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Floquet higher-order topological insulators and superconductors with space-time symmetries

Yang Peng *

Department of Physics and Astronomy, Northridge, California State University, Northridge, California 91330, USA;
Institute of Quantum Information and Matter and Department of Physics, California Institute of Technology,

Pasadena, California 91125, USA;
and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA

(Received 23 September 2019; accepted 2 January 2020; published 5 February 2020)

Floquet higher-order topological insulators (HOTIs) and superconductors (SCs) with an order-2 space-time
symmetry or antisymmetry are classified. This is achieved by considering unitary loops, whose nontrivial
topology leads to the anomalous Floquet topological phases, subject to a space-time symmetry/antisymmetry.
By mapping these unitary loops to static Hamiltonians with an order-2 crystalline symmetry/antisymmetry, one
is able to obtain the K groups for the unitary loops and thus complete the classification of Floquet HOTIs
and SCs. Interestingly, we find that for every order-2 nontrivial space-time symmetry/antisymmetry involving
a half-period time translation, there exists a unique order-2 static crystalline symmetry/antisymmetry such that
the two symmetries/antisymmetries give rise to the same topological classification. Moreover, by exploiting the
frequency-domain formulation of the Floquet problem, a general recipe that constructs model Hamiltonians for
Floquet HOTIs and SCs is provided, which can be used to understand the classification of Floquet HOTIs and
SCs from an intuitive and complementary perspective.
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I. INTRODUCTION

The interplay between symmetry and topology leads to
various of topological phases. For a translationally invariant
noninteracting gapped system, the topological phase is char-
acterized by the band structure topology, as well as the sym-
metries the system respects. Along with these observations,
a classification was obtained for topological insulators (TIs)
and superconductors (SCs) [1–3] in the ten Altland-Zirnbauer
(AZ) symmetry classes [4–8], which is determined by the
presence or absence of three types of nonspatial symmetries,
i.e., the time-reversal, particle-hole, and chiral symmetries.

One nice feature of these tenfold-way phases is the bulk-
boundary correspondence, namely, a topologically nontrivial
bulk band structure implies the existence of codimension-
1 gapless boundary modes on the surface, irrespective of
the surface orientation. (The codimension is defined as the
difference between the bulk dimension and the dimension of
the boundary where the gapless mode propagates.)

When considering more symmetries beyond the nonspatial
ones, the topological classification is enriched. Topological
crystalline insulators [9–13] are such systems protected by
crystalline symmetries. They are able to host codimension-1
gapless boundary modes only when the boundary is invari-
ant under the crystalline symmetry operation. For example,
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topological crystalline insulators protected by reflection sym-
metry [10] can support gapless modes only on the reflection
invariant boundary. On the other hand, inversion symmetric
topological crystalline insulators do not necessarily give rise
to codimension-1 gapless boundary modes [14,15], because
no boundary is invariant under inversion.

Remarkably, it was recently demonstrated that a crystal
with a crystalline symmetry compatible bulk topology may
manifest itself through protected boundary modes of codi-
mension greater than 1 [16–26]. Such insulating and super-
conducting phases are called higher-order topological insula-
tors (HOTIs) and superconductors. In particular, an nth-order
TI and SC can support codimension-n boundary modes. (The
strong TIs and SCs in the tenfold-way phases with protected
boundary modes at codimension 1 can be called first-order
TIs and SCs according to this definition.) A higher-order
bulk-boundary correspondence between the bulk topology
and gapless boundary modes at different codimensions was
derived in Ref. [26] based on K theory.

Beyond equilibrium or static conditions, it is known that
topological phases also exist, and one of the famous examples
is the Floquet topological insulator, which is proposed to be
brought from a static band insulator by applying a periodic
drive, such as a circularly polarized radiation or an alternat-
ing Zeeman field [27–31]. A complete classification of the
Floquet topological insulators (as well as superconductors) in
the AZ symmetry classes has been obtained in Refs. [32,33],
which can be regarded as a generalization of the classification
for static tenfold-way TIs and SCs.

In a periodically driven, or Floquet, system, the nontriv-
iality can arise from the nontrivial topology of the unitary
time-evolution operator U (t ) (with period T ), which can be
decomposed into two parts as U (t ) = e−iHF t P(t ). Here the
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first part describes the stroboscopic evolution at the time of
multiples of T in terms of a static effective Hamiltonian HF

and the second part is known as the micromotion operator
P(t ) = P(t + T ) describing the evolution within a given time
period [34]. (We will make this decomposition more explicit
later.) Thus, the nontrivial topology can separately arise from
HF as in a static topological phase or from the nontrivial
winding of P(t ) over one period. Whereas the Floquet topo-
logical phase in the former situation is very similar to a
static topological phase as it has a static limit, the latter is
purely dynamical and cannot exist if the time-periodic term
in the Hamiltonian vanishes. Therefore, systems belonging
to the latter case are more interesting and are known as the
anomalous Floquet topological phases.

In a Floquet system, energy is not conserved because of the
explicit time dependence of the Hamiltonian. However, one
can define quasienergies as eigenvalues of HF = i

T ln U (T ),
which are only defined modulo the periodic driving frequency
ω = 2π/T . This can be intuitively understood due to the
existence of energy quanta ω that can be absorbed and
emitted. Similar to static topological phases, the quasienergy
spectrum can be different with different boundary conditions.
In particular, inside a bulk quasienergy gap (when a periodic
boundary condition is applied), there may exist topologically
protected boundary modes.

In Floquet topological phases protected by nonspatial sym-
metries (tenfold-way phases), the bulk-boundary correspon-
dence is also expected to hold [32], namely, the number of
boundary modes inside a particular bulk gap can be fully
obtained from the topology of the evolution operator U (t ),
when a periodic boundary condition is applied. Interestingly,
when there exists a symmetry relating states at quasienergies
ε and −ε, then the topological protected boundary modes will
appear inside the quasienergy gap at 0 and ω/2, since these
are quasienergies that are invariant under the above symmetry
operation.

In particular, a bulk micromotion operator with nontrivial
topology is able to produce gapless Floquet codimension-1
boundary modes at quasienergy ω/2 (which will be made
clear later). The natural question to ask is that how we
can create Floquet higher-order topological phases, with pro-
tected gapless modes at arbitrary codimensions. In particular,
we want to have the topological nontriviality arise from
the micromotion operator; otherwise we just need to have
HF as a Hamiltonian for a static higher-order topological
phase.

Similar to the static situation, when only nonspatial sym-
metries are involved, the tenfold-way Floquet topological
phases are all first-order phases which can only support
codimension-1 boundary modes. Higher-order phases are yet
possible when symmetries relating different spatial points of
the system are involved. These symmetries can be static crys-
talline symmetries as well as space-time symmetries which
relate systems at different times.

Recently, the authors in Refs. [35–40] constructed Flo-
quet second-order TIs and SCs. In particular, the authors of
Ref. [38] were able to construct Floquet corner modes by
exploiting the time-glide symmetry [41], which combines a
half-period time translation and a spatial reflection, as illus-
trated in the left part of Fig. 1.

FIG. 1. Floquet second-order TIs and SCs protected by time-
glide symmetry/antisymmetry can be mapped to static second-order
TIs and SCs protected by reflection symmetry/antisymmetry. The
dashed line indicates the reflection (time-glide) plane.

It turns out that the roles played by such space-time sym-
metries in Floquet systems cannot be trivially replaced by
spatial symmetries. As pointed out in Ref. [38], in protecting
anomalous Floquet boundary modes, the space-time symme-
tries generally have different commutation relations with the
nonspatial symmetries, compared to what the corresponding
spatial symmetries do.

Since the use of space-time symmetries creates possibili-
ties in engineering Floquet topological phases, especially the
Floquet HOTIs and SCs, it is important to have a thorough
topological classification, as well as a general recipe of model
construction for such systems. In this work we completely
classify Floquet HOTIs and SCs with an order-2 space-time
symmetry/antisymmetry realized by an operator Ô, which can
be either unitary or antiunitary. By order-2 we mean that the
symmetry/antisymmetry operator trivially acts twice on the
time-periodic Hamiltonian H (t ), namely,

[Ô2, H (t )] = 0, Ô = Û , Â, (1)

where Ô can be either unitary Û or antiunitary Â.
We further provide a general recipe of constructing tight-

binding Hamiltonians for such Floquet HOTIs and SCs in
different symmetry classes. Note that the order-2 static crys-
talline symmetries/antisymmetries considered in Ref. [11]
will be a subset of the symmetries/antisymmetries considered
in this work.

Our classification and model construction of Floquet HO-
TIs and SCs involve two complementary approaches. The first
approach is based on the classification of gapped unitaries
[32,41], namely, the time-evolution operator U (t ) at time
t ∈ [0, T ), with U (T ) gapped in its eigenvalues’ phases. It
turns out that the gapped unitaries can be (up to homotopy
equivalence) decomposed as a unitary loop (which is actually
the micromotion operator) and a unitary evolution under the
static Floquet Hamiltonian HF . Thus, a general gapped unitary
is classified by separately considering the unitary loop and
the static Hamiltonian HF , where the latter is well known
for systems in AZ classes as well as systems with additional
crystalline symmetries. The classification of unitary loops, on
the other hand, is less trivial since it is responsible for the
existence of anomalous Floquet phases [42], especially when
we are considering space-time symmetries.

We focus on the classification of Floquet unitary loops
in this work. In particular, a Hermitian map between unitary
loops and Hermitian matrices is introduced, which is inspired
by the dimensional reduction map used in the classification of
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TABLE I. Nontrivial space-time symmetry/antisymmetry with
subscript T/2 vs static spatial symmetry/antisymmetry with sub-
script 0, sharing the same K groups at the same dimension. Here
Û , Â, Ū , and Ā denote unitary symmetry, antiunitary symmetry,
unitary antisymmetry, and antiunitary antisymmetry, respectively.
The commutation (anticommutation) relations with coexisting non-
spatial symmetries are denoted by additional subscripts + (−), while
the superscript indicates the square of the operator. In the case of
classes BDI, DIII, CII, and CII, the first and second ± correspond to
time-reversal and particle-hole symmetries, respectively.

AZ class Space-time Static

A Û+
T/2 Û+

0

A Ā±
T/2 Ā∓

0

AIII Û+
T/2,± Û+

0,∓
AIII Â±

T/2,± Â±
0,∓

AI, AII Û+
T/2,± Û+

0,±
AI, AII Ū+

T/2,± Ū+
0,∓

C, D Û+
T/2,± Û+

0,∓
BDI, DIII, CII, CI ÛT/2,±± Û0,±∓

TIs and SCs with scattering matrices [43]. The key observa-
tion is that the symmetry constraints on the unitary loops have
the same features as the ones on scattering matrices. This Her-
mitian map has advantages over the one used in earlier works
[32,41], because it simply maps a unitary loop with a given
order-2 space-time symmetry/antisymmetry to a static Hamil-
tonian of a topological crystalline insulator with an order-2
crystalline symmetry/antisymmetry. This enable us to exploit
the full machinery of K theory, to define K groups, as well as
the K subgroup series introduced in Ref. [26], for the unitary
loops subject to space-time symmetries/antisymmetries.

Based on this approach, we obtain the first important result
of this work, namely, for every order-2 nontrivial space-time
(anti)unitary symmetry/antisymmetry, which involves a half-
period time translation, there always exists a unique order-2
static spatial (anti)unitary symmetry/antisymmetry such that
the two symmetries/antisymmetries correspond to the same K
group and thus the same classification. This result is illustrated
in Fig. 1 for the case of time-glide vs reflection symmetries.
The explicit relations are summarized in Table I. Because of
these relations, all results for the classification [17–25] as well
as the higher-order bulk-boundary correspondence [26] of
static HOTIs and SCs can be applied directly to the anomalous
Floquet HOTIs and SCs.

In the second approach, by exploiting the frequency-
domain formulation, we obtain the second important result of
this work, which is a general recipe of constructing harmon-
ically driven Floquet HOTIs and SCs from static HOTIs and
SCs. This recipe realizes the K group isomorphism of systems
with a space-time symmetry and systems with a static crys-
talline symmetry at the microscopic level of Hamiltonians,
and therefore provides a very intuitive way of understanding
the classification table obtained from the formal K theory.

The rest of the paper is organized as follows. We first
introduce the symmetries, both nonspatial symmetries and
the order-2 space-time symmetries, for the Floquet system

in Sec. III. Then, in Sec. IV, we introduce a Hermitian map
which enables us to map the classification of unitary loops to
the classification of static Hamiltonians. In Sec. V, by using
the Hermitian map, we explicitly map the classification of
unitary loops in all possible symmetry classes supporting an
order-2 symmetry to the classification of static Hamiltonians
with an order-2 crystalline symmetry. In Sec. VI we derive
the corresponding K groups for unitary loops in all possible
symmetry classes and dimensions. In Sec. VII we introduce
the K subgroup series for unitary loops, which enables us to
completely classify Floquet HOTIs and SCs. In Sec. VIII the
frequency-domain formulation is introduced, which provides
a complementary perspective on the topological classification
of Floquet HOTIs and SCs. In Sec. IX we introduce a general
recipe of constructing harmonically driven Floquet HOTIs
and SCs and provide examples in different situations. We
summarize our work in Sec. X.

Note that it is possible to skip the K-theory classification
parts in Secs. IV–VII and understand the main results in terms
of the frequency-domain formulation.

II. FLOQUET BASICS

In a Floquet system, the Hamiltonian

H (t + T ) = H (t ) (2)

is periodic in time with period T = 2π/ω, where ω is the an-
gular frequency. In a d-dimensional system with translational
symmetry and periodic boundary condition, we have a well
defined Bloch wave vector k in the d-dimensional Brillouin
zone T d (torus). The system can thus be characterized by a
time-periodic Bloch Hamiltonian H (k, t ).

In the presence of a ddef -dimensional topological defect,
the wave vector k is no longer a good quantum number due to
the broken translational symmetry. However, the topological
properties of the defect can be obtained by considering a
large D = d − ddef − 1 dimensional surface, on which the
translational symmetry is asymptotically restored so that k
can be defined, surrounding the defect. We will denote by r
the real space coordinate on this surrounding surface, or a D
sphere SD, which will determine the topological classification.
Thus, we have a time-periodic (t ∈ S1) Bloch Hamiltonian
H (k, r, t ) defined on T d × SD+1. In the following, we will
denote the dimension of such a system with a topological
defect by a pair (d, D).

The topological properties for a given Hamiltonian
H (k, r, t ) can be derived from its time-evolution operator

U (k, r, t0 + t, t0) = T̂ exp

[
−i

∫ t0+t

t0

dt ′H (k, r, t ′)
]
, (3)

where T̂ denotes the time-ordering operator. The Floquet
effective Hamiltonian HF (k, r) is defined as

U (k, r, T + t0, t0) = exp[−iHF (k, r)T ]. (4)

Note that different HF defined at different t0 are related by uni-
tary transformations, and thus the eigenvalues of the Floquet
effective Hamiltonian are uniquely defined independently of
t0, which is independent of t0. We also introduce εn(k, r) ∈
[−π/T, π/T ] to define the nth eigenvalue of HF (k, r) and
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call it the nth quasienergy band. Although HF captures the
stroboscopic evolution of the system, it does not produce a
complete topological classification of the Floquet phases. It
is known that one can have the so-called anomalous Floquet
phases even when HF is a trivial Hamiltonian.

To fully classify the Floquet phases, we need information
about the evolution operator at each t within the period. In
order to have a well defined phase, we will only consider
gapped unitary evolution operators, whose quasienergy bands
are gapped at a particular quasienergy εgap. Thus, given a set
of symmetries the system respects, one needs to classify these
gapped unitaries defined from each gapped quasienergies εgap.
The most commonly considered gapped energies in a system
with particle-hole or chiral symmetry are 0 and ω/2, since
such energies respect the symmetry. Note that the εgap = ω/2
case is more interesting since it corresponds to anomalous
Floquet phases [42], which has no static analog. When neither
of the two above-mentioned symmetries exists, the gapped
energy can take any value, but one can always deform the
Hamiltonian such that the gapped energy appears at ω/2
without changing the topological classification. Hence, in the
following we will set εgap = ω/2.

It is evident that the initial time t0 in the evolution operator
does not affect the classification, since it corresponds to
different ways of defining the origin of time. Thus, from now
on we will set t0 = 0 and define

U (k, r, t ) = U (k, r, t, 0). (5)

A less obvious fact is that one can define the symmetrized
time-evolution operator [32] centered around time τ as

Uτ (k, r, t ) = T exp

[
−i

∫ τ+t/2

τ−t/2
dt ′H (k, r, t ′)

]
, (6)

which will also give rise to the same topological classification.
This statement is proved in Appendix A. In fact, Uτ (k, r, T )
leads to the same quasienergy band structure independently of
the choice of τ . This is because (the explicit k, r dependence
is omitted)

Uτ (T ) = WU0(T )W †, (7)

with the unitary matrix W = U (τ + T/2)U †(T/2). Thus, the
Uτ (T ) at different τ are related by unitary transformation, and
we will in the following use Uτ (k, r, t ) to classify Floquet
topological phases.

For classification purposes, we need to establish the notion
of homotopy equivalence between unitary evolutions. Let us
consider evolution operators gapped at a given quasienergy.
Following the definition in Ref. [32], we say two evolution
operators U1 and U2 are homotopic, defined as U1 ≈ U2, if
and only if there exists a continuous unitary-matrix-valued
function f (s), with s ∈ [0, 1], such that

f (0) = U1, f (1) = U2, (8)

where f (s) is a gapped evolution operator for all intermediate
s. It is worth mentioning that when dealing with symmetrized
evolution operators instead of ordinary evolution operators,
the definition of homotopy equivalence is similar except one
needs to impose that the interpolation function f (s) for all
s is also a gapped symmetrized evolution operator. When

comparing evolution operators with a different number of
bands, the equivalence relation of stable homotopy can be
introduced. Such an equivalence relation is denoted by U1 ∼
U2 if there exist two trivial unitaries U 0

n1
and U 0

n2
, with n1 and

n2 bands, respectively, such that

U1 ⊕ U 0
n1

≈ U2 ⊕ U 0
n2

, (9)

where ⊕ denotes the direct sum of matrices.
We will now define how to make compositions between

two symmetrized evolution operators. Using the notation in
Ref. [32], we write the evolution due to Uτ,1 followed by Uτ,2

as Uτ,1 ∗ Uτ,2, which is given by the symmetrized evolution
under Hamiltonian H (t ) given by

H (t ) =

⎧⎪⎨
⎪⎩

H2
(
2t + T

2 − τ
)
, τ − T

2 � t � τ − T
4

H1(2t − τ ), τ − T
4 � t � τ + T

4

H2
(
2t − T

2 − τ
)
, τ + T

4 � t � τ + T
2 ,

(10)

where H1(t ) and H2(t ) are the corresponding Hamiltonians
used for the evolution operators Uτ,1 and Uτ,2, respectively.

As proved in Ref. [32], with such definitions of homotopy
and compositions of evolution operators, one can obtain the
following two important theorems. First, every gapped sym-
metrized evolution operator Uτ is homotopic to a composition
of a unitary loop Lτ , followed by a constant Hamiltonian
evolution Cτ , unique up to homotopy. Here the unitary loop
is a special time-evolution operator such that it becomes an
identity operator after a full period evolution. Second, Lτ,1 ∗
Cτ,1 ≈ Lτ,2 ∗ Cτ,2 if and only if Lτ,1 ≈ Lτ,2 and Cτ,1 ≈ Cτ,2,
Lτ,1 and Lτ,2 are unitary loops, and Cτ,1 and Cτ,2 are constant
Hamiltonian evolutions. For completeness, we include the
proof of the two theorems in Appendix B.

Because of these two theorems, classifying generic time-
evolution operators reduces to classifying separately the uni-
tary loops and the constant Hamiltonian evolutions. Since the
latter is exactly the same as classifying static Hamiltonians,
we will in this work focus only on the classification of uni-
tary loops. In the following, all the time-evolution operators
are unitary loops, which additionally satisfy Uτ (k, r, t ) =
Uτ (k, r, t + T ).

III. SYMMETRIES IN FLOQUET SYSTEMS

In this section we will summarize the transformation prop-
erties of the time-evolution operator under various symmetry
operators.

A. Nonspatial symmetries

Let us first look at the nonspatial symmetries and consider
systems belong to one of the ten AZ classes (see Table II), de-
termined by the presence or absence of time-reversal, particle-
hole, and chiral symmetries, which are defined by the oper-
ators T̂ = UT K̂, Ĉ = UCK̂, and Ŝ = US = T̂ Ĉ, respectively,
such that

T̂ H (k, r, t )T̂ −1 = H (−k, r,−t ),

ĈH (k, r, t )Ĉ−1 = −H (−k, r, t ),

ŜH (k, r, t )Ŝ−1 = −H (k, r,−t ),

(11)
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TABLE II. The AZ symmetry classes and their classifying
spaces. The top two rows (s = 0, 1 mod 2) are complex AZ classes,
while the remaining eight rows (s = 0, . . . , 7 mod 8) are real AZ
classes. The third to fifth columns denote the absence (0) or presence
(εT , εC = ±1 or ηS = 1) of time-reversal (T̂ ), particle-hole (Ĉ), and
chiral symmetries (Ŝ). In addition, Cs (Rs) denotes the classifying
space of the s complex (real) AZ class.

s AZ class T̂ Ĉ Ŝ Cs or Rs π0(Cs ) or π0(Rs )

0 A 0 0 0 C0 Z

1 AIII 0 0 1 C1 0

0 AI +1 0 0 R0 Z

1 BDI +1 +1 1 R1 Z2

2 D 0 +1 0 R2 Z2

3 DIII −1 +1 1 R3 0

4 AII −1 0 0 R4 2Z

5 CII −1 −1 1 R5 0

6 C 0 −1 0 R6 0

7 CI +1 −1 1 R7 0

where T̂ = UT K̂ and Ĉ = UCK̂ are antiunitary operators with
unitary matrices UT and UC and complex conjugation operator
K̂. In the above equations r is invariant, because of the nonspa-
tial nature of the symmetries. For a Floquet system, the action
of symmetry operations T̂ , Ĉ, and Ŝ on the symmetrized
unitary loops Uτ (k, r, t ) can be summarized as

T̂ Uτ (k, r, t )T̂ −1 = U †
−τ (−k, r, t ), (12)

ĈUτ (k, r, t )Ĉ−1 = Uτ (−k, r, t ), (13)

ŜUτ (k, r, t )Ŝ−1 = U †
−τ (k, r, t ), (14)

which follow directly from Eqs. (11). For later convenience,
we further introduce notation εT = UTU∗

T = T̂ 2 = ±1, εC =
UCU∗

C = Ĉ2 = ±1, and εS = U2
S = Ŝ2 = 1, respectively.

B. Order-2 space-time symmetry

In addition to the nonspatial symmetries, let us assume
that the system supports an order-2 space-time symmetry
realized by Ô, as defined in Eq. (1). Moreover, we assume
that Ô commutes or anticommutes with the operators for the
nonspatial symmetries of the system. Under the order-2 space-
time symmetry operation Ô, the momentum k transforms
as [11]

k →
{
Ôk = (−k‖, k⊥) for Ô = Û
−Ôk = (k⊥,−k‖) for Ô = Â,

(15)

where the second equality assumes we are in the
diagonal basis of Ô, k‖ = (k1, k2, . . . , kd‖ ), and k⊥ =
(kd‖+1, kd‖+2, . . . , kd ).

While the nonspatial symmetries leave the spatial coordi-
nate r invariant, the order-2 space-time symmetry transforms
r nontrivially. To determine the transformation law, we follow
Ref. [11] and consider a D-dimensional sphere SD surround-
ing the topological defect, whose coordinates in Euclidean

space are determined by

n2 = a2, n = (n1, n2, . . . , nD+1), (16)

with radius a > 0. Since Ô maps SD to itself, we have

n → (−n‖, n⊥), (17)

with n‖ = (n1, n2, . . . , nD‖ ) and n⊥ =
(nD‖+1, nD‖+2, . . . , nD+1) in a diagonal basis of Ô. When
D‖ � D, we can introduce the coordinate r ∈ SD by

ri = ni

a − nD+1
(i = 1, . . . , D), (18)

which leads to

r → (−r‖, r⊥). (19)

Here r‖ = (r1, r2, . . . , rD‖ ) and r⊥ = (rD‖+1 , rD‖+2, . . . , rD).
Thus, we need to introduce (d, d‖, D, D‖) to characterize

the dimension of the system according to the transformation
properties of the coordinates, where d and D are defined the
same as defined previously, while d‖ and D‖ denote the di-
mensions of the flipping momenta and the defect surrounding
coordinates, respectively. For example, a unitary symmetry
with (d, d‖, D, D‖) = (2, 1, 1, 1) corresponds to the reflection
in two dimensions with a point defect on the reflection line,
while a unitary symmetry with (d, d‖, D, D‖) = (3, 2, 2, 2) is
a twofold rotation in three dimensions with a point defect on
the rotation axis.

Next let us consider the action of the order-2 space-time
symmetry on the time argument. For unitary symmetries, an
action on t can generically have the form t → t + s. Due to
the periodicity in t and the order-2 nature of the symmetry, s
can be either 0 or T/2.

For antiunitary symmetries, we have t → −t + s. When
the system does not support time-reversal or chiral symmetry,
as in classes A, C, and D, the constraints due to time period-
icity and the order-2 nature do not restrict the value s takes.
Hence, s is an arbitrary real number in this situation.

However, when the system has at least one of the time-
reversal and chiral symmetries, denoted by P̂ , s will be
restricted to take a few values as shown in the following.
The composite operation P̂Ô shifts the time as t → −s + t .
On the other hand, since P̂Ô is another order-2 symmetry,
s can be either 0 or T/2 (note that s is defined modulo T ).
To summarize, a Hamiltonian H (k, r, t ) existing in dimension
(d, d‖, D, D‖), under the action of Ô, transforms as

ÛsH (k, r, t )Û−1
s = H (−k‖, k⊥,−r‖, r⊥, t + s), (20)

ÂsH (k, r, t )Â−1
s = H (k‖,−k⊥,−r‖, r⊥,−t + s), (21)

in the diagonal basis of Ô, for unitary and antiunitary
symmetries.

Let us suppose that Ô2 = εO = ±1 and Ô commutes or an-
ticommutes with coexisting nonspatial symmetries according
to

ÔT̂ = ηT T̂ Ô, ÔĈ = ηC ĈÔ, ÔŜ = ηSŜÔ, (22)

where ηT = ±1, ηC = ±1, and ηS = ±1. Note that when Ô =
Û , we can always set εO = 1 with the help of multiplying Ô by
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the imaginary unit i, but this changes the (anti)commutation
relation with T̂ and/or Ĉ at the same time.

One can also consider an order-2 antisymmetry Ō defined
by

ŪsH (k, r, t )Ū−1
s = −H (−k‖, k⊥,−r‖, r⊥,−t + s),

ĀsH (k, r, t )Ā−1
s = −H (k‖,−k⊥,−r‖, r⊥, t + s), (23)

where Ō can be either unitary Ū or antiunitary Ā. Such an
antisymmetry can be realized by combining any of order-2
symmetries with chiral or particle-hole symmetry. Similar
to Ô, we define Ō2 = εŌ, ŌT̂ = η̄T T̂ Ō, ŌĈ = η̄C ĈŌ, and
ŌŜ = η̄SŜŌ. The values that the time shift s takes are similar
to the ones in the case of symmetries. We have s = 0, T/2
for Ūs. For Ās, s is arbitrary in classes A, C, and D, whereas
s = 0, T/2 in the rest of classes.

The actions of symmetry/antisymmetry operators Ô and
Ō, either unitary or antiunitary, on the unitary loops can be
summarized as

ÛsUτ (k, r, t )Û−1
s = Uτ+s(−k‖, k⊥,−r‖, r⊥, t ), (24)

ÂsUτ (k, r, t )Â−1
s = U †

s−τ (k‖,−k⊥,−r‖, r⊥, t ), (25)

ŪsUτ (k, r, t )Ū−1
s = U †

s−τ (−k‖, k⊥,−r‖, r⊥, t ), (26)

ĀsUτ (k, r, t )Ā−1
s = Us+τ (k‖,−k⊥,−r‖, r⊥, t ). (27)

In the following, we will discuss each symmetry/
antisymmetry operator separately and choose a particular
value of τ for each case, since we know the classification
would not depend on what value τ takes.

For Ûs and Ās, s = 0, T/2 and we set τ = T/2. By using

Uτ+T/2(k, r, t ) = U †
τ (k, r, T − t ) (28)

and omitting the subscript τ from Uτ (k, r, t ) from now on for
simplicity, we get

Û0U (k, r, t )Û−1
0 = U (−k‖, k⊥,−r‖, r⊥, t ),

ÛT/2U (k, r, t )Û−1
T/2 = U †(−k‖, k⊥,−r‖, r⊥, T − t ),

Ā0U (k, r, t )Ā−1
0 = U (k‖,−k⊥,−r‖, r⊥, t ),

ĀT/2U (k, r, t )Ā−1
T/2 = U †(k‖,−k⊥,−r‖, r⊥, T − t ).

(29)

When considering Ūs and Âs in classes A, C, and D, we
can choose τ = s/2, which gives

ÂsU (k, r, t )Â−1
s = U †(k‖,−k⊥,−r‖, r⊥, t ),

ŪsU (k, r, t )Ū−1
s = U †(−k‖, k⊥,−r‖, r⊥, t ). (30)

This implies that the value of s here actually does not play a
role in determining topological classification.

In the remaining classes we have s = 0, T/2, and we will
choose τ = T/2. This leads to

Â0U (k, r, t )Â−1
0 = U †(k‖,−k⊥,−r‖, r⊥, t ),

ÂT/2U (k, r, t )Â−1
T/2 = U (k‖,−k⊥,−r‖, r⊥, T − t ),

Ū0U (k, r, t )Ū−1
0 = U †(−k‖, k⊥,−r‖, r⊥, t ),

ŪT/2U (k, r, t )Ū−1
T/2 = U (−k‖, k⊥,−r‖, r⊥, T − t ). (31)

IV. HERMITIAN MAP

One observation that can be made from Eqs. (12)–(14)
is that at fixed r and t , the transformation properties for the
unitary loops U (k, r, t ) under the actions of T̂ , Ĉ, and Ŝ are
exactly the same as the ones for unitary boundary reflection
matrices introduced in, for example, Refs. [18,43]. In these
works, an effective Hermitian matrix can be constructed from
a given reflection matrix, which maps the classification of re-
flection matrices onto the classification of Hermitian matrices.

Here we can borrow the same Hermitian mapping defined
as

H(k, r, t ) = USU (k, r, t ) (32)

if U (k, r, t ) has a chiral symmetry and

H(k, r, t ) =
(

0 U (k, r, t )
U †(k, r, t ) 0

)
(33)

if U (k, r, t ) does not have a chiral symmetry. In the latter case,
H(k, r, t ) acquires a new chiral symmetry

U ′
SH(k, r, t ) = −H(k, r, t )U ′

S, (34)

with US = ρz ⊗ I, where we have introduced a set of Pauli
matrices ρx,y,z in the enlarged space.

Note that when the unitary loop U (k, r, t ) does not have
a chiral symmetry, our Hermitian map is the same as the
one used in Refs. [32,41]. When the unitary loop does have
a chiral symmetry, however, we choose a new map which
maps the unitary loop into a Hermitian matrix without unitary
symmetry.

The advantage of the Hermitian map defined here over the
one in the previous works will become clear soon. Note that
the Hermitian matrix H(k, r, t ) can be regarded as a static
spatially modulated Hamiltonian in (d, D + 1) dimension,
because the time argument transforms like a spatial coordinate
similar to r. The classification of unitary loops in (d, D)
dimension in a given symmetry class is then the same as the
classification of static Hamiltonians in (d, D + 1) dimension
in the symmetry class shifted upward by one (s → s − 1)
(modulo 2 or 8 for complex or real symmetry classes), where
s is used to order the symmetry classes according to Table II.
Thus, one can directly apply the classification scheme of the
static Hamiltonians H (k, r) using K theory, as was done in
Ref. [11]. This is provided by a homotopy classification of
maps from the base space (k, r) ∈ Sd+D to the classifying
space of Hamiltonians H (k, r) subject to the given symme-
tries, which we denoted by Cs or Rs as shown in the table.

Because of the Bott periodicity in the periodic table of
static TIs and SCs [4–8], the classification is unchanged
when simultaneously shifting the dimension D → D + 1 and
the symmetry class upward by one s → s − 1 (mod 2 or 8
for complex or real symmetry classes). It turns out that the
classification of unitary loops is the same as the classification
of the static Hamiltonian in the same symmetry class and
with the same dimension (d, D). In the following, we will
explicitly derive the action of the Hermitian map on each
symmetry classes.
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A. Classes A and AIII

We first consider the two complex classes. Under the Her-
mitian map defined above, classifying unitary loops in (d, D)
dimension in class A is the same as classifying Hermitian
matrices in (d, D + 1) dimension in class AIII. On the other
hand, classifying unitary loops in (d, D) dimension in class
AIII is the same as classifying Hermitian matrices in (d, D+1)
dimension in class A.

B. Classes AI and AII

Now we turn to real symmetry classes. Since classes AI
and AII have only time-reversal symmetry, we need to apply
the Hermitian map defined in Eq. (33). By using Eq. (12) with
τ = T/2, or

UT U T (k, r, t ) = U (−k, r, t )UT , (35)

we have effective time-reversal symmetry

U ′
TH∗(k, r, t ) = H(−k, r, t )U ′

T , (36)

with U ′
T = ρx ⊗ UT , and effective particle-hole symmetry

U ′
CH∗(k, r, t ) = −H∗(−k, r, t )U ′

C, (37)

with U ′
C = iρy ⊗ UT .

Note that the effective time-reversal and particle-hole sym-
metries combine into the chiral symmetry as expected. The
types of effective time-reversal and particle-hole symmetries
of H(k, t ) are determined from

U ′
TU ′∗

T = ρ0 ⊗ (UTU∗
T ), (38)

U ′
CU ′∗

C = −ρ0 ⊗ (UTU∗
T ), (39)

where ρ0 is the 2×2 identity matrix in the extended space.
Under the Hermitian map, classifying unitary loops in (d, D)
dimension in classes AI and AII is the same as classifying
Hermitian matrices in (d, D + 1) dimension in classes CI and
DIII.

C. Classes C and D

Let us consider classes C and D with only particle-hole
symmetry. We need to apply the Hermitian map defined
in Eq. (33). By using Eq. (13), one can define effective
time-reversal symmetry with U ′

T = ρ0 ⊗ UC and particle-hole
symmetry with U ′

C = ρz ⊗ UC such that

U ′
TH∗(k, r, t ) = H(−k, r, t )U ′

T , (40)

U ′
CH∗(k, r, t ) = −H(−k, r, t )U ′

C . (41)

Note that U ′
T and U ′

C combine into the chiral symmetry
as expected. The types of these effective symmetries are
determined by

U ′
TU ′∗

T = ρ0 ⊗ (UCU∗
C ), (42)

U ′
CU ′∗

C = ρ0 ⊗ (UCU∗
C ). (43)

Under the Hermitian map, classifying unitary loops in (d, D)
dimension in classes C and D is the same as classifying
Hermitian matrices in (d, D + 1) dimension in classes CII and
BDI.

D. Classes CI, CII, DIII, and BDI

Here we consider symmetry classes where time-reversal,
particle-hole, and chiral symmetries are all present. In this
case, US = UTU∗

C . By U2
S = 1 we have U∗

TUCU∗
S = 1. This can

be used to show that

USUC = UCU∗
S (UCU∗

C )(UTU∗
T ). (44)

Notice that UCU∗
C = ±1 and UTU∗

T = ±1 are just numbers.
The effective Hamiltonian H(k, t ) defined in Eq. (32) has

the property

H(k, r,t )UC = (UCU∗
C )(UTU∗

T )UCH(−k, r, t )∗. (45)

This gives rise to time-reversal or particle-hole symmetry
depending on (UCU∗

C )(UTU∗
T ) = 1 or −1, respectively. There-

fore, under the Hermitian map, the unitary loops in (d, D)
dimension in classes CI, CII, DIII, and BDI map to Hermitian
matrices in (d, D + 1) dimension in classes C, AII, D, and AI,
respectively.

V. CLASSIFICATION WITH ADDITIONAL ORDER-2
SPACE-TIME SYMMETRY

After introducing the Hermitian map which reduces the
classification of unitary loops to the classification of static
Hermitian matrices, or Hamiltonians, in the AZ symmetry
classes, let us now assume that the system supports an ad-
ditional order-2 space-time symmetry/antisymmetry, which is
either unitary or antiunitary, as defined in Sec. III B. In the
following, we will focus on each class separately.

A. Complex symmetry classes

The complex classes A and AIII are characterized by the
absence of time-reversal and particle-hole symmetries.

1. Class A

Let us start with class A, with additional symmetry realized
by Ô or Ō, whose properties are summarized as (A, ÔεO ) or
(A, ŌεŌ ). For unitary symmetry realized by Û and Ū , one can
set εU = 1 or εŪ = 1.

(a) Ô = Û0. We have

Û ′
0H(k, r, t )Û ′−1

0 = H(−k‖, k⊥,−r‖, r⊥, t ), (46)

where Û ′
0 = ρ0 ⊗ Û0 behaves as an order-2 crystalline sym-

metry if one regards t ∈ S1 as an additional defect surround-
ing parameter. Recalling that H(k, r, t ) has chiral symmetry
realized by operator the Ŝ ′ = U ′

S = ρz ⊗ I, we have

[Û ′
0, Ŝ ′] = 0. (47)

This means that under the Hermitian map, unitary loops with
symmetry (A, Û+

0 ) in dimension (d, d‖, D, D‖) are mapped to
static Hamiltonians with symmetry (AIII, Û+

+ ) in dimension
(d, d‖, D + 1, D‖). Here we use the notation (AIII, ÔεO

η�
) to

denote class AIII with an additional symmetry realized by Ô,
which squares to εO and commutes (ηS = 1) or anticommutes
(ηS = −1) with the chiral symmetry operator Ŝ ′. One can
also replace Ô by Ō to define class AIII with an additional
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antisymmetry in a similar way.
(b) Ô = ÛT/2. We have

Û ′
T/2H(k, r, t )Û ′−1

T/2 = H(−k‖, k⊥,−r‖, r⊥, T − t ), (48)

where Û ′
T/2 = ρx ⊗ ÛT/2, which satisfies {Û ′

T/2, Ŝ ′} = 0 and

Û ′2
T/2 = 1. Since t ∈ S1, if we shift the origin by defining t =

T
2 + t ′ and use t ′ ∈ S1 instead of t , then the map t → T − t
becomes t ′ → −t ′. Now t ′ can be regarded as an additional
defect surrounding the coordinate which flips under the order-
2 symmetry. Under the Hermitian map, unitary loops with
symmetry (A, Û+

T/2) in dimension (d, d‖, D, D‖) are mapped

to static Hamiltonians with symmetry (AIII, Û+
− ) in dimen-

sion (d, d‖, D + 1, D‖ + 1).
(c) Ō = Ūs. The unitary antisymmetry Ūs leads to an

order-2 symmetry on H(k, r, t ) with

Ū ′
sH(k, r, t )Ū ′−1

s = H(−k‖, k⊥,−r‖, r⊥, t ), (49)

where Ū ′
s = ρx ⊗ Ūs. Moreover, we have Ū ′2

s = 1 and
{Ū ′

s, Ŝ ′} = 0. Under the Hermitian map, unitary loops with
symmetry (A, Ū+

s ) in dimension (d, d‖, D, D‖) are mapped to
static Hamiltonians with symmetry (AIII, Û+

− ) in dimension
(d, d‖, D + 1, D‖).

(d) Ô = Âs. We have

Â′
sH(k, r, t )Â′−1

s = H(k‖,−k⊥,−r‖, r⊥, t ), (50)

with Â′
s = ρx ⊗ Âs. Moreover, we have {Â′

s, Ŝ ′} = 0 and
Â′2

s = Â2
s . Thus, under the Hermitian map, unitary loops with

symmetry (A, Â±
s ) in dimension (d, d‖, D, D‖) are mapped to

static Hamiltonians with symmetry (AIII, Â±
−) in dimension

(d, d‖, D + 1, D‖).
(e) Ō = Ā0. We have

Ā′
0H(k, r, t )Ā′−1

0 = H(k‖,−k⊥,−r‖, r⊥, t ), (51)

with Ā′
0 = ρ0 ⊗ Ā0, which satisfies Ā′2

0 = Ā2
0 and [Ā′

0, Ŝ ′] =
0. Under the Hermitian map, unitary loops with symme-
try (A, Ā±

0 ) in dimension (d, d‖, D, D‖) are mapped to
static Hamiltonians with symmetry (AIII, Â±

+) in dimension
(d, d‖, D + 1, D‖).

(f) Ō = ĀT/2. We have

Ā′
T/2H(k, r, t )Ā′−1

T/2 = H(k‖,−k⊥,−r‖, r⊥, T − t ), (52)

with Ā′
T/2 = ρx ⊗ ĀT/2, which satisfies Ā′2

T/2 = Ā2
T/2 and

{Ā′
T/2, Ŝ ′} = 0. Under the Hermitian map, unitary loops with

symmetry (A, Ā±
T/2) in dimension (d, d‖, D, D‖) are mapped

to static Hamiltonians with symmetry (AIII, Â±
−) in dimen-

sion (d, d‖, D + 1, D‖ + 1).

2. Class AIII

In class AIII, we have a chiral symmetry realized by Ŝ .
We assume an additional order-2 symmetry Û εU

ηS
or antisym-

metry Ū εŪ
η̄S

. Moreover, we can set εU = 1 and εŪ = 1 for
unitary symmetries and antisymmetries realized by Û and
Ū , respectively. For unitary (anti)symmetries, note that ŪηS

in class AIII is essentially the same as ÛηS , because they
can be converted to each other by Ūηs = ŜÛηS . Similarly, for

antiunitary (anti)symmetries, ÂεA
ηS

and ĀεAηS
ηS

are equivalent

since ÂεA
ηS

= ŜĀεAηS
ηS

. Hence, in the following, we discuss only
unitary and antiunitary symmetries.

(a) Ô = Û0. We have

Û0H(k, r, t )Û−1
0 = ηSH(−k‖, k⊥,−r‖, r⊥, t ). (53)

Under the Hermitian map, unitary loops with symmetries
(AIII, Û+

0,+) and (AIII, Û+
0,−) in dimension (d, d‖, D, D‖) are

mapped to static Hamiltonians with symmetries (A, Û+) and
(A, Ū+) in dimension (d, d‖, D + 1, D‖), respectively.

(b) Ô = ÛT/2. We have

ŜÛT/2H(k, r, t )(ŜÛT/2)−1 = ηSH(−k‖, k⊥,−r‖, r⊥, T − t ).
(54)

Under the Hermitian map, unitary loops with symmetries
(AIII, Û+

T/2,+) and (AIII, Û+
T/2,−) in dimension (d, d‖, D, D‖)

are mapped to static Hamiltonians with symmetries (A, Û+)
and (A, Ū+) in dimension (d, d‖, D + 1, D‖ + 1), respec-
tively.

(c) Ô = Â0. We have

ŜÂ0H(k, r, t )(ŜÂ0)−1 = ηSH(k‖,−k⊥,−r‖, r⊥, t ). (55)

Under the Hermitian map, unitary loops with symmetries
(AIII, Â±

0,+) and (AIII, Â±
0,−) in dimension (d, d‖, D, D‖) are

mapped to static Hamiltonians with symmetries (A, Â±) and
(A, Ā∓) in dimension (d, d‖, D + 1, D‖), respectively.

(d) Ô = ÂT/2. We have

ÂT/2H(k, r, t )Â−1
T/2 = ηSH(k‖,−k⊥,−r‖, r⊥, t ). (56)

Under the Hermitian map, unitary loops with symmetries
(AIII, Â±

T/2,+) and (AIII, Â±
T/2,−) in dimension (d, d‖, D, D‖)

are mapped to static Hamiltonians with symmetries (A, Â±)
and (A, Ā±) in dimension (d, d‖, D + 1, D‖ + 1), respec-
tively.

B. Real symmetry classes

Now let us consider real symmetry classes, where at least
one antiunitary symmetry is present.

In classes AI and AII, only time-reversal symmetry is
present. We have the equivalence relations between the ad-
ditional order-2 symmetries/antisymmetries

Û εU
ηT

= iÛ−εU−ηT
= T̂ ÂηT εT εU

ηT
= iT̂ ÂηT εT εU

ηT
, (57)

Ū ε̄U
η̄T

= iŪ−ε̄U−η̄T
= T̂ Āη̄T εT ε̄U

η̄T
= iT̂ Ā−η̄T εT ε̄U

−η̄T
, (58)

where εU = Û2, εŪ = Ū2, and εT = T̂ 2. We only need to
consider four cases Û+

+ , Û+
− , Ū+

+ , and Ū+
− .

In classes C and D, the particle-hole symmetry leads to the
equivalence relations between the additional order-2 symme-
tries/antisymmetries

Û εU
ηC

= iÛ−εU−ηC
= ĈĀηCεCεU

ηC
= iĈĀηCεCεU

−ηC
, (59)

Ū ε̄U
η̄C

= iŪ−ε̄U−η̄T
= ĈÂη̄CεC ε̄U

η̄C
= iĈÂη̄CεC ε̄U

−η̄C
, (60)

where εC = Ĉ2. We just need to consider four cases Û+
+ , Û+

− ,
Ū+

+ , and Ū+
− .
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Finally, in classes BDI, DIII, CII, and CI, with time-
reversal, particle-hole, and chiral symmetries all together, we
have

Û εU
ηT ,ηC

= iÛ−εU−ηT ,−ηC
= T̂ ÂηT εT εU

ηT ,ηC
= iT̂ ÂηT εT εU

−ηT ,ηC

= ĈĀηCεCεU
ηT ,ηC

= iĈĀηCεCεU
−ηT ,−ηC

, (61)

Ū ε̄U
η̄T ,η̄C

= iŪ−ε̄U−η̄T ,−η̄C
= T̂ Āη̄T εT ε̄U

η̄T ,η̄C
= iT̂ Āη̄T εT ε̄U

−η̄T ,−η̄C

= ĈÂη̄CεC ε̄U
η̄T ,η̄C

= iĈÂη̄CεC ε̄U
−η̄T ,−η̄C

. (62)

Hence, only four cases Û+
+,+, Û+

+,−, Û+
−,−, and Û+

−,+ need to be
considered.

1. Classes AI and AII

(a) Ô = Û0. The new Hermitian matrix H(k, r, t ) un-
der the Hermitian map defined by Eq. (33) acquires new
time-reversal and particle-hole symmetries, realized by T̂ ′ =
ρx ⊗ T̂ and Ĉ ′ = iρy ⊗ T̂ , respectively. Due to the order-2
symmetry realized by Û0, we have

Û ′
0H(k, r, t )Û ′−1

0 = H(−k‖, k⊥,−r‖, r⊥, t ), (63)

with Û ′
0 = ρ0 ⊗ Û0. Moreover, we have

Û ′
0T̂ ′ = ηT T̂ ′Û ′

0, (64)

Û ′
0Ĉ ′ = ηT Ĉ ′Û ′

0, (65)

and Û ′2
0 = εU . Under the Hermitian map, unitary loops

with symmetries (AI, Û εU
0,ηT

) and (AII, Û εU
0,ηT

) in dimension
(d, d‖, D, D‖) are mapped to static Hamiltonians with symme-
tries (CI, Û εU

ηT ,ηT
) and (DIII, Û εU

ηT ,ηT
) in dimension (d, d‖, D +

1, D‖), respectively.
(b) Ô = ÛT/2. Due to the order-2 symmetry realized by

ÛT/2, we have

Û ′
T/2H(k, r, t )Û ′−1

T/2 = H(−k‖, k⊥,−r‖, r⊥, T − t ), (66)

with Û ′
T/2 = ρx ⊗ ÛT/2, which satisfies

Û ′
T/2T̂ ′ = ηT T̂ ′Û ′

T/2, (67)

Û ′
T/2Ĉ ′ = −ηT Ĉ ′Û ′

T/2, (68)

and Û ′2
T/2 = εU . Under the Hermitian map, unitary loops

with symmetries (AI, Û εU
T/2,ηT

) and (AII, Û εU
T/2,ηT

) in dimen-
sion (d, d‖, D, D‖) are mapped to static Hamiltonians with
symmetries (CI, Û εU

ηT ,−ηT
) and (DIII, Û εU

ηT ,−ηT
) in dimension

(d, d‖, D + 1, D‖ + 1), respectively.
(c) Ō = Ū0. Due to the order-2 antisymmetry realized by

Ū0, we have

Ū ′
0H(k, r, t )Ū ′−1

0 = H(−k‖, k⊥,−r‖, r⊥, t ), (69)

with Ū ′
0 = ρx ⊗ Ū0, which satisfies

Û ′
0T̂ ′ = η̄T T̂ ′Û ′

0, (70)

Û ′
0Ĉ ′ = −η̄T Ĉ ′Û ′

0, (71)

and Ū ′2
0 = ε̄U . Under the Hermitian map, unitary loops

with symmetries (AI, Ū ε̄U
0,η̄T

) and (AII, Ū ε̄U
0,η̄T

) in dimension

(d, d‖, D, D‖) are mapped to static Hamiltonians with
symmetries (CI, Û ε̄U

η̄T ,−η̄T
) and (DIII, Û ε̄U

η̄T ,−η̄T
) in dimension

(d, d‖, D + 1, D‖), respectively.
(d) Ō = ŪT/2. Due to the order-2 antisymmetry realized

by ŪT/2, we have

Ū ′
T/2H(k, r, t )Ū ′−1

T/2 = H(−k‖, k⊥,−r‖, r⊥, T − t ), (72)

with Ū ′
T/2 = ρ0 ⊗ ŪT/2, which satisfies

Û ′
0T̂ ′ = η̄T T̂ ′Û ′

0, (73)

Û ′
0Ĉ ′ = η̄T Ĉ ′Û ′

0, (74)

and Ū ′2
T/2 = ε̄U . Under the Hermitian map, unitary loops

with symmetries (AI, Ū ε̄U
T/2,η̄T

) and (AII, Ū ε̄U
T/2,η̄T

) in dimension
(d, d‖, D, D‖) are mapped to static Hamiltonians with symme-
tries (CI, Û ε̄U

η̄T ,η̄T
) and (DIII, Û ε̄U

η̄T ,η̄T
) in dimension (d, d‖, D +

1, D‖ + 1), respectively.

2. Classes C and D

(a) Ô = Û0. The new Hermitian matrix H(k, r, t ) under
the Hermitian map defined by Eq. (33) acquires new time-
reversal and particle-hole symmetries, realized by T̂ ′ = ρ0 ⊗
Ĉ and Ĉ ′ = ρz ⊗ T̂ , respectively. Due to the order-2 symmetry
realized by Û0, we have

Û ′
0H(k, r, t )Û ′−1

0 = H(−k‖, k⊥,−r‖, r⊥, t ), (75)

with Û ′
0 = ρ0 ⊗ Û0, which satisfies

Û ′
0T̂ ′ = ηC T̂ ′Û ′

0, (76)

Û ′
0Ĉ ′ = ηC Ĉ ′Û ′

0, (77)

and Û ′2
0 = εU . Under the Hermitian map, unitary loops

with symmetries (C, Û εU
0,ηC

) and (D, Û εU
0,ηC

) in dimension
(d, d‖, D, D‖) are mapped to static Hamiltonians with symme-
tries (CII, Û εU

ηC ,ηC
) and (BDI, Û εU

ηC ,ηC
) in dimension (d, d‖, D +

1, D‖), respectively.
(b) Ô = ÛT/2. Due to the order-2 symmetry realized by

ÛT/2, we have

Û ′
T/2H(k, r, t )Û ′−1

T/2 = H(−k‖, k⊥,−r‖, r⊥, T − t ), (78)

with Û ′
T/2 = ρx ⊗ ÛT/2, which satisfies

Û ′
T/2T̂ ′ = ηC T̂ ′Û ′

T/2, (79)

Û ′
T/2Ĉ ′ = −ηC Ĉ ′Û ′

T/2, (80)

and Û ′2
T/2 = εU . Under the Hermitian map, unitary loops

with symmetries (C, Û εU
T/2,ηC

) and (D, Û εU
T/2,ηC

) in dimen-
sion (d, d‖, D, D‖) are mapped to static Hamiltonians with
symmetries (CII, Û εU

ηC ,−ηC
) and (BDI, Û εU

ηC ,−ηC
) in dimension

(d, d‖, D + 1, D‖ + 1), respectively.
(c) Ō = Ūs. Due to the order-2 antisymmetry realized by

Ūs, we have

Ū ′
sH(k, r, t )Ū ′−1

s = H(−k‖, k⊥,−r‖, r⊥, t ), (81)
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with Ū ′
s = ρx ⊗ Ūs, which satisfies

Û ′
sT̂ ′ = η̄C T̂ ′Û ′

s, (82)

Û ′
sĈ ′ = −η̄C Ĉ ′Û ′

s, (83)

and Ū ′2
s = ε̄U . Hence, under the Hermitian map, unitary

loops with symmetries (C, Ū ε̄U
s,η̄C

) and (D, Ū ε̄U
s,η̄C

) in dimen-
sion (d, d‖, D, D‖) are mapped to static Hamiltonians with
symmetries (CII, Û ε̄U

η̄C ,−η̄C
) and (BDI, Û ε̄U

η̄C ,−η̄C
) in dimension

(d, d‖, D + 1, D‖), respectively.

3. Classes CI, CII, DIII, and BDI

In these classes, the time-reversal, particle-hole, and chi-
ral symmetries are all present. Without loss of generality,
we assume that Ŝ = T̂ Ĉ and Ŝ2 = 1. The Hermitian matrix
H(k, r, t ) defined according to Eq. (32) has either time-
reversal or particle-hole symmetry realized by

(εCεT )ĈH(−k, r, t ) = H(k, r, t )Ĉ, (84)

depending on whether εCεT is 1 or −1.
(a) Ô = Û0. Due to the order-2 symmetry realized by Û0,

we have

Û0H(k, r, t )Û−1
0 = ηT ηCH(−k‖, k⊥,−r‖, r⊥, t ), (85)

with Û0Ĉ = ηC ĈÛ0 and Û2
0 = εU . Under the Hermitian map,

unitary loops in dimension (d, d‖, D, D‖) with a given
symmetry are mapped to static Hamiltonians in dimension
(d, d‖, D + 1, D‖) with another symmetry according to

(
X, Û εU

0,ηT ,ηC

) →
{(

Y, Û εU
ηC

)
, ηT ηC = 1(

Y, Ū εU
ηC

)
, ηT ηC = −1,

(86)

with X = CI, CII, DIII, BDI and Y = C, AII, D, AI.
(b) Ô = ÛT/2. Due to the order-2 symmetry realized by

ÛT/2, we have

(ŜÛT/2)H(k, r, t )(ŜÛT/2)−1

= ηT ηCH(−k‖, k⊥,−r‖, r⊥, T − t ). (87)

Moreover, we have (ŜÛT/2)Ĉ = ηCεCεT Ĉ(ŜÛT/2) and
(ŜÛT/2)2 = ηT ηCεU . Under the Hermitian map, unitary
loops in dimension (d, d‖, D, D‖) with a given symmetry
are mapped to static Hamiltonians in dimension
(d, d‖, D + 1, D‖ + 1) with another symmetry according
to(

X, Û εU
T/2,ηT ,ηC

)
→

{(
Y, Û εU

ηCεCεT

)
, ηT ηC = 1(

Y, Ū−εU
ηCεCεT

) = (Y, Ū εU−ηCεCεT
), ηT ηC = −1,

(88)

with X = CI, CII, DIII, BDI and Y = C, AII, D, AI.

VI. K GROUPS IN THE PRESENCE
OF ORDER-2 SYMMETRY

Using the Hermitian map introduced in the previ-
ous sections, the unitary loops with an order-2 space-
time symmetry/antisymmetry are successfully mapped to
static Hamiltonians with an order-2 crystalline symmetry/

antisymmetry, whose classification has already been worked
out in Ref. [11]. Thus, the latter result can be directly applied
to the classification of unitary loops.

We first summarize the K-theory-based method used for
classifying static Hamiltonians and then finish the classifi-
cation of unitary loops. Let us consider static Hamiltonians
defined on a base space of momentum k ∈ T d and real space
coordinate r ∈ SD. For the classification of strong topological
phases, one can instead simply use Sd+D as the base space
[5,7]. To classify these Hamiltonians, we will use the notion
of stable homotopy equivalence as we defined for unitaries in
Sec. II, by identifying Hamiltonians which are continuously
deformable into each other up to adding extra trivial bands,
while preserving an energy gap at the chemical potential.
These equivalence classes can be formally added and they
form an Abelian group.

For a given AZ symmetry class s, the classification of
static Hamiltonians is given by the set of stable equivalence
classes of maps H(k, r), from the base space (k, r) ∈ Sd+D

to the classifying space, denoted by Cs or Rs, for complex
and real symmetry classes, as listed in Table II. The Abelian
group structure inherited from the equivalence classes leads to
the group structure in this set of maps, which is called the K
group, or classification group.

For static topological insulators and superconductors of
dimension (d, D) in an AZ class s without additional spa-
tial symmetries, the K groups are denoted by KC (s; d, D)
and KR(s; d, D) for complex and real symmetry classes,
respectively. Note that for complex symmetry classes, we
have s = 0, 1 mod 2, whereas for real symmetry classes
s = 0, 1, . . . , 7 mod 8.

These K groups have the properties

KC (s; d, D) = KC (s − d + D; 0, 0) = π0(Cs−d+D), (89)

KR(s; d, D) = KR(s − d + D; 0, 0) = π0(Rs−d+D), (90)

known as the Bott periodicity, where π0 denotes the zeroth
homotopy group which counts the number of path connected
components in a given space. In the following, we will intro-
duce the K groups for Hamiltonians supporting an additional
order-2 spatial symmetry/antisymmetry following Ref. [11].
Because of the Hermitian map, these K groups can also be
associated with the unitary loops, whose classification is then
obtained.

A. Complex symmetry classes with an additional order-2
unitary symmetry/antisymmetry

When a spatial or space-time symmetry/antisymmetry
is considered, one needs to include the number of
“flipped” coordinates for both k and r in the dimen-
sions. For a static Hamiltonian of dimension (d, d‖, D, D‖)
in complex AZ classes with an additional order-2 uni-
tary symmetry/antisymmetry, the K group is denoted
by KU

C (s, t ; d, d‖, D, D‖), where the additional parame-
ter t = 0, 1 mod2 specifies the coexisting order-2 unitary
symmetry/antisymmetry. These K groups satisfy the relation

KU
C (s, t ; d, d‖, D, D‖) = KU

C (s − δ, t − δ‖; 0, 0, 0, 0)

≡ KU
C (s − δ, t − δ‖), (91)
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TABLE III. Possible types (t = 0, 1 mod 2) of order-2 additional
unitary symmetry Û εU

ηS
/Ū ε̄U

η̄S
in complex AZ classes (s = 0, 1 mod 2).

The superscript and subscript are defined as εU = Û2, ε̄U = Ū2,
Û Ŝ = ηSŜÛ , and Ū Ŝ = η̄SŜŪ .

s AZ class t = 0 t = 1

0 A Û+
0 , Û+

T/2 Ū+
s

1 AIII Û+
0,+, Û+

T/2,− Û+
0,−, Û+

T/2,+

where δ = d − D and δ‖ = d‖ − D‖. Thus, for classification
purpose, one can use the pair (δ, δ‖) instead of (d, d‖, D, D‖)
to denote the dimension of the base space, in which the static
Hamiltonian is defined.

To define K groups for unitary loops, we use the fact
that the K group for certain unitary loops should be the
same as the one for the corresponding static Hamiltonians
under the Hermitian map. The K groups for unitary loops
are explicitly defined in Table III, where the two arguments s
and t label the AZ class and the coexisting order-2 space-time
symmetry/antisymmetry.

B. Complex symmetry classes with an additional order-2
antiunitary symmetry/antisymmetry

We now consider static Hamiltonians of dimension
(d, d‖, D, D‖), in complex AZ classes, with an order-2 an-
tiunitary symmetry/antisymmetry, realized by Â or Ā. It
turns out that complex AZ classes acquire real structures
because of the antiunitary symmetry [11]. Indeed, effective
time-reversal or particle-hole symmetry realized by Â or Ā
emerges if we regard (k⊥, r‖) as momenta and (k‖, r⊥) as
spatial coordinates. Thus, a system in complex AZ classes
with an antiunitary symmetry can be mapped to a real AZ
class without additional spatial symmetries.

The K groups for these Hamiltonians are denoted by
KA
C (s; d, d‖, D, D‖), which satisfies

KA
C (s; d, d‖, D, D‖) = KA

C (s − δ + 2δ‖; 0, 0, 0, 0)

≡ KA
C (s − δ + 2δ‖). (92)

Similar to the previous case, the unitary loops with an antiu-
nitary space-time symmetry/antisymmetry can also be associ-
ated with these K groups.

If we group these antiunitary symmetries and antisym-
metries in terms of the index s = 0, . . . , 7 mod 8, according
to Table IV, then KA

C (s) can further be reduced to KR(s) ≡
KR(s; 0, 0).

C. Real symmetry classes with an additional order-2 symmetry

In real symmetry classes, there are equivalence rela-
tions between order-2 unitary and antiunitary symmetries/
antisymmetries, as discussed previously. Thus, one can focus
on unitary symmetries/antisymmetries only. The existence of
an additional order-2 unitary symmetry divides each class into
four families (t = 0, . . . , 3 mod 4), as summarized in Table V,
where we have used the equivalence of K groups for static

TABLE IV. Possible types (s = 0, . . . , 7 mod 8) of order-2 addi-
tional antiunitary symmetry ÂεA

ηS
/Āε̄A

η̄S
in complex AZ classes. The

superscript and subscript are defined as εA = Â2, ε̄A = Ā2, ÂŜ =
ηSŜÂ, and ĀŜ = η̄SŜĀ.

s AZ class Coexisting symmetry Mapped AZ class

0 A Â+
s AI

1 AIII Â+
0,+, Â+

T/2,− BDI

2 A Ā+
0 , Ā−

T/2 D

3 AIII Â−
0,−, Â−

T/2,+ DIII

4 A Â−
s AII

5 AIII Â−
0,+, Â−

T/2,− CII

6 A Ā−
0 , Ā+

T/2 C

7 AIII Â+
0,−, Â+

T/2,+ CI

Hamiltonians and unitary loops in terms of the Hermitian
map.

We denote the K group for unitary loops in real
AZ classes (s = 0, . . . , 7 mod 8) with an additional order-
2 unitary symmetry/antisymmetry (t = 0, . . . , 3 mod 4) by
KU
R (s, t ; d, d‖, D, D‖), which satisfies

KU
R (s, t ; d, d‖, D, D‖) = KU

R (s − δ, t − δ‖; 0, 0, 0, 0)

≡ KU
R (s − δ, t − δ‖). (93)

D. Nontrivial space-time vs static spatial
symmetries/antisymmetries

The classification of unitary loops with an order-
2 space-time symmetry/antisymmetry is given by the K
group KU

C (s, t ), KA
C (s), or KU

R (s, t ). As can be seen in
Tables III–V, for every order-2 space-time (anti)unitary sym-
metry/antisymmetry that is nontrivial, namely, the half-period
time translation is involved, there always exists a unique static
spatial (anti)unitary symmetry/antisymmetry such that both
symmetries/antisymmetries give rise to the same K group. It
is worth mentioning that when looking at the static symme-
tries/antisymmetries alone, the corresponding K groups for
unitary loops are defined in the same way as the ones for
Hamiltonians introduced in Ref. [11], as expected.

The explicit relations between the two types of symme-
tries/antisymmetries (nontrivial space-time vs static) with the
same K group can be summarized as follows. Recall that
we use ηS (η̄S), ηT (η̄T ), and ηC (η̄C) to characterize the
commutation relations between the order-2 symmetry (anti-
symmetry) operator and the nonspatial symmetry operators.
For two unitary order-2 symmetries giving rise to the same
K group, the ηS and ηC for the two symmetries take opposite
signs, whereas the ηT are the same. For two antiunitary order-
2 symmetries, we have ηS take opposite signs. For two unitary
antisymmetries, the η̄T have opposite signs. Finally, for class
A, the antiunitary space-time antisymmetry operator Ā±

T/2 has
the same K group as the one for Ā∓

0 . These relations are
summarized in Table I and can be better understood after we
introduce the frequency-domain formulation of the Floquet
problem in Sec. VIII B.
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TABLE V. Possible types (t = 0, . . . , 3 mod 4) of order-2 additional symmetry Û εU
ηS

/Ū ε̄U
η̄S

in real AZ classes. The superscript and subscript

are defined as εU = Û2, ε̄U = Ū2, Û Ŝ = ηSŜÛ , and Ū Ŝ = η̄SŜŪ . We set εU = ε̄U = 1.

s AZ Class t = 0 t = 1 t = 2 t = 3

0 AI Û+
0,+, Û+

T/2,+ Ū+
0,−, Ū+

T/2,+ Û+
0,−, Û+

T/2,− Ū+
0,+, Ū+

T/2,−
1 BDI Û+

0,++, Û+
T/2,+− Û+

0,+−, Û+
T/2,++ Û+

0,−−, Û+
T/2,−+ Û+

0,−+, Û+
T/2,−−

2 D Û+
0,+, Û+

T/2,− Ū+
s,+ Û+

0,−, Û+
T/2,+ Ū+

s,−
3 DIII Û+

0,++, Û+
T/2,+− Û+

0,−+, Û+
T/2,−− Û+

0,−−, Û+
0,−+ Û+

0,+−, Û+
T/2,++

4 AII Û+
0,+, Û+

T/2,+ Ū+
0,−, Ū+

T/2,+ Û+
0,−, Û+

T/2,− Ū+
0,+, Ū+

T/2,−
5 CII Û+

0,++, Û+
T/2,+− Û+

0,+−, Û+
T/2,++ Û+

0,−−, Û+
T/2,−+ Û+

0++,−+, Û+
T/2,−−

6 C Û+
0,+, Û+

T/2,− Ū+
s,+ Û+

0,−, Û+
T/2,+ Ū+

s,−
7 CI Û+

0,++, Û+
T/2,+− Û+

0,−+, Û+
T/2,−− Û+

0,−−, Û+
T/2,−+ Û+

0,+−, Û+
T/2,++

E. Periodic table

From the K groups introduced previously, we see that in
addition to the mod 2 or mod 8 Bott periodicity in δ, there also
exists a periodic structure in flipped dimensions δ‖, because
of the twofold or fourfold periodicity in t , which accounts for
the additional order-2 symmetry/antisymmetry. In particular,
for complex symmetry classes with an order-2 unitary symme-
try/antisymmetry, the classification has a twofold periodicity
in δ‖, whereas for complex symmetry classes with an order-2
antiunitary symmetry/antisymmetry and for real symmetry
classes with an order-2 unitary/antisymmetry, the periodicity
in δ‖ is fourfold. These periodic features are the same as
the ones obtained in Ref. [11] for static Hamiltonians with
an order-2 crystalline symmetry/antisymmetry. We summa-
rize the periodic tables for the four (δ‖ = 0, . . . , 3 mod 4)
different families in the Supplemental Material [44]. Note
that in obtaining the classification tables, we made use of
the K groups in their zero-dimensional forms defined in
Eqs. (91)–(93), as well as the relations

KU
C (s, t = 0) = π0(Cs × Cs) = π0(Cs) ⊕ π0(Cs),

KU
C (s, t = 1) = π0(Cs+1),

KA
C (s) = π0(Rs),

KU
R (s, t = 0) = π0(Rs × Rs) = π0(Rs) ⊕ π0(Rs),

KU
R (s, t = 1) = π0(Rs+7),

KU
R (s, t = 2) = π0(Cs),

KU
R (s, t = 3) = π0(Rs+1),

(94)

where Cs (s = 0, 1 mod 2) and Rs (s = 0, . . . , 7 mod 8) rep-
resent the classifying space of complex and real AZ classes,
respectively (see Table II).

VII. FLOQUET HIGHER-ORDER TOPOLOGICAL
INSULATORS AND SUPERCONDUCTORS

In the previous sections, we obtained a complete classifi-
cation of the anomalous Floquet TIs and SCs using K theory,
where the K groups for the unitary loops were defined as
the same ones for the static Hamiltonians, according to the
Hermitian map. Noticeably, the classification obtained in this

way is a bulk classification, since only bulk unitary evolution
operators were considered. These bulk K groups include the
information of topological classification at any order. For
static tenfold-way TIs and SCs, in which the topological
property is determined from the nonspatial symmetries, there
is a bulk-boundary correspondence which essentially says
that the nontrivial topological bulk indicates protected gapless
boundary modes existing in one dimension lower. This bound-
ary mode is irrespective of boundary orientation and lattice
termination. The same is true for tenfold-way Floquet TIs and
SCs with only nonspatial symmetries. In this situation, since
only first-order topological phases are allowed, this bulk K
group is enough to understand the existence of gapless bound-
ary modes. However, when an additional crystalline symme-
try/antisymmetry is taken into account, the existence of gap-
less boundary modes due to nontrivial topological bulk is not
guaranteed unless the boundary is invariant under the nonlocal
transformation of the symmetry/antisymmetry [9,12].

A more intriguing fact regarding crystalline symme-
tries/antisymmetries is that they can give rise to boundary
modes with codimension higher than 1, such as corners of
two-dimensional (2D) or 3D systems as well as hinges of
3D systems [17–25]. Such systems are known as HOTIs
and SCs, in which the existence of the high-codimension
gapless boundary modes is guaranteed when the boundaries
are compatible with the crystalline symmetry/antisymmetry,
i.e., a group of boundaries with different orientations are
mapped onto each other under the nonlocal transformation of
a particular crystalline symmetry/antisymmetry. For example,
to have a HOTI and a SC protected by inversion, one needs to
create boundaries in pairs related by inversion [24,25].

An additional requirement for these corner or hinge modes
is that they should be intrinsic, namely, their existence
should not depend on lattice termination; otherwise such
high-codimension boundary modes can be thought of as a
(codimension-1) boundary mode in the low-dimensional sys-
tem, which is then glued to the original boundary. In other
words, nth-order TIs and SCs have codimension-n boundary
modes which cannot be destroyed through modifications of
lattice terminations at the boundaries while preserving the
bulk gap and the symmetries. According to this definition, the
tenfold-way TIs and SCs are indeed intrinsic first-order TIs
and SCs.
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TABLE VI. Subgroup series K (d ) ⊆ · · · ⊆ K ′ ⊆ K for zero- (d = 0), one- (d = 1), and two-dimensional (d = 2) anomalous Floquet
HOTIs and SCs with a unitary order-2 space-time symmetry/antisymmetry in complex classes. The number of flipped dimensions for the
symmetry/antisymmetry is denoted by d‖.

d = 0 d = 1 d = 1 d = 2 d = 2 d = 2
Symmetry Class d‖ = 0 d‖ = 0 d‖ = 1 d‖ = 0 d‖ = 1 d‖ = 2

Û+
0 , Û+

T/2 A Z2 0 ⊆ 0 Z ⊆ Z 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 Z ⊆ Z ⊆ Z2

Û+
0,+, Û+

T/2,− AIII 0 0 ⊆ Z2 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0

Ū+
s A 0 0 ⊆ Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z2 0 ⊆ 0 ⊆ 0

Û+
0,−, Û+

T/2,+ AIII Z 0 ⊆ 0 Z ⊆ Z2 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 2Z ⊆ Z ⊆ Z

In Ref. [26], a complete classification of these intrinsic
corner or hinge modes was derived and a higher-order bulk-
boundary correspondence between these high-codimension
boundary modes and the topological bulk was obtained. These
were accomplished by considering a K subgroup series for a
d-dimensional crystal,

K (d ) ⊆ · · · ⊆ K ′′ ⊆ K ′ ⊆ K, (95)

where K ≡ K (0) is the K group which classifies the bulk
band structure of Hamiltonians with coexisting order-2 sym-
metry/antisymmetry, defined in the preceding section. Here
K (n) ⊆ K is a subgroup excluding topological phases of
order n or lower, for any crystalline-symmetry compatible
boundaries. For example, K ′ classifies the purely crystalline
phases [23,26], which exclude the tenfold-way topological
phases, which are first-order topological phases protected by
nonspatial symmetries alone and have gapless modes at any
codimension-1 boundaries. These purely crystalline phases
can have gapless modes only when the boundary preserves the
crystalline symmetry, and the gapless modes will be gapped
when the crystalline symmetry is broken.

From a boundary perspective, one can define the boundary
K group K′, which classifies the tenfold-way topological
phases with gapless codimension-1 boundary modes irrespec-
tively of boundary orientations, as long as the crystal shape
and lattice termination are compatible crystalline symmetries.
According to the above definitions, K′ can be identified as the
quotient group

K′ = K/K ′. (96)

Generalizing this idea, a series of boundary K groups denoted
by K(n) can be defined which classify the intrinsic nth-order

TIs and SCs with intrinsic gapless codimension-n boundary
modes, when the crystal has crystalline-symmetry-compatible
shape and lattice termination. In Ref. [26], the authors proved
the relation

K(n+1) = K (n)/K (n+1), (97)

known as the higher-order bulk-boundary correspondence: An
intrinsic higher-order topological phase is uniquely associated
with a topologically nontrivial bulk. Moreover, the above
equation provides a systematic way of obtaining the complete
classification of intrinsic HOTIs and SCs from K subgroup se-
ries, which were computed for crystals up to three dimensions
with order-2 crystalline symmetries/antisymmetries.

We can generalize these results to anomalous Flo-
quet HOTIs/SCs, by considering unitary loops U (k, t ) in
d dimensions without topological defect. To define a K
subgroup series for unitary loops with an order-2 space-
time symmetry/antisymmetry, one can exploit the Hermitian
map and introduce the K groups according to their corre-
sponding Hamiltonians with an order-2 crystalline symme-
try/antisymmetry. One obtains that the K subgroup series for
each nontrivial space-time symmetry/antisymmetry are the
same as the ones for a corresponding static order-2 crystalline
symmetry/antisymmetry, according to the substitution rules
summarized in Sec. VI D and Table I. On the other hand,
the K groups are the same for unitary loops and Hamil-
tonians when static order-2 symmetries/antisymmetries are
considered. Using the results from Ref. [26], we present the
K subgroup series for unitary loops with an order-2 space-
time symmetry/antisymmetry in Tables VI–XI, for systems
up to three dimensions. In these tables we use G2 to denote
G ⊕ G, with G = Z, 2Z,Z2. Note that the largest K group

TABLE VII. Same as Table VI but for antiunitary symmetries/antisymmetries.

d = 0 d = 1 d = 1 d = 2 d = 2 d = 2
Symmetry Class d‖ = 0 d‖ = 0 d‖ = 1 d‖ = 0 d‖ = 1 d‖ = 2

Â+
s A Z 0 ⊆ 0 Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z Z2 ⊆ Z2 ⊆ Z2

Â+
0,+, Â+

T/2,− AIII Z2 0 ⊆ Z Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0
Ā+

0 , Ā−
T/2 A Z2 0 ⊆ Z2 0 ⊆ 0 0 ⊆ 0 ⊆ Z 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 2Z

Â−
0,−, Â−

T/2,+ AIII 0 0 ⊆ Z2 0 ⊆ 2Z 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0
Â−

s A 2Z 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0
Â−

0,+, Â−
T/2,− AIII 0 0 ⊆ 2Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

Ā−
0 , Ā+

T/2 A 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z
Â+

0,−, Â+
T/2,+ AIII 0 0 ⊆ 0 0 ⊆ Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ Z2 ⊆ Z2
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TABLE VIII. Subgroup series K (d ) ⊆ · · · ⊆ K ′ ⊆ K for zero- (d = 0), one- (d = 1), and two-dimensional (d = 2) anomalous Floquet
HOTIs and SCs with a unitary order-2 space-time symmetry/antisymmetry in real classes. The number of flipped dimensions for the
symmetry/antisymmetry is denoted by d‖.

d = 0 d = 1 d = 1 d = 2 d = 2 d = 2
Symmetry Class d‖ = 0 d‖ = 0 d‖ = 1 d‖ = 0 d‖ = 1 d‖ = 2

Û+
0,+, Û+

T/2,+ AI Z2 0 ⊆ 0 Z ⊆ Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 Z ⊆ Z ⊆ Z

Û+
0,++, Û+

T/2,+− BDI Z2
2 0 ⊆ Z2 Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0

Û+
0,+, Û+

T/2,− D Z2
2 0 ⊆ Z2

2 Z2 ⊆ Z2 0 ⊆ 0 ⊆ Z2 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ Z

Û+
0,++, Û+

T/2,+− DIII 0 0 ⊆ Z2
2 0 ⊆ 0 0 ⊆ 0 ⊆ Z2

2 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0

Û+
0,+, Û+

T/2,+ AII 2Z2 0 ⊆ 0 2Z ⊆ 2Z 0 ⊆ 0 ⊆ Z2
2 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ Z

Û+
0,++, Û+

T/2,+− CII 0 0 ⊆ 2Z2 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0

Û+
0,+, Û+

T/2,− C 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z2 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z

Û+
0,++, Û+

T/2,+− CI 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

Ū+
0,−, Ū+

T/2,+ AI 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

Û+
0,+−, Û+

T/2,++ BDI Z 0 ⊆ 0 Z ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 2Z ⊆ Z ⊆ Z

Ū+
s,+ D Z2 0 ⊆ Z Z2 ⊆ Z2

2 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z2 0 ⊆ Z2 ⊆ Z2

Û+
0,−+, Û+

T/2,−− DIII Z2 0 ⊆ Z2 Z2 ⊆ Z2
2 0 ⊆ 0 ⊆ Z 0 ⊆ Z2 ⊆ Z2

2 0 ⊆ Z2 ⊆ Z2

Ū+
0,−, Ū+

T/2,+ AII 0 0 ⊆ Z2 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 0 ⊆ Z2 ⊆ Z2
2 0 ⊆ 0 ⊆ 0

Û+
0,+−, Û+

T/2,++ CII 2Z 0 ⊆ 0 2Z ⊆ 2Z2 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ 2Z

Ū+
s,+ C 0 0 ⊆ 2Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z2 0 ⊆ 0 ⊆ 0

Û+
0,−+, Û+

T/2,−− CI 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

Û+
0,−, Û+

T/2,− AI Z 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

Û+
0,−−, Û+

T/2,−+ BDI 0 0 ⊆ Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

Û+
0,−, Û+

T/2,+ D Z 0 ⊆ 0 2Z ⊆ Z 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 2Z ⊆ Z ⊆ Z2

Û+
0,−−, Û+

T/2,−+ DIII 0 0 ⊆ Z 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ Z 0 ⊆ Z2 ⊆ Z2
2

Û+
0,−, Û+

T/2,− AII Z 0 ⊆ 0 Z2 ⊆ Z2 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ Z2 Z2 ⊆ Z2 ⊆ Z2
2

Û+
0,−−, Û+

T/2,−+ CII 0 0 ⊆ Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0

Û+
0,−, Û+

T/2,+ C Z 0 ⊆ 0 2Z ⊆ 2Z 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ 2Z2

Û+
0,−−, Û+

T/2,−+ CI 0 0 ⊆ Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0

Ū+
0,+, Ū+

T/2,− AI Z2 0 ⊆ Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0

Û+
0,−+, Û+

T/2,−− BDI Z2 0 ⊆ Z2 0 ⊆ Z 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

Ū+
s,− D 0 0 ⊆ Z2 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0

Û+
0,+−, Û+

T/2,++ DIII 2Z 0 ⊆ 0 2Z ⊆ Z 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ Z

Ū+
0,+, Ū+

T/2,− AII 0 0 ⊆ 2Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ Z 0 ⊆ 0 ⊆ Z2

Û+
0,−+, Û+

T/2,−− CII 0 0 ⊆ 0 0 ⊆ Z 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 0 ⊆ Z2 ⊆ Z2

Ū+
s,− C 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0

Û+
0,+− ˆ,U+

T/2,++ CI Z 0 ⊆ 0 Z ⊆ Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ 2Z

K (0) in the series is actually the one shown in the tables in
the Supplemental Material [44]. The classification of intrinsic
codimension-n anomalous Floquet boundary modes is then
given by the quotient K(n) = K (n−1)/K (n).

VIII. FLOQUET HOTIS AND SCS
IN THE FREQUENCY DOMAIN

In this section we take an alternative route to connect
a Floquet HOTI/SC with a nontrivial space-time symme-

try/antisymmetry to a static HOTI/SC with a corresponding
crystalline symmetry/antisymmetry. This connection is based
on the frequency-domain formulation of the Floquet problem
[42], which provides a more intuitive perspective to the results
obtained by K theory.

A. Frequency-domain formulation

In the frequency-domain formulation of the Floquet prob-
lem, the quasienergies are obtained by diagonalizing the
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TABLE IX. Subgroup series K (d ) ⊆ · · · ⊆ K ′ ⊆ K for three-dimensional (d = 3) anomalous Floquet HOTIs and SCs with a unitary order-2
space-time symmetry/antisymmetry in complex classes. The number of flipped dimensions for the symmetry/antisymmetry is denoted by d‖.

Symmetry Class d‖ = 0 d‖ = 1 d‖ = 2 d‖ = 3

Û+
0 , Û+

T/2 A 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ Z ⊆ Z

Û+
0,+, Û+

T/2,− AIII 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0

Ū+
s A 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,−, Û+

T/2,+ AIII 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 2Z ⊆ Z ⊆ Z ⊆ Z2

enlarged Hamiltonian

H (k, r) =

⎛
⎜⎜⎜⎜⎜⎝

. . .

h0 + ω h1 h2

h†
1 h0 h1

h†
2 h†

1 h0 − ω
. . .

⎞
⎟⎟⎟⎟⎟⎠, (98)

where the matrix blocks are given by

hn(k, r) = 1

T

∫ T

0
dt H (k, t )e−inωt . (99)

Here the appearance of the infinite-dimensional matrix H can
be subtle and should be defined more carefully. Since later we
would like to discuss the gap at εgap = ω/2, we will assume
that the infinite-dimensional matrix H should be obtained by
taking the limit n → ∞ of a finite-dimensional matrix whose
diagonal blocks are given from h0 + nω to h0 − (n − 1)ω,
with n a positive integer. With this definition, ω/2 will be the
particle-hole/chiral symmetric energy whenever the system
has particle-hole/chiral symmetries.

As a static Hamiltonian, H (k, r) has the same nonspatial
symmetries as the original H (k, r, t ). Indeed, one can define

the effective time-reversal T , particle-hole C , and chiral S
symmetries for the enlarged Hamiltonian H (k, r) as

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .

T̂
T̂

T̂
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (100)

C =

⎛
⎜⎜⎜⎜⎜⎝

. .
.

Ĉ
Ĉ

Ĉ
. .

.

⎞
⎟⎟⎟⎟⎟⎠, (101)

S =

⎛
⎜⎜⎜⎜⎜⎝

. .
.

Ŝ
Ŝ

Ŝ
. .

.

⎞
⎟⎟⎟⎟⎟⎠. (102)

On the other hand, when the original H (k, r, t ) has a nontrivial
space-time symmetry/antisymmetry, the enlarged Hamilto-
nian H (k, r) will acquire the spatial (crystalline) symme-
try/antisymmetry inherited from the spatial part of the space-
time symmetry/antisymmetry.

Let us first consider ÛT/2 defined in Eq. (20) for s = T/2,
which is an unitary operation together with a half-period time

TABLE X. Same as Table IX but for antiunitary symmetries/antisymmetries.

Symmetry Class d‖ = 0 d‖ = 1 d‖ = 2 d‖ = 3

Â+
s A 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0

Â+
0,+, Â+

T/2,− AIII 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ Z2 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 2Z

Ā+
0 , Ā−

T/2 A 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

Â−
0,−, Â−

T/2,+ AIII 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0

Â−
s A 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

Â−
0,+, Â−

T/2,− AIII 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z

Ā−
0 , Ā+

T/2 A 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2

Â+
0,−, Â+

T/2,+ AIII 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ Z2 ⊆ Z2 ⊆ Z2
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TABLE XI. Subgroup series K (d ) ⊆ · · · ⊆ K ′ ⊆ K for three-dimensional (d = 3) anomalous Floquet HOTIs and SCs with a unitary order-2
space-time symmetry/antisymmetry in real classes. The number of flipped dimensions for the symmetry/antisymmetry is denoted by d‖.

Symmetry Class d‖ = 0 d‖ = 1 d‖ = 2 d‖ = 3

Û+
0,+, Û+

T/2,+ AI 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ 2Z ⊆ 2Z

Û+
0,++, Û+

T/2,+− BDI 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,+, Û+

T/2,− D 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,++, Û+

T/2,+− DIII 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,+, Û+

T/2,+ AII 0 ⊆ 0 ⊆ 0 ⊆ Z2
2 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 4Z ⊆ 2Z ⊆ Z

Û+
0,++, Û+

T/2,+− CII 0 ⊆ 0 ⊆ 0 ⊆ Z2
2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ Z2

Û+
0,+, Û+

T/2,− C 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2

Û+
0,++, Û+

T/2,+− CI 0 ⊆ 0 ⊆ 0 ⊆ 2Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0

Ū+
0,−, Ū+

T/2,+ AI 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,+−, Û+

T/2,++ BDI 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 2Z ⊆ Z ⊆ Z ⊆ Z

Ū+
s,+ D 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,−+, Û+

T/2,−− DIII 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z ⊆ Z2 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ Z

Ū+
0,−, Ū+

T/2,+ AII 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ Z2 ⊆ Z2
2 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,+−, Û+

T/2,++ CII 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ Z2 ⊆ Z2
2 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ 2Z ⊆ Z

Ū+
s,+ C 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 4Z ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,−+, Û+

T/2,−− CI 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ 2Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z

Û+
0,−, Û+

T/2,− AI 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,−−, Û+

T/2,−+ BDI 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,−, Û+

T/2,+ D 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ Z ⊆ Z

Û+
0,−−, Û+

T/2,−+ DIII 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ Z ⊆ Z2 0 ⊆ 0 ⊆ Z2 ⊆ Z2

Û+
0,−, Û+

T/2,− AII 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ Z 0 ⊆ 0 ⊆ Z2 ⊆ Z2
2 0 ⊆ 0 ⊆ Z2 ⊆ Z2

Û+
0,−−, Û+

T/2,−+ CII 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ Z2 ⊆ Z2 ⊆ Z2
2 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,−, Û+

T/2,+ C 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 4Z ⊆ 2Z ⊆ 2Z

Û+
0,−−, Û+

T/2,−+ CI 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z ⊆ 2Z2 0 ⊆ 0 ⊆ 0 ⊆ 0

Ū+
0,+, Ū+

T/2,− AI 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,−+, Û+

T/2,−− BDI 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

Ū+
s,− D 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,+−, Û+

T/2,++ DIII 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ Z ⊆ Z2

Ū+
0,+, Ū+

T/2,− AII 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 4Z ⊆ 2Z ⊆ Z 0 ⊆ 0 ⊆ Z2 ⊆ Z2
2

Û+
0,−+, Û+

T/2,−− CII 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ Z2 ⊆ Z2 ⊆ Z2
2

Ū+
s,− C 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0

Û+
0,+− ˆ,U+

T/2,++ CI 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ 2Z ⊆ 2Z2

translation. Since

ÛT/2hn(k, r)Û−1
T/2 = (−1)nhn(−k‖, k⊥,−r‖, r⊥), (103)

the enlarged Hamiltonian thus respects a unitary spatial sym-
metry defined by

U H (k, r)U −1 = H (−k‖, k⊥,−r‖, r⊥), (104)

where the unitary operator

U =

⎛
⎜⎜⎜⎜⎜⎝

. . .

ÛT/2

−ÛT/2

ÛT/2
. . .

⎞
⎟⎟⎟⎟⎟⎠ (105)

is inherited from ÛT/2.

Next we consider ĀT/2. Since

ĀT/2hn(k, r)Ā−1
T/2 = −(−1)nh−n(k‖,−k⊥,−r‖, r⊥), (106)

we can define

¯A =

⎛
⎜⎜⎜⎜⎜⎝

. .
.

−iĀT/2

iĀT/2

−iĀT/2

. .
.

⎞
⎟⎟⎟⎟⎟⎠ (107)

such that

¯A H (k, r) ¯A −1 = −H (k‖,−k⊥,−r‖, r⊥). (108)
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We now consider symmetry operators ÂT/2 and ŪT/2, for
symmetry classes other than A, C, and D. For ÂT/2 we have

ÂT/2hn(k, r)Â−1
T/2 = (−1)nhn(k‖,−k⊥,−r‖, r⊥). (109)

Thus, the enlarged Hamiltonian H (k, r) also has an antiuni-
tary spatial symmetry inherited from ÂT/2, given by

A H (k, r)A −1 = H (k‖,−k⊥,−r‖, r⊥), (110)

where the antiunitary operator

A =

⎛
⎜⎜⎜⎜⎜⎝

. . .

ÂT/2

−ÂT/2

ÂT/2
. . .

⎞
⎟⎟⎟⎟⎟⎠. (111)

Finally, for ŪT/2, the enlarged Hamiltonian satisfies

ŪT/2hn(k, r)Ū−1
T/2 = −(−1)nh−n(−k‖, k⊥,−r‖, r⊥). (112)

Hence, if we define

Ū =

⎛
⎜⎜⎜⎜⎜⎝

. .
.

−iŪT/2

iŪT/2

−iŪT/2

. .
.

⎞
⎟⎟⎟⎟⎟⎠, (113)

the enlarged Hamiltonian will satisfy

Ū H (k, r)Ū −1 = −H (−k‖, k⊥,−r‖, r⊥). (114)

B. Harmonically driven systems

To simplify the discussion, it is helpful to restrict ourselves
to a specific class of periodically driven systems, the harmon-
ically driven ones, whose Hamiltonians have the form

H (k, t ) = h0(k) + h1(k)eiωt + h†
1(k)e−iωt . (115)

To discuss the band topology at εgap = ω/2, we can further
truncate the enlarged Hamiltonian H to the 2×2 block, con-
taining two Floquet zones with energy difference ω, namely,

H (k) =
(

h0(k) + ω
2 h1(k)

h†
1(k) h0(k) − ω

2

)
+ ω

2
ρ0, (116)

where ρ0 is the identity in the two-Floquet-zone basis. For
later convenience, we use ρx,y,z to denote the Pauli matrices of
this basis. Since the last term in Eq. (116) is a shift in energy
by ω/2, we have a Floquet HOTI/SC at εgap = ω/2 if and only
if the first term in Eq. (116) is a static HOTI/SC.

When restricted to the two-Floquet-zone basis, the nonspa-
tial symmetries can be conveniently written as

T = ρ0T̂ , C = ρxĈ, S = ρxŜ. (117)

The spatial symmetries/antisymmetries for H , which are in-
herited from the space-time symmetries/antisymmetries, can
also be written simply as

U = ρzÛT/2, ¯A = ρyĀT/2,

A = ρzÂT/2, Ū = ρyŪT/2. (118)

From these relations, we arrive at the same results as the
ones from K theory in the previous sections. When a spatial
symmetry O , with O = U ,A , coexists with the particle-hole
or/and chiral symmetry the operators C , S , and O will
commute or anticommute with C or/and S . Let us write

OC = χCC O, (119)

OS = χSS O, (120)

with χC, χS = ±1. Because of the additional Pauli matri-
ces ρx,y,z in Eqs. (117) and (118), we have ηC = −χC and
ηS = −χS .

For O , the commutation relation with respect to the time-
reversal symmetry does not vary, whereas for a spatial an-
tisymmetry Ō , with Ō = Ū , ¯A , coexisting with the time-
reversal symmetry, the commutation relation with respect to
the latter does get switched. If we write

ŌT = χT T Ō, (121)

with χT = ±1, then we would have

ηT = −χT , (122)

because ρy is imaginary. Because of this, we can also obtain
¯A 2 = −Ā2

T/2.

IX. MODEL HAMILTONIANS FOR FLOQUET
HOTIS AND SCS

In this section we introduce model Hamiltonians, which
are simple but still sufficiently general, for Floquet HOTIs
and SCs in all symmetry classes. In particular, we consider
harmonically driven Floquet HOTIs and SCs Hamiltonians
with a given nontrivial space-time symmetry/antisymmetry,
realized by ÛT/2, ĀT/2, ÂT/2, or ŪT/2. One should notice that
the latter two symmetries/antisymmetries are only available
when the system is not in class A, C, or D, because in these
classes the symmetries with s = 0 and T/2 are the same up to
redefining the origin of the time coordinate.

A. Hamiltonians

The harmonically driven Floquet HOTIs and SCs in d
dimensions to be constructed have Bloch Hamiltonians of the
general form

H (k, t, m) = d0(k, m)�0 +
d∑

j=1

d j (k)� j cos(ωt ), (123)

where

d0(k, m) = m +
d∑

j=1

(1 − cos k j ) + · · · , (124)

d j (k) = sin k j, j = 1, . . . d, (125)

and {�i, � j} = 2δi jI, with I the identity matrix. Here the
ellipsis represents k-independent symmetry allowed perturba-
tions that will in general gap out unprotected gapless modes.
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We can further choose a representation of these � j such
that

�0 =
(
I 0
0 −I

)
= τz, � j =

(
0 γ j

γ
†
j 0

)
(126)

for j = 1, . . . , d . By the transformation properties of the
symmetry/antisymmetry operators, we have, in this represen-
tation, that T̂ , ÛT/2, and ÂT/2 are block diagonal, namely,
they act independently on the two subspaces with τz = ±1,
whereas the operators Ĉ, Ŝ , ŪT/2, and ĀT/2 are block off-
diagonal, which couples the two subspaces.

In this representation, the enlarged Hamiltonian H (k)
truncated to two Floquet zones, up to the constant shift ω/2,
can be decoupled into two sectors with ρzτz = ±1. Hence, one
can write it as a direct sum

H (k) = h(k, m + ω/2) ⊕ h(k, m − ω/2), (127)

with

h(k, m) = d0(k, m)�̃0 +
d∑

j=1

d j (k)�̃ j . (128)

Here the matrices �̃ j have a 2×2 block structure when re-
stricted to the ρzτz = ±1 sectors of H (k). If we abuse the
notation by still using τx,y,z for this 2×2 degree of freedom,
we can identify �̃ j = � j for j = 0, . . . , d .

It is straightforward to verify that the static Hamilto-
nian h(k, m) respects the same nonspatial symmetries as
the harmonically driven Hamiltonian H (k, t, m), with the
same symmetry operators. Moreover, if H (k, t, m) respects
a nontrivial space-time symmetry, realized by ÛT/2 or ÂT/2,
then h(k, m) will respect a spatial symmetry, realized by
�0ÛT/2 or �0ÂT/2, respectively. However, if H (k, t, m) re-
spects a nontrivial space-time antisymmetry, realized by ŪT/2

or ĀT/2, then h(k, m) will respect a spatial antisymme-
try, realized by −i�0ÛT/2 or −i�0ÂT/2, respectively. These
relations can be worked out by using the block diago-
nal or off-diagonal properties of the operators of space-
time symmetries/antisymmetries, as well as the relations in
Eq. (118).

Thus, we have established a mapping between harmon-
ically driven Hamiltonians H (k, t, m) and static Hamiltoni-
ans h(k, m), as well as their transformation properties under
symmetry/antisymmetry operators. On the other hand, h(k, m)
given in Eq. (128) are well studied models for static HOTIs
and SCs [23,26]. It is known that for −2 < m < 0, the Hamil-
tonian h(k, m) is in the topological phases (if the classification
is nontrivial), whereas for m > 0 the Hamiltonian is in a trivial
phase. A topological phase transition occurs at m = 0 with the
band gap closing at k = 0.

Since the enlarged Hamiltonian H (k), up to a constant
ω/2 shift, can be written as a direct sum of h(k, m ± ω/2),
the static Hamiltonian H (k) will be in the topological phase
(with chemical potential inside the gap at ω/2) if −2 < m −
ω/2 < 0 and m + ω/2 > 0. This is also the condition when
H (k, t, m) is in a Floquet topological phase at εgap = ω/2.

B. symmetry/antisymmetry-breaking mass terms

Let us consider −2 < m − ω/2 < 0 and m + ω/2 > 0.
In this parameter regime, h(k, m + ω/2) is always in a

trivial insulating phase, whereas h(k, m − ω/2) is in a non-
trivial topological phase, if there exists no mass term M
that respect the nonspatial symmetries, as well as the spa-
tial symmetry/antisymmetry inherited from the space-time
symmetry/antisymmetry of H (k, t, m). Here the mass term
in addition satisfies M2 = 1, M = M†, and {M, h(k, m)} =
0. Such a mass term will gap out any gapless states that
may appear in a finite-size system whose bulk is given
by h(k, m − ω/2). When M exists, one can define a term
M cos(ωt ) respecting all nonspatial symmetries and the space-
time symmetry/antisymmetry of H (k, m, t ) and it will gap
out any gapless Floquet boundary modes at quasienergy
εgap = ω/2.

If no mass term M, which satisfies only the nonspatial sym-
metries irrespectively of the spatial symmetry/antisymmetry,
exists, then h(k, m − ω/2) [H (k, m, t )] is in the static (Flo-
quet) tenfold-way topological phases, as it remains nontrivial
even when the spatial (space-time) symmetry/antisymmetry
is broken. Thus, the tenfold-way phases are always first-
order topological phases. However, if such an M exists,
h(k, m − ω/2) [H (k, m, t )] describes a static (Floquet) purely
crystalline topological phase, which can be a higher-order
topological phase, and the topological protection relies on the
spatial (space-time) symmetry/antisymmetry.

As pointed out in Ref. [26], several mutually anticom-
muting spatial-symmetry/antisymmetry-breaking mass terms
Ml can exist for h(k, m − ω/2), where Ml also anticom-
mutes with h. Furthermore, if h has the minimum possible
dimension for a given purely crystalline topological phase,
then the mass terms Ml all anticommute (commute) with
the spatial symmetry (antisymmetry) operator of h(k, m −
ω/2). In this case, one can relate the number of these mass
terms Ml and the order of the topological phase [26]: When
n mass terms Ml exist, with l = 1, . . . , n, boundaries of
codimension up to min(n, d‖) are gapped and one has a
topological phase of order min(n + 1, d‖ + 1) if min(n +
1, d‖ + 1) � d . However, if min(n + 1, d‖ + 1) > d , the sys-
tem does not support any protected boundary modes at any
codimension. See Ref. [26] or Appendix C for a proof of this
statement.

Hence, the order of the Floquet topological phase
described by H (k, t, m) is reflected in the number of
symmetry/antisymmetry-breaking mass terms Ml , due to
the mapping between H (k, t, m) and h(k, m − ω/2). In the
following, we explicitly construct model Hamiltonians for
Floquet HOTIs and SCs with a given space-time symme-
try/antisymmetry.

C. First-order phase in the d‖ = 0 family

When d‖ = 0, the symmetries/antisymmetries are on-
site. From Tables VI–XI we see that the on-site symme-
tries/antisymmetries only give rise to first-order TIs and SCs,
since only the K (0) in the subgroup series can be nonzero. This
can also be understood from the fact that min(n + 1, d‖ +
1) = 1 in this case. We will in the following provide two
examples in which we have anomalous Floquet boundary
modes of codimension 1 which are protected by the unitary
on-site space-time symmetry.
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1. The 2D system in class AII with Û+
T/2,−

The simplest static topological insulator protected by uni-
tary on-site symmetry is the quantum spin Hall insulator with
additional twofold spin rotation symmetry around the z axis
[11]. This system is in class AII with time-reversal symmetry
T̂ 2 = −1. It is known that either a static or a Floquet system
of class AII in two dimensions will have a Z2 topological
invariant [8,32]. However, with a static unitary d‖ = 0 sym-
metry (such as a twofold spin rotation symmetry), realized by
the operator Û+

0,− that squares to one and anticommutes with
the time-reversal symmetry operator, a K (0) = Z topological
invariant known as the spin Chern number can be defined. In
fact, such a Z topological invariant (see Table VIII) can also
appear due to the existence of space-time symmetry realized
by Û+

T/2,− at quasienergy gap εgap = ω/2.
A lattice model that realizes a spin Chern insulator can be

defined using the Bloch Hamiltonian

h(k, m) = (m + 2 − cos kx − cos ky)τz

+ (sin kxτxsz + sin kyτy), (129)

where sx,y,z and τx,y,z are two sets of Pauli matrices for spins
and orbitals. This Hamiltonian has time-reversal symmetry
realized by T̂ = −isyK̂ as well as the unitary symmetry
realized by the operator Û+

0,− = sz. When we choose an open
boundary condition along x while keeping the y direction with
a periodic boundary condition, there will be gapless helical
edge states inside the bulk gap propagating along the x edge
at ky = 0 for −2 < m < 0. The corresponding harmonically
driven Hamiltonian can be written as

H (k, t, m) = (m + 2 − cos kx − cos ky)τz

+ (sin kxτxsz + sin kyτy) cos(ωt ), (130)

where the time-reversal and the half-period time translation
on-site symmetry operators are defined as T̂ = −isyK̂ and
Û+

T/2,− = szτz respectively.
When −2 < m − ω/2 < 0 and m + ω/2 > 0 are satisfied,

this model supports gapless helical edge states at ky = 0 inside
the bulk quasienergy gap εgap = ω/2 when the x direction has
an open boundary condition. Furthermore, such gapless Flo-
quet edge modes persist as one introduces more perturbations
that preserve the time-reversal and the Û+

T/2,− symmetry.

2. The 2D system in class D with Û+
T/2,−

For 2D (either static or Floquet) superconductors in class
D with no additional symmetries, the topological invariant is
Z given by the Chern number of the Bogoliubov–de Gennes
bands. When there exists a static unitary d‖ = 0 symme-
try, realized by Û+

0,+ which commutes with the particle-hole
symmetry operator, the topological invariant instead becomes
K (0) = Z ⊕ Z (see Table VIII). The same topological invari-
ant can also be obtained from a space-time unitary symmetry
realized by Û+

T/2,−, which anticommutes with the particle-hole
symmetry operator. In the following, we construct a model
Hamiltonian for such a Floquet system.

Let us start from the static 2D Hamiltonian in class D given
by

h(k, m) = (m + 2 − cos kx − cos ky + bsz )τz

+ sin kxszτx + sin kyτy, (131)

with particle-hole symmetry and the unitary on-site sym-
metries realized by Ĉ = τxK̂ and Û+

0,+ = sz, where τx,y,z are
the Pauli matrices for the Nambu space. Here the unitary
symmetry can be thought of as the mirror reflection with
respect to the xy plane, and bsz is the Zeeman term which
breaks the time-reversal symmetry.

The Z ⊕ Z structure results from the fact that Û+
0,+, Ĉ, and

h(k, m) can be simultaneously block diagonalized, according
to the ±1 eigenvalues of Û+

0,+. Each block is a class D system
with no additional symmetries and thus has a Z topological
invariant. Since the two blocks are independent, the topolog-
ical invariant of the system should be a direct sum of the
topological invariant for each block, leading to Z ⊕ Z.

The harmonically driven Hamiltonian with a unitary space-
time on-site symmetry realized by Û+

T/2,− = szτz can be writ-
ten as

H (k, t, m) = (m + 2 − cos kx − cos ky + bsz )τz

+ (sin kxszτx − sin kyτy) cos(ωt ). (132)

The particle-hole symmetry operator for this Hamiltonian is
Ĉ = τxK̂.

D. Second-order phase in the d‖ = 1 family

When a d‖ = 1 space-time symmetry/antisymmetry is
present, the system can be at most a second-order topological
phase, since the order is given by min(n + 1, d‖ + 1) � 2.
Note that the unitary symmetry in this case is the so-called
time-glide symmetry, which has already been discussed thor-
oughly in Refs. [38,41]. We will in the following construct
models for second-order topological phases with antiunitary
symmetries, as well as models with unitary antisymmetries.

1. The 2D system in class AIII with Â+
T/2,−

For 2D systems in class AIII without any additional sym-
metries, the topological classification is trivial, since the chiral
symmetry will set the Chern number of the occupied bands
to zero. However, in Table VII we see that when the 2D
system has an antiunitary symmetry realized by either Â+

0,+
or Â+

T/2,−, the K subgroup series is 0 ⊆ Z2 ⊆ Z2.
Let us first understand the K (0) = Z2 classification in the

case of Â+
0,+ in a static system with Hamiltonian h(kx, ky). Let

us assume that Â+
0,+ corresponds to the antiunitary reflection

about the x axis; then we have

Â+
0,+h(kx, ky)(Â+

0,+)−1 = h(kx,−ky ). (133)

On the other hand, the chiral symmetry imposes the condition

Ŝh(kx, ky)Ŝ−1 = −h(kx, ky). (134)

Thus, if we regard kx ∈ S1 as a cyclic parameter, then at
every kx, h(kx, ky) as a function of the Bloch momentum ky

is actually a 1D system in class BDI. Thus, the topological
classification in this case is the same as the one for a topo-
logical pumping for a 1D system in class BDI described by a
Hamiltonian h′(k, t ), with momentum k and periodic time t .
This gives rise to a Z2 topological invariant, corresponding
to whether of not the fermion parity has changed after an
adiabatic cycle [7], when the 1D system has an open boundary
condition. Since the bulk is gapped at any t , such a fermion
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FIG. 2. (a) Gapless modes at a reflection invariant edge. (b) Cor-
ner modes at a reflection invariant corner. The dashed line indicates
the reflection (time-glide) plane.

parity switch is allowed only when the boundary becomes
gapless at some intermediate time t . Since our original Hamil-
tonian h(kx, ky) is related to h′(k, t ) by replacing k ↔ ky and
t ↔ kx, a nontrivial phase for h(kx, ky) implies the existence
of a counterpropagating edge mode on the x edge when we
choose an open boundary condition along y.

Let us explain the pure crystalline classification K ′ = Z2.
One can consider the edge Hamiltonian for a pair of coun-
terpropagating gapless modes on the edge parallel to x as
Hedge = kxσz, with Ŝ = σx and Â+

0,+ = K̂. This pair of gapless
modes cannot be gapped by any mass term. However, if there
exist two pairs of gapless modes, whose Hamiltonian can be
written as Hedge = kxτ0σz, one can then add a mass term mτyσy

to Hedge to gap it out. On the other hand, if the edge does not
preserve the antiunitary symmetry given by Â+

0,+, then a mass
term mσy can be added to gap out a single pair of gapless
mode, which implies that there is no intrinsic codimension-1
boundary mode. Thus, K ′ = Z2 and K′ = 0.

Instead of intrinsic codimension-1 boundary modes, the
system supports intrinsic codimension-2 boundary modes,
which are referred to as a second-order TI. If one creates
a corner that is invariant under the reflection x → −x, this
corner will support a codimension-two zero mode, with a
K′′ = K ′/K ′′ = Z2 classification.

An explicit Hamiltonian that realizes these phases can have
the form

h(k, m) = (m + 2 − cos kx cos ky)τz + sin kxτxσx

+ sin kyτy + bτzσz, (135)

where τx,y,z and σx,y,z are two sets of Pauli matrices and
the parameter b, which gaps out the y edge, is numerically
small. One can show that this Hamiltonian has the desired
chiral and antiunitary reflection symmetries given by Ŝ =
τxσz and Â+

0,+ = K̂, respectively. When −2 < m < −0, there
are counterpropagating edge modes on each x edge at momen-
tum kx = 0. On the other hand, a corner, which is invariant
under reflection x → −x, will bound a zero mode. These two
different boundary conditions are illustrated in Fig. 2.

The corresponding harmonically driven system has the
Hamiltonian

H (k, t, m) = (m + 2 − cos kx − cos ky + bσz )τz

+ (sin kxτxσx − sin kyτy) cos(ωt ), (136)

which has chiral and antiunitary time-glide (antiunitary reflec-
tion together with half-period time translation) symmetries,
realized by Ŝ = τxσz and Â+

T/2,− = τzK̂. With appropriately
chosen boundary conditions, one can have either a counter-
propagating anomalous Floquet gapless mode at the reflection
symmetric edge [Fig. 2(a)] or a corner mode at εgap = ω/2 at
the reflection symmetry corner [Fig. 2(b)].

2. The 2D system in class AI with Ū+
T/2,−

For 2D systems in class AI, with only spinless time-
reversal symmetry T̂ 2 = 1, the topological classification is
trivial. However, with a unitary (either static or space-time)
d‖ = 1 antisymmetry realized by Ū+

0,+ or Ū+
T/2,−, the K group

subseries is 0 ⊆ Z ⊆ Z, as given in Table VIII.
Let us start by considering a Hamiltonian h(kx, ky) with a

static d‖ = 1 antisymmetry, given by

Ū+
0,+h(kx, ky)(Ū+

0,+)−1 = −h(−kx, ky), (137)

in addition to the spinless time-reversal symmetry. At the
reflection symmetric momenta kx = 0, π , the Hamiltonian as
a function of ky reduces to a 1D Hamiltonian in class BDI,
which has a Z winding number topological invariant.

One can also understand the topological classification from
the edge perspective. At the reflection invariant edge, the x
edge in this case, multiple pairs of counterpropagating edge
modes can exist. One can write the edge Hamiltonian as
Hedge = kx�x + m�m, with a possible mass term of magnitude
m. Here the matrices �x and �m anticommute with each
other and square to the identity. Since the edge is reflection
invariant, we have [�x, Ū+

0,+] = 0 and {�m, Ū+
0,+} = 0. Hence

we can simultaneously block diagonalize �x and Ū+
0,+ and

label the pair of gapless modes in terms of the eigenvalues ±1
of Ū+

0,+. If we denote the number of pairs of gapless modes
with opposite Ū+

0,+ parity by n±, then only (n+ − n−) ∈ Z
pairs of gapless modes are stable because the mass m�m gaps
out gapless modes with opposite eigenvalues of Ū+

0,+.
These gapless modes are purely protected by the d‖ = 1

antisymmetry and will be completely gapped when the edge
is not invariant under reflection, which implies that K ′ =
K (0) = Z. Indeed, we can assume that there are (n+ − n−)
pairs of gapless modes which have positive parity under Ū+

0,+.

The time-reversal operator can be chosen as T̂ = K̂, because
[T̂ , Ū+

0,+] = 0. We will write �x = I(n+−n− ) ⊗ σy, where In

denotes the identity matrix of dimension n. When the edge is
deformed symmetrically around a corner at x = 0, mass terms
m1(x)σx + m2(x)σz, with mi(x) = −mi(−x), i = 1, 2, can be
generated. This gives rise to (n+ − n−) zero-energy corner
modes, corresponding to K′ = K ′/K ′′ = Z.

An explicit Hamiltonian for h(kx, ky) can have the form

h(k, m) = (m + 2 − cos kx − cos ky)τz + sin kxτxσy

+ sin kyτy + bτzσz (138)

with T̂ = K̂, Ū+
0,+ = τx, and numerically small b. When −2 <

m < 0, there exist counterpropagating gapless modes on the x
edges when the system has an open boundary condition in the
y direction.
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The corresponding harmonically driven Hamiltonian with
a unitary space-time antisymmetry has the form

H (k, t, m) = (m + 2 − cos kx − cosy +bσz )τz

+ (sin kxτxσy − sin kyτy) cos(ωt ), (139)

where the time-reversal symmetry and the unitary space-
time antisymmetry are realized by T̂ = K̂ and Ū+

T/2,− = τy,
respectively. Gapless Floquet edge modes, or Floquet corner
modes at εgap = ω/2, can be created, with appropriately cho-
sen boundary conditions, when both −2 < m − ω/2 < 0 and
m + ω/2 > 0 are satisfied.

E. Third-order phase in the d‖ = 2 family

When a Floquet system respects a d‖ = 2 space-time sym-
metry/antisymmetry, it can be at most a third-order topologi-
cal phase, because min(n + 1, d‖ + 1) � 3. In the following,
we construct a model Hamiltonian for a third-order TI repre-
senting such systems.

The 3D system in class AIII with Â+
T/2,−

It is known that for a 3D system in class AIII without any
additional spatial symmetries, the topological classification is
Z [8], which counts the number of surface Dirac cones at
the boundary of the 3D insulating bulk. When there exists an
antiunitary twofold rotation symmetry, either Â+

0,+ or Â+
T/2,−,

the topological invariants are given by the K subgroup series
0 ⊆ Z2 ⊆ Z2 ⊆ Z2 in Table X.

Indeed, because of the additional symmetry realized by
Â+

0,+ or Â+
T/2,−, the symmetry invariant boundary surface is

able to support gapless Dirac cone pairs. As will be shown in
the following, it turns out that the maximum number of such
pairs is one, which gives rise to the K (0) = Z2 topological
invariant.

Let us first look at the static antiunitary twofold rotation
symmetry, realized by Â+

0,+, which transforms a static Bloch
Hamiltonian as

Â+
0,+h(kx, ky, kz )(Â+

0,+)−1 = h(kx, ky,−kz ). (140)

With an appropriate basis, one can write Ŝ = τz and Â+
0,+ =

K̂. At the symmetry invariant boundary surface perpendicular
to z, while keeping the periodic boundary condition in both the
x and y directions, a single Dirac cone pair with a dispersion
hsurf = τx(σxkx + σzky) can exist. This Dirac cone pair cannot
be gapped by an additional mass term preserving the Â+

0,+
symmetry, which requires the mass term to be real. However,
there are two pairs of Dirac cones, described by the surface
Hamiltonian hsurf = μ0τx(σxkx + σzky), with μ0 a 2×2 iden-
tity matrix for another spinor degree of freedom, for which we
also introduce a new set of Pauli matrices μx,y,z. Noticeably,
a mass term which couples the two pairs of Dirac cones and
gaps them out can be chosen as μyσxτy, which preserves the
antiunitary twofold symmetry. Hence, we have K (0) = Z2.

When the surface is tilted away from the rotation invariant
direction, two mutually anticommuting rotation-symmetry-
breaking mass terms exist and can be written as m1τyσ0 +
m2τxσy, in which m1,2 must change sign under twofold rota-
tion. Hence, boundaries of codimension up to min(n, d‖) = 2
are gapped. This leads to K′′ = K′ = 0, which implies that

FIG. 3. (a) Gapless surface mode (Dirac cone) on the rotation
invariant surface. (b) Corner mode at a rotation invariant corner. The
dashed line indicates the twofold rotation (time-screw) axis.

K ′′ = K ′ = K (0) = Z2. Moreover, at the symmetry invariant
corner, this mass must vanish, and thus the system can host
the zero-energy corner mode.

We write the concrete model Hamiltonian with eight bands

h(k, m) = (m + 3 − cos kx − cos ky − cos kz )τz

+ sin kxτxσx + sin kyτxσz + sin kzτy

+ b1μxτzσz + b2μxτzσx, (141)

where the parameters b1 and b2 are numerically small. Here
the chiral and the antiunitary twofold rotation symmetries
are realized by Ŝ = μyτxσy and Â+

0,+ = K̂, respectively. This
Hamiltonian supports a single pair of Dirac cones on the
boundary surfaces perpendicular to the z axis, at kx = ky = 0
for −2 < m < 0, as illustrated in Fig. 3(a). When the surface
perpendicular to the rotation axis gets deformed from Fig. 3(a)
to Fig. 3(b), the rotation invariant corner then bounds a
codimension-2 boundary mode.

The corresponding harmonically driven model has the
Hamiltonian

H (k, t, m) = (m + 3 − cos kx − cos ky − cos kz

+ b1μxσz + b2μxσx )τz

+ [(sin kxσx + sin kyσy)τx − sin kzτy] cos(ωt ).
(142)

Here the chiral symmetry is realized by Ŝ = μyτxσy, while
the antiunitary twofold time-screw symmetry is realized by
Â+

T/2,− = τzK̂. This Hamiltonian is able to support a pair of
Dirac cones on the boundary surface perpendicular to the
z direction inside the bulk quasienergy gap around εgap =
ω/2 [Fig. 3(a)], as well as the codimension-2 mode with
quasienergy ω/2 localized at the rotation invariant corner of
the system [Fig. 3(b)].

F. Higher-order topological phases in the d‖ = 3 family

Unlike the symmetries discussed previously, the d‖ = 3
symmetry (antisymmetry) operator P̂ (P̄) does not leave any
point invariant in our three-dimensional world. In particular,
since the surface of a 3D system naturally breaks the inversion
symmetry, the topological classification of the gapless surface
modes (if they exist) should be the same as the 3D tenfold
classification disregarding the crystalline symmetry, in the
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same symmetry class. Hence, we have the boundary K group

K′ = K (0)/K ′ =
{

KTF for KTF ⊆ K (0)

0 otherwise,
(143)

where KTF is the corresponding K group for the tenfold-way
topological phase, with only nonspatial symmetries consid-
ered.

However, inversion related pairs of boundaries with codi-
mension larger than 1 are able to host gapless modes, which
cannot be gapped out without breaking the symmetry (an-
tisymmetry) realized by P̂ (P̄). This can be understood by
simply considering the surface Hamiltonian h(p‖, n̂) with
n̂ ∈ S2. Here p‖ is the momentum perpendicular to n̂. Let
us assume that there are n spatially dependent mass terms
ml (n̂)Ml , with l = 1, . . . , n, that can gap out the surface
Hamiltonian h(p‖, n̂). The inversion symmetry/antisymmetry
restricts ml (n̂) = −ml (−n̂) (see Appendix C for details),
which implies that there must exist a 1D inversion symmetric
loop S1 ⊆ S2 such that ml (n̂) = 0 for n̂ ∈ S1. This 1D loop for
different l can be different, but they all preserve the inversion
symmetry and cannot be removed. Hence, for n = 1, we have
a 1D massless great circle, whereas for n = 2 we have a pair
of antipodal massless points. The 1D or 0D massless region
consists of irremovable topological defects which are able to
host gapless modes.

Since the inversion operation maps one point to another
point, the stability of the gapless modes on the massless 1D
or 0D region must be protected by the nonspatial symmetries
alone [24]. Hence, the codimension-k gapless modes are sta-
ble only when the (4 − k)-dimensional system has a nontrivial
tenfold classification, namely, KTF �= 0.

Moreover, the number of these gapless modes is at most
one [24]. Indeed, a system consisting of a pair of inversion
symmetric systems with protected gapless modes can be
deformed into a system with completely gapped boundaries
without breaking the inversion symmetry. This statement can
be understood by considering a pair of inversion symmetric
surface Hamiltonians

h′(p‖, n̂) =
(

h(p‖, n̂) 0
0 ±h(p‖,−n̂)

)
, (144)

where the + (−) sign is taken when we have a inversion
symmetry (antisymmetry). In this situation, the h′(p‖, n̂) has
a inversion symmetry or antisymmetry realized by

P̂ ′ =
(

0 P̂
P̂ 0

)
or P̄ ′ =

(
0 P̄
P̄ 0

)
. (145)

Now we can introduce mass terms(
ml (n̂)Ml 0

0 −ml (−n̂)Ml

)
. (146)

In this case ml (n̂) can be nonzero for all n̂ ∈ S2 and therefore
h′(p‖, n̂) can always be gapped.

Hence, we obtain the boundary K groups K(k) which
classify boundary modes of codimensions k = 2 and 3 as

K(k) = K (k−1)/K (k)

{
Z2 for Z2 ⊆ KTF in 4 − k dimensions
0 otherwise.

(147)

Having explained the general structure of K subgroup se-
ries, let us in the following construct model Hamiltonians for
Floquet HOTIs and SCs in class DIII with a unitary space-time
symmetry realized by Û+

T/2,++ (d‖ = 3), as an example. From
Table XI we see that the K subgroup series is 4Z ⊆ 2Z ⊆
Z ⊆ Z2, which implies that we can have a first-order phase
classified by K′ = Z2/Z = Z, a second-order phase classified
by K′′ = Z/2Z = Z2, and a third-order phase classified by
K(3) = 2Z/4Z = Z2.

1. First-order topological phase

Under the operator Û+
T/2,++, no points on the surface

of a 3D bulk are left invariant. Hence, the existence of
codimension-1 boundary modes is due to the protection from
the nonspatial symmetries alone. A tight-binding model real-
izing such a phase can be constructed from its static coun-
terpart, namely, a model in class DIII with a static inversion
symmetry realized by Û+

0,+−.
The static model can have the Hamiltonian

h±(k, m) = (m + 3 − cos kx − cos ky − cos kz )τz

± (sin kxσx + sin kyσy + sin kzσz )τx, (148)

where the time-reversal, particle-hole, chiral, and inversion
symmetries are realized by T̂ = −iσyK̂, Ĉ = σyτyK̂, Ŝ = τy,
and Û+

0,+− = τz, respectively. When −2 < m < 0, this model
hosts a gapless Dirac cone with chirality ±1 on any surfaces
of the 3D bulk.

Hence, the Hamiltonian for the corresponding Floquet
first-order topological phase with a space-time symmetry can
be written as

H±(k, t, m) = (m + 3 − cos kx − cos ky − cos kz )τz

± (sin kxσx + sin kyσy + sin kzσz )τx cos(ωt ),
(149)

where the space-time symmetry is realized by Û+
T/2,++ = I

and the nonspatial symmetry operators are the same as in
the static model. When −2 < m − ω/2 < 0 and m + ω/2 > 0
are satisfied, H±(k, t, m) will host a gapless Dirac cone at
quasienergy ω/2 with chirality ±1.

2. Second-order topological phase

Similar to the construction of the first-order phase, let us
start from the corresponding static model. A static second-
order phase can be obtained by h+(k, m1) and h−(k, m2).
When both m1 and m2 are within the interval (−2, 0), the
topological invariant for the codimension-1 boundary modes
vanishes and their exists a mass term on the surface which
gaps out all boundary modes of codimension 1.

Explicitly, one can define the Hamiltonian

h(k, m1, m2) =
(

h+(k, m1) 0
0 h−(k, m2)

)
(150)

and introduce a set of Pauli matrices μx,y,z for this newly
introduced spinor degrees of freedom. There is only one
mass term Ml = τxμx, which satisfies {M1, h(k, m1, m2)} = 0,
{M1, Ŝ} = 0, {M1, Ĉ} = 0, and [M1, T̂ ] = 0. According to
the discussion on the relation between mass terms and the
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(a) (b)

FIG. 4. Spectral weight (darkness) of the Floquet boundary
mode at ω/2, cut to an approximate sphere geometry with a ra-
dius of ten lattice spacing. (a) Codimension-2 boundary mode,
computed with the parameters m1 = m2 = 0.5, ω = 3, and b(1)

1 =
b(1)

2 = b(1)
3 = 0.3. (b) Codimension-3 boundary mode, computed

with m1 = m2 = m3 = m4 = 0.5, ω = 3, and b(1)
1 = b(1)

2 = b(1)
3 =

b(2)
3 = −b(2)

1 = −b(2)
2 = 0.3.

codimension of boundary modes in Sec. IX B, as well as
Appendix C, one can add a perturbation

V = b(1)
1 σxτzμx + b(1)

2 σyτzμx + b(1)
3 σzτzμx (151)

that preserves all symmetries to h(k, m1, m2). This pertur-
bation gaps out all codimension-1 surfaces and leaves a
codimension-2 inversion invariant loop gapless, giving rise to
a second-order topological phase. The Floquet second-order
topological phase can therefore be constructed by addition of
the perturbation V to the Hamiltonian

H (k, t, m1, m2) =
(

H+(k, t, m1)
0 H−(k, t, m2)

)
. (152)

In Fig. 4(a) we show the spectral weight of the
codimension-1 Floquet boundary mode at ω/2, when the sys-
tem is cut to an approximate sphere geometry. This boundary
mode is localized on an inversion invariant loop.

3. Third-order topological phase

To construct a model for the third-order topological phase,
one needs to find two anticommuting masses M1 and M2,
which satisfy the same conditions discussed previously. This
can be realized by introducing another spinor degrees of free-
dom, as one couples two copies of h(k, m1, m2). Explicitly,
one can take the Hamiltonian

h̃(k, m1, m2, m3, m4)

=
(

h(k, m1, m2) 0
0 h(k, m3, m4)

)
(153)

as well as the corresponding Pauli matrices μ̃x,y,z for the
spinor degrees of freedom.

Thus, two anticommuting mass terms M1 = τxμx and
M2 = τxμyμ̃y can be found. Therefore, one can introduce the
symmetry preserving perturbation

Ṽ = (
b(1)

1 σx + b(1)
2 μx + b(1)

3 σz
)
τzμx

+ (
b(2)

1 σx + b(2)
2 μx + b(2)

3 σz
)
τzμyμ̃y, (154)

which in general gaps out all boundary modes except at two
antipodal points, at which codimension-3 modes can exist.

The Floquet version of such a third-order topological phase
is constructed by adding the perturbation Ṽ to the periodically

driven Hamiltonian

H̃ (k, t, m1, m2, m3, m4)

=
(

H (k, t, m1, m2) 0
0 H (k, t, m3, m4)

)
. (155)

In Fig. 4(b), the spectral weight of the zero-dimensional
(codimension-3) Floquet modes at quasienergy ω/2 is shown
in a system with an approximate sphere geometry. The other
zero-dimensional mode is located at the antipodal point.

X. CONCLUSION

In this work we have completed the classification of the
Floquet HOTIs and SCs with an order-2 space-time symme-
try/antisymmetry. By introducing a Hermitian map, we were
able to map the unitary loops into Hermitian matrices and thus
define bulk K groups as well as K subgroup series for unitary
loops. In particular, we showed that for every order-2 nontriv-
ial space-time (anti)unitary symmetry/antisymmetry involv-
ing a half-period time translation, there always exists a unique
order-2 static spatial (anti)unitary symmetry/antisymmetry
such that the two symmetries/antisymmetries share the same
K group, as well as the subgroup series, and thus have
the same topological classification. Further, by exploiting
the frequency-domain formulation, we introduced a general
recipe for constructing tight-binding model Hamiltonians for
Floquet HOTIs and SCs, which provides a more intuitive way
of understanding the topological classification table.

It is also worth mentioning that although in this work we
only classified the Floquet HOTIs and SCs with an order-2
space-time symmetry/antisymmetry, the Hermitian map intro-
duced here can also be used to map the classification of unitary
loops involving more complicated space-time symmetry to
the classification of Hamiltonians with other point group
symmetries. Similarly, the frequency-domain formulation and
the recipe of constructing Floquet HOTIs and SCs should also
work with some modifications. In this sense, our approach can
be more general than what we have shown in this work.

Finally, we comment on one possible experimental realiza-
tion of Floquet HOTIs and SCs. As lattice vibrations naturally
break some spatial symmetries instantaneously while preserv-
ing certain space-time symmetries, one way to engineer a Flo-
quet HOTI/SC may involve exciting a particular phonon mode
with a desired space-time symmetry, which is investigated in
Ref. [45].
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APPENDIX A: EQUIVALENT CLASSIFICATION WITH
SYMMETRIZED EVOLUTION OPERATORS

Let us prove the statement that the ordinary evolution oper-
ators U1(k, r, t ) and U2(k, r, t ) are homotopic if and only if the
symmetric evolution operators Uτ,1(k, r, t ) and Uτ,2(k, r, t )
are homotopic.

When U1(k, r, t ) and U2(k, r, t ) are homotopic, there ex-
ists a continuous unitary-matrix-valued function f (s, k, r, t ),
with s ∈ [0, 1], such that f (0, k, r, t ) = U1(k, r, t ) and
f (1, k, r, t ) = U2(k, r, t ). Hence, we can define a continuous
unitary-matrix-valued function g(s, k, r, t ) = f (s, k, r, τ −
t/2) f †(s, k, r, τ + t/2) such that g(0, k, r, t ) = Uτ,1(k, r, t )
and g(1, k, r, t ) = Uτ,2(k, r, t ). We have that Uτ,1(k, r, t ) and
Uτ,2(k, r, t ) are homotopic.

The other direction goes as follows. If Uτ,1(k, r, t )
and Uτ,2(k, r, t ) are homotopic, then there exists a
continuous unitary-matrix-valued function g(s, k, r, t )
such that g(0, k, r, t ) = Uτ,1(k, r, t ) and g(1, k, r, t ) =
Uτ,2(k, r, t ). Further, there exists another continuous
unitary-matrix-valued function f (s, k, r, t ) such that
g(s, k, r, t ) = f (s, k, r, t ) f †(s, k, r,−t ), because one requires
that the symmetry property is always satisfied during the
deformation when increasing s from zero to 1. Hence, we have
f (0, k, r, t ) = U1(k, r, τ+t

2 ) and f (1, k, r, t ) = U2(k, r, τ+t
2 ).

This implies that the function f (s, k, r, 2t − τ ) would be the
continuous deformation between U1(k, r, t ) and U2(k, r, t ).

APPENDIX B: DECOMPOSITION OF
TIME-EVOLUTION OPERATORS

In this Appendix we follow Ref. [32] to show two theo-
rems. First, a generic time evolution can be decomposed as
a unitary loop followed by a constant Hamiltonian evolution,
up to homotopy. Second, Lτ,1 ∗ Cτ,1 ≈ Lτ,2 ∗ Cτ,2 if and only
if Lτ,1 ≈ Lτ,2 and Cτ,1 ≈ Cτ,2, Lτ,1 and Lτ,2 are unitary loops,
and Cτ,1 and Cτ,2 are constant Hamiltonian evolutions.

To prove the first theorem, let us assume that Uτ is a
symmetrized time-evolution operator and HF is its Floquet
Hamiltonian. If C±(s) is the evolution with constant Hamil-
tonian ±sHF , then one can define the continuous deformation

f (s) = [Uτ ∗ C−(s)] ∗ C+(s). (B1)

We have f (0) = U and f (1) = L ∗ C+(1), which are a com-
position of a unitary loop followed by a constant Hamiltonian
evolution.

Let us now prove the second theorem. If Lτ,1 ∗ Cτ,1 ≈
Lτ,2 ∗ Cτ,2, then there exists a continuous deformation f (s)
such that

f (0) = Lτ,1 ∗ Cτ,1, f (1) = Lτ,2 ∗ Cτ,2. (B2)

If HF (s) is the corresponding Floquet Hamiltonian of the
evolution f (s) and C+(s) is the time-evolution operator with
constant Hamiltonian HF (s), then C+(0) = Cτ,1 and C+(1) =
Cτ,2, which implies Cτ,1 ≈ Cτ,2.

Let g(s) = f (s) ∗ C−(s), with C−(s) the time evolution
with constant Hamiltonian −HF (s); then g(s) is a unitary loop
for all intermediate s. Moreover, we have g(0) = Lτ,1 and
g(1) = Lτ,2. Thus, Lτ,1 ≈ Lτ,2.

The proof in the opposite direction is more straightforward.
If Lτ,1 ≈ Lτ,2 and Cτ,1 ≈ Cτ,2, then there exist two continuous
deformations f (s) and g(s), which interpolate the two pairs.
If we make the composition h(s) = f (s) ∗ g(s), then h(s)
continuously deforms Lτ,1 ∗ Cτ,1 into Lτ,2 ∗ Cτ,2.

APPENDIX C: ORDER OF HOTIS AND SCS AND
SYMMETRY-BREAKING MASS TERMS

Consider static HOTIs and SCs in d dimensions described
by the Hamiltonian h(k, m) given in Eq. (128). Let us denote
the spatial symmetry (antisymmetry) operator by P̂ (P̄) and
assume that there are n mutually anticommuting Ml , with l =
1, . . . , n, {Ml , h(k, m)} = 0 and {Ml , P̂} = 0 ([Ml , P̄] = 0).
We further consider a slowly position-dependent parameter
m = m(r), which produces a position-dependent Hamiltonian
h(k, m(r)). If there is a region with m(r) < 0 and m(r) > 0
outside this region such that the boundary defined by m(r) =
0 is topologically the same as Sd−1, then there may exist
gapless modes localized at the boundary. One can try to gap
out the possible gapless modes, while preserving the spatial
symmetry of h(k, m(r)), by introducing a perturbation

V = i
n∑

l=1

d‖∑
j=1

b(l )
j Ml�0� j . (C1)

Let us focus on a point on the boundary defined by its
normal unit vector n̂ (pointing toward the m > 0 region). We
can then define p⊥ = k · n̂, p‖ · n̂ = 0, and x⊥ = r · n̂. Thus,
the low-energy Hamiltonian near this point at the boundary
can be written as

hboundary(p‖) = m(x⊥)�0 + p‖ · � − i(n̂ · �)∂x⊥ , (C2)

where � = (�1, . . . , �d ). The wave function for a bound state
of hboundary can be written as

ψ (x⊥, p‖) = exp

(
−

∫ x⊥

0
dx′m(x′)

)
ψ̃ (p‖). (C3)

The gapless mode corresponds to the solution (�0 + in̂ ·
�)ψ̃ (p‖) = 0. According to this, one can define the projector
into this gapless sector as

P(n̂) = 1
2 [1 + i(n̂ · �)�0]. (C4)

Hence, we have the Hamiltonian with the additional perturba-
tion V projected into the boundary low-energy sector

P(n̂)[hboundary(p‖) + V ]P(n̂)

= p‖ · P(n̂)�P(n̂) − 1

2

n∑
l=1

d‖∑
j=1

b( j)
l Ml n̂ j, (C5)

where n̂ j is the jth component of n̂. Note that the second term
gaps out the boundary, and we can have gapless boundary
modes only at locations satisfying

d‖∑
j=1

b( j)
l n̂ j = 0 ∀ l = 1, . . . , n. (C6)

This condition is equivalent to finding the intersection ker B ∩
Sd−1, where ker B denotes the kernel of matrix B whose
elements are defined as Bi j = b( j)

i . Since ker B is a linear
subspace of Rd of dimension d − min(n, d‖), we find that the
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gapless set is given by

ker B ∩ Sd−1 =
{

Sd−min(n+1,d‖+1), min(n + 1, d‖ + 1) � d
∅, min(n + 1, d‖ + 1) > d.

(C7)

This means that one can have gapless boundary
modes of codimension min(n + 1, d‖ + 1) if min(n +
1, d‖ + 1) � d; otherwise the boundary is completely
gapped.
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