

Possible stable and metastable patterns of chargeless discli-
nations generated by the master substrate imposed 4 × 4
array pattern of surface defects were obtained numerically in
sufficiently thick cells (h > d/2) and are shown in Fig. 5.
Each line defect connects a pair of nearest-neighbor daughter
defects of opposite signs at the same master substrate. The
resulting patterns form closed loops. Our geometry and topol-
ogy allow an “alphabet” of 18 different patterns, exhibiting
seven different symmetries. The seven disclination patterns,
to which we refer as the irreducible patterns, are shown in the
first and third rows of Fig. 5. All other patterns can be obtained
from this set via rotations for an angle φ = N π

2 around the z
axis, where N is an integer. The top cell view is presented and
disclinations are visualized by plotting regions of relatively
strongly suppressed order parameter, which is realized in the
cores of defects. The thickness of disclination lines is roughly
given by the nematic biaxial correlation length [7,44] ξb.
The corresponding calculated polarizing optical microscope
images under crossed polarizers are given in the second and
fourth panels of Fig. 5.

We henceforth label the irreducible set of disclination
patterns as [II] [Fig. 5(a)], [U] [Fig. 5(b)], [O] [Fig. 5(c)],
[oooo] [Fig. 5(d)], [Lo] [Fig. 5(e)], [Ioo] [Fig. 5(f)], and [H]
[Fig. 5(g)], because these symbols roughly reflect key features
of the patterns. Furthermore, for latter purpose we label the
locations of s = ±1 surface defects at the master plate with a
pair of indices {i,j}, where i and j ∈ [1, 2, 3, 4] determine a

FIG. 4. Schematic sketches showing cells possessing either
charged or chargeless line defects, where the master plate enforces
s = ±1 surface point defects. (a) Charged s = 1/2 split disclination
lines spanning the master and slave confining plate. (b) Chargeless
line defects joining s = ±1/2 daughter defects within the master
plate. Typical director field profiles are shown both just above the
master plate and well above it. The red line indicates region where

the amplitude S =
√

3
2 TrQ2 of the order parameter Q is reduced to

S = Sbulk/2 due to strong local elastic distortions. Here, Sbulk stands
for the bulk equilibrium value.

row and column number of the 4 × 4 array. Here {1,1} and
{4,4} locate the upper-left and bottom-right sides of the 4 ×
4 checkerboard. Furthermore, we label by {i1, j1} − {i2, j2} a
disclination spanning the defect sites {i1, j1} and {i2, j2}.

The free energies F of the patterns are, in general, different
and depend on geometry and LC material properties. For
example, for the set of parameters h

ξb
= d

ξb
= 50, a strong

anchoring condition at the master plate and an absence of an
external electric field, the excess free energy �F [pattern] =
F − Fn of all patterns is roughly the same (their values differ
for less than 1%), where Fn determines the free energy of the
equilibrium bulk nematic. Only the free energy cost of the
[H] structure is noticeably higher: �F [H]

�F [II] ∼ 1.01. We used the
configuration [II] as the reference pattern because it could be
stabilized relatively simply.

To understand the switching mechanism among the com-
peting patterns, it is instructive to visualize the typical nematic
ordering of structures above the master plate, just below the
average maximal height z = zmax � h of disclination lines.
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FIG. 5. Irreducible patterns. Numerically calculated nematic textures exhibiting seven different symmetries emerging from the enforced
4 × 4 array. The first and third rows: The top cell view of the line defect patterns where regions with strongly suppressed order parameter values
are shown, fingerprinting the defect core regions. The solid and open circles indicate origins of nucleating s = +1 and s = −1 defect sites.
The second and fourth rows: The corresponding typical optical microscopy textures obtained under crossed polarizers. Scale bar corresponds
to the cell thickness h. From the irreducible patterns, one can generate an “alphabet” of 18 different patterns.

A representative example is presented in Fig. 6. Note that
nematic orientational ordering is commonly represented by
the nematic director field n for the orientational field in cases
of uniaxial nematic ordering. However, close to disclinations
the nematic order could enter biaxial states [44,45] due to
relatively strong elastic distortions. Consequently, we plot the
principal eigenvector e1 of Q corresponding to the largest
Q eigenvalue. In cases of uniaxial order (which is strongly
violated only within the cores of defects [45–47]) it holds that
e1 = n. Consequently, we henceforth refer to e1 as the nematic
director field because the LC ordering is, in most parts of the
sample, essentially uniaxial. In Fig. 6, we present the nematic
director field of [II] within the (x,y) cross-sections at z ∼ zmax.
Note that the master plate-imposed nematic pattern (at z = 0)
is the same for all structures for strong enough anchoring
and is schematically depicted in Fig. 2(b). The master surface
enforces a zigzag domainlike pattern within the 4 × 4 checker-
board region, where the average orientation of neighboring
domains tends to be oriented perpendicularly. Here each

domain corresponds roughly to a region enclosed by four
s = ±1 surface imposed defects. The master plate-enforced
nematic structure, which is determined by Eq. (1), does not
impose any preferred orientation. Note that in the case of
charged disclinations, spanning the master and slave plates,
this symmetry would be preserved on increasing z. However,
confined chargeless disclinations break this symmetry, as il-
lustrated in Fig. 6. The figure evidences a domain-type pattern,
that dominates in the region 0 < z < zmax. For visualization
purposes we also superimposed the pattern of line disclina-
tions. One sees that the nematic structure surrounding a line
connecting two neighboring surface defects—these lines also
roughly match domain boundaries—is significantly different
if the defects are connected, or not, by a disclination. In the
former case, e1 reorients by π/2 on crossing domain bound-
aries (e.g., see the region enclosing the line [1,1]-[1,2] or
[1,1]-[2,1]). This relatively abrupt reorientation is enabled via
the order reconstruction mechanism [44,45]. On the contrary,
in the latter case the principal field is more gradual (e.g., see
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FIG. 6. Orientational field of the nematic structure shown in
Fig. 5(a) just above the master plate. The (x,y) projection of the
disclination pattern is superimposed with dotted lines. Positions of
surface-enforced defects s = ±1 are marked with closed (s = 1)
and open (s = −1) circles. Furthermore, positions of top-left ([1,1]),
top-right ([1,4]), bottom-left ([4,1]), and bottom-right ([4,4]) surface
defects are indicated. Note that the director profile reorients roughly
by π/2 radians on crossing at right angles a disclination line position.
On the other hand, transitions along boundaries of other domains are
realized via a gradual splaylike reorientation.

the region enclosing the line [2,1]-[2,2]). Therefore confined
disclinations introduce an anisotropic domain pattern, which
is on average more responsive to imposed changes, e.g., via
an external electric field. Furthermore, on increasing z above
zmax nematic patterns progressively become homogeneously
aligned along a symmetry breaking direction that lies within
the (x,y) plane.

B. Pattern rewiring

One can realize transformations between different disclina-
tion patterns by rewiring just few pairs of facing disclinations
into perpendicular directions. For example, this could be
achieved efficiently by the use of laser tweezers [5] or by
applying an appropriate external electric field E.

In Fig. 7, we schematically sketch how all members of the
irreducible set could be reached starting from [II] by rewiring
just one or two pairs of facing disclinations. The pattern [II]
could be obtained by imposing first a strong enough spatially
homogeneous external electric field E along the x direction.
After the desired pattern is formed, the field is switched
off, while the structure remains trapped in one of the (meta)
stable states. In Fig. 7, above the arrows, we schematically
sketch the spatial profile of E, which enables realisation of
the displayed transformations. This is also the route that we
used to obtain the remaining representative members of the ir-
reducible set when starting from [II]. Note that all patterns are
found to remain stable after the transformation-enabling E is
switched off.

FIG. 7. Schematic representation of rewiring between different irreducible patterns. (a) [II]→ [O], (b) [II]→ [U], (c) [II]→ [Ioo], (d)
[II]→ [Lo], (e) [II]→ [oooo], and (f) [II]→ [H]. Disclinations marked in red are rewired in the transformation. This may be accomplished, for
example, by using a spatially dependent electric field: in the colored squares above the arrows, we schematically indicate the external electric
field E spatial profile. Red and blue colors mark a relatively large and zero value of E, respectively. The diffuse regions correspond to spatially
slow variation of field E; the sharp transitions between red and blue correspond to a spatially rapid variation of E. Note that for all cases only
the pairs of facing disclinations need to be rewired.
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The patterns [U], [Ioo], and [H] are realized by rewiring
a single pair of facing disclinations when starting from [II].
However, one could also realize the other patterns (i.e., [O],
[Lo], and [oooo]) by manipulating only one pair of disclina-
tions by using a different initial pattern. For example, starting
from [U] one could reach[O] by rewiring {1,2}-{2,2} and
{1,3}-{2,3} into new pairs {1,2}-{1,3} and {2,2}-{2,3}. Fur-
thermore, from [U] one gets [Lo] by rewiring the pairs {2,3}-
{3,3} and {2,4}-{3,4} into {2,3}-{2,4} and {3,3}-{3,4}. Fi-
nally, [oooo] could be obtained from [Ioo] by rewiring {2,1}-
{3,1} and {2,2}-{3,2} into {2,1}-{2,2} and {3,1}-{3,2}.

C. Rewiring mechanism

To realize electric field driven rewiring, we focus on the
characteristic nematic director pattern above a chargeless
disclination shown in Fig. 4(b). One sees that above the
disclination line the director field tends to orient on average
perpendicular to the disclination line’s direction. Therefore, if
E is applied parallel to the in-plane projection of the disclina-
tion lines, it tends to reorient the nematic director field along
the electric field orientation for a positive dielectric anisotropy
liquid crystal. This realignment can trigger reorientation of the
disclination line for appropriate boundary conditions.

The tendency to realign a chargeless disclination line per-
pendicular to E is evident also from a simple free energy
cost analysis of a straight disclination within a cylinder,
where details are given in Appendix A. We use an ansatz
for a straight chargeless disclination representing a possible
solution in the equal elastic constant approximation of the
Frank-Oseen continuum description [7], which we confine
within a cylindrical volume. One sees (Appendix A) that the
external electric field free energy contribution is minimum if
the disclination direction and E are mutually perpendicular.

D. Rewiring a pair of disclinations

To demonstrate numerically the rewiring mechanism, we
first consider the simplest possible arrangement of chargeless
disclinations typifying a basic unit of our 4 × 4 template.
For this purpose, we analyze E-driven rewiring of a pair of
chargeless disclinations (see Fig. 8) which are enabled by a
master plate that enforces a 2 × 2 square array consisting of
s = ±1/2 surface defects. (Note that all the defect sites would
be connected by disclination lines for the case of a 2 × 2
array of s = ±1 surface defects.) In the initial configuration
the disclination lines run along the x-axis. Then we apply
a spatially homogeneous external field E = Eex and grad-
ually increase its amplitude. We quantify the extent of the
average nematic alignment along E with the quantity S(x) =
〈P2(n � ex )〉. Here, P2 is the Legendre polynomial of order 2
and 〈. . .〉 stands for the spatial average over the liquid crystal.
For a spatially homogeneous nematic alignment along E it
holds that S(x) = 1; for an isotropic distribution of n, S(x) = 0.
In Fig. 8(d), we demonstrate that S(x) on average increases
on increasing E and S(x) saturates after the critical value
of E triggering the rewiring is reached. The corresponding
typical textures simulating polarizing microscopy experiment
are shown in Supplemental Material movie 2 in Ref. [40].

We next demonstrate that a pair of parallel disclinations
exhibit the attractive interaction, which in general moves
the disclinations to bring them close. Let us consider the
disclination pattern shown in Fig. 8(a) for E = 0. Initially, the
surface defects are separated for distances dx = dy = d in x
and y directions, respectively. Note that the two disclinations
are “antiparallel,” the first one joining (s = 1/2 and −1/2)
and the second one (s = −1/2 and 1/2) nucleation surface
defects, respectively. Therefore each segment of the first line
faces a segment of the second line bearing the opposite signed
winding number. Consequently, the lines attract each other,
which causes their distortion shown in Fig. 9(b). In Fig. 9 (see
also Supplemental Material movie 3 in Ref. [40]), we show
that on gradually decreasing dy and the attractive interaction
could trigger the rewiring of disclinations. One sees that at a
critical value of dy the interacting lines collide and rewire in
the y direction. The latter configuration is energetically more
favorable than the previous one because of shorter total length
of energetically costly disclinations.

E. Electric field driven rewiring between two
different II patterns

Finally, we consider electric field driven rewiring realized
in the geometry depicted in Fig. 2, where we use as the starting
structure the pattern [II], oriented along the x direction. Note
that from this reference pattern one could obtain the other
structures using an appropriate E configuration, as shown in
Fig. 7.

For a demonstrative rewiring example, we switch theoret-
ically between two different realizations of the pattern [II],
where as an intermediate state also the pattern [O] emerges
[see Fig. 5(c)]. Representative rewiring stages are plotted in
Fig. 10 (see also Supplemental Material movie 4 in Ref. [40]).
In the initial state, the two loops characterizing the pattern
are aligned along the x direction; see Fig. 10(a). This state
is obtained by cooling from the isotropic phase in presence
of a spatially homogenous external field E = Eey, which
is then switched off. Then we apply a gradually increasing
field E = Eex along the x direction. On increasing E the
disclinations progressively become distorted in the (x,y) plane.
A collision of the distorted facing disclination lines enables
their reconfiguration. Above the threshold field E = E2 the
pattern of two loops oriented along the y direction is formed
[Fig. 10(d)]. Note that in the intermediate stage [Fig. 10(c)],
the pattern shown in Fig. 5(c) was realized at E = E1 < E2.
Importantly, the configurations shown in Figs. 10(c) and 10(d)
persists when the field is switched off after each of these states
is reached; thus, we have a truly multistable system.

VI. EXPERIMENTAL PROOF-OF-CONCEPT

Using our experimental setup, we demonstrate that the
rewiring mechanism which our simulations yield could be
indeed realized experimentally. For this purpose, we stabilize
the pattern [II] using the AFM scribing method. Then we
switch the disclinations using an in-plane external electric
field between two different realizations of [II], mimicking
simulation results shown in Fig. 10 and Supplemental Ma-
terial movie 4 in Ref. [40]. Below we describe experimental
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FIG. 8. Different stages of the electrical field driven rewiring mechanism shown for the case of a 2 × 2 array of s = ±1/2 master plate
imposed defects. (a) E = 0, (b) E � Ec (ξE = 1.118 ξb), (c) E � Ec(ξE = 0.994 ξb). At E = Ec (corresponding to ξE ∼ ξb), the defect lines
rewire. The nematic director field is plotted just above the master plate and at the slave plate, and we superimpose the line defect profile. (Points
are plotted where the order parameter is strongly suppressed due to elastic distortions.) (d) S(x)(E ) vs E/Ec is plotted. Calculated points are
marked by square symbols and the line is the guide for an eye. Scale bar corresponds to the cell thickness h.

FIG. 9. Different stages of the thickness-driven rewiring mechanism shown for the case of a 2 × 2 array of s = ±1/2 master plate imposed
surface defects. (a) dy/dx = 1, (b) 4/5, and (c) 3/5. The nematic director field is plotted just above the master plate and at the slave plate, and
we superimpose the line defect profile. (Points are plotted where the order parameter is strongly suppressed due to elastic distortions.) Scale
bar corresponds to the cell thickness h.
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FIG. 10. Numerical simulation of the external electric field driven rewiring shown for the case of a 4 × 4 array of s = ±1 master plate
imposed surface defects. Selected stages of the transition between two different realizations of structure depicted in Fig. 5(a) are shown. (Top
rows) The top cell view of the line defect patterns where regions with strongly suppressed order parameter values are shown. (Bottom row)
The corresponding calculated optical microscopy textures obtained under crossed polarizers. All structures and interference patterns were
obtained numerically. In the simulation, we gradually increase E. (a) ξb/ξE = 0, (b) 1.12, (c) 1.23, and (d) 1.34. Scale bar corresponds to the
cell thickness h.

measurements that confirm the predictive power and robust-
ness of our simulation results.

We start from the pattern [II] aligned along the x direction.
The applied voltage was increased at two very different rates
to measure the threshold field(s), i.e., the electric field(s) at
which the disclination lines can exchange termination partners
and rotate by 90° in the xy plane. One method involved a
slow quasiramp of the voltage along the x axis, from 0 to
633 V, in voltage steps of δVx = 2 V, corresponding to field
steps of δEx = 0.76 kVm−1, approximately every 5 seconds.
A photomicrograph was taken at each step to record the
position of the disclinations. When the ramp was completed,
the process was repeated using a field along the y axis, with
δEy steps of 0.7 kV m−1. (The difference between δEy and δEy

is due to a small anisotropy between the x and y electrode
pairs.) A separate experiment was performed on the same
sample in which the voltage (along the x axis) was increased
quickly from 0 to a particular set voltage Vn over a timescale
<5 μs, waiting 3 seconds, and then recording an image. The
voltage then was returned to 0, allowing the distorted (but not
yet rewired) defect lines to relax back to equilibrium. Some
leftover distortion of the disclination lines is always present,
so they were straightened to their initial configurations by
applying a voltage along the y axis of 633 V for 3 seconds.
The process was repeated, each time increasing the set voltage
Vn in steps of δVx = 2.1 V until it reached a value for which
all the segments had rewired. The entire experiment then
was repeated for fields applied along the y axis. Importantly,
disclinations that had been rewired at a particular set voltage
Vn remained stable when the applied voltage was returned to
zero; this demonstrates experimentally the multistability of
the line defect patterns.

Due to the finite nature of the patterned array, there
are three intermediate configurations for the experimentally
observed cell that also are stable at zero field, and are

accessible at intermediate field strengths, as seen in
Figs. 11(c)–11(e). The threshold electric field at which the
first intermediate configuration occurs is about 16% below the
saturation field E2, where the saturation field is the point at
which the last defects exchange partners and further voltage
increase has no effect. We found that all the defect lines
exchanged termination partners at E2 = 135 ± 10 kV m−1 in
the x direction and E2 = 155 ± 10 kV m−1 in the y direction
when the voltage was increased quickly. When increasing the
voltage slowly in steps of δEx or δEy, as appropriate, satu-
ration was measured to be slightly smaller, viz. E2 = 125 ±
10 kV m−1 in the x direction and E2 = 145 ± 10 kV m−1 in
the y direction. The discrepancies between the fast and slow
voltage changes likely is due to the viscoelastic response time,
indicating that the slow ramps were performed in equilib-
rium but the fast ramps were close to—but not quite in—
equilibrium.

The discrepancies between the x and y saturation fields are
likely due to detailed surface conditions, such as anisotropic
anchoring due to the shape of the AFM stylus, or imperfec-
tions in the etched electrodes. In our experiment we used a
pair of almost spatially homogenous electric fields E—one
field (Ex) was oriented along the x axis and the other (Ey)
along the y axis — to switch between the structures, where
details are shown in Supplemental Material movie 5 [40].

The intermediate configurations are reproducible on re-
peated cycling of applied field. In Fig. 11(c), for example, the
right-hand domain has been rewired. On symmetry grounds,
the left-hand side could have been rewired first. In practice,
small variations in the field and/or in the boundary condi-
tions are sufficient to break the symmetry. Importantly, this
symmetry-breaking could be exploited to create any desired
sequence of rewiring by controlled AFM scribing (or alter-
natively, by selective ultraviolet light exposure [48,49]) to
perturb appropriately a given part of the pattern.
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FIG. 11. Experimental observation of electric field driven rewiring of disclinations. A complete cell with a cell gap of h = 16 ± 0.2 μm.
The cell is filled with the liquid crystal 5CB and imaged using a polarizing optical microscope, with the polarizer and analyzer oriented
parallel and perpendicular to the image. (a) Photo taken at E = 0. The defects were previously aligned by applying a large field E = Eey in
the y direction. (b) An ac electric field E = Eex is applied along the direction indicated, sufficiently large that the defect segments are close
to osculating. (c)−(e) Intermediate defect configurations, each occurring successively with increasing E = Eex . (f) Final configuration after
the field has been increased above the critical field. All closed loop configurations remain stable when E = Eex is reduced to zero and can be
switched back to configuration (a) by applying a sufficiently strong field E = Eey along the y axis. Scale bar in (a) corresponds to the surface
defect distance d ∼ 20 μm.

Thus we clearly have switched experimentally between
two different realizations [see Figs. 11(a) and 11(f)] of the the-
oretically predicted representative pattern shown in Fig. 5(a).
Furthermore, the intermediate states depicted in Figs. 11(c)
and 11(e) correspond to different realizations of the pattern
in Fig. 5(b), and the experimental structure in Fig. 11(d)
corresponds to that in Fig. 5(c). Each intermediate state is
stable when the field at that point is switched to zero.

VII. CONCLUSIONS

We have demonstrated numerically and experimentally
external electric field driven rewiring of a complex network
of nematic line defects among competing configurations that
are truly multistable, i.e., the new configurations survive even
when the field is switched off. The set of available configura-
tions was predetermined by a specific master surface nematic
director field pattern. In our study the surface nematic director
field at the master plate was fixed due to relatively strong
boundary conditions. We switched between different patterns
by rewiring disclinations close above the master plate using
an appropriate external electric field configuration, which
triggers molecular field changes in the sample. We illustrated
the diversity of multistable and switchable configurations
using an N×N array of charge ±1 defects for N = 4. This
is the simplest topologically neutral combination emerging

from an N×N array of such defects, and provides complete
proof-of-concept for this approach. Namely, N = 2 offers
only a single pattern of disclinations, and N = 3 results in a
net nonzero topological charge. For N = 4, we obtained 18
different patterns exhibiting seven different symmetries. By
increasing N, the complexity of patterns would dramatically
increase, although it would provide no additional physical
insight into the phenomenon.

Our proof-of-principle study might pave the way for nu-
merous applications, in particular in remotely addressable
electrooptic, photonic, and emerging nanotechnological de-
vices. Namely, different disclination patterns could enable
different desired functionality of a system. For example, line
defects could be exploited as efficient traps for appropriate
nanoparticles [13,14,50]. These could introduce additional
desired material properties into the system, e.g., electrical
conductivity. In such a case, controlled and predetermined
networks of these line defects would correspond to a complex
network of conducting nano or micro wires with rewiring
capability, where different configurations would correspond
to different emergent functionalities.

Furthermore, these reconfigurable defects might provide
insight into fundamental behaviors in Nature. If fields rep-
resent the fundamental entity of Nature [51], than topolog-
ically protected localized field distortions might represent
fundamental particles, as first suggested by Skyrme [52]. In
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this view, we speculate that the fundamental understanding
of chargeless lines in nematic LCs could yield some insight
into intriguing Majorana particles [53], which behave simul-
taneously like matter and antimatter. Namely, our simulations
reveal that an antiparallel pair of chargeless disclinations
behave like a defect-antidefect pair. The facing segments of
the defect lines exhibit opposite twisting and are mutually
attractive if defects are sufficiently close, as shown in Fig. 9
and Supplemental Material movie 3 [40], thereby tending to
annihilate each other. Note that a chargeless disclination of
our study could be stable because its end-points are pinned to
a confining substrate that enforces the surface defects. There-
fore an unpinned chargeless loop would vanish with time by
shrinking into a point, leaving nonsingular nematic ordering.
However, our preliminary studies reveal that chargeless loops
could be stabilized by toroidal topology [54,55], which will
be the focus of future study.
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APPENDIX: IMPACT OF AN EXTERNAL ELECTRIC
FIELD ON DISCLINATIONS

Of interest is the impact of an external electric field E
orientation on typical nematic disclinations. In our estimate,
we use the Frank-Oseen continuum model [7] in which
nematic structures are represented by the nematic director
field n. We use either Cartesian {x,y,z} or cylindrical coor-
dinates {ρ, ϕ, z}, determined by unit vectors {ex, ey, ez} and
{eρ, eϕ, ez}, respectively. We consider straight disclinations
running along the z axis.

The relevant free energy density terms f = fe + f f consist
of the elastic ( fe) and external field ( f f ) contribution [7]:

fe = K1

2
(∇ · n)2 + K2

2
(n · ∇ × n)2 + K3

2
|n × ∇ × n|2,

(A1a)

f f = −S ε0�ε(E · n)2

2
, (A1b)

where �ε is the field anisotropy and S stands for the uniaxial
nematic order parameter. In the following, we use the approx-
imation of equal Frank elastic constants K ≡ K1 = K2 = K3,

and express the external field in terms of the azimuthal (φE )
and polar angle (θE ) as

E = E (exsinθE sinφE + eysinθE cosφE + ezcosθE ). (A2)

The solutions [7,20] of the relevant Euler-Lagrange equations,
corresponding to charged and chargeless disclinations, can be
expressed as

n = excosθ + eysinθcosγ + ezsinθsinγ . (A3)

“Elementary” charged disclinations are determined by

γ = 0, θ = ± 1
2 arctan(y/x). (A3a)

Furthermore, a representative chargeless disclination is de-
scribed by

γ = πz/h0, θ = 1/2 arctan(y/x). (A3b)

Here, h0 determines the distance, where the disclination
switches between the “planar” s = 1/2 and s = −1/2 pat-
tern. Therefore n(z = 0) = excosθ + eysinθ and n(z = h) =
excosθ − eysinθ . Within this description the “out-of-plane”
twist deformation of the disclination varies linearly with z.
Note that charged and chargeless disclinations also can be
called, respectively, as wedge and twist disclinations in the
literature [7,20].

We use the ansatz Eq. (A3) to express the free energy
penalties, where we confine disclinations within a cylinder of
radius R:

g(w) = 1

4�2
− sin2θE

2ξ 2
E

, (A4a)

g(t ) = 1

�2
+ π2

2h2
+ 1

ξ 2
E

(
− 5

16
+ cos (2θE )

16
+ sin(2θE )sinφE

2π

)
,

(A4b)

where g(dis) = 1
Kh0π

∫∫ h0,2π

0,0 f dzdϕ and the superscript “dis”
labels either the wedge (w, that is, charged) or twist (t, that
is, chargeless) disclination, and ξE =

√
K/(Sε0�εE2) stands

for the external electric field coherence length.
It follows that both kind of disclinations tend to be oriented

perpendicular to E for �ε > 0, namely,

g(w)
[
θE = π

2

]
− g(w)[θE = 0] = − 1

2ξ 2
E

, (A5a)

g(t )
[
θE = π

2

]
− g(t )[θE = 0] = − 1

8ξ 2
E

. (A5b)
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