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Discontinuous behavior of the Pauli potential in density functional theory
as a function of the electron number
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The Pauli potential is an essential quantity in orbital-free density functional theory (DFT) and in the exact
electron factorization method for many-electron systems. Knowledge of the Pauli potential allows the description
of a system relying on the density alone, without the need to calculate the orbitals. In this work, we explore the
behavior of the exact Pauli potential in finite systems as a function of the number of electrons, employing the
ensemble approach in DFT. Assuming the system is in contact with an electron reservoir, we allow the number
of electrons to vary continuously and to obtain fractional as well as integer values. We derive an expression
for the Pauli potential for a spin-polarized system with a fractional number of electrons, and we find that when
the electron number surpasses an integer, the Pauli potential jumps by a spatially uniform constant, similarly to
the Kohn-Sham potential. The magnitude of the jump equals the Kohn-Sham gap. We illustrate our analytical
findings by calculating the exact and approximate Pauli potentials for Li and Na atoms with fractional numbers
of electrons.
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I. INTRODUCTION

Density functional theory (DFT) [1] is the leading theo-
retical framework used to describe the electronic properties of
matter [2–11]. It is successfully applied to a wide range of sys-
tems in chemistry, solid-state physics, and materials science.
Usually, DFT is implemented within the Kohn-Sham (KS)
approach [12], where a many-electron system of interacting
electrons is described by the introduction of an auxiliary sys-
tem of noninteracting electrons subject to one multiplicative
potential, vKS[n](r), termed the KS potential. This potential is
chosen in such a way that the ground-state electron density in
the auxiliary system reproduces the ground-state density of
the original many-electron system. Given the KS potential,
for the noninteracting electrons we solve the Schrödinger
equation (− 1

2∇2 + vKS[n](r)
)
ϕi(r) = εiϕi(r) (1)

to obtain the orbitals, ϕi(r), and construct from them the
ground-state density, n(r) [13,14].

There exists, however, an alternative to the KS approach.
It is possible to derive a Schrödinger equation for the square
root of the ground-state density, n1/2(r), directly [15–17]:(− 1

2∇2 + vKS[n](r) + vθ [n](r)
)
n1/2(r) = μn1/2(r). (2)
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The potential in the above equation is a sum of the well-known
KS potential, vKS[n](r), and vθ [n](r), termed [16] the Pauli
potential. Generally speaking, the role of the Pauli potential
is to account for the fact that we are describing a system
of fermions (and not bosons), which are subject to Pauli’s
exclusion principle. The eigenvalue of Eq. (2), μ, is the
chemical potential of the system. Equation (2) is central in
the orbital-free (OF) approach in DFT [18–24].

Originally, Eq. (2) was derived by analyzing the Euler
equation for the KS system [15–17], and the subsequent
introduction of the Pauli kinetic energy and the Pauli potential.
However, the same result can be obtained also using the exact
electron factorization (EEF) approach [25–30] to the many-
electron problem.

One advantage of the OF-DFT approach [Eq. (2)] over
the KS approach [Eq. (1)] is evident: one has to solve the
Schrödinger equation only once and find only one eigen-
function, the square root of the density, n1/2(r), instead of
finding as many KS orbitals ϕi(r) as the number of electrons
in the system (at least). However, this advantage comes with a
price: for Eq. (2) to be of practical use in electronic structure
calculations, an expression for the Pauli potential, vθ [n](r),
in terms of the density, n(r), has to be known—exactly or
approximately. This is in addition to the standing task of ex-
pressing the KS potential, vKS[n](r), in terms of the density—
a task that emerges also within the KS approach to DFT.

A general expression for vθ [n](r) in terms of the density
is not known, but several approximations to it have been sug-
gested (see [17,21,24,31–36] and references therein) and ap-
plied to selected atoms [22,37,38] and molecules [21,23,31].
Furthermore, there exists an exact expression for vθ [n](r) in
terms of the KS orbitals and energy levels [17]. Although it
cannot be directly applied in Eq. (2), it can serve as a starting
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point for exploring the properties of the Pauli potential and
suggesting approximations for it.

Several analytical properties of the Pauli potential have
been discovered during the years. The positivity of the poten-
tial [15,31], its coordinate scaling [17], the cusp in the vicinity
of the nucleus [38], conditions on the gradient expansion
[17], as well as properties for spherically symmetric systems
[39,40] and particularly for two- and three-level atoms and
ions [41] have been discussed in the literature.

In this article, we focus on the behavior of the Pauli
potential as a function of the number of electrons in the
system, N . The system is in contact with an electron reservoir,
which allows N to vary continuously and obtain fractional
as well as integer values. In the KS approach, we know that
vKS[n](r) experiences a discontinuous jump as N crosses an
integer [42–50]. What happens to the Pauli potential, vθ [n](r),
in this regard? This is the subject of the present work.

The article is organized as follows. In Sec. II we consider
an interacting system and a noninteracting KS system with
a varying number of electrons, we describe them within the
ensemble approach in DFT [51], and we present the main
quantities to be used in the following sections. Next, in
Sec. III we obtain a generalized form for the Pauli potential,
vθ,σ [n](r), for the case of a spin-resolved system with frac-
tional N . In Sec. IV we explicitly take the limit of integer
number of electrons, from below and from above, and we
analyze the behavior of vθ,σ [n](r) as N surpasses an integer.
After providing the numerical details in Sec. V, we illustrate
our analytical findings in Sec. VI with numerical results for
the Li and Na atoms. Finally, in Sec. VII we summarize and
discuss our results.

II. ENSEMBLE STATES IN MANY-ELECTRON SYSTEMS

Strictly speaking, there is no such thing as a closed phys-
ical system with a fractional number of electrons, because
electrons do not fracture in any system of our interest. The
concept of a fractional number of electrons may, however, be
introduced as a time average of the number of electrons in
an open system, namely in a system that is free to exchange
electrons with its surroundings (Ref. [52], Sec. 14). The
ground state of such a system can no longer be described
by a pure quantum-mechanical state. Instead, a statistical
mixture, or ensemble, of pure (integer-electron) states has to
be considered [51].

In the following, we analyze a system with N = N0 + α

electrons, where N0 is an integer number, corresponding to the
number of electrons in an electrically neutral system, and 0 �
α � 1. Relying on the convexity conjecture for many-electron
systems [3,51,53–55], the ensemble ground state consists only
of the pure ground states for N0 and N0 + 1 electrons, |�N0〉
and |�N0+1〉:

�̂ = (1 − α)
∣∣�N0

〉〈
�N0

∣∣ + α
∣∣�N0+1

〉〈
�N0+1

∣∣, (3)

with the statistical weights of (1 − α) and α, respec-
tively [3,51,53,56,57]. As a direct consequence of Eq. (3),
the expectation value of any operator Ô in the ensem-
ble state is given by O = Tr{�̂Ô} = (1 − α)〈�N0 |Ô|�N0〉 +

α〈�N0+1|Ô|�N0+1〉 [51]. In particular, the density

n(r; N ) = (1 − α)n(r; N0) + αn(r; N0 + 1) (4)

and the energy

E (N ) = (1 − α)E (N0) + αE (N0 + 1) (5)

are piecewise-linear in N . Focusing on the energy, for any
fractional N , E (N ) is linear, but it can change its slope when
N passes an integer. Consequently, the chemical potential,
μ = ∂E/∂N , used in Eq. (2), is a stair-step function of N . For
example, around N = N0,

μ(N ) =
{−I : N0 − 1 < N � N0,

−A : N0 < N � N0 + 1,
(6)

where I = E (N0 − 1) − E (N0) is the ionization potential (IP)
and A = E (N0) − E (N0 + 1) is the electron affinity (EA).
Clearly, the chemical potential is generally discontinuous at
integer N .

Since in the following sections we derive the Pauli poten-
tial in terms of the KS system, we consider here also the KS
system at fractional N . Not only is the ground state of the
interacting system described by an ensemble, but also the KS
system is in an ensemble state [58,59], which is given by

�̂
(α)
KS = (1 − α)

∣∣
(α)
N0

〉〈



(α)
N0

∣∣ + α
∣∣
(α)

N0+1

〉〈



(α)
N0+1

∣∣, (7)

where |
(α)
N0

〉 and |
(α)
N0+1〉 are pure KS states, with N0 and

N0 + 1 particles, respectively [13,60]. Both of the aforemen-
tioned pure states are given by Slater determinants constructed
out of single-electron orbitals {ϕ(α)

i (r)}, which correspond to
the same KS potential, v

(α)
KS (r). The dependence of the KS po-

tential, and as a result the orbitals and the Slater determinants,
on the number of electrons, i.e., on α, is emphasized by the
superscript (α). This is to say that when varying α, |
(α)

N0
〉 and

|
(α)
N0+1〉 change due to the change in v

(α)
KS (r), unlike |�N0〉 and

|�N0+1〉, which are α-independent. As a direct consequence
of Eq. (7), the expectation value of any operator Ô in the
ensemble state is

O = (1 − α)
〈



(α)
N0

∣∣Ô∣∣
(α)
N0

〉 + α
〈



(α)
N0+1

∣∣Ô∣∣
(α)
N0+1

〉
. (8)

From the above equation, after some algebraic manipu-
lations, one can obtain the ensemble density as n(r) =∑∞

i=1 fi|ϕ(α)
i (r)|2, where the occupation numbers fi are de-

fined as

fi =

⎧⎪⎨
⎪⎩

1 : i � N0,

α : i = N0 + 1,

0 : i > N0 + 1,

(9)

meaning that the first N0 KS energy levels are fully occupied,
the (N0 + 1)th level is occupied by a fraction of an electron,
α, and all the higher-lying levels are vacant. Similarly, the
KS kinetic energy of the ensemble state can be expressed
as TKS[n] = ∑∞

i=1 fi〈ϕ(α)
i | − 1

2∇2|ϕ(α)
i 〉. We stress that the

fractional occupation numbers fi, as given by Eq. (9), appear
in the expressions for n(r) and TKS[n] (and other quantities
below) as a direct and inevitable consequence of Eq. (8),
which in turn directly follows from the definition of the en-
semble state in the Kohn-Sham system, Eq. (7). Introduction
of the occupation numbers fi is neither our choice nor an
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empirical ansatz. For the case of an integer N , e.g., for N =
N0, the equations for the density and the kinetic energy reduce
to their familiar forms, n(r) = ∑N0

i=1 |ϕ(0)
i (r)|2 and TKS[n] =∑N0

i=1〈ϕ(0)
i | − 1

2∇2|ϕ(0)
i 〉.

Lastly, we note that from a combination of Janak’s theorem
[61] and Eq. (9), it follows that the highest-occupied (ho) KS
energy level equals the chemical potential, μ(N ):

εho(N ) = ∂E (N )

∂ fho
= ∂E (N )

∂α
= ∂E (N )

∂N
= μ(N ), (10)

and is also discontinuous at integer N [see Eq. (6)]. Notably,
the discontinuity in εho(N ) comes from two sources (see
Ref. [59] and references therein): First, as N increases above
an integer value, one starts to occupy a new level, which has
remained vacant so far, namely the (former) lowest unoccu-
pied level. For this reason, εho jumps by the difference EKS

g =
ε−

lu − ε−
ho, called the KS gap. The superscript (−) emphasizes

the fact that the energy levels are taken for the N0-electron
system, in the limit N → N−

0 . However, this jump is almost
always insufficient to satisfy Eq. (6), because generally ε−

lu �=
−A, even for the exact KS potential. For this reason, the KS
potential jumps by a spatially uniform constant as N surpasses
an integer (see Refs. [42,43,50,59] and references therein).
This constant is usually denoted � and equals −A + ε−

lu . It
can also be expressed as � = Eg − EKS

g , i.e., the difference
between the fundamental gap, Eg = I − A (namely, the differ-
ence between the IP and the EA), and the KS gap.

For simplicity, so far the formalism has been presented
in the spin-unpolarized form. Generalization to the spin-
polarized form, in the case in which only one spin channel
is fractionally occupied (and therefore the ensemble is still
comprised of two pure states), is straightforward. In particular,
the total number of electrons is expressed as N = N0↑ +
N0↓ + α, and the total density is n(r) = n↑(r) + n↓(r), where
nσ (r) = ∑∞

i=1 fiσ |ϕ(α)
iσ (r)|2 is the spin density in the channel

σ (the index σ stands for ↑ or ↓). In the equation for the spin
density, the occupation numbers equal

fiσ =

⎧⎪⎨
⎪⎩

1 : i � N0σ ,

α : i = N0σ + 1,

0 : i > N0σ + 1,

fiσ̄ =
{

1 : i � N0σ̄ ,

0 : i � N0σ̄ + 1
(11)

for the fractionally occupied and the integrally occupied chan-
nels, respectively. Here σ̄ corresponds to the spin channel
opposite to σ . Finally, the ho KS energy level in each spin
channel equals εho,σ (α) = ∂E (α)/∂ fho,σ = ∂E (α)/∂Nσ . The
global ho level can be expressed as εho = max(εho,↑, εho,↓). It
is the global ho level that equals the chemical potential μ(N ).
As N surpasses an integer, the uniform jump � occurs in the
KS potential of that channel to which the extra fraction of an
electron is added.

III. PAULI POTENTIAL FOR FRACTIONAL N

Equipped with the mathematical tools required to address
many-electron systems with ensembles, we proceed to de-
rive the Pauli potential for the spin-polarized case with a
fractional number of electrons. As already mentioned, we
confine ourselves to the case in which only one spin channel
is fractionally occupied. The result derived in this section

is a generalization of the result for the exact Pauli potential
derived in Ref. [17], in two respects: first, the derivation given
below considers a spin-polarized many-electron system; sec-
ond, a fractional number of electrons is explicitly examined.

We start with the Euler equation, in its spin-polarized form,

δTKS[n↑, n↓]

δnσ (r)
+ vKS,σ [n↑, n↓](r) = εho,σ . (12)

Then, the KS kinetic energy is expressed as

TKS[n↑, n↓] =
∑

σ

∫
n1/2

σ (r)

(
−1

2
∇2

)
n1/2

σ (r)d3r+Tθ [n↑, n↓],

(13)

where Tθ [n↑, n↓] is the Pauli kinetic energy; the latter energy
is actually defined by the above expression. Next, the func-
tional derivative of the KS kinetic energy is calculated, to yield

δTKS[n↑, n↓]

δnσ (r)
= −1

2

∇2
[
n1/2

σ (r)
]

n1/2
σ (r)

+ vθ,σ [n↑, n↓](r), (14)

where vθ,σ [n↑, n↓](r) = δTθ,σ [n↑, n↓]/δnσ (r) is the spin-
polarized Pauli potential. Introduction of Eq. (14) into
Eq. (12) and rearrangement of terms yields the spin-polarized
version of Eq. (2):(− 1

2∇2 + vKS,σ (r) + vθ,σ (r)
)
n1/2

σ (r) = εho,σ n1/2
σ (r). (15)

We now derive an expression for the spin-polarized Pauli
potential, vθ,σ [n↑, n↓](r), for a system with fractional N . For
the upcoming derivation, we introduce the quantities

qiσ (r) = ϕiσ (r)/n1/2
σ (r). (16)

These quantities possess the following properties:
(i)

∑∞
i=1 fiσ |qiσ (r)|2 = 1, as a direct consequence of the

definition of the density nσ (r).
(ii)

∑∞
i=1 fiσ∇|qiσ (r)|2 = ∑∞

i=1 fiσ q∗
iσ (r)∇qiσ (r) + c.c. = 0,

as follows from applying the operator ∇ to (i).
(iii)

∑∞
i=1 fiσ∇2|qiσ (r)|2 = ∑∞

i=1 fiσ q∗
iσ (r)∇2qiσ (r) +

∇q∗
iσ (r) · ∇qiσ (r) + c.c. = 0, as follows from applying ∇· to

(ii).
We start with the spin-polarized version of Eq. (1), express

it in terms of qiσ (r) and nσ (r), rather than in terms of ϕiσ (r)
[62], then multiply it by fiσ q∗

iσ (r) from the left and sum over
all i to get

∞∑
i=1

fiσ q∗
iσ (r)

(
−1

2
∇2

)[
qiσ (r)n1/2

σ (r)
]

+ vKS,σ (r)n1/2
σ (r)

∞∑
i=1

fiσ |qiσ (r)|2

= n1/2
σ (r)

∞∑
i=1

fiσ εiσ |qiσ (r)|2. (17)

The second term on the left-hand side (lhs) of Eq. (17)
can be simplified using property (i) for qiσ (r). The
right-hand side (rhs) of Eq. (17) can be rewritten as
n1/2

σ (r)[εho,σ + ∑∞
i=1 fiσ (εiσ − εho,σ )|qiσ (r)|2], using again

property (i). Furthermore, to simplify the first term on the lhs,
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we note that

∇2
[
qiσ (r)n1/2

σ (r)
] = qiσ (r)∇2

[
n1/2

σ (r)
] + 2∇[

n1/2
σ (r)

] · ∇qiσ (r) + n1/2
σ (r)∇2qiσ (r). (18)

We substitute this form into Eq. (17) and use property (i) again to obtain

−1

2
∇2

[
n1/2

σ (r)
] + n1/2

σ (r)·
{

vKS,σ (r) +
∞∑

i=1

fiσ

[
q∗

iσ (r)

(
−1

2
∇2

)
qiσ (r) − q∗

iσ (r)
∇[

n1/2
σ (r)

] · ∇qiσ (r)

n1/2
σ (r)

+ (εho,σ − εiσ )|qiσ (r)|2
]}

= εho,σ n1/2
σ (r). (19)

We now take the complex conjugate of Eq. (19), sum up the
two equations, and divide by 2. Using property (iii) for the first
term in the square brackets and property (ii) for the second
term there, we realize that Eq. (19) can be rewritten in the
form of Eq. (15), where the Pauli potential equals

vθ,σ (r) = 1

2

∞∑
i=1

fiσ ∇q∗
iσ (r) · ∇qiσ (r)

+
∞∑

i=1

fiσ (εho,σ − εiσ )|qiσ (r)|2. (20)

This concludes our derivation of the spin-polarized Pauli po-
tential for a system with fractional number of electrons, which
is the central result of this section. In the following sections
we will separately address the two parts of the Pauli po-
tential, v

(1)
θ,σ (r) = 1

2

∑∞
i=1 fiσ∇q∗

iσ (r) · ∇qiσ (r) and v
(2)
θ,σ (r) =∑∞

i=1 fiσ (εho,σ − εiσ )|qiσ (r)|2.
For completeness, we consider also the spin-polarized

Pauli kinetic energy density per particle, tθ,σ [nσ ](r),
which serves in the integral representation Tθ [n] =∑

σ

∫
nσ (r)tθ,σ [nσ ](r)d3r. Relying on the definition of

Tθ [n↑, n↓] and performing the same manipulations as before,
we find that

tθ,σ [nσ ](r) = 1

2

∞∑
i=1

fiσ ∇q∗
iσ (r) · ∇qiσ (r). (21)

In the spin-unpolarized case with fractional occupations,
the form of Eqs. (20) and (21) remains the same, but the
occupation number fi equals 2 for the first N0/2 orbitals,
α for the highest, fractionally occupied orbital, and zero
otherwise. In the particular case of a spin-unpolarized system
with integer N , Eqs. (20) and (21) reduce to their previously
known forms [see Ref. [17], Eqs. (16) and (22), respectively],
as expected.

IV. DISCONTINUOUS BEHAVIOR OF THE PAULI
POTENTIAL AROUND AN INTEGER N

In this section, we explicitly consider the case in which
the number of electrons in the system reaches an integer from
below, N → N−

0 , and from above, N → N+
0 , and we analyze

the behavior of vθ,σ (r) in these limits.
In the limit N → N−

0 , the occupation numbers in both spin
channels have the form

fiσ =
{

1 : i � N0σ ,

0 : i > N0σ ,
(22)

and the Pauli potential equals

v−
θ,σ (r) =

N0∑
i=1

1

2
∇q∗

iσ (r) · ∇qiσ (r) + (ε−
ho,σ − ε−

iσ )|qiσ (r)|2.

(23)

All the quantities that comprise the Pauli potential v−
θ,σ (r)

are those corresponding to the limit N → N−
0 , a fact that has

been emphasized by a superscript (−) for the eigenvalues (but
not for the other quantities, for reasons that become apparent
below).

As the number of electrons grows and infinitesimally sur-
passes an integer, the density and the KS orbitals change
continuously, but the KS potential (of the channel to which
the fraction of an electron is added) jumps by a spatially
uniform constant �, as mentioned in Sec. II. As a result,
the KS eigenvalues of this spin channel change abruptly, by
the same constant: ε+

iσ = ε−
iσ + �, and in particular ε+

ho,σ =
ε−

lu,σ + � and therefore ε+
ho,σ − ε+

iσ = ε−
lu,σ − ε−

iσ . Then, in the
limit N → N+

0 , the Pauli potential equals

v+
θ,σ (r) =

N0∑
i=1

1

2
∇q∗

iσ (r) · ∇qiσ (r) + (ε−
lu,σ − ε−

iσ )|qiσ (r)|2.

(24)

Subtraction of Eq. (23) from Eq. (24) yields

v+
θ,σ (r)−v−

θ,σ (r) =
N0∑

i=1

(ε−
lu,σ −ε−

ho,σ )|qiσ (r)|2 = EKS
g . (25)

Therefore, we conclude that the Pauli potential also jumps
by a spatially uniform constant when N surpasses an integer
value. The magnitude of the constant is the KS gap, EKS

g .
The jump in the Kohn-Sham-Pauli potential, i.e., the overall
potential used in Eq. (2) for the square root of the density,
equals the fundamental gap, Eg. Notably, whereas the height
of the uniform jump experienced by the KS potential involves
both quantities of the interacting system (I and A) and the KS
system (ho and lu energies), the jump of the Pauli potential is
expressed only in terms of KS orbital energies, and the Kohn-
Sham-Pauli gap—only in terms of the interacting system.

V. NUMERICAL DETAILS

The numerical results presented in Sec. VI A are obtained
by using the exact ground-state densities obtained with the full
configuration-interaction (FCI) method for systems with inte-
ger N . In particular, we solved the many-electron problem for
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Li+ (α = 0) and Li (α = 1) using the FCI method in MOLPRO

[63] with the Universal Gaussian Basis Set [64], employing
the approach suggested in Ref. [65]. We then calculated the
densities for fractional N as in Eq. (4) with ORBKIT [66]
on a logarithmic grid, linearly combining the exact densities
of the cation and the neutral atom. Next, we employed the
inversion procedure of Ref. [67] to obtain the KS potential
v

(α)
KS (r) and the resulting KS orbitals and eigenvalues (see also

Ref. [50] and the supplemental material therein). Finally, we
calculated the Pauli potential for each value of α in two ways:
(i) by directly using Eq. (20), and (ii) by resolving Eq. (2) for
the KS-Pauli potential, vKSθ (r) = 1

2
∇2n1/2(r)

n1/2(r) + εho, and then
subtracting the KS potential obtained by inversion. These two
ways of calculating the Pauli potential are equivalent.

The results presented in Sec. VI B were obtained using the
computer program ORCHID [68,69], version 4.0. The Li and
Na atoms with fractional number of electrons were solved
within the local spin-density approximation (LSDA) [70], in
its standard implementation. The occupation numbers were
set as in Eq. (11). The Pauli potential has been obtained again
in two ways, similarly to what we described above for the FCI
case, but in the spin-polarized version. In particular, to find
the KS-Pauli potential in (ii), we address Eq. (15) instead of
Eq. (2).

VI. COMPUTATIONAL RESULTS

In this section we illustrate the findings of Secs. III and IV,
particularly Eqs. (20) and (25), for selected atomic systems.

A. Exact results

Figure 1 presents the exact, spin-unpolarized Pauli po-
tential for the Li atom, with a varying number of electrons,
N = 2 + α, with α = 10−4, 10−6, 10−7, and 10−10. In panel
(a) of Fig. 1, the total Pauli potential, vθ (r), is depicted.
Potentials obtained in ways (i) and (ii) (see Sec. V for details)
are entirely on top of each other, as expected. The Pauli
potential is positive everywhere [15,31], and for low values
of α it has a characteristic form: it develops a plateau around
the origin that drops to zero at far distances. As α → 0+,
the width of the plateau grows, ultimately reaching infinity.
The plateau height approaches the value of EKS

g . This is in
agreement with Eq. (25), because the Pauli potential for Li+ is
zero everywhere [71]. Qualitatively, the behavior of the Pauli
potential is similar to the behavior of the KS potential at low α

(compare to, e.g., [50]), albeit with a different plateau height.
To gain more understanding of the Pauli potential vθ (r),

we examine in panels (b) and (c) of Fig. 1 the two terms that
form the Pauli potential: v

(1)
θ (r) [which also equals tθ (r)] and

v
(2)
θ (r). We clearly see that the term that contributes to the cre-

ation of the plateau is v
(2)
θ (r), in agreement with Eq. (25). The

term v
(1)
θ (r) contributes only in the region where the plateau

drops to zero, effectively shifting the plateau edge to the right.

B. The LSDA approximation

In addition to the exact results presented above, we are in-
terested in answering the question of how well approximate xc
functionals capture the exact properties of the Pauli potential.
It is well known that common xc approximations, such as the

FIG. 1. (a) Exact total Pauli potential, vθ (r), for the Li atom with
2 + α electrons, for various values of α (see the legend). Pauli poten-
tials obtained in ways (i) and (ii) (see Sec. V) are indistinguishable.
(b) The term v

(1)
θ (r) for the Li atom with 2 + α electrons, for various

values of α. (c) The term v
(2)
θ (r) for the Li atom with 2 + α electrons,

for various values of α. The KS gap, EKS
g , is denoted on all panels for

comparison.

LSDA, in their standard implementation do not reproduce the
jump experienced by the KS potential when N surpasses an
integer value. But what about the Pauli potential in the LSDA?

Figure 2 presents results for the Pauli potential obtained
from a spin-polarized LSDA calculation of Li with 2 + α

electrons. The fraction of the electron, α, has been added to
the ↑-channel. In panel (a) one can see the ↑-Pauli potential,
vθ,↑(r), for α = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and
1. Clearly, the potential experiences a plateau, whose height
approaches the LSDA KS gap for Li+ of 1.9500 Hartree
and whose width extends to infinity as α → 0+. The rate
of approaching the asymptotic height is rather fast: already
for α = 10−2 the plateau height of the potential is indistin-
guishable from its asymptotic value. The LSDA KS gap is
quantitatively different from the exact gap value for Li+, but
the mere phenomenon of a plateau in the Pauli potential is
definitely present in the LSDA.

Panel (a) shows Pauli potentials numerically obtained in
the two ways detailed in Sec. V: results for (i) are in color
(see the legend), whereas results for (ii) are in white. Notably,
results obtained by the two methods overlap everywhere. The
↓-channel of the Pauli potential shows no plateau and remains
zero, as expected, and therefore it is not plotted here.

As to the ingredients of the LSDA Pauli potential for Li,
v

(1)
θ,↑(r) and v

(2)
θ,↑(r), we see the same situation as we observed

in Sec. VI A: v
(2)
θ,↑(r) is the term that creates the plateau,

whereas v
(1)
θ,↑(r) is merely a peak, which appears around the

edge of the plateau, effectively shifting it to the right.
Finally, we consider the Na atom with 10 + α electrons.

Unlike the Li case discussed above, the Pauli potential for
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FIG. 2. (a) Pauli potential, vθ,↑(r), for the Li atom with 2 + α

electrons, for various values of α (see the legend), obtained via
Eq. (20) relying on an LSDA calculation. Pauli potentials obtained
using Eq. (15) (white) completely overlap the above potentials.
(b) The term v

(1)
θ,↑(r) for the Li atom with 2 + α electrons, for various

values of α. (c) The term v
(2)
θ,↑(r) for the Li atom with 2 + α electrons,

for various values of α. The LSDA KS gap of Li+ is denoted in all
panels for comparison.

the Na ion (i.e., for α = 0) is not zero, and therefore here we
actually consider Pauli potential differences, �vθ,↑(r), com-
paring the potential for a given α to its counterpart for α = 0.
Unlike the Pauli potential itself, the potential difference can
reach both positive and negative values. Hence, in Fig. 3(a)
�vθ,↑(r) first goes above the asymptotic value of EKS

g , then
it goes below 0, and finally it vanishes at infinity. Short of
that, qualitatively the results for Na are very similar to those
of Li: a pronounced plateau of height EKS

g = 1.0853 Hartree

in the Pauli potential, occurring due to v
(2)
θ,↑(r) and extending

to infinity as α → 0+.

VII. CONCLUSIONS

In this work, we explored the properties of the Pauli
potential—a central quantity in orbital-free (OF) DFT and in
the exact electron factorization (EEF) method. We expressed
the exact Pauli potential in terms of the KS orbitals and
energies for a spin-polarized system with a fractional number
of electrons, using the ensemble approach in DFT. By this
we generalized a previous exact result given in Ref. [17].
Furthermore, we found that as the number of electrons in

FIG. 3. (a) Pauli potential differences, �vθ,↑(r), for the Na atom
with 10 + α electrons, for various values of α (see the legend),
obtained via Eq. (20) relying on an LSDA calculation. Pauli potential
differences obtained using Eq. (15) (white) completely overlap the
above potentials. (b) The term �v

(1)
θ↑,(r) for the Na atom with 10 + α

electrons, for various values of α. (c) The term �v
(2)
θ,↑(r) for the Na

atom with 10 + α electrons, for various values of α. The LSDA KS
gap of Na+ is denoted in all panels for comparison.

the system surpasses an integer value, the Pauli potential
experiences an abrupt jump; the magnitude of this jump
equals the KS gap, EKS

g . These results have been illustrated
for atomic systems, both for the exact case, which relies on
full configuration-interaction calculations, and for the LSDA.
Notably, we found that even such a simple xc approximation
as the LSDA is capable of creating the abrupt jump in the
Pauli potential, despite its inability to do the same for the KS
potential. These findings can serve as benchmarks for future
advanced approximations to the Pauli potential within OF-
DFT. Furthermore, since in KS-DFT the jump in the potential
is closely related [50] to the step the potential produces in
extended systems (e.g., stretched diatomic molecules), it is
reasonable to expect a similar relationship also for the Pauli
potential. This question, as well as the behavior of the Pauli
potential in cases of dissociation and charge transfer, are
possible directions for future research.
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